core.c 183.4 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121 122 123
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

124 125 126 127 128 129 130
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

131 132 133 134 135 136
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
137 138 139 140
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
141
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
142
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144
static DEFINE_PER_CPU(atomic_t, perf_freq_events);
S
Stephane Eranian 已提交
145

146 147 148
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
149

P
Peter Zijlstra 已提交
150 151 152 153
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

154
/*
155
 * perf event paranoia level:
156 157
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
158
 *   1 - disallow cpu events for unpriv
159
 *   2 - disallow kernel profiling for unpriv
160
 */
161
int sysctl_perf_event_paranoid __read_mostly = 1;
162

163 164
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
165 166

/*
167
 * max perf event sample rate
168
 */
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

static atomic_t perf_sample_allowed_ns __read_mostly =
	ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
186
	do_div(tmp, 100);
187 188
	atomic_set(&perf_sample_allowed_ns, tmp);
}
P
Peter Zijlstra 已提交
189

190 191
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
192 193 194 195 196 197 198 199 200 201
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
220 221 222

	return 0;
}
223

224 225 226 227 228 229 230 231 232 233 234 235
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
DEFINE_PER_CPU(u64, running_sample_length);

void perf_sample_event_took(u64 sample_len_ns)
{
	u64 avg_local_sample_len;
236
	u64 local_samples_len;
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

	if (atomic_read(&perf_sample_allowed_ns) == 0)
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	printk_ratelimited(KERN_WARNING
			"perf samples too long (%lld > %d), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
			avg_local_sample_len,
			atomic_read(&perf_sample_allowed_ns),
			sysctl_perf_event_sample_rate);

	update_perf_cpu_limits();
}

274
static atomic64_t perf_event_id;
275

276 277 278 279
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
280 281 282 283 284
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
285

286
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
287

288
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
289
{
290
	return "pmu";
T
Thomas Gleixner 已提交
291 292
}

293 294 295 296 297
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
298 299 300 301 302 303
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
320 321
#ifdef CONFIG_CGROUP_PERF

322 323 324 325 326 327 328 329 330 331 332
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
333
	struct perf_cgroup_info	__percpu *info;
334 335
};

336 337 338 339 340
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
370 371
}

372
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
373
{
374
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
423 424
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
425
	/*
426 427
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
428
	 */
429
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
430 431
		return;

432 433 434 435 436 437
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
438 439 440
}

static inline void
441 442
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
443 444 445 446
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

447 448 449 450 451 452
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
453 454 455 456
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
457
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
490 491
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
492 493 494 495 496 497 498 499 500

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
501 502
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
503 504 505 506 507 508 509 510 511 512 513

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
514
				WARN_ON_ONCE(cpuctx->cgrp);
515 516 517 518
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
519 520 521 522
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
523 524
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
525 526 527 528 529 530 531 532
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

533 534
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
535
{
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
558 559
}

560 561
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
562
{
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
581 582 583 584 585 586 587 588
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
589 590
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
591

592
	if (!f.file)
S
Stephane Eranian 已提交
593 594
		return -EBADF;

595
	css = cgroup_css_from_dir(f.file, perf_subsys_id);
596 597 598 599
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
600 601 602 603

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

604
	/* must be done before we fput() the file */
605 606 607 608 609
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
610

S
Stephane Eranian 已提交
611 612 613 614 615 616 617 618 619
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
620
out:
621
	fdput(f);
S
Stephane Eranian 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

695 696
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
697 698 699
{
}

700 701
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
702 703 704 705 706 707 708 709 710 711 712
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
713 714
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
808
	int timer;
809 810 811 812 813

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

814 815 816 817 818 819 820 821 822
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
845
void perf_pmu_disable(struct pmu *pmu)
846
{
P
Peter Zijlstra 已提交
847 848 849
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
850 851
}

P
Peter Zijlstra 已提交
852
void perf_pmu_enable(struct pmu *pmu)
853
{
P
Peter Zijlstra 已提交
854 855 856
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
857 858
}

859 860 861 862 863 864 865
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
866
static void perf_pmu_rotate_start(struct pmu *pmu)
867
{
P
Peter Zijlstra 已提交
868
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
869
	struct list_head *head = &__get_cpu_var(rotation_list);
870

871
	WARN_ON(!irqs_disabled());
872

873
	if (list_empty(&cpuctx->rotation_list))
874
		list_add(&cpuctx->rotation_list, head);
875 876
}

877
static void get_ctx(struct perf_event_context *ctx)
878
{
879
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
880 881
}

882
static void put_ctx(struct perf_event_context *ctx)
883
{
884 885 886
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
887 888
		if (ctx->task)
			put_task_struct(ctx->task);
889
		kfree_rcu(ctx, rcu_head);
890
	}
891 892
}

893
static void unclone_ctx(struct perf_event_context *ctx)
894 895 896 897 898 899 900
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

923
/*
924
 * If we inherit events we want to return the parent event id
925 926
 * to userspace.
 */
927
static u64 primary_event_id(struct perf_event *event)
928
{
929
	u64 id = event->id;
930

931 932
	if (event->parent)
		id = event->parent->id;
933 934 935 936

	return id;
}

937
/*
938
 * Get the perf_event_context for a task and lock it.
939 940 941
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
942
static struct perf_event_context *
P
Peter Zijlstra 已提交
943
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
944
{
945
	struct perf_event_context *ctx;
946

P
Peter Zijlstra 已提交
947
retry:
948 949 950 951 952 953 954 955 956 957 958
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
959
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
960 961 962 963
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
964
		 * perf_event_task_sched_out, though the
965 966 967 968 969 970
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
971
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
972
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
973
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
974 975
			rcu_read_unlock();
			preempt_enable();
976 977
			goto retry;
		}
978 979

		if (!atomic_inc_not_zero(&ctx->refcount)) {
980
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
981 982
			ctx = NULL;
		}
983 984
	}
	rcu_read_unlock();
985
	preempt_enable();
986 987 988 989 990 991 992 993
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
994 995
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
996
{
997
	struct perf_event_context *ctx;
998 999
	unsigned long flags;

P
Peter Zijlstra 已提交
1000
	ctx = perf_lock_task_context(task, ctxn, &flags);
1001 1002
	if (ctx) {
		++ctx->pin_count;
1003
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1004 1005 1006 1007
	}
	return ctx;
}

1008
static void perf_unpin_context(struct perf_event_context *ctx)
1009 1010 1011
{
	unsigned long flags;

1012
	raw_spin_lock_irqsave(&ctx->lock, flags);
1013
	--ctx->pin_count;
1014
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1015 1016
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1028 1029 1030
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1031 1032 1033 1034

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1035 1036 1037
	return ctx ? ctx->time : 0;
}

1038 1039
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1040
 * The caller of this function needs to hold the ctx->lock.
1041 1042 1043 1044 1045 1046 1047 1048 1049
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1061
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1062 1063
	else if (ctx->is_active)
		run_end = ctx->time;
1064 1065 1066 1067
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1068 1069 1070 1071

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1072
		run_end = perf_event_time(event);
1073 1074

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1075

1076 1077
}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1090 1091 1092 1093 1094 1095 1096 1097 1098
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1099
/*
1100
 * Add a event from the lists for its context.
1101 1102
 * Must be called with ctx->mutex and ctx->lock held.
 */
1103
static void
1104
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1105
{
1106 1107
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1108 1109

	/*
1110 1111 1112
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1113
	 */
1114
	if (event->group_leader == event) {
1115 1116
		struct list_head *list;

1117 1118 1119
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1120 1121
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1122
	}
P
Peter Zijlstra 已提交
1123

1124
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1125 1126
		ctx->nr_cgroups++;

1127 1128 1129
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1130
	list_add_rcu(&event->event_entry, &ctx->event_list);
1131
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1132
		perf_pmu_rotate_start(ctx->pmu);
1133 1134
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1135
		ctx->nr_stat++;
1136 1137
}

J
Jiri Olsa 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1186 1187 1188 1189 1190 1191
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1192 1193 1194
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1195 1196 1197
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1198 1199 1200
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

1201 1202 1203 1204 1205 1206 1207 1208 1209
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1225
	event->id_header_size = size;
1226 1227
}

1228 1229
static void perf_group_attach(struct perf_event *event)
{
1230
	struct perf_event *group_leader = event->group_leader, *pos;
1231

P
Peter Zijlstra 已提交
1232 1233 1234 1235 1236 1237
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1249 1250 1251 1252 1253

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1254 1255
}

1256
/*
1257
 * Remove a event from the lists for its context.
1258
 * Must be called with ctx->mutex and ctx->lock held.
1259
 */
1260
static void
1261
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1262
{
1263
	struct perf_cpu_context *cpuctx;
1264 1265 1266 1267
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1268
		return;
1269 1270 1271

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1272
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1273
		ctx->nr_cgroups--;
1274 1275 1276 1277 1278 1279 1280 1281 1282
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1283

1284 1285 1286
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1287 1288
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1289
		ctx->nr_stat--;
1290

1291
	list_del_rcu(&event->event_entry);
1292

1293 1294
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1295

1296
	update_group_times(event);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1307 1308
}

1309
static void perf_group_detach(struct perf_event *event)
1310 1311
{
	struct perf_event *sibling, *tmp;
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1328
		goto out;
1329 1330 1331 1332
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1333

1334
	/*
1335 1336
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1337
	 * to whatever list we are on.
1338
	 */
1339
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1340 1341
		if (list)
			list_move_tail(&sibling->group_entry, list);
1342
		sibling->group_leader = sibling;
1343 1344 1345

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1346
	}
1347 1348 1349 1350 1351 1352

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1353 1354
}

1355 1356 1357
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1358 1359
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1360 1361
}

1362 1363
static void
event_sched_out(struct perf_event *event,
1364
		  struct perf_cpu_context *cpuctx,
1365
		  struct perf_event_context *ctx)
1366
{
1367
	u64 tstamp = perf_event_time(event);
1368 1369 1370 1371 1372 1373 1374 1375 1376
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1377
		delta = tstamp - event->tstamp_stopped;
1378
		event->tstamp_running += delta;
1379
		event->tstamp_stopped = tstamp;
1380 1381
	}

1382
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1383
		return;
1384

1385 1386 1387 1388
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1389
	}
1390
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1391
	event->pmu->del(event, 0);
1392
	event->oncpu = -1;
1393

1394
	if (!is_software_event(event))
1395 1396
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1397 1398
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1399
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1400 1401 1402
		cpuctx->exclusive = 0;
}

1403
static void
1404
group_sched_out(struct perf_event *group_event,
1405
		struct perf_cpu_context *cpuctx,
1406
		struct perf_event_context *ctx)
1407
{
1408
	struct perf_event *event;
1409
	int state = group_event->state;
1410

1411
	event_sched_out(group_event, cpuctx, ctx);
1412 1413 1414 1415

	/*
	 * Schedule out siblings (if any):
	 */
1416 1417
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1418

1419
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1420 1421 1422
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1423
/*
1424
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1425
 *
1426
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1427 1428
 * remove it from the context list.
 */
1429
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1430
{
1431 1432
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1433
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1434

1435
	raw_spin_lock(&ctx->lock);
1436 1437
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1438 1439 1440 1441
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1442
	raw_spin_unlock(&ctx->lock);
1443 1444

	return 0;
T
Thomas Gleixner 已提交
1445 1446 1447 1448
}


/*
1449
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1450
 *
1451
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1452
 * call when the task is on a CPU.
1453
 *
1454 1455
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1456 1457
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1458
 * When called from perf_event_exit_task, it's OK because the
1459
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1460
 */
1461
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1462
{
1463
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1464 1465
	struct task_struct *task = ctx->task;

1466 1467
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1468 1469
	if (!task) {
		/*
1470
		 * Per cpu events are removed via an smp call and
1471
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1472
		 */
1473
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1474 1475 1476 1477
		return;
	}

retry:
1478 1479
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1480

1481
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1482
	/*
1483 1484
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1485
	 */
1486
	if (ctx->is_active) {
1487
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1488 1489 1490 1491
		goto retry;
	}

	/*
1492 1493
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1494
	 */
1495
	list_del_event(event, ctx);
1496
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1497 1498
}

1499
/*
1500
 * Cross CPU call to disable a performance event
1501
 */
1502
int __perf_event_disable(void *info)
1503
{
1504 1505
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1506
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1507 1508

	/*
1509 1510
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1511 1512 1513
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1514
	 */
1515
	if (ctx->task && cpuctx->task_ctx != ctx)
1516
		return -EINVAL;
1517

1518
	raw_spin_lock(&ctx->lock);
1519 1520

	/*
1521
	 * If the event is on, turn it off.
1522 1523
	 * If it is in error state, leave it in error state.
	 */
1524
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1525
		update_context_time(ctx);
S
Stephane Eranian 已提交
1526
		update_cgrp_time_from_event(event);
1527 1528 1529
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1530
		else
1531 1532
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1533 1534
	}

1535
	raw_spin_unlock(&ctx->lock);
1536 1537

	return 0;
1538 1539 1540
}

/*
1541
 * Disable a event.
1542
 *
1543 1544
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1545
 * remains valid.  This condition is satisifed when called through
1546 1547 1548 1549
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1550
 * is the current context on this CPU and preemption is disabled,
1551
 * hence we can't get into perf_event_task_sched_out for this context.
1552
 */
1553
void perf_event_disable(struct perf_event *event)
1554
{
1555
	struct perf_event_context *ctx = event->ctx;
1556 1557 1558 1559
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1560
		 * Disable the event on the cpu that it's on
1561
		 */
1562
		cpu_function_call(event->cpu, __perf_event_disable, event);
1563 1564 1565
		return;
	}

P
Peter Zijlstra 已提交
1566
retry:
1567 1568
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1569

1570
	raw_spin_lock_irq(&ctx->lock);
1571
	/*
1572
	 * If the event is still active, we need to retry the cross-call.
1573
	 */
1574
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1575
		raw_spin_unlock_irq(&ctx->lock);
1576 1577 1578 1579 1580
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1581 1582 1583 1584 1585 1586 1587
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1588 1589 1590
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1591
	}
1592
	raw_spin_unlock_irq(&ctx->lock);
1593
}
1594
EXPORT_SYMBOL_GPL(perf_event_disable);
1595

S
Stephane Eranian 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1631 1632 1633 1634
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1635
static int
1636
event_sched_in(struct perf_event *event,
1637
		 struct perf_cpu_context *cpuctx,
1638
		 struct perf_event_context *ctx)
1639
{
1640 1641
	u64 tstamp = perf_event_time(event);

1642
	if (event->state <= PERF_EVENT_STATE_OFF)
1643 1644
		return 0;

1645
	event->state = PERF_EVENT_STATE_ACTIVE;
1646
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1658 1659 1660 1661 1662
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1663
	if (event->pmu->add(event, PERF_EF_START)) {
1664 1665
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1666 1667 1668
		return -EAGAIN;
	}

1669
	event->tstamp_running += tstamp - event->tstamp_stopped;
1670

S
Stephane Eranian 已提交
1671
	perf_set_shadow_time(event, ctx, tstamp);
1672

1673
	if (!is_software_event(event))
1674
		cpuctx->active_oncpu++;
1675
	ctx->nr_active++;
1676 1677
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1678

1679
	if (event->attr.exclusive)
1680 1681
		cpuctx->exclusive = 1;

1682 1683 1684
	return 0;
}

1685
static int
1686
group_sched_in(struct perf_event *group_event,
1687
	       struct perf_cpu_context *cpuctx,
1688
	       struct perf_event_context *ctx)
1689
{
1690
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1691
	struct pmu *pmu = group_event->pmu;
1692 1693
	u64 now = ctx->time;
	bool simulate = false;
1694

1695
	if (group_event->state == PERF_EVENT_STATE_OFF)
1696 1697
		return 0;

P
Peter Zijlstra 已提交
1698
	pmu->start_txn(pmu);
1699

1700
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1701
		pmu->cancel_txn(pmu);
1702
		perf_cpu_hrtimer_restart(cpuctx);
1703
		return -EAGAIN;
1704
	}
1705 1706 1707 1708

	/*
	 * Schedule in siblings as one group (if any):
	 */
1709
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1710
		if (event_sched_in(event, cpuctx, ctx)) {
1711
			partial_group = event;
1712 1713 1714 1715
			goto group_error;
		}
	}

1716
	if (!pmu->commit_txn(pmu))
1717
		return 0;
1718

1719 1720 1721 1722
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1733
	 */
1734 1735
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1736 1737 1738 1739 1740 1741 1742 1743
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1744
	}
1745
	event_sched_out(group_event, cpuctx, ctx);
1746

P
Peter Zijlstra 已提交
1747
	pmu->cancel_txn(pmu);
1748

1749 1750
	perf_cpu_hrtimer_restart(cpuctx);

1751 1752 1753
	return -EAGAIN;
}

1754
/*
1755
 * Work out whether we can put this event group on the CPU now.
1756
 */
1757
static int group_can_go_on(struct perf_event *event,
1758 1759 1760 1761
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1762
	 * Groups consisting entirely of software events can always go on.
1763
	 */
1764
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1765 1766 1767
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1768
	 * events can go on.
1769 1770 1771 1772 1773
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1774
	 * events on the CPU, it can't go on.
1775
	 */
1776
	if (event->attr.exclusive && cpuctx->active_oncpu)
1777 1778 1779 1780 1781 1782 1783 1784
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1785 1786
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1787
{
1788 1789
	u64 tstamp = perf_event_time(event);

1790
	list_add_event(event, ctx);
1791
	perf_group_attach(event);
1792 1793 1794
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1795 1796
}

1797 1798 1799 1800 1801 1802
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1803

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1816
/*
1817
 * Cross CPU call to install and enable a performance event
1818 1819
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1820
 */
1821
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1822
{
1823 1824
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1825
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1826 1827 1828
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1829
	perf_ctx_lock(cpuctx, task_ctx);
1830
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1831 1832

	/*
1833
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1834
	 */
1835
	if (task_ctx)
1836
		task_ctx_sched_out(task_ctx);
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1851 1852
		task = task_ctx->task;
	}
1853

1854
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1855

1856
	update_context_time(ctx);
S
Stephane Eranian 已提交
1857 1858 1859 1860 1861 1862
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1863

1864
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1865

1866
	/*
1867
	 * Schedule everything back in
1868
	 */
1869
	perf_event_sched_in(cpuctx, task_ctx, task);
1870 1871 1872

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1873

1874 1875 1876
	if (atomic_read(&__get_cpu_var(perf_freq_events)))
		tick_nohz_full_kick();

1877
	return 0;
T
Thomas Gleixner 已提交
1878 1879 1880
}

/*
1881
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1882
 *
1883 1884
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1885
 *
1886
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1887 1888 1889 1890
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1891 1892
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1893 1894 1895 1896
			int cpu)
{
	struct task_struct *task = ctx->task;

1897 1898
	lockdep_assert_held(&ctx->mutex);

1899
	event->ctx = ctx;
1900 1901
	if (event->cpu != -1)
		event->cpu = cpu;
1902

T
Thomas Gleixner 已提交
1903 1904
	if (!task) {
		/*
1905
		 * Per cpu events are installed via an smp call and
1906
		 * the install is always successful.
T
Thomas Gleixner 已提交
1907
		 */
1908
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1909 1910 1911 1912
		return;
	}

retry:
1913 1914
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1915

1916
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1917
	/*
1918 1919
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1920
	 */
1921
	if (ctx->is_active) {
1922
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1923 1924 1925 1926
		goto retry;
	}

	/*
1927 1928
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1929
	 */
1930
	add_event_to_ctx(event, ctx);
1931
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1932 1933
}

1934
/*
1935
 * Put a event into inactive state and update time fields.
1936 1937 1938 1939 1940 1941
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1942
static void __perf_event_mark_enabled(struct perf_event *event)
1943
{
1944
	struct perf_event *sub;
1945
	u64 tstamp = perf_event_time(event);
1946

1947
	event->state = PERF_EVENT_STATE_INACTIVE;
1948
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1949
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1950 1951
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1952
	}
1953 1954
}

1955
/*
1956
 * Cross CPU call to enable a performance event
1957
 */
1958
static int __perf_event_enable(void *info)
1959
{
1960 1961 1962
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1963
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1964
	int err;
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
1976
		return -EINVAL;
1977

1978
	raw_spin_lock(&ctx->lock);
1979
	update_context_time(ctx);
1980

1981
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1982
		goto unlock;
S
Stephane Eranian 已提交
1983 1984 1985 1986

	/*
	 * set current task's cgroup time reference point
	 */
1987
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1988

1989
	__perf_event_mark_enabled(event);
1990

S
Stephane Eranian 已提交
1991 1992 1993
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1994
		goto unlock;
S
Stephane Eranian 已提交
1995
	}
1996

1997
	/*
1998
	 * If the event is in a group and isn't the group leader,
1999
	 * then don't put it on unless the group is on.
2000
	 */
2001
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2002
		goto unlock;
2003

2004
	if (!group_can_go_on(event, cpuctx, 1)) {
2005
		err = -EEXIST;
2006
	} else {
2007
		if (event == leader)
2008
			err = group_sched_in(event, cpuctx, ctx);
2009
		else
2010
			err = event_sched_in(event, cpuctx, ctx);
2011
	}
2012 2013 2014

	if (err) {
		/*
2015
		 * If this event can't go on and it's part of a
2016 2017
		 * group, then the whole group has to come off.
		 */
2018
		if (leader != event) {
2019
			group_sched_out(leader, cpuctx, ctx);
2020 2021
			perf_cpu_hrtimer_restart(cpuctx);
		}
2022
		if (leader->attr.pinned) {
2023
			update_group_times(leader);
2024
			leader->state = PERF_EVENT_STATE_ERROR;
2025
		}
2026 2027
	}

P
Peter Zijlstra 已提交
2028
unlock:
2029
	raw_spin_unlock(&ctx->lock);
2030 2031

	return 0;
2032 2033 2034
}

/*
2035
 * Enable a event.
2036
 *
2037 2038
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2039
 * remains valid.  This condition is satisfied when called through
2040 2041
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2042
 */
2043
void perf_event_enable(struct perf_event *event)
2044
{
2045
	struct perf_event_context *ctx = event->ctx;
2046 2047 2048 2049
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2050
		 * Enable the event on the cpu that it's on
2051
		 */
2052
		cpu_function_call(event->cpu, __perf_event_enable, event);
2053 2054 2055
		return;
	}

2056
	raw_spin_lock_irq(&ctx->lock);
2057
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2058 2059 2060
		goto out;

	/*
2061 2062
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2063 2064 2065 2066
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2067 2068
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2069

P
Peter Zijlstra 已提交
2070
retry:
2071
	if (!ctx->is_active) {
2072
		__perf_event_mark_enabled(event);
2073 2074 2075
		goto out;
	}

2076
	raw_spin_unlock_irq(&ctx->lock);
2077 2078 2079

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2080

2081
	raw_spin_lock_irq(&ctx->lock);
2082 2083

	/*
2084
	 * If the context is active and the event is still off,
2085 2086
	 * we need to retry the cross-call.
	 */
2087 2088 2089 2090 2091 2092
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2093
		goto retry;
2094
	}
2095

P
Peter Zijlstra 已提交
2096
out:
2097
	raw_spin_unlock_irq(&ctx->lock);
2098
}
2099
EXPORT_SYMBOL_GPL(perf_event_enable);
2100

2101
int perf_event_refresh(struct perf_event *event, int refresh)
2102
{
2103
	/*
2104
	 * not supported on inherited events
2105
	 */
2106
	if (event->attr.inherit || !is_sampling_event(event))
2107 2108
		return -EINVAL;

2109 2110
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2111 2112

	return 0;
2113
}
2114
EXPORT_SYMBOL_GPL(perf_event_refresh);
2115

2116 2117 2118
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2119
{
2120
	struct perf_event *event;
2121
	int is_active = ctx->is_active;
2122

2123
	ctx->is_active &= ~event_type;
2124
	if (likely(!ctx->nr_events))
2125 2126
		return;

2127
	update_context_time(ctx);
S
Stephane Eranian 已提交
2128
	update_cgrp_time_from_cpuctx(cpuctx);
2129
	if (!ctx->nr_active)
2130
		return;
2131

P
Peter Zijlstra 已提交
2132
	perf_pmu_disable(ctx->pmu);
2133
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2134 2135
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2136
	}
2137

2138
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2139
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2140
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2141
	}
P
Peter Zijlstra 已提交
2142
	perf_pmu_enable(ctx->pmu);
2143 2144
}

2145 2146 2147
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
2148 2149 2150 2151
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
2152
 * in them directly with an fd; we can only enable/disable all
2153
 * events via prctl, or enable/disable all events in a family
2154 2155
 * via ioctl, which will have the same effect on both contexts.
 */
2156 2157
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2158 2159
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2160
		&& ctx1->parent_gen == ctx2->parent_gen
2161
		&& !ctx1->pin_count && !ctx2->pin_count;
2162 2163
}

2164 2165
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2166 2167 2168
{
	u64 value;

2169
	if (!event->attr.inherit_stat)
2170 2171 2172
		return;

	/*
2173
	 * Update the event value, we cannot use perf_event_read()
2174 2175
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2176
	 * we know the event must be on the current CPU, therefore we
2177 2178
	 * don't need to use it.
	 */
2179 2180
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2181 2182
		event->pmu->read(event);
		/* fall-through */
2183

2184 2185
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2186 2187 2188 2189 2190 2191 2192
		break;

	default:
		break;
	}

	/*
2193
	 * In order to keep per-task stats reliable we need to flip the event
2194 2195
	 * values when we flip the contexts.
	 */
2196 2197 2198
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2199

2200 2201
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2202

2203
	/*
2204
	 * Since we swizzled the values, update the user visible data too.
2205
	 */
2206 2207
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2208 2209 2210 2211 2212
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

2213 2214
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2215
{
2216
	struct perf_event *event, *next_event;
2217 2218 2219 2220

	if (!ctx->nr_stat)
		return;

2221 2222
	update_context_time(ctx);

2223 2224
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2225

2226 2227
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2228

2229 2230
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2231

2232
		__perf_event_sync_stat(event, next_event);
2233

2234 2235
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2236 2237 2238
	}
}

2239 2240
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2241
{
P
Peter Zijlstra 已提交
2242
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2243 2244
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
2245
	struct perf_cpu_context *cpuctx;
2246
	int do_switch = 1;
T
Thomas Gleixner 已提交
2247

P
Peter Zijlstra 已提交
2248 2249
	if (likely(!ctx))
		return;
2250

P
Peter Zijlstra 已提交
2251 2252
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2253 2254
		return;

2255 2256
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
2257
	next_ctx = next->perf_event_ctxp[ctxn];
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2269 2270
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2271
		if (context_equiv(ctx, next_ctx)) {
2272 2273
			/*
			 * XXX do we need a memory barrier of sorts
2274
			 * wrt to rcu_dereference() of perf_event_ctxp
2275
			 */
P
Peter Zijlstra 已提交
2276 2277
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2278 2279 2280
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2281

2282
			perf_event_sync_stat(ctx, next_ctx);
2283
		}
2284 2285
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2286
	}
2287
	rcu_read_unlock();
2288

2289
	if (do_switch) {
2290
		raw_spin_lock(&ctx->lock);
2291
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2292
		cpuctx->task_ctx = NULL;
2293
		raw_spin_unlock(&ctx->lock);
2294
	}
T
Thomas Gleixner 已提交
2295 2296
}

P
Peter Zijlstra 已提交
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2311 2312
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2313 2314 2315 2316 2317
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2318 2319 2320 2321 2322 2323 2324

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2325
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2326 2327
}

2328
static void task_ctx_sched_out(struct perf_event_context *ctx)
2329
{
P
Peter Zijlstra 已提交
2330
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2331

2332 2333
	if (!cpuctx->task_ctx)
		return;
2334 2335 2336 2337

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2338
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2339 2340 2341
	cpuctx->task_ctx = NULL;
}

2342 2343 2344 2345 2346 2347 2348
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2349 2350
}

2351
static void
2352
ctx_pinned_sched_in(struct perf_event_context *ctx,
2353
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2354
{
2355
	struct perf_event *event;
T
Thomas Gleixner 已提交
2356

2357 2358
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2359
			continue;
2360
		if (!event_filter_match(event))
2361 2362
			continue;

S
Stephane Eranian 已提交
2363 2364 2365 2366
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2367
		if (group_can_go_on(event, cpuctx, 1))
2368
			group_sched_in(event, cpuctx, ctx);
2369 2370 2371 2372 2373

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2374 2375 2376
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2377
		}
2378
	}
2379 2380 2381 2382
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2383
		      struct perf_cpu_context *cpuctx)
2384 2385 2386
{
	struct perf_event *event;
	int can_add_hw = 1;
2387

2388 2389 2390
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2391
			continue;
2392 2393
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2394
		 * of events:
2395
		 */
2396
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2397 2398
			continue;

S
Stephane Eranian 已提交
2399 2400 2401 2402
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2403
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2404
			if (group_sched_in(event, cpuctx, ctx))
2405
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2406
		}
T
Thomas Gleixner 已提交
2407
	}
2408 2409 2410 2411 2412
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2413 2414
	     enum event_type_t event_type,
	     struct task_struct *task)
2415
{
S
Stephane Eranian 已提交
2416
	u64 now;
2417
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2418

2419
	ctx->is_active |= event_type;
2420
	if (likely(!ctx->nr_events))
2421
		return;
2422

S
Stephane Eranian 已提交
2423 2424
	now = perf_clock();
	ctx->timestamp = now;
2425
	perf_cgroup_set_timestamp(task, ctx);
2426 2427 2428 2429
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2430
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2431
		ctx_pinned_sched_in(ctx, cpuctx);
2432 2433

	/* Then walk through the lower prio flexible groups */
2434
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2435
		ctx_flexible_sched_in(ctx, cpuctx);
2436 2437
}

2438
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2439 2440
			     enum event_type_t event_type,
			     struct task_struct *task)
2441 2442 2443
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2444
	ctx_sched_in(ctx, cpuctx, event_type, task);
2445 2446
}

S
Stephane Eranian 已提交
2447 2448
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2449
{
P
Peter Zijlstra 已提交
2450
	struct perf_cpu_context *cpuctx;
2451

P
Peter Zijlstra 已提交
2452
	cpuctx = __get_cpu_context(ctx);
2453 2454 2455
	if (cpuctx->task_ctx == ctx)
		return;

2456
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2457
	perf_pmu_disable(ctx->pmu);
2458 2459 2460 2461 2462 2463 2464
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2465 2466
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2467

2468 2469
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2470 2471 2472
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2473 2474 2475 2476
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2477
	perf_pmu_rotate_start(ctx->pmu);
2478 2479
}

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2551 2552
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2553 2554 2555 2556 2557 2558 2559 2560 2561
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2562
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2563
	}
S
Stephane Eranian 已提交
2564 2565 2566 2567 2568 2569
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2570
		perf_cgroup_sched_in(prev, task);
2571 2572 2573 2574

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2575 2576
}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2604
#define REDUCE_FLS(a, b)		\
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2644 2645 2646
	if (!divisor)
		return dividend;

2647 2648 2649
	return div64_u64(dividend, divisor);
}

2650 2651 2652
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2653
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2654
{
2655
	struct hw_perf_event *hwc = &event->hw;
2656
	s64 period, sample_period;
2657 2658
	s64 delta;

2659
	period = perf_calculate_period(event, nsec, count);
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2670

2671
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2672 2673 2674
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2675
		local64_set(&hwc->period_left, 0);
2676 2677 2678

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2679
	}
2680 2681
}

2682 2683 2684 2685 2686 2687 2688
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2689
{
2690 2691
	struct perf_event *event;
	struct hw_perf_event *hwc;
2692
	u64 now, period = TICK_NSEC;
2693
	s64 delta;
2694

2695 2696 2697 2698 2699 2700
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2701 2702
		return;

2703
	raw_spin_lock(&ctx->lock);
2704
	perf_pmu_disable(ctx->pmu);
2705

2706
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2707
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2708 2709
			continue;

2710
		if (!event_filter_match(event))
2711 2712
			continue;

2713
		hwc = &event->hw;
2714

2715 2716
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2717
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2718
			event->pmu->start(event, 0);
2719 2720
		}

2721
		if (!event->attr.freq || !event->attr.sample_freq)
2722 2723
			continue;

2724 2725 2726 2727 2728
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2729
		now = local64_read(&event->count);
2730 2731
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2732

2733 2734 2735
		/*
		 * restart the event
		 * reload only if value has changed
2736 2737 2738
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2739
		 */
2740
		if (delta > 0)
2741
			perf_adjust_period(event, period, delta, false);
2742 2743

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2744
	}
2745

2746
	perf_pmu_enable(ctx->pmu);
2747
	raw_spin_unlock(&ctx->lock);
2748 2749
}

2750
/*
2751
 * Round-robin a context's events:
2752
 */
2753
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2754
{
2755 2756 2757 2758 2759 2760
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2761 2762
}

2763
/*
2764 2765 2766
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2767
 */
2768
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2769
{
P
Peter Zijlstra 已提交
2770
	struct perf_event_context *ctx = NULL;
2771
	int rotate = 0, remove = 1;
2772

2773
	if (cpuctx->ctx.nr_events) {
2774
		remove = 0;
2775 2776 2777
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2778

P
Peter Zijlstra 已提交
2779
	ctx = cpuctx->task_ctx;
2780
	if (ctx && ctx->nr_events) {
2781
		remove = 0;
2782 2783 2784
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2785

2786
	if (!rotate)
2787 2788
		goto done;

2789
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2790
	perf_pmu_disable(cpuctx->ctx.pmu);
2791

2792 2793 2794
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2795

2796 2797 2798
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2799

2800
	perf_event_sched_in(cpuctx, ctx, current);
2801

2802 2803
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2804
done:
2805 2806
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2807 2808

	return rotate;
2809 2810
}

2811 2812 2813
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2814 2815
	if (atomic_read(&__get_cpu_var(perf_freq_events)) ||
	    __this_cpu_read(perf_throttled_count))
2816
		return false;
2817 2818
	else
		return true;
2819 2820 2821
}
#endif

2822 2823 2824 2825
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2826 2827
	struct perf_event_context *ctx;
	int throttled;
2828

2829 2830
	WARN_ON(!irqs_disabled());

2831 2832 2833
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2834
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2835 2836 2837 2838 2839 2840
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2841
	}
T
Thomas Gleixner 已提交
2842 2843
}

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2854
	__perf_event_mark_enabled(event);
2855 2856 2857 2858

	return 1;
}

2859
/*
2860
 * Enable all of a task's events that have been marked enable-on-exec.
2861 2862
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2863
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2864
{
2865
	struct perf_event *event;
2866 2867
	unsigned long flags;
	int enabled = 0;
2868
	int ret;
2869 2870

	local_irq_save(flags);
2871
	if (!ctx || !ctx->nr_events)
2872 2873
		goto out;

2874 2875 2876 2877 2878 2879 2880
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2881
	perf_cgroup_sched_out(current, NULL);
2882

2883
	raw_spin_lock(&ctx->lock);
2884
	task_ctx_sched_out(ctx);
2885

2886
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2887 2888 2889
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2890 2891 2892
	}

	/*
2893
	 * Unclone this context if we enabled any event.
2894
	 */
2895 2896
	if (enabled)
		unclone_ctx(ctx);
2897

2898
	raw_spin_unlock(&ctx->lock);
2899

2900 2901 2902
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2903
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2904
out:
2905 2906 2907
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2908
/*
2909
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2910
 */
2911
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2912
{
2913 2914
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2915
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2916

2917 2918 2919 2920
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2921 2922
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2923 2924 2925 2926
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2927
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2928
	if (ctx->is_active) {
2929
		update_context_time(ctx);
S
Stephane Eranian 已提交
2930 2931
		update_cgrp_time_from_event(event);
	}
2932
	update_event_times(event);
2933 2934
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2935
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2936 2937
}

P
Peter Zijlstra 已提交
2938 2939
static inline u64 perf_event_count(struct perf_event *event)
{
2940
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2941 2942
}

2943
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2944 2945
{
	/*
2946 2947
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2948
	 */
2949 2950 2951 2952
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2953 2954 2955
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2956
		raw_spin_lock_irqsave(&ctx->lock, flags);
2957 2958 2959 2960 2961
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2962
		if (ctx->is_active) {
2963
			update_context_time(ctx);
S
Stephane Eranian 已提交
2964 2965
			update_cgrp_time_from_event(event);
		}
2966
		update_event_times(event);
2967
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2968 2969
	}

P
Peter Zijlstra 已提交
2970
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2971 2972
}

2973
/*
2974
 * Initialize the perf_event context in a task_struct:
2975
 */
2976
static void __perf_event_init_context(struct perf_event_context *ctx)
2977
{
2978
	raw_spin_lock_init(&ctx->lock);
2979
	mutex_init(&ctx->mutex);
2980 2981
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2982 2983
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2999
	}
3000 3001 3002
	ctx->pmu = pmu;

	return ctx;
3003 3004
}

3005 3006 3007 3008 3009
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3010 3011

	rcu_read_lock();
3012
	if (!vpid)
T
Thomas Gleixner 已提交
3013 3014
		task = current;
	else
3015
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3016 3017 3018 3019 3020 3021 3022 3023
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3024 3025 3026 3027
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3028 3029 3030 3031 3032 3033 3034
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3035 3036 3037
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3038
static struct perf_event_context *
M
Matt Helsley 已提交
3039
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3040
{
3041
	struct perf_event_context *ctx;
3042
	struct perf_cpu_context *cpuctx;
3043
	unsigned long flags;
P
Peter Zijlstra 已提交
3044
	int ctxn, err;
T
Thomas Gleixner 已提交
3045

3046
	if (!task) {
3047
		/* Must be root to operate on a CPU event: */
3048
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3049 3050 3051
			return ERR_PTR(-EACCES);

		/*
3052
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3053 3054 3055
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3056
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3057 3058
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3059
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3060
		ctx = &cpuctx->ctx;
3061
		get_ctx(ctx);
3062
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3063 3064 3065 3066

		return ctx;
	}

P
Peter Zijlstra 已提交
3067 3068 3069 3070 3071
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3072
retry:
P
Peter Zijlstra 已提交
3073
	ctx = perf_lock_task_context(task, ctxn, &flags);
3074
	if (ctx) {
3075
		unclone_ctx(ctx);
3076
		++ctx->pin_count;
3077
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3078
	} else {
3079
		ctx = alloc_perf_context(pmu, task);
3080 3081 3082
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3083

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3094
		else {
3095
			get_ctx(ctx);
3096
			++ctx->pin_count;
3097
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3098
		}
3099 3100 3101
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3102
			put_ctx(ctx);
3103 3104 3105 3106

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3107 3108 3109
		}
	}

T
Thomas Gleixner 已提交
3110
	return ctx;
3111

P
Peter Zijlstra 已提交
3112
errout:
3113
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3114 3115
}

L
Li Zefan 已提交
3116 3117
static void perf_event_free_filter(struct perf_event *event);

3118
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3119
{
3120
	struct perf_event *event;
P
Peter Zijlstra 已提交
3121

3122 3123 3124
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3125
	perf_event_free_filter(event);
3126
	kfree(event);
P
Peter Zijlstra 已提交
3127 3128
}

3129
static void ring_buffer_put(struct ring_buffer *rb);
3130
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3131

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
static void unaccount_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3143 3144 3145

	if (event->attr.freq)
		atomic_dec(&per_cpu(perf_freq_events, cpu));
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
}

static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
static void __free_event(struct perf_event *event)
{
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	call_rcu(&event->rcu_head, free_event_rcu);
}
3184
static void free_event(struct perf_event *event)
3185
{
3186
	irq_work_sync(&event->pending);
3187

3188
	unaccount_event(event);
3189

3190
	if (event->rb) {
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3207 3208
	}

S
Stephane Eranian 已提交
3209 3210 3211
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3212

3213
	__free_event(event);
3214 3215
}

3216
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3217
{
3218
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3219

3220
	WARN_ON_ONCE(ctx->parent_ctx);
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3234
	raw_spin_lock_irq(&ctx->lock);
3235
	perf_group_detach(event);
3236
	raw_spin_unlock_irq(&ctx->lock);
3237
	perf_remove_from_context(event);
3238
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3239

3240
	free_event(event);
T
Thomas Gleixner 已提交
3241 3242 3243

	return 0;
}
3244
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3245

3246 3247 3248
/*
 * Called when the last reference to the file is gone.
 */
3249
static void put_event(struct perf_event *event)
3250
{
P
Peter Zijlstra 已提交
3251
	struct task_struct *owner;
3252

3253 3254
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3255

P
Peter Zijlstra 已提交
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3289 3290 3291 3292 3293 3294 3295
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3296 3297
}

3298
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3299
{
3300
	struct perf_event *child;
3301 3302
	u64 total = 0;

3303 3304 3305
	*enabled = 0;
	*running = 0;

3306
	mutex_lock(&event->child_mutex);
3307
	total += perf_event_read(event);
3308 3309 3310 3311 3312 3313
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3314
		total += perf_event_read(child);
3315 3316 3317
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3318
	mutex_unlock(&event->child_mutex);
3319 3320 3321

	return total;
}
3322
EXPORT_SYMBOL_GPL(perf_event_read_value);
3323

3324
static int perf_event_read_group(struct perf_event *event,
3325 3326
				   u64 read_format, char __user *buf)
{
3327
	struct perf_event *leader = event->group_leader, *sub;
3328 3329
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3330
	u64 values[5];
3331
	u64 count, enabled, running;
3332

3333
	mutex_lock(&ctx->mutex);
3334
	count = perf_event_read_value(leader, &enabled, &running);
3335 3336

	values[n++] = 1 + leader->nr_siblings;
3337 3338 3339 3340
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3341 3342 3343
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3344 3345 3346 3347

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3348
		goto unlock;
3349

3350
	ret = size;
3351

3352
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3353
		n = 0;
3354

3355
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3356 3357 3358 3359 3360
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3361
		if (copy_to_user(buf + ret, values, size)) {
3362 3363 3364
			ret = -EFAULT;
			goto unlock;
		}
3365 3366

		ret += size;
3367
	}
3368 3369
unlock:
	mutex_unlock(&ctx->mutex);
3370

3371
	return ret;
3372 3373
}

3374
static int perf_event_read_one(struct perf_event *event,
3375 3376
				 u64 read_format, char __user *buf)
{
3377
	u64 enabled, running;
3378 3379 3380
	u64 values[4];
	int n = 0;

3381 3382 3383 3384 3385
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3386
	if (read_format & PERF_FORMAT_ID)
3387
		values[n++] = primary_event_id(event);
3388 3389 3390 3391 3392 3393 3394

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3395
/*
3396
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3397 3398
 */
static ssize_t
3399
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3400
{
3401
	u64 read_format = event->attr.read_format;
3402
	int ret;
T
Thomas Gleixner 已提交
3403

3404
	/*
3405
	 * Return end-of-file for a read on a event that is in
3406 3407 3408
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3409
	if (event->state == PERF_EVENT_STATE_ERROR)
3410 3411
		return 0;

3412
	if (count < event->read_size)
3413 3414
		return -ENOSPC;

3415
	WARN_ON_ONCE(event->ctx->parent_ctx);
3416
	if (read_format & PERF_FORMAT_GROUP)
3417
		ret = perf_event_read_group(event, read_format, buf);
3418
	else
3419
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3420

3421
	return ret;
T
Thomas Gleixner 已提交
3422 3423 3424 3425 3426
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3427
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3428

3429
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3430 3431 3432 3433
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3434
	struct perf_event *event = file->private_data;
3435
	struct ring_buffer *rb;
3436
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3437

3438
	/*
3439 3440
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3441 3442
	 */
	mutex_lock(&event->mmap_mutex);
3443 3444
	rb = event->rb;
	if (rb)
3445
		events = atomic_xchg(&rb->poll, 0);
3446 3447
	mutex_unlock(&event->mmap_mutex);

3448
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3449 3450 3451 3452

	return events;
}

3453
static void perf_event_reset(struct perf_event *event)
3454
{
3455
	(void)perf_event_read(event);
3456
	local64_set(&event->count, 0);
3457
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3458 3459
}

3460
/*
3461 3462 3463 3464
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3465
 */
3466 3467
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3468
{
3469
	struct perf_event *child;
P
Peter Zijlstra 已提交
3470

3471 3472 3473 3474
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3475
		func(child);
3476
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3477 3478
}

3479 3480
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3481
{
3482 3483
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3484

3485 3486
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3487
	event = event->group_leader;
3488

3489 3490
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3491
		perf_event_for_each_child(sibling, func);
3492
	mutex_unlock(&ctx->mutex);
3493 3494
}

3495
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3496
{
3497
	struct perf_event_context *ctx = event->ctx;
3498 3499 3500
	int ret = 0;
	u64 value;

3501
	if (!is_sampling_event(event))
3502 3503
		return -EINVAL;

3504
	if (copy_from_user(&value, arg, sizeof(value)))
3505 3506 3507 3508 3509
		return -EFAULT;

	if (!value)
		return -EINVAL;

3510
	raw_spin_lock_irq(&ctx->lock);
3511 3512
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3513 3514 3515 3516
			ret = -EINVAL;
			goto unlock;
		}

3517
		event->attr.sample_freq = value;
3518
	} else {
3519 3520
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3521 3522
	}
unlock:
3523
	raw_spin_unlock_irq(&ctx->lock);
3524 3525 3526 3527

	return ret;
}

3528 3529
static const struct file_operations perf_fops;

3530
static inline int perf_fget_light(int fd, struct fd *p)
3531
{
3532 3533 3534
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3535

3536 3537 3538
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3539
	}
3540 3541
	*p = f;
	return 0;
3542 3543 3544 3545
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3546
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3547

3548 3549
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3550 3551
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3552
	u32 flags = arg;
3553 3554

	switch (cmd) {
3555 3556
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3557
		break;
3558 3559
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3560
		break;
3561 3562
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3563
		break;
P
Peter Zijlstra 已提交
3564

3565 3566
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3567

3568 3569
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3570

3571 3572 3573 3574 3575 3576 3577 3578 3579
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3580
	case PERF_EVENT_IOC_SET_OUTPUT:
3581 3582 3583
	{
		int ret;
		if (arg != -1) {
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3594 3595 3596
		}
		return ret;
	}
3597

L
Li Zefan 已提交
3598 3599 3600
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3601
	default:
P
Peter Zijlstra 已提交
3602
		return -ENOTTY;
3603
	}
P
Peter Zijlstra 已提交
3604 3605

	if (flags & PERF_IOC_FLAG_GROUP)
3606
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3607
	else
3608
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3609 3610

	return 0;
3611 3612
}

3613
int perf_event_task_enable(void)
3614
{
3615
	struct perf_event *event;
3616

3617 3618 3619 3620
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3621 3622 3623 3624

	return 0;
}

3625
int perf_event_task_disable(void)
3626
{
3627
	struct perf_event *event;
3628

3629 3630 3631 3632
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3633 3634 3635 3636

	return 0;
}

3637
static int perf_event_index(struct perf_event *event)
3638
{
P
Peter Zijlstra 已提交
3639 3640 3641
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3642
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3643 3644
		return 0;

3645
	return event->pmu->event_idx(event);
3646 3647
}

3648
static void calc_timer_values(struct perf_event *event,
3649
				u64 *now,
3650 3651
				u64 *enabled,
				u64 *running)
3652
{
3653
	u64 ctx_time;
3654

3655 3656
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3657 3658 3659 3660
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3661
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3662 3663 3664
{
}

3665 3666 3667 3668 3669
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3670
void perf_event_update_userpage(struct perf_event *event)
3671
{
3672
	struct perf_event_mmap_page *userpg;
3673
	struct ring_buffer *rb;
3674
	u64 enabled, running, now;
3675 3676

	rcu_read_lock();
3677 3678 3679 3680 3681 3682 3683 3684 3685
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3686
	calc_timer_values(event, &now, &enabled, &running);
3687 3688
	rb = rcu_dereference(event->rb);
	if (!rb)
3689 3690
		goto unlock;

3691
	userpg = rb->user_page;
3692

3693 3694 3695 3696 3697
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3698
	++userpg->lock;
3699
	barrier();
3700
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3701
	userpg->offset = perf_event_count(event);
3702
	if (userpg->index)
3703
		userpg->offset -= local64_read(&event->hw.prev_count);
3704

3705
	userpg->time_enabled = enabled +
3706
			atomic64_read(&event->child_total_time_enabled);
3707

3708
	userpg->time_running = running +
3709
			atomic64_read(&event->child_total_time_running);
3710

3711
	arch_perf_update_userpage(userpg, now);
3712

3713
	barrier();
3714
	++userpg->lock;
3715
	preempt_enable();
3716
unlock:
3717
	rcu_read_unlock();
3718 3719
}

3720 3721 3722
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3723
	struct ring_buffer *rb;
3724 3725 3726 3727 3728 3729 3730 3731 3732
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3733 3734
	rb = rcu_dereference(event->rb);
	if (!rb)
3735 3736 3737 3738 3739
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3740
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3755 3756 3757 3758 3759 3760 3761 3762 3763
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3764 3765
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3766 3767 3768
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3769
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3788 3789 3790 3791
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3792 3793 3794
	rcu_read_unlock();
}

3795
static void rb_free_rcu(struct rcu_head *rcu_head)
3796
{
3797
	struct ring_buffer *rb;
3798

3799 3800
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3801 3802
}

3803
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3804
{
3805
	struct ring_buffer *rb;
3806

3807
	rcu_read_lock();
3808 3809 3810 3811
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3812 3813 3814
	}
	rcu_read_unlock();

3815
	return rb;
3816 3817
}

3818
static void ring_buffer_put(struct ring_buffer *rb)
3819
{
3820
	if (!atomic_dec_and_test(&rb->refcount))
3821
		return;
3822

3823
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3824

3825
	call_rcu(&rb->rcu_head, rb_free_rcu);
3826 3827 3828 3829
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3830
	struct perf_event *event = vma->vm_file->private_data;
3831

3832
	atomic_inc(&event->mmap_count);
3833
	atomic_inc(&event->rb->mmap_count);
3834 3835
}

3836 3837 3838 3839 3840 3841 3842 3843
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3844 3845
static void perf_mmap_close(struct vm_area_struct *vma)
{
3846
	struct perf_event *event = vma->vm_file->private_data;
3847

3848 3849 3850 3851
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3852

3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3868

3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3885

3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
3901
		}
3902
		mutex_unlock(&event->mmap_mutex);
3903
		put_event(event);
3904

3905 3906 3907 3908 3909
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
3910
	}
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
3927 3928
}

3929
static const struct vm_operations_struct perf_mmap_vmops = {
3930 3931 3932 3933
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3934 3935 3936 3937
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3938
	struct perf_event *event = file->private_data;
3939
	unsigned long user_locked, user_lock_limit;
3940
	struct user_struct *user = current_user();
3941
	unsigned long locked, lock_limit;
3942
	struct ring_buffer *rb;
3943 3944
	unsigned long vma_size;
	unsigned long nr_pages;
3945
	long user_extra, extra;
3946
	int ret = 0, flags = 0;
3947

3948 3949 3950
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3951
	 * same rb.
3952 3953 3954 3955
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3956
	if (!(vma->vm_flags & VM_SHARED))
3957
		return -EINVAL;
3958 3959 3960 3961

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3962
	/*
3963
	 * If we have rb pages ensure they're a power-of-two number, so we
3964 3965 3966
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3967 3968
		return -EINVAL;

3969
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3970 3971
		return -EINVAL;

3972 3973
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3974

3975
	WARN_ON_ONCE(event->ctx->parent_ctx);
3976
again:
3977
	mutex_lock(&event->mmap_mutex);
3978
	if (event->rb) {
3979
		if (event->rb->nr_pages != nr_pages) {
3980
			ret = -EINVAL;
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

3994 3995 3996
		goto unlock;
	}

3997
	user_extra = nr_pages + 1;
3998
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3999 4000 4001 4002 4003 4004

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4005
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4006

4007 4008 4009
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4010

4011
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4012
	lock_limit >>= PAGE_SHIFT;
4013
	locked = vma->vm_mm->pinned_vm + extra;
4014

4015 4016
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4017 4018 4019
		ret = -EPERM;
		goto unlock;
	}
4020

4021
	WARN_ON(event->rb);
4022

4023
	if (vma->vm_flags & VM_WRITE)
4024
		flags |= RING_BUFFER_WRITABLE;
4025

4026 4027 4028 4029
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4030
	if (!rb) {
4031
		ret = -ENOMEM;
4032
		goto unlock;
4033
	}
P
Peter Zijlstra 已提交
4034

4035
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4036 4037
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4038

4039
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4040 4041
	vma->vm_mm->pinned_vm += extra;

4042
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
4043
	rcu_assign_pointer(event->rb, rb);
4044

4045 4046
	perf_event_update_userpage(event);

4047
unlock:
4048 4049
	if (!ret)
		atomic_inc(&event->mmap_count);
4050
	mutex_unlock(&event->mmap_mutex);
4051

4052 4053 4054 4055
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4056
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4057
	vma->vm_ops = &perf_mmap_vmops;
4058 4059

	return ret;
4060 4061
}

P
Peter Zijlstra 已提交
4062 4063
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4064
	struct inode *inode = file_inode(filp);
4065
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4066 4067 4068
	int retval;

	mutex_lock(&inode->i_mutex);
4069
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4070 4071 4072 4073 4074 4075 4076 4077
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4078
static const struct file_operations perf_fops = {
4079
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4080 4081 4082
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4083 4084
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4085
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4086
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4087 4088
};

4089
/*
4090
 * Perf event wakeup
4091 4092 4093 4094 4095
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4096
void perf_event_wakeup(struct perf_event *event)
4097
{
4098
	ring_buffer_wakeup(event);
4099

4100 4101 4102
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4103
	}
4104 4105
}

4106
static void perf_pending_event(struct irq_work *entry)
4107
{
4108 4109
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4110

4111 4112 4113
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4114 4115
	}

4116 4117 4118
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4119 4120 4121
	}
}

4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4269 4270 4271
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4299 4300 4301
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

4328 4329 4330
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4331 4332 4333 4334 4335
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4336
static void perf_output_read_one(struct perf_output_handle *handle,
4337 4338
				 struct perf_event *event,
				 u64 enabled, u64 running)
4339
{
4340
	u64 read_format = event->attr.read_format;
4341 4342 4343
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4344
	values[n++] = perf_event_count(event);
4345
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4346
		values[n++] = enabled +
4347
			atomic64_read(&event->child_total_time_enabled);
4348 4349
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4350
		values[n++] = running +
4351
			atomic64_read(&event->child_total_time_running);
4352 4353
	}
	if (read_format & PERF_FORMAT_ID)
4354
		values[n++] = primary_event_id(event);
4355

4356
	__output_copy(handle, values, n * sizeof(u64));
4357 4358 4359
}

/*
4360
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4361 4362
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4363 4364
			    struct perf_event *event,
			    u64 enabled, u64 running)
4365
{
4366 4367
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4368 4369 4370 4371 4372 4373
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4374
		values[n++] = enabled;
4375 4376

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4377
		values[n++] = running;
4378

4379
	if (leader != event)
4380 4381
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4382
	values[n++] = perf_event_count(leader);
4383
	if (read_format & PERF_FORMAT_ID)
4384
		values[n++] = primary_event_id(leader);
4385

4386
	__output_copy(handle, values, n * sizeof(u64));
4387

4388
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4389 4390
		n = 0;

4391 4392
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4393 4394
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4395
		values[n++] = perf_event_count(sub);
4396
		if (read_format & PERF_FORMAT_ID)
4397
			values[n++] = primary_event_id(sub);
4398

4399
		__output_copy(handle, values, n * sizeof(u64));
4400 4401 4402
	}
}

4403 4404 4405
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4406
static void perf_output_read(struct perf_output_handle *handle,
4407
			     struct perf_event *event)
4408
{
4409
	u64 enabled = 0, running = 0, now;
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4421
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4422
		calc_timer_values(event, &now, &enabled, &running);
4423

4424
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4425
		perf_output_read_group(handle, event, enabled, running);
4426
	else
4427
		perf_output_read_one(handle, event, enabled, running);
4428 4429
}

4430 4431 4432
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4433
			struct perf_event *event)
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4464
		perf_output_read(handle, event);
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4475
			__output_copy(handle, data->callchain, size);
4476 4477 4478 4479 4480 4481 4482 4483 4484
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4485 4486
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4498

4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4533

4534
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4535 4536 4537
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4538
	}
A
Andi Kleen 已提交
4539 4540 4541

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4542 4543 4544

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4559 4560 4561 4562
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4563
			 struct perf_event *event,
4564
			 struct pt_regs *regs)
4565
{
4566
	u64 sample_type = event->attr.sample_type;
4567

4568
	header->type = PERF_RECORD_SAMPLE;
4569
	header->size = sizeof(*header) + event->header_size;
4570 4571 4572

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4573

4574
	__perf_event_header__init_id(header, data, event);
4575

4576
	if (sample_type & PERF_SAMPLE_IP)
4577 4578
		data->ip = perf_instruction_pointer(regs);

4579
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4580
		int size = 1;
4581

4582
		data->callchain = perf_callchain(event, regs);
4583 4584 4585 4586 4587

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4588 4589
	}

4590
	if (sample_type & PERF_SAMPLE_RAW) {
4591 4592 4593 4594 4595 4596 4597 4598
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4599
		header->size += size;
4600
	}
4601 4602 4603 4604 4605 4606 4607 4608 4609

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4653
}
4654

4655
static void perf_event_output(struct perf_event *event,
4656 4657 4658 4659 4660
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4661

4662 4663 4664
	/* protect the callchain buffers */
	rcu_read_lock();

4665
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4666

4667
	if (perf_output_begin(&handle, event, header.size))
4668
		goto exit;
4669

4670
	perf_output_sample(&handle, &header, data, event);
4671

4672
	perf_output_end(&handle);
4673 4674 4675

exit:
	rcu_read_unlock();
4676 4677
}

4678
/*
4679
 * read event_id
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4690
perf_event_read_event(struct perf_event *event,
4691 4692 4693
			struct task_struct *task)
{
	struct perf_output_handle handle;
4694
	struct perf_sample_data sample;
4695
	struct perf_read_event read_event = {
4696
		.header = {
4697
			.type = PERF_RECORD_READ,
4698
			.misc = 0,
4699
			.size = sizeof(read_event) + event->read_size,
4700
		},
4701 4702
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4703
	};
4704
	int ret;
4705

4706
	perf_event_header__init_id(&read_event.header, &sample, event);
4707
	ret = perf_output_begin(&handle, event, read_event.header.size);
4708 4709 4710
	if (ret)
		return;

4711
	perf_output_put(&handle, read_event);
4712
	perf_output_read(&handle, event);
4713
	perf_event__output_id_sample(event, &handle, &sample);
4714

4715 4716 4717
	perf_output_end(&handle);
}

4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4732
		output(event, data);
4733 4734 4735 4736
	}
}

static void
4737
perf_event_aux(perf_event_aux_output_cb output, void *data,
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4750
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4751 4752 4753 4754 4755 4756 4757
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4758
			perf_event_aux_ctx(ctx, output, data);
4759 4760 4761 4762 4763 4764
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4765
		perf_event_aux_ctx(task_ctx, output, data);
4766 4767 4768 4769 4770
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4771
/*
P
Peter Zijlstra 已提交
4772 4773
 * task tracking -- fork/exit
 *
4774
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4775 4776
 */

P
Peter Zijlstra 已提交
4777
struct perf_task_event {
4778
	struct task_struct		*task;
4779
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4780 4781 4782 4783 4784 4785

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4786 4787
		u32				tid;
		u32				ptid;
4788
		u64				time;
4789
	} event_id;
P
Peter Zijlstra 已提交
4790 4791
};

4792 4793 4794 4795 4796 4797
static int perf_event_task_match(struct perf_event *event)
{
	return event->attr.comm || event->attr.mmap ||
	       event->attr.mmap_data || event->attr.task;
}

4798
static void perf_event_task_output(struct perf_event *event,
4799
				   void *data)
P
Peter Zijlstra 已提交
4800
{
4801
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4802
	struct perf_output_handle handle;
4803
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4804
	struct task_struct *task = task_event->task;
4805
	int ret, size = task_event->event_id.header.size;
4806

4807 4808 4809
	if (!perf_event_task_match(event))
		return;

4810
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4811

4812
	ret = perf_output_begin(&handle, event,
4813
				task_event->event_id.header.size);
4814
	if (ret)
4815
		goto out;
P
Peter Zijlstra 已提交
4816

4817 4818
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4819

4820 4821
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4822

4823
	perf_output_put(&handle, task_event->event_id);
4824

4825 4826
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4827
	perf_output_end(&handle);
4828 4829
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4830 4831
}

4832 4833
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4834
			      int new)
P
Peter Zijlstra 已提交
4835
{
P
Peter Zijlstra 已提交
4836
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4837

4838 4839 4840
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4841 4842
		return;

P
Peter Zijlstra 已提交
4843
	task_event = (struct perf_task_event){
4844 4845
		.task	  = task,
		.task_ctx = task_ctx,
4846
		.event_id    = {
P
Peter Zijlstra 已提交
4847
			.header = {
4848
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4849
				.misc = 0,
4850
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4851
			},
4852 4853
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4854 4855
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4856
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4857 4858 4859
		},
	};

4860
	perf_event_aux(perf_event_task_output,
4861 4862
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4863 4864
}

4865
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4866
{
4867
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4868 4869
}

4870 4871 4872 4873 4874
/*
 * comm tracking
 */

struct perf_comm_event {
4875 4876
	struct task_struct	*task;
	char			*comm;
4877 4878 4879 4880 4881 4882 4883
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4884
	} event_id;
4885 4886
};

4887 4888 4889 4890 4891
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

4892
static void perf_event_comm_output(struct perf_event *event,
4893
				   void *data)
4894
{
4895
	struct perf_comm_event *comm_event = data;
4896
	struct perf_output_handle handle;
4897
	struct perf_sample_data sample;
4898
	int size = comm_event->event_id.header.size;
4899 4900
	int ret;

4901 4902 4903
	if (!perf_event_comm_match(event))
		return;

4904 4905
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4906
				comm_event->event_id.header.size);
4907 4908

	if (ret)
4909
		goto out;
4910

4911 4912
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4913

4914
	perf_output_put(&handle, comm_event->event_id);
4915
	__output_copy(&handle, comm_event->comm,
4916
				   comm_event->comm_size);
4917 4918 4919

	perf_event__output_id_sample(event, &handle, &sample);

4920
	perf_output_end(&handle);
4921 4922
out:
	comm_event->event_id.header.size = size;
4923 4924
}

4925
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4926
{
4927
	char comm[TASK_COMM_LEN];
4928 4929
	unsigned int size;

4930
	memset(comm, 0, sizeof(comm));
4931
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4932
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4933 4934 4935 4936

	comm_event->comm = comm;
	comm_event->comm_size = size;

4937
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
4938

4939
	perf_event_aux(perf_event_comm_output,
4940 4941
		       comm_event,
		       NULL);
4942 4943
}

4944
void perf_event_comm(struct task_struct *task)
4945
{
4946
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4947 4948
	struct perf_event_context *ctx;
	int ctxn;
4949

4950
	rcu_read_lock();
P
Peter Zijlstra 已提交
4951 4952 4953 4954
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4955

P
Peter Zijlstra 已提交
4956 4957
		perf_event_enable_on_exec(ctx);
	}
4958
	rcu_read_unlock();
4959

4960
	if (!atomic_read(&nr_comm_events))
4961
		return;
4962

4963
	comm_event = (struct perf_comm_event){
4964
		.task	= task,
4965 4966
		/* .comm      */
		/* .comm_size */
4967
		.event_id  = {
4968
			.header = {
4969
				.type = PERF_RECORD_COMM,
4970 4971 4972 4973 4974
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4975 4976 4977
		},
	};

4978
	perf_event_comm_event(&comm_event);
4979 4980
}

4981 4982 4983 4984 4985
/*
 * mmap tracking
 */

struct perf_mmap_event {
4986 4987 4988 4989
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4990 4991 4992 4993 4994 4995 4996 4997 4998

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4999
	} event_id;
5000 5001
};

5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
	       (executable && event->attr.mmap);
}

5013
static void perf_event_mmap_output(struct perf_event *event,
5014
				   void *data)
5015
{
5016
	struct perf_mmap_event *mmap_event = data;
5017
	struct perf_output_handle handle;
5018
	struct perf_sample_data sample;
5019
	int size = mmap_event->event_id.header.size;
5020
	int ret;
5021

5022 5023 5024
	if (!perf_event_mmap_match(event, data))
		return;

5025 5026
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5027
				mmap_event->event_id.header.size);
5028
	if (ret)
5029
		goto out;
5030

5031 5032
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5033

5034
	perf_output_put(&handle, mmap_event->event_id);
5035
	__output_copy(&handle, mmap_event->file_name,
5036
				   mmap_event->file_size);
5037 5038 5039

	perf_event__output_id_sample(event, &handle, &sample);

5040
	perf_output_end(&handle);
5041 5042
out:
	mmap_event->event_id.header.size = size;
5043 5044
}

5045
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5046
{
5047 5048
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5049 5050 5051
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5052
	const char *name;
5053

5054 5055
	memset(tmp, 0, sizeof(tmp));

5056
	if (file) {
5057
		/*
5058
		 * d_path works from the end of the rb backwards, so we
5059 5060 5061 5062
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5063 5064 5065 5066
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
5067
		name = d_path(&file->f_path, buf, PATH_MAX);
5068 5069 5070 5071 5072
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
5073 5074
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
5075 5076
				       sizeof(tmp) - 1);
			tmp[sizeof(tmp) - 1] = '\0';
5077
			goto got_name;
5078
		}
5079 5080 5081 5082

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
5083 5084 5085 5086 5087 5088 5089 5090
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
5091 5092
		}

5093 5094 5095 5096 5097
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
5098
	size = ALIGN(strlen(name)+1, sizeof(u64));
5099 5100 5101 5102

	mmap_event->file_name = name;
	mmap_event->file_size = size;

5103 5104 5105
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5106
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5107

5108
	perf_event_aux(perf_event_mmap_output,
5109 5110
		       mmap_event,
		       NULL);
5111

5112 5113 5114
	kfree(buf);
}

5115
void perf_event_mmap(struct vm_area_struct *vma)
5116
{
5117 5118
	struct perf_mmap_event mmap_event;

5119
	if (!atomic_read(&nr_mmap_events))
5120 5121 5122
		return;

	mmap_event = (struct perf_mmap_event){
5123
		.vma	= vma,
5124 5125
		/* .file_name */
		/* .file_size */
5126
		.event_id  = {
5127
			.header = {
5128
				.type = PERF_RECORD_MMAP,
5129
				.misc = PERF_RECORD_MISC_USER,
5130 5131 5132 5133
				/* .size */
			},
			/* .pid */
			/* .tid */
5134 5135
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5136
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5137 5138 5139
		},
	};

5140
	perf_event_mmap_event(&mmap_event);
5141 5142
}

5143 5144 5145 5146
/*
 * IRQ throttle logging
 */

5147
static void perf_log_throttle(struct perf_event *event, int enable)
5148 5149
{
	struct perf_output_handle handle;
5150
	struct perf_sample_data sample;
5151 5152 5153 5154 5155
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5156
		u64				id;
5157
		u64				stream_id;
5158 5159
	} throttle_event = {
		.header = {
5160
			.type = PERF_RECORD_THROTTLE,
5161 5162 5163
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5164
		.time		= perf_clock(),
5165 5166
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5167 5168
	};

5169
	if (enable)
5170
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5171

5172 5173 5174
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5175
				throttle_event.header.size);
5176 5177 5178 5179
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5180
	perf_event__output_id_sample(event, &handle, &sample);
5181 5182 5183
	perf_output_end(&handle);
}

5184
/*
5185
 * Generic event overflow handling, sampling.
5186 5187
 */

5188
static int __perf_event_overflow(struct perf_event *event,
5189 5190
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5191
{
5192 5193
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5194
	u64 seq;
5195 5196
	int ret = 0;

5197 5198 5199 5200 5201 5202 5203
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5204 5205 5206 5207 5208 5209 5210 5211 5212
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5213 5214
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5215
			tick_nohz_full_kick();
5216 5217
			ret = 1;
		}
5218
	}
5219

5220
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5221
		u64 now = perf_clock();
5222
		s64 delta = now - hwc->freq_time_stamp;
5223

5224
		hwc->freq_time_stamp = now;
5225

5226
		if (delta > 0 && delta < 2*TICK_NSEC)
5227
			perf_adjust_period(event, delta, hwc->last_period, true);
5228 5229
	}

5230 5231
	/*
	 * XXX event_limit might not quite work as expected on inherited
5232
	 * events
5233 5234
	 */

5235 5236
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5237
		ret = 1;
5238
		event->pending_kill = POLL_HUP;
5239 5240
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5241 5242
	}

5243
	if (event->overflow_handler)
5244
		event->overflow_handler(event, data, regs);
5245
	else
5246
		perf_event_output(event, data, regs);
5247

P
Peter Zijlstra 已提交
5248
	if (event->fasync && event->pending_kill) {
5249 5250
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5251 5252
	}

5253
	return ret;
5254 5255
}

5256
int perf_event_overflow(struct perf_event *event,
5257 5258
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5259
{
5260
	return __perf_event_overflow(event, 1, data, regs);
5261 5262
}

5263
/*
5264
 * Generic software event infrastructure
5265 5266
 */

5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5278
/*
5279 5280
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5281 5282 5283 5284
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5285
u64 perf_swevent_set_period(struct perf_event *event)
5286
{
5287
	struct hw_perf_event *hwc = &event->hw;
5288 5289 5290 5291 5292
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5293 5294

again:
5295
	old = val = local64_read(&hwc->period_left);
5296 5297
	if (val < 0)
		return 0;
5298

5299 5300 5301
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5302
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5303
		goto again;
5304

5305
	return nr;
5306 5307
}

5308
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5309
				    struct perf_sample_data *data,
5310
				    struct pt_regs *regs)
5311
{
5312
	struct hw_perf_event *hwc = &event->hw;
5313
	int throttle = 0;
5314

5315 5316
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5317

5318 5319
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5320

5321
	for (; overflow; overflow--) {
5322
		if (__perf_event_overflow(event, throttle,
5323
					    data, regs)) {
5324 5325 5326 5327 5328 5329
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5330
		throttle = 1;
5331
	}
5332 5333
}

P
Peter Zijlstra 已提交
5334
static void perf_swevent_event(struct perf_event *event, u64 nr,
5335
			       struct perf_sample_data *data,
5336
			       struct pt_regs *regs)
5337
{
5338
	struct hw_perf_event *hwc = &event->hw;
5339

5340
	local64_add(nr, &event->count);
5341

5342 5343 5344
	if (!regs)
		return;

5345
	if (!is_sampling_event(event))
5346
		return;
5347

5348 5349 5350 5351 5352 5353
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5354
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5355
		return perf_swevent_overflow(event, 1, data, regs);
5356

5357
	if (local64_add_negative(nr, &hwc->period_left))
5358
		return;
5359

5360
	perf_swevent_overflow(event, 0, data, regs);
5361 5362
}

5363 5364 5365
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5366
	if (event->hw.state & PERF_HES_STOPPED)
5367
		return 1;
P
Peter Zijlstra 已提交
5368

5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5380
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5381
				enum perf_type_id type,
L
Li Zefan 已提交
5382 5383 5384
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5385
{
5386
	if (event->attr.type != type)
5387
		return 0;
5388

5389
	if (event->attr.config != event_id)
5390 5391
		return 0;

5392 5393
	if (perf_exclude_event(event, regs))
		return 0;
5394 5395 5396 5397

	return 1;
}

5398 5399 5400 5401 5402 5403 5404
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5405 5406
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5407
{
5408 5409 5410 5411
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5412

5413 5414
/* For the read side: events when they trigger */
static inline struct hlist_head *
5415
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5416 5417
{
	struct swevent_hlist *hlist;
5418

5419
	hlist = rcu_dereference(swhash->swevent_hlist);
5420 5421 5422
	if (!hlist)
		return NULL;

5423 5424 5425 5426 5427
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5428
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5439
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5440 5441 5442 5443 5444
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5445 5446 5447
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5448
				    u64 nr,
5449 5450
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5451
{
5452
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5453
	struct perf_event *event;
5454
	struct hlist_head *head;
5455

5456
	rcu_read_lock();
5457
	head = find_swevent_head_rcu(swhash, type, event_id);
5458 5459 5460
	if (!head)
		goto end;

5461
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5462
		if (perf_swevent_match(event, type, event_id, data, regs))
5463
			perf_swevent_event(event, nr, data, regs);
5464
	}
5465 5466
end:
	rcu_read_unlock();
5467 5468
}

5469
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5470
{
5471
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5472

5473
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5474
}
I
Ingo Molnar 已提交
5475
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5476

5477
inline void perf_swevent_put_recursion_context(int rctx)
5478
{
5479
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5480

5481
	put_recursion_context(swhash->recursion, rctx);
5482
}
5483

5484
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5485
{
5486
	struct perf_sample_data data;
5487 5488
	int rctx;

5489
	preempt_disable_notrace();
5490 5491 5492
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5493

5494
	perf_sample_data_init(&data, addr, 0);
5495

5496
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5497 5498

	perf_swevent_put_recursion_context(rctx);
5499
	preempt_enable_notrace();
5500 5501
}

5502
static void perf_swevent_read(struct perf_event *event)
5503 5504 5505
{
}

P
Peter Zijlstra 已提交
5506
static int perf_swevent_add(struct perf_event *event, int flags)
5507
{
5508
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5509
	struct hw_perf_event *hwc = &event->hw;
5510 5511
	struct hlist_head *head;

5512
	if (is_sampling_event(event)) {
5513
		hwc->last_period = hwc->sample_period;
5514
		perf_swevent_set_period(event);
5515
	}
5516

P
Peter Zijlstra 已提交
5517 5518
	hwc->state = !(flags & PERF_EF_START);

5519
	head = find_swevent_head(swhash, event);
5520 5521 5522 5523 5524
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5525 5526 5527
	return 0;
}

P
Peter Zijlstra 已提交
5528
static void perf_swevent_del(struct perf_event *event, int flags)
5529
{
5530
	hlist_del_rcu(&event->hlist_entry);
5531 5532
}

P
Peter Zijlstra 已提交
5533
static void perf_swevent_start(struct perf_event *event, int flags)
5534
{
P
Peter Zijlstra 已提交
5535
	event->hw.state = 0;
5536
}
I
Ingo Molnar 已提交
5537

P
Peter Zijlstra 已提交
5538
static void perf_swevent_stop(struct perf_event *event, int flags)
5539
{
P
Peter Zijlstra 已提交
5540
	event->hw.state = PERF_HES_STOPPED;
5541 5542
}

5543 5544
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5545
swevent_hlist_deref(struct swevent_htable *swhash)
5546
{
5547 5548
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5549 5550
}

5551
static void swevent_hlist_release(struct swevent_htable *swhash)
5552
{
5553
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5554

5555
	if (!hlist)
5556 5557
		return;

5558
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5559
	kfree_rcu(hlist, rcu_head);
5560 5561 5562 5563
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5564
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5565

5566
	mutex_lock(&swhash->hlist_mutex);
5567

5568 5569
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5570

5571
	mutex_unlock(&swhash->hlist_mutex);
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5589
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5590 5591
	int err = 0;

5592
	mutex_lock(&swhash->hlist_mutex);
5593

5594
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5595 5596 5597 5598 5599 5600 5601
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5602
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5603
	}
5604
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5605
exit:
5606
	mutex_unlock(&swhash->hlist_mutex);
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5630
fail:
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5641
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5642

5643 5644 5645
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5646

5647 5648
	WARN_ON(event->parent);

5649
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5650 5651 5652 5653 5654
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5655
	u64 event_id = event->attr.config;
5656 5657 5658 5659

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5660 5661 5662 5663 5664 5665
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5666 5667 5668 5669 5670 5671 5672 5673 5674
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5675
	if (event_id >= PERF_COUNT_SW_MAX)
5676 5677 5678 5679 5680 5681 5682 5683 5684
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5685
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5686 5687 5688 5689 5690 5691
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5692 5693 5694 5695 5696
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5697
static struct pmu perf_swevent = {
5698
	.task_ctx_nr	= perf_sw_context,
5699

5700
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5701 5702 5703 5704
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5705
	.read		= perf_swevent_read,
5706 5707

	.event_idx	= perf_swevent_event_idx,
5708 5709
};

5710 5711
#ifdef CONFIG_EVENT_TRACING

5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5726 5727
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5728 5729 5730 5731
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5732 5733 5734 5735 5736 5737 5738 5739 5740
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5741 5742
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5743 5744
{
	struct perf_sample_data data;
5745 5746
	struct perf_event *event;

5747 5748 5749 5750 5751
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5752
	perf_sample_data_init(&data, addr, 0);
5753 5754
	data.raw = &raw;

5755
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5756
		if (perf_tp_event_match(event, &data, regs))
5757
			perf_swevent_event(event, count, &data, regs);
5758
	}
5759

5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5785
	perf_swevent_put_recursion_context(rctx);
5786 5787 5788
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5789
static void tp_perf_event_destroy(struct perf_event *event)
5790
{
5791
	perf_trace_destroy(event);
5792 5793
}

5794
static int perf_tp_event_init(struct perf_event *event)
5795
{
5796 5797
	int err;

5798 5799 5800
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5801 5802 5803 5804 5805 5806
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5807 5808
	err = perf_trace_init(event);
	if (err)
5809
		return err;
5810

5811
	event->destroy = tp_perf_event_destroy;
5812

5813 5814 5815 5816
	return 0;
}

static struct pmu perf_tracepoint = {
5817 5818
	.task_ctx_nr	= perf_sw_context,

5819
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5820 5821 5822 5823
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5824
	.read		= perf_swevent_read,
5825 5826

	.event_idx	= perf_swevent_event_idx,
5827 5828 5829 5830
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5831
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5832
}
L
Li Zefan 已提交
5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5857
#else
L
Li Zefan 已提交
5858

5859
static inline void perf_tp_register(void)
5860 5861
{
}
L
Li Zefan 已提交
5862 5863 5864 5865 5866 5867 5868 5869 5870 5871

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5872
#endif /* CONFIG_EVENT_TRACING */
5873

5874
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5875
void perf_bp_event(struct perf_event *bp, void *data)
5876
{
5877 5878 5879
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5880
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5881

P
Peter Zijlstra 已提交
5882
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5883
		perf_swevent_event(bp, 1, &sample, regs);
5884 5885 5886
}
#endif

5887 5888 5889
/*
 * hrtimer based swevent callback
 */
5890

5891
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5892
{
5893 5894 5895 5896 5897
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5898

5899
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5900 5901 5902 5903

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5904
	event->pmu->read(event);
5905

5906
	perf_sample_data_init(&data, 0, event->hw.last_period);
5907 5908 5909
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5910
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5911
			if (__perf_event_overflow(event, 1, &data, regs))
5912 5913
				ret = HRTIMER_NORESTART;
	}
5914

5915 5916
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5917

5918
	return ret;
5919 5920
}

5921
static void perf_swevent_start_hrtimer(struct perf_event *event)
5922
{
5923
	struct hw_perf_event *hwc = &event->hw;
5924 5925 5926 5927
	s64 period;

	if (!is_sampling_event(event))
		return;
5928

5929 5930 5931 5932
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5933

5934 5935 5936 5937 5938
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5939
				ns_to_ktime(period), 0,
5940
				HRTIMER_MODE_REL_PINNED, 0);
5941
}
5942 5943

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5944
{
5945 5946
	struct hw_perf_event *hwc = &event->hw;

5947
	if (is_sampling_event(event)) {
5948
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5949
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5950 5951 5952

		hrtimer_cancel(&hwc->hrtimer);
	}
5953 5954
}

P
Peter Zijlstra 已提交
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
5975
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
5976 5977 5978 5979
		event->attr.freq = 0;
	}
}

5980 5981 5982 5983 5984
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5985
{
5986 5987 5988
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5989
	now = local_clock();
5990 5991
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5992 5993
}

P
Peter Zijlstra 已提交
5994
static void cpu_clock_event_start(struct perf_event *event, int flags)
5995
{
P
Peter Zijlstra 已提交
5996
	local64_set(&event->hw.prev_count, local_clock());
5997 5998 5999
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6000
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6001
{
6002 6003 6004
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6005

P
Peter Zijlstra 已提交
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6019 6020 6021 6022
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6023

6024 6025 6026 6027 6028 6029 6030 6031
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6032 6033 6034 6035 6036 6037
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6038 6039
	perf_swevent_init_hrtimer(event);

6040
	return 0;
6041 6042
}

6043
static struct pmu perf_cpu_clock = {
6044 6045
	.task_ctx_nr	= perf_sw_context,

6046
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6047 6048 6049 6050
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6051
	.read		= cpu_clock_event_read,
6052 6053

	.event_idx	= perf_swevent_event_idx,
6054 6055 6056 6057 6058 6059 6060
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6061
{
6062 6063
	u64 prev;
	s64 delta;
6064

6065 6066 6067 6068
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6069

P
Peter Zijlstra 已提交
6070
static void task_clock_event_start(struct perf_event *event, int flags)
6071
{
P
Peter Zijlstra 已提交
6072
	local64_set(&event->hw.prev_count, event->ctx->time);
6073 6074 6075
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6076
static void task_clock_event_stop(struct perf_event *event, int flags)
6077 6078 6079
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6080 6081 6082 6083 6084 6085
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6086

P
Peter Zijlstra 已提交
6087 6088 6089 6090 6091 6092
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6093 6094 6095 6096
}

static void task_clock_event_read(struct perf_event *event)
{
6097 6098 6099
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6100 6101 6102 6103 6104

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6105
{
6106 6107 6108 6109 6110 6111
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6112 6113 6114 6115 6116 6117
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6118 6119
	perf_swevent_init_hrtimer(event);

6120
	return 0;
L
Li Zefan 已提交
6121 6122
}

6123
static struct pmu perf_task_clock = {
6124 6125
	.task_ctx_nr	= perf_sw_context,

6126
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6127 6128 6129 6130
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6131
	.read		= task_clock_event_read,
6132 6133

	.event_idx	= perf_swevent_event_idx,
6134
};
L
Li Zefan 已提交
6135

P
Peter Zijlstra 已提交
6136
static void perf_pmu_nop_void(struct pmu *pmu)
6137 6138
{
}
L
Li Zefan 已提交
6139

P
Peter Zijlstra 已提交
6140
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6141
{
P
Peter Zijlstra 已提交
6142
	return 0;
L
Li Zefan 已提交
6143 6144
}

P
Peter Zijlstra 已提交
6145
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6146
{
P
Peter Zijlstra 已提交
6147
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6148 6149
}

P
Peter Zijlstra 已提交
6150 6151 6152 6153 6154
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6155

P
Peter Zijlstra 已提交
6156
static void perf_pmu_cancel_txn(struct pmu *pmu)
6157
{
P
Peter Zijlstra 已提交
6158
	perf_pmu_enable(pmu);
6159 6160
}

6161 6162 6163 6164 6165
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6166 6167 6168 6169 6170
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
6171
{
P
Peter Zijlstra 已提交
6172
	struct pmu *pmu;
6173

P
Peter Zijlstra 已提交
6174 6175
	if (ctxn < 0)
		return NULL;
6176

P
Peter Zijlstra 已提交
6177 6178 6179 6180
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6181

P
Peter Zijlstra 已提交
6182
	return NULL;
6183 6184
}

6185
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6186
{
6187 6188 6189 6190 6191 6192 6193
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6194 6195
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6196 6197 6198 6199 6200 6201
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6202

P
Peter Zijlstra 已提交
6203
	mutex_lock(&pmus_lock);
6204
	/*
P
Peter Zijlstra 已提交
6205
	 * Like a real lame refcount.
6206
	 */
6207 6208 6209
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6210
			goto out;
6211
		}
P
Peter Zijlstra 已提交
6212
	}
6213

6214
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6215 6216
out:
	mutex_unlock(&pmus_lock);
6217
}
P
Peter Zijlstra 已提交
6218
static struct idr pmu_idr;
6219

P
Peter Zijlstra 已提交
6220 6221 6222 6223 6224 6225 6226 6227
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}

P
Peter Zijlstra 已提交
6272
static struct device_attribute pmu_dev_attrs[] = {
6273 6274 6275
	__ATTR_RO(type),
	__ATTR_RW(perf_event_mux_interval_ms),
	__ATTR_NULL,
P
Peter Zijlstra 已提交
6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6297
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6318
static struct lock_class_key cpuctx_mutex;
6319
static struct lock_class_key cpuctx_lock;
6320

6321
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6322
{
P
Peter Zijlstra 已提交
6323
	int cpu, ret;
6324

6325
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6326 6327 6328 6329
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6330

P
Peter Zijlstra 已提交
6331 6332 6333 6334 6335 6336
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6337 6338 6339
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6340 6341 6342 6343 6344
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6345 6346 6347 6348 6349 6350
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6351
skip_type:
P
Peter Zijlstra 已提交
6352 6353 6354
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6355

W
Wei Yongjun 已提交
6356
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6357 6358
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6359
		goto free_dev;
6360

P
Peter Zijlstra 已提交
6361 6362 6363 6364
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6365
		__perf_event_init_context(&cpuctx->ctx);
6366
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6367
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6368
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6369
		cpuctx->ctx.pmu = pmu;
6370 6371 6372

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6373
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6374
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6375
	}
6376

P
Peter Zijlstra 已提交
6377
got_cpu_context:
P
Peter Zijlstra 已提交
6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6392
		}
6393
	}
6394

P
Peter Zijlstra 已提交
6395 6396 6397 6398 6399
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6400 6401 6402
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6403
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6404 6405
	ret = 0;
unlock:
6406 6407
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6408
	return ret;
P
Peter Zijlstra 已提交
6409

P
Peter Zijlstra 已提交
6410 6411 6412 6413
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6414 6415 6416 6417
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6418 6419 6420
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6421 6422
}

6423
void perf_pmu_unregister(struct pmu *pmu)
6424
{
6425 6426 6427
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6428

6429
	/*
P
Peter Zijlstra 已提交
6430 6431
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6432
	 */
6433
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6434
	synchronize_rcu();
6435

P
Peter Zijlstra 已提交
6436
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6437 6438
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6439 6440
	device_del(pmu->dev);
	put_device(pmu->dev);
6441
	free_pmu_context(pmu);
6442
}
6443

6444 6445 6446 6447
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6448
	int ret;
6449 6450

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6451 6452 6453 6454

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6455
	if (pmu) {
6456
		event->pmu = pmu;
6457 6458 6459
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6460
		goto unlock;
6461
	}
P
Peter Zijlstra 已提交
6462

6463
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6464
		event->pmu = pmu;
6465
		ret = pmu->event_init(event);
6466
		if (!ret)
P
Peter Zijlstra 已提交
6467
			goto unlock;
6468

6469 6470
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6471
			goto unlock;
6472
		}
6473
	}
P
Peter Zijlstra 已提交
6474 6475
	pmu = ERR_PTR(-ENOENT);
unlock:
6476
	srcu_read_unlock(&pmus_srcu, idx);
6477

6478
	return pmu;
6479 6480
}

6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6492 6493 6494

	if (event->attr.freq)
		atomic_inc(&per_cpu(perf_freq_events, cpu));
6495 6496
}

6497 6498
static void account_event(struct perf_event *event)
{
6499 6500 6501
	if (event->parent)
		return;

6502 6503 6504 6505 6506 6507 6508 6509
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6510
	if (has_branch_stack(event))
6511
		static_key_slow_inc(&perf_sched_events.key);
6512
	if (is_cgroup_event(event))
6513
		static_key_slow_inc(&perf_sched_events.key);
6514 6515

	account_event_cpu(event, event->cpu);
6516 6517
}

T
Thomas Gleixner 已提交
6518
/*
6519
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6520
 */
6521
static struct perf_event *
6522
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6523 6524 6525
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6526 6527
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6528
{
P
Peter Zijlstra 已提交
6529
	struct pmu *pmu;
6530 6531
	struct perf_event *event;
	struct hw_perf_event *hwc;
6532
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6533

6534 6535 6536 6537 6538
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6539
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6540
	if (!event)
6541
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6542

6543
	/*
6544
	 * Single events are their own group leaders, with an
6545 6546 6547
	 * empty sibling list:
	 */
	if (!group_leader)
6548
		group_leader = event;
6549

6550 6551
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6552

6553 6554 6555
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6556 6557
	INIT_LIST_HEAD(&event->rb_entry);

6558
	init_waitqueue_head(&event->waitq);
6559
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6560

6561
	mutex_init(&event->mmap_mutex);
6562

6563
	atomic_long_set(&event->refcount, 1);
6564 6565 6566 6567 6568
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6569

6570
	event->parent		= parent_event;
6571

6572
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6573
	event->id		= atomic64_inc_return(&perf_event_id);
6574

6575
	event->state		= PERF_EVENT_STATE_INACTIVE;
6576

6577 6578
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6579 6580 6581

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6582 6583 6584 6585
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6586
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6587 6588 6589 6590
			event->hw.bp_target = task;
#endif
	}

6591
	if (!overflow_handler && parent_event) {
6592
		overflow_handler = parent_event->overflow_handler;
6593 6594
		context = parent_event->overflow_handler_context;
	}
6595

6596
	event->overflow_handler	= overflow_handler;
6597
	event->overflow_handler_context = context;
6598

J
Jiri Olsa 已提交
6599
	perf_event__state_init(event);
6600

6601
	pmu = NULL;
6602

6603
	hwc = &event->hw;
6604
	hwc->sample_period = attr->sample_period;
6605
	if (attr->freq && attr->sample_freq)
6606
		hwc->sample_period = 1;
6607
	hwc->last_period = hwc->sample_period;
6608

6609
	local64_set(&hwc->period_left, hwc->sample_period);
6610

6611
	/*
6612
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6613
	 */
6614
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6615
		goto err_ns;
6616

6617
	pmu = perf_init_event(event);
6618
	if (!pmu)
6619 6620
		goto err_ns;
	else if (IS_ERR(pmu)) {
6621
		err = PTR_ERR(pmu);
6622
		goto err_ns;
I
Ingo Molnar 已提交
6623
	}
6624

6625
	if (!event->parent) {
6626 6627 6628 6629 6630
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err)
				goto err_pmu;
		}
6631
	}
6632

6633
	return event;
6634 6635 6636 6637 6638 6639 6640 6641 6642 6643

err_pmu:
	if (event->destroy)
		event->destroy(event);
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6644 6645
}

6646 6647
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6648 6649
{
	u32 size;
6650
	int ret;
6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6675 6676 6677
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6678 6679
	 */
	if (size > sizeof(*attr)) {
6680 6681 6682
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6683

6684 6685
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6686

6687
		for (; addr < end; addr++) {
6688 6689 6690 6691 6692 6693
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6694
		size = sizeof(*attr);
6695 6696 6697 6698 6699 6700
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6701
	if (attr->__reserved_1)
6702 6703 6704 6705 6706 6707 6708 6709
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6738 6739
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6740 6741
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6742
	}
6743

6744
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6745
		ret = perf_reg_validate(attr->sample_regs_user);
6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6764

6765 6766 6767 6768 6769 6770 6771 6772 6773
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6774 6775
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6776
{
6777
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6778 6779
	int ret = -EINVAL;

6780
	if (!output_event)
6781 6782
		goto set;

6783 6784
	/* don't allow circular references */
	if (event == output_event)
6785 6786
		goto out;

6787 6788 6789 6790 6791 6792 6793
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6794
	 * If its not a per-cpu rb, it must be the same task.
6795 6796 6797 6798
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6799
set:
6800
	mutex_lock(&event->mmap_mutex);
6801 6802 6803
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6804

6805 6806
	old_rb = event->rb;

6807
	if (output_event) {
6808 6809 6810
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6811
			goto unlock;
6812 6813
	}

6814 6815
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

6832
	ret = 0;
6833 6834 6835
unlock:
	mutex_unlock(&event->mmap_mutex);

6836 6837 6838 6839
out:
	return ret;
}

T
Thomas Gleixner 已提交
6840
/**
6841
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6842
 *
6843
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6844
 * @pid:		target pid
I
Ingo Molnar 已提交
6845
 * @cpu:		target cpu
6846
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6847
 */
6848 6849
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6850
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6851
{
6852 6853
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6854 6855 6856
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6857
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6858
	struct task_struct *task = NULL;
6859
	struct pmu *pmu;
6860
	int event_fd;
6861
	int move_group = 0;
6862
	int err;
T
Thomas Gleixner 已提交
6863

6864
	/* for future expandability... */
S
Stephane Eranian 已提交
6865
	if (flags & ~PERF_FLAG_ALL)
6866 6867
		return -EINVAL;

6868 6869 6870
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6871

6872 6873 6874 6875 6876
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6877
	if (attr.freq) {
6878
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6879 6880 6881
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6882 6883 6884 6885 6886 6887 6888 6889 6890
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6891
	event_fd = get_unused_fd();
6892 6893 6894
	if (event_fd < 0)
		return event_fd;

6895
	if (group_fd != -1) {
6896 6897
		err = perf_fget_light(group_fd, &group);
		if (err)
6898
			goto err_fd;
6899
		group_leader = group.file->private_data;
6900 6901 6902 6903 6904 6905
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6906
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6907 6908 6909 6910 6911 6912 6913
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6914 6915
	get_online_cpus();

6916 6917
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6918 6919
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6920
		goto err_task;
6921 6922
	}

S
Stephane Eranian 已提交
6923 6924
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6925 6926 6927 6928
		if (err) {
			__free_event(event);
			goto err_task;
		}
S
Stephane Eranian 已提交
6929 6930
	}

6931 6932
	account_event(event);

6933 6934 6935 6936 6937
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6961 6962 6963 6964

	/*
	 * Get the target context (task or percpu):
	 */
6965
	ctx = find_get_context(pmu, task, event->cpu);
6966 6967
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6968
		goto err_alloc;
6969 6970
	}

6971 6972 6973 6974 6975
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6976
	/*
6977
	 * Look up the group leader (we will attach this event to it):
6978
	 */
6979
	if (group_leader) {
6980
		err = -EINVAL;
6981 6982

		/*
I
Ingo Molnar 已提交
6983 6984 6985 6986
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6987
			goto err_context;
I
Ingo Molnar 已提交
6988 6989 6990
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6991
		 */
6992 6993 6994 6995 6996 6997 6998 6999
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7000 7001 7002
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7003
		if (attr.exclusive || attr.pinned)
7004
			goto err_context;
7005 7006 7007 7008 7009
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7010
			goto err_context;
7011
	}
T
Thomas Gleixner 已提交
7012

7013 7014 7015
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7016
		goto err_context;
7017
	}
7018

7019 7020 7021 7022
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7023
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
7024 7025 7026 7027 7028 7029 7030

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7031 7032
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7033
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
7034
			perf_event__state_init(sibling);
7035 7036 7037 7038
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7039
	}
7040

7041
	WARN_ON_ONCE(ctx->parent_ctx);
7042
	mutex_lock(&ctx->mutex);
7043 7044

	if (move_group) {
7045
		synchronize_rcu();
7046
		perf_install_in_context(ctx, group_leader, event->cpu);
7047 7048 7049
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7050
			perf_install_in_context(ctx, sibling, event->cpu);
7051 7052 7053 7054
			get_ctx(ctx);
		}
	}

7055
	perf_install_in_context(ctx, event, event->cpu);
7056
	++ctx->generation;
7057
	perf_unpin_context(ctx);
7058
	mutex_unlock(&ctx->mutex);
7059

7060 7061
	put_online_cpus();

7062
	event->owner = current;
P
Peter Zijlstra 已提交
7063

7064 7065 7066
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7067

7068 7069 7070 7071
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7072
	perf_event__id_header_size(event);
7073

7074 7075 7076 7077 7078 7079
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7080
	fdput(group);
7081 7082
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7083

7084
err_context:
7085
	perf_unpin_context(ctx);
7086
	put_ctx(ctx);
7087
err_alloc:
7088
	free_event(event);
P
Peter Zijlstra 已提交
7089
err_task:
7090
	put_online_cpus();
P
Peter Zijlstra 已提交
7091 7092
	if (task)
		put_task_struct(task);
7093
err_group_fd:
7094
	fdput(group);
7095 7096
err_fd:
	put_unused_fd(event_fd);
7097
	return err;
T
Thomas Gleixner 已提交
7098 7099
}

7100 7101 7102 7103 7104
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7105
 * @task: task to profile (NULL for percpu)
7106 7107 7108
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7109
				 struct task_struct *task,
7110 7111
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7112 7113
{
	struct perf_event_context *ctx;
7114
	struct perf_event *event;
7115
	int err;
7116

7117 7118 7119
	/*
	 * Get the target context (task or percpu):
	 */
7120

7121 7122
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7123 7124 7125 7126
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7127

7128 7129
	account_event(event);

M
Matt Helsley 已提交
7130
	ctx = find_get_context(event->pmu, task, cpu);
7131 7132
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7133
		goto err_free;
7134
	}
7135 7136 7137 7138 7139

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
7140
	perf_unpin_context(ctx);
7141 7142 7143 7144
	mutex_unlock(&ctx->mutex);

	return event;

7145 7146 7147
err_free:
	free_event(event);
err:
7148
	return ERR_PTR(err);
7149
}
7150
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7151

7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
7166
		unaccount_event_cpu(event, src_cpu);
7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7179
		account_event_cpu(event, dst_cpu);
7180 7181 7182 7183 7184 7185 7186
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7187
static void sync_child_event(struct perf_event *child_event,
7188
			       struct task_struct *child)
7189
{
7190
	struct perf_event *parent_event = child_event->parent;
7191
	u64 child_val;
7192

7193 7194
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7195

P
Peter Zijlstra 已提交
7196
	child_val = perf_event_count(child_event);
7197 7198 7199 7200

	/*
	 * Add back the child's count to the parent's count:
	 */
7201
	atomic64_add(child_val, &parent_event->child_count);
7202 7203 7204 7205
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7206 7207

	/*
7208
	 * Remove this event from the parent's list
7209
	 */
7210 7211 7212 7213
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7214 7215

	/*
7216
	 * Release the parent event, if this was the last
7217 7218
	 * reference to it.
	 */
7219
	put_event(parent_event);
7220 7221
}

7222
static void
7223 7224
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7225
			 struct task_struct *child)
7226
{
7227 7228 7229 7230 7231
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
7232

7233
	perf_remove_from_context(child_event);
7234

7235
	/*
7236
	 * It can happen that the parent exits first, and has events
7237
	 * that are still around due to the child reference. These
7238
	 * events need to be zapped.
7239
	 */
7240
	if (child_event->parent) {
7241 7242
		sync_child_event(child_event, child);
		free_event(child_event);
7243
	}
7244 7245
}

P
Peter Zijlstra 已提交
7246
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7247
{
7248 7249
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7250
	unsigned long flags;
7251

P
Peter Zijlstra 已提交
7252
	if (likely(!child->perf_event_ctxp[ctxn])) {
7253
		perf_event_task(child, NULL, 0);
7254
		return;
P
Peter Zijlstra 已提交
7255
	}
7256

7257
	local_irq_save(flags);
7258 7259 7260 7261 7262 7263
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7264
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7265 7266 7267

	/*
	 * Take the context lock here so that if find_get_context is
7268
	 * reading child->perf_event_ctxp, we wait until it has
7269 7270
	 * incremented the context's refcount before we do put_ctx below.
	 */
7271
	raw_spin_lock(&child_ctx->lock);
7272
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7273
	child->perf_event_ctxp[ctxn] = NULL;
7274 7275 7276
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7277
	 * the events from it.
7278 7279
	 */
	unclone_ctx(child_ctx);
7280
	update_context_time(child_ctx);
7281
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7282 7283

	/*
7284 7285 7286
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7287
	 */
7288
	perf_event_task(child, child_ctx, 0);
7289

7290 7291 7292
	/*
	 * We can recurse on the same lock type through:
	 *
7293 7294
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7295 7296
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7297 7298 7299
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7300
	mutex_lock(&child_ctx->mutex);
7301

7302
again:
7303 7304 7305 7306 7307
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7308
				 group_entry)
7309
		__perf_event_exit_task(child_event, child_ctx, child);
7310 7311

	/*
7312
	 * If the last event was a group event, it will have appended all
7313 7314 7315
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7316 7317
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7318
		goto again;
7319 7320 7321 7322

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7323 7324
}

P
Peter Zijlstra 已提交
7325 7326 7327 7328 7329
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7330
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7331 7332
	int ctxn;

P
Peter Zijlstra 已提交
7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7348 7349 7350 7351
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7364
	put_event(parent);
7365

7366
	perf_group_detach(event);
7367 7368 7369 7370
	list_del_event(event, ctx);
	free_event(event);
}

7371 7372
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7373
 * perf_event_init_task below, used by fork() in case of fail.
7374
 */
7375
void perf_event_free_task(struct task_struct *task)
7376
{
P
Peter Zijlstra 已提交
7377
	struct perf_event_context *ctx;
7378
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7379
	int ctxn;
7380

P
Peter Zijlstra 已提交
7381 7382 7383 7384
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7385

P
Peter Zijlstra 已提交
7386
		mutex_lock(&ctx->mutex);
7387
again:
P
Peter Zijlstra 已提交
7388 7389 7390
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7391

P
Peter Zijlstra 已提交
7392 7393 7394
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7395

P
Peter Zijlstra 已提交
7396 7397 7398
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7399

P
Peter Zijlstra 已提交
7400
		mutex_unlock(&ctx->mutex);
7401

P
Peter Zijlstra 已提交
7402 7403
		put_ctx(ctx);
	}
7404 7405
}

7406 7407 7408 7409 7410 7411 7412 7413
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7426
	unsigned long flags;
P
Peter Zijlstra 已提交
7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7439
					   child,
P
Peter Zijlstra 已提交
7440
					   group_leader, parent_event,
7441
				           NULL, NULL);
P
Peter Zijlstra 已提交
7442 7443
	if (IS_ERR(child_event))
		return child_event;
7444 7445 7446 7447 7448 7449

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7474 7475
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7476

7477 7478 7479 7480
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7481
	perf_event__id_header_size(child_event);
7482

P
Peter Zijlstra 已提交
7483 7484 7485
	/*
	 * Link it up in the child's context:
	 */
7486
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7487
	add_event_to_ctx(child_event, child_ctx);
7488
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7522 7523 7524 7525 7526
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7527
		   struct task_struct *child, int ctxn,
7528 7529 7530
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7531
	struct perf_event_context *child_ctx;
7532 7533 7534 7535

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7536 7537
	}

7538
	child_ctx = child->perf_event_ctxp[ctxn];
7539 7540 7541 7542 7543 7544 7545
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7546

7547
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7548 7549
		if (!child_ctx)
			return -ENOMEM;
7550

P
Peter Zijlstra 已提交
7551
		child->perf_event_ctxp[ctxn] = child_ctx;
7552 7553 7554 7555 7556 7557 7558 7559 7560
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7561 7562
}

7563
/*
7564
 * Initialize the perf_event context in task_struct
7565
 */
P
Peter Zijlstra 已提交
7566
int perf_event_init_context(struct task_struct *child, int ctxn)
7567
{
7568
	struct perf_event_context *child_ctx, *parent_ctx;
7569 7570
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7571
	struct task_struct *parent = current;
7572
	int inherited_all = 1;
7573
	unsigned long flags;
7574
	int ret = 0;
7575

P
Peter Zijlstra 已提交
7576
	if (likely(!parent->perf_event_ctxp[ctxn]))
7577 7578
		return 0;

7579
	/*
7580 7581
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7582
	 */
P
Peter Zijlstra 已提交
7583
	parent_ctx = perf_pin_task_context(parent, ctxn);
7584

7585 7586 7587 7588 7589 7590 7591
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7592 7593 7594 7595
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7596
	mutex_lock(&parent_ctx->mutex);
7597 7598 7599 7600 7601

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7602
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7603 7604
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7605 7606 7607
		if (ret)
			break;
	}
7608

7609 7610 7611 7612 7613 7614 7615 7616 7617
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7618
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7619 7620
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7621
		if (ret)
7622
			break;
7623 7624
	}

7625 7626 7627
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7628
	child_ctx = child->perf_event_ctxp[ctxn];
7629

7630
	if (child_ctx && inherited_all) {
7631 7632 7633
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7634 7635 7636
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7637
		 */
P
Peter Zijlstra 已提交
7638
		cloned_ctx = parent_ctx->parent_ctx;
7639 7640
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7641
			child_ctx->parent_gen = parent_ctx->parent_gen;
7642 7643 7644 7645 7646
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7647 7648
	}

P
Peter Zijlstra 已提交
7649
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7650
	mutex_unlock(&parent_ctx->mutex);
7651

7652
	perf_unpin_context(parent_ctx);
7653
	put_ctx(parent_ctx);
7654

7655
	return ret;
7656 7657
}

P
Peter Zijlstra 已提交
7658 7659 7660 7661 7662 7663 7664
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7665 7666 7667 7668
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7669 7670 7671 7672 7673 7674 7675 7676 7677
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7678 7679
static void __init perf_event_init_all_cpus(void)
{
7680
	struct swevent_htable *swhash;
7681 7682 7683
	int cpu;

	for_each_possible_cpu(cpu) {
7684 7685
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7686
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7687 7688 7689
	}
}

7690
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7691
{
P
Peter Zijlstra 已提交
7692
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7693

7694
	mutex_lock(&swhash->hlist_mutex);
7695
	if (swhash->hlist_refcount > 0) {
7696 7697
		struct swevent_hlist *hlist;

7698 7699 7700
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7701
	}
7702
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7703 7704
}

P
Peter Zijlstra 已提交
7705
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7706
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7707
{
7708 7709 7710 7711 7712 7713 7714
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7715
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7716
{
P
Peter Zijlstra 已提交
7717
	struct perf_event_context *ctx = __info;
7718
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7719

P
Peter Zijlstra 已提交
7720
	perf_pmu_rotate_stop(ctx->pmu);
7721

7722
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7723
		__perf_remove_from_context(event);
7724
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7725
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7726
}
P
Peter Zijlstra 已提交
7727 7728 7729 7730 7731 7732 7733 7734 7735

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7736
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7737 7738 7739 7740 7741 7742 7743 7744

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7745
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7746
{
7747
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7748

7749 7750 7751
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7752

P
Peter Zijlstra 已提交
7753
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7754 7755
}
#else
7756
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7757 7758
#endif

P
Peter Zijlstra 已提交
7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

7779
static int
T
Thomas Gleixner 已提交
7780 7781 7782 7783
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7784
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7785 7786

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7787
	case CPU_DOWN_FAILED:
7788
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7789 7790
		break;

P
Peter Zijlstra 已提交
7791
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7792
	case CPU_DOWN_PREPARE:
7793
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7794 7795 7796 7797 7798 7799 7800 7801
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7802
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7803
{
7804 7805
	int ret;

P
Peter Zijlstra 已提交
7806 7807
	idr_init(&pmu_idr);

7808
	perf_event_init_all_cpus();
7809
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7810 7811 7812
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7813 7814
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7815
	register_reboot_notifier(&perf_reboot_notifier);
7816 7817 7818

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7819 7820 7821

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7822 7823 7824 7825 7826 7827 7828

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7829
}
P
Peter Zijlstra 已提交
7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7858 7859

#ifdef CONFIG_CGROUP_PERF
7860
static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
S
Stephane Eranian 已提交
7861 7862 7863
{
	struct perf_cgroup *jc;

7864
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7877
static void perf_cgroup_css_free(struct cgroup *cont)
S
Stephane Eranian 已提交
7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7893
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7894
{
7895 7896 7897 7898
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7899 7900
}

7901 7902
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7903 7904 7905 7906 7907 7908 7909 7910 7911
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7912
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7913 7914 7915
}

struct cgroup_subsys perf_subsys = {
7916 7917
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7918 7919
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7920
	.exit		= perf_cgroup_exit,
7921
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7922 7923
};
#endif /* CONFIG_CGROUP_PERF */