core.c 217.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
136 137
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
138 139
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
140

141 142 143 144 145 146 147
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

148 149 150 151 152 153
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
154 155 156 157
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
158
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
159
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
161

162 163 164
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
165
static atomic_t nr_freq_events __read_mostly;
166
static atomic_t nr_switch_events __read_mostly;
167

P
Peter Zijlstra 已提交
168 169 170 171
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

172
/*
173
 * perf event paranoia level:
174 175
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
176
 *   1 - disallow cpu events for unpriv
177
 *   2 - disallow kernel profiling for unpriv
178
 */
179
int sysctl_perf_event_paranoid __read_mostly = 1;
180

181 182
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 184

/*
185
 * max perf event sample rate
186
 */
187 188 189 190 191 192 193 194 195
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
196 197
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198 199 200 201 202 203

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
204
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
205
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206
}
P
Peter Zijlstra 已提交
207

208 209
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
210 211 212 213
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
214
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
215 216 217 218 219

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
238 239 240

	return 0;
}
241

242 243 244 245 246 247 248
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
249
static DEFINE_PER_CPU(u64, running_sample_length);
250

251
static void perf_duration_warn(struct irq_work *w)
252
{
253
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254
	u64 avg_local_sample_len;
255
	u64 local_samples_len;
256

257
	local_samples_len = __this_cpu_read(running_sample_length);
258 259 260 261 262
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
263
			avg_local_sample_len, allowed_ns >> 1,
264 265 266 267 268 269 270
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
271
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 273
	u64 avg_local_sample_len;
	u64 local_samples_len;
274

P
Peter Zijlstra 已提交
275
	if (allowed_ns == 0)
276 277 278
		return;

	/* decay the counter by 1 average sample */
279
	local_samples_len = __this_cpu_read(running_sample_length);
280 281
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
282
	__this_cpu_write(running_sample_length, local_samples_len);
283 284 285 286 287 288 289 290

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
291
	if (avg_local_sample_len <= allowed_ns)
292 293 294 295 296 297 298 299 300 301
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
302

303 304 305 306 307 308
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
309 310
}

311
static atomic64_t perf_event_id;
312

313 314 315 316
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
317 318 319 320 321
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
322

323
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
324

325
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
326
{
327
	return "pmu";
T
Thomas Gleixner 已提交
328 329
}

330 331 332 333 334
static inline u64 perf_clock(void)
{
	return local_clock();
}

335 336 337 338 339
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
340 341 342 343 344 345
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
362 363 364 365 366 367 368 369
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
386 387 388 389
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
390
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
429 430
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
431
	/*
432 433
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
434
	 */
435
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
436 437
		return;

438 439 440 441 442 443
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
444 445 446
}

static inline void
447 448
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
449 450 451 452
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

453 454 455 456 457 458
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
459 460 461 462
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
463
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 497
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
498 499 500 501 502 503 504 505 506

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
507 508
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
509 510 511 512 513 514 515 516 517 518 519

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
520
				WARN_ON_ONCE(cpuctx->cgrp);
521 522 523 524
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
525 526 527 528
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
529 530
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
531 532 533 534 535 536 537 538
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

539 540
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
541
{
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
564 565
}

566 567
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
568
{
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
587 588 589 590 591 592 593 594
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
595 596
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
597

598
	if (!f.file)
S
Stephane Eranian 已提交
599 600
		return -EBADF;

A
Al Viro 已提交
601
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
602
					 &perf_event_cgrp_subsys);
603 604 605 606
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
620
out:
621
	fdput(f);
S
Stephane Eranian 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

695 696
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
697 698 699
{
}

700 701
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
702 703 704 705 706 707 708 709 710 711 712
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
713 714
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

745 746 747 748 749 750 751 752
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
753
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 755 756 757 758 759 760 761 762
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
763 764
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
765
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
766 767 768
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
769

P
Peter Zijlstra 已提交
770
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 772
}

773
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774
{
775
	struct hrtimer *timer = &cpuctx->hrtimer;
776
	struct pmu *pmu = cpuctx->ctx.pmu;
777
	u64 interval;
778 779 780 781 782

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

783 784 785 786
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
787 788 789
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790

791
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792

P
Peter Zijlstra 已提交
793 794
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795
	timer->function = perf_mux_hrtimer_handler;
796 797
}

798
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799
{
800
	struct hrtimer *timer = &cpuctx->hrtimer;
801
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
802
	unsigned long flags;
803 804 805

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
806
		return 0;
807

P
Peter Zijlstra 已提交
808 809 810 811 812 813 814
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815

816
	return 0;
817 818
}

P
Peter Zijlstra 已提交
819
void perf_pmu_disable(struct pmu *pmu)
820
{
P
Peter Zijlstra 已提交
821 822 823
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
824 825
}

P
Peter Zijlstra 已提交
826
void perf_pmu_enable(struct pmu *pmu)
827
{
P
Peter Zijlstra 已提交
828 829 830
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
831 832
}

833
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834 835

/*
836 837 838 839
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
840
 */
841
static void perf_event_ctx_activate(struct perf_event_context *ctx)
842
{
843
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
844

845
	WARN_ON(!irqs_disabled());
846

847 848 849 850 851 852 853 854 855 856 857 858
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
859 860
}

861
static void get_ctx(struct perf_event_context *ctx)
862
{
863
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 865
}

866 867 868 869 870 871 872 873 874
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

875
static void put_ctx(struct perf_event_context *ctx)
876
{
877 878 879
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
880 881
		if (ctx->task)
			put_task_struct(ctx->task);
882
		call_rcu(&ctx->rcu_head, free_ctx);
883
	}
884 885
}

P
Peter Zijlstra 已提交
886 887 888 889 890 891 892
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
947 948
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
949 950 951 952 953 954 955 956 957 958 959 960
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
961
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
962 963 964 965 966 967 968 969 970
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
971 972 973 974 975 976
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
977 978 979 980 981 982 983
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

984 985 986 987 988 989 990
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
991
{
992 993 994 995 996
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
997
		ctx->parent_ctx = NULL;
998
	ctx->generation++;
999 1000

	return parent_ctx;
1001 1002
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1025
/*
1026
 * If we inherit events we want to return the parent event id
1027 1028
 * to userspace.
 */
1029
static u64 primary_event_id(struct perf_event *event)
1030
{
1031
	u64 id = event->id;
1032

1033 1034
	if (event->parent)
		id = event->parent->id;
1035 1036 1037 1038

	return id;
}

1039
/*
1040
 * Get the perf_event_context for a task and lock it.
1041 1042 1043
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1044
static struct perf_event_context *
P
Peter Zijlstra 已提交
1045
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046
{
1047
	struct perf_event_context *ctx;
1048

P
Peter Zijlstra 已提交
1049
retry:
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1061
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 1063 1064 1065
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1066
		 * perf_event_task_sched_out, though the
1067 1068 1069 1070 1071 1072
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1073
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1074
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1076 1077
			rcu_read_unlock();
			preempt_enable();
1078 1079
			goto retry;
		}
1080 1081

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1082
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1083 1084
			ctx = NULL;
		}
1085 1086
	}
	rcu_read_unlock();
1087
	preempt_enable();
1088 1089 1090 1091 1092 1093 1094 1095
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1096 1097
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1098
{
1099
	struct perf_event_context *ctx;
1100 1101
	unsigned long flags;

P
Peter Zijlstra 已提交
1102
	ctx = perf_lock_task_context(task, ctxn, &flags);
1103 1104
	if (ctx) {
		++ctx->pin_count;
1105
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1106 1107 1108 1109
	}
	return ctx;
}

1110
static void perf_unpin_context(struct perf_event_context *ctx)
1111 1112 1113
{
	unsigned long flags;

1114
	raw_spin_lock_irqsave(&ctx->lock, flags);
1115
	--ctx->pin_count;
1116
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1130 1131 1132
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1133 1134 1135 1136

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1137 1138 1139
	return ctx ? ctx->time : 0;
}

1140 1141
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1142
 * The caller of this function needs to hold the ctx->lock.
1143 1144 1145 1146 1147 1148 1149 1150 1151
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1163
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1164 1165
	else if (ctx->is_active)
		run_end = ctx->time;
1166 1167 1168 1169
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1170 1171 1172 1173

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1174
		run_end = perf_event_time(event);
1175 1176

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1177

1178 1179
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1192 1193 1194 1195 1196 1197 1198 1199 1200
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1201
/*
1202
 * Add a event from the lists for its context.
1203 1204
 * Must be called with ctx->mutex and ctx->lock held.
 */
1205
static void
1206
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1207
{
1208 1209
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1210 1211

	/*
1212 1213 1214
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1215
	 */
1216
	if (event->group_leader == event) {
1217 1218
		struct list_head *list;

1219 1220 1221
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1222 1223
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1224
	}
P
Peter Zijlstra 已提交
1225

1226
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1227 1228
		ctx->nr_cgroups++;

1229 1230 1231
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1232
		ctx->nr_stat++;
1233 1234

	ctx->generation++;
1235 1236
}

J
Jiri Olsa 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1246
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1262
		nr += nr_siblings;
1263 1264 1265 1266 1267 1268 1269
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1270
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1271 1272 1273 1274 1275 1276 1277
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1278 1279 1280 1281 1282 1283
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1284 1285 1286
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1287 1288 1289
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1290 1291 1292
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1293 1294 1295
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1296 1297 1298
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1310 1311 1312 1313 1314 1315
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1316 1317 1318 1319 1320 1321
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1322 1323 1324
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1325 1326 1327 1328 1329 1330 1331 1332 1333
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1334
	event->id_header_size = size;
1335 1336
}

P
Peter Zijlstra 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1358 1359
static void perf_group_attach(struct perf_event *event)
{
1360
	struct perf_event *group_leader = event->group_leader, *pos;
1361

P
Peter Zijlstra 已提交
1362 1363 1364 1365 1366 1367
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1368 1369 1370 1371 1372
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1373 1374
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1375 1376 1377 1378 1379 1380
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1381 1382 1383 1384 1385

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1386 1387
}

1388
/*
1389
 * Remove a event from the lists for its context.
1390
 * Must be called with ctx->mutex and ctx->lock held.
1391
 */
1392
static void
1393
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1394
{
1395
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1396 1397 1398 1399

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1400 1401 1402 1403
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1404
		return;
1405 1406 1407

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1408
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1409
		ctx->nr_cgroups--;
1410 1411 1412 1413 1414 1415 1416 1417 1418
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1419

1420 1421
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1422
		ctx->nr_stat--;
1423

1424
	list_del_rcu(&event->event_entry);
1425

1426 1427
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1428

1429
	update_group_times(event);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1440 1441

	ctx->generation++;
1442 1443
}

1444
static void perf_group_detach(struct perf_event *event)
1445 1446
{
	struct perf_event *sibling, *tmp;
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1463
		goto out;
1464 1465 1466 1467
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1468

1469
	/*
1470 1471
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1472
	 * to whatever list we are on.
1473
	 */
1474
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1475 1476
		if (list)
			list_move_tail(&sibling->group_entry, list);
1477
		sibling->group_leader = sibling;
1478 1479 1480

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1481 1482

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1483
	}
1484 1485 1486 1487 1488 1489

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1490 1491
}

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1531 1532 1533 1534 1535 1536
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1537 1538 1539
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1540
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1541
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1542 1543
}

1544 1545
static void
event_sched_out(struct perf_event *event,
1546
		  struct perf_cpu_context *cpuctx,
1547
		  struct perf_event_context *ctx)
1548
{
1549
	u64 tstamp = perf_event_time(event);
1550
	u64 delta;
P
Peter Zijlstra 已提交
1551 1552 1553 1554

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1555 1556 1557 1558 1559 1560 1561 1562
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1563
		delta = tstamp - event->tstamp_stopped;
1564
		event->tstamp_running += delta;
1565
		event->tstamp_stopped = tstamp;
1566 1567
	}

1568
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1569
		return;
1570

1571 1572
	perf_pmu_disable(event->pmu);

1573 1574 1575 1576
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1577
	}
1578
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1579
	event->pmu->del(event, 0);
1580
	event->oncpu = -1;
1581

1582
	if (!is_software_event(event))
1583
		cpuctx->active_oncpu--;
1584 1585
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1586 1587
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1588
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1589
		cpuctx->exclusive = 0;
1590

1591 1592 1593
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1594
	perf_pmu_enable(event->pmu);
1595 1596
}

1597
static void
1598
group_sched_out(struct perf_event *group_event,
1599
		struct perf_cpu_context *cpuctx,
1600
		struct perf_event_context *ctx)
1601
{
1602
	struct perf_event *event;
1603
	int state = group_event->state;
1604

1605
	event_sched_out(group_event, cpuctx, ctx);
1606 1607 1608 1609

	/*
	 * Schedule out siblings (if any):
	 */
1610 1611
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1612

1613
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1614 1615 1616
		cpuctx->exclusive = 0;
}

1617 1618 1619 1620 1621
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1622
/*
1623
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1624
 *
1625
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1626 1627
 * remove it from the context list.
 */
1628
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1629
{
1630 1631
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1632
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1633
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1634

1635
	raw_spin_lock(&ctx->lock);
1636
	event_sched_out(event, cpuctx, ctx);
1637 1638
	if (re->detach_group)
		perf_group_detach(event);
1639
	list_del_event(event, ctx);
1640 1641 1642 1643
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1644
	raw_spin_unlock(&ctx->lock);
1645 1646

	return 0;
T
Thomas Gleixner 已提交
1647 1648 1649 1650
}


/*
1651
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1652
 *
1653
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1654
 * call when the task is on a CPU.
1655
 *
1656 1657
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1658 1659
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1660
 * When called from perf_event_exit_task, it's OK because the
1661
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1662
 */
1663
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1664
{
1665
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1666
	struct task_struct *task = ctx->task;
1667 1668 1669 1670
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1671

1672 1673
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1674 1675
	if (!task) {
		/*
1676 1677 1678 1679
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1680
		 */
1681
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1682 1683 1684 1685
		return;
	}

retry:
1686
	if (!task_function_call(task, __perf_remove_from_context, &re))
1687
		return;
T
Thomas Gleixner 已提交
1688

1689
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1690
	/*
1691 1692
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1693
	 */
1694
	if (ctx->is_active) {
1695
		raw_spin_unlock_irq(&ctx->lock);
1696 1697 1698 1699 1700
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1701 1702 1703 1704
		goto retry;
	}

	/*
1705 1706
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1707
	 */
1708 1709
	if (detach_group)
		perf_group_detach(event);
1710
	list_del_event(event, ctx);
1711
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1712 1713
}

1714
/*
1715
 * Cross CPU call to disable a performance event
1716
 */
1717
int __perf_event_disable(void *info)
1718
{
1719 1720
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1721
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1722 1723

	/*
1724 1725
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1726 1727 1728
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1729
	 */
1730
	if (ctx->task && cpuctx->task_ctx != ctx)
1731
		return -EINVAL;
1732

1733
	raw_spin_lock(&ctx->lock);
1734 1735

	/*
1736
	 * If the event is on, turn it off.
1737 1738
	 * If it is in error state, leave it in error state.
	 */
1739
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1740
		update_context_time(ctx);
S
Stephane Eranian 已提交
1741
		update_cgrp_time_from_event(event);
1742 1743 1744
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1745
		else
1746 1747
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1748 1749
	}

1750
	raw_spin_unlock(&ctx->lock);
1751 1752

	return 0;
1753 1754 1755
}

/*
1756
 * Disable a event.
1757
 *
1758 1759
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1760
 * remains valid.  This condition is satisifed when called through
1761 1762 1763 1764
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1765
 * is the current context on this CPU and preemption is disabled,
1766
 * hence we can't get into perf_event_task_sched_out for this context.
1767
 */
P
Peter Zijlstra 已提交
1768
static void _perf_event_disable(struct perf_event *event)
1769
{
1770
	struct perf_event_context *ctx = event->ctx;
1771 1772 1773 1774
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1775
		 * Disable the event on the cpu that it's on
1776
		 */
1777
		cpu_function_call(event->cpu, __perf_event_disable, event);
1778 1779 1780
		return;
	}

P
Peter Zijlstra 已提交
1781
retry:
1782 1783
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1784

1785
	raw_spin_lock_irq(&ctx->lock);
1786
	/*
1787
	 * If the event is still active, we need to retry the cross-call.
1788
	 */
1789
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1790
		raw_spin_unlock_irq(&ctx->lock);
1791 1792 1793 1794 1795
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1796 1797 1798 1799 1800 1801 1802
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1803 1804 1805
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1806
	}
1807
	raw_spin_unlock_irq(&ctx->lock);
1808
}
P
Peter Zijlstra 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1822
EXPORT_SYMBOL_GPL(perf_event_disable);
1823

S
Stephane Eranian 已提交
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1859 1860 1861
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1862
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1863

1864
static int
1865
event_sched_in(struct perf_event *event,
1866
		 struct perf_cpu_context *cpuctx,
1867
		 struct perf_event_context *ctx)
1868
{
1869
	u64 tstamp = perf_event_time(event);
1870
	int ret = 0;
1871

1872 1873
	lockdep_assert_held(&ctx->lock);

1874
	if (event->state <= PERF_EVENT_STATE_OFF)
1875 1876
		return 0;

1877
	event->state = PERF_EVENT_STATE_ACTIVE;
1878
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1890 1891 1892 1893 1894
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1895 1896
	perf_pmu_disable(event->pmu);

1897 1898
	perf_set_shadow_time(event, ctx, tstamp);

1899 1900
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1901
	if (event->pmu->add(event, PERF_EF_START)) {
1902 1903
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1904 1905
		ret = -EAGAIN;
		goto out;
1906 1907
	}

1908 1909
	event->tstamp_running += tstamp - event->tstamp_stopped;

1910
	if (!is_software_event(event))
1911
		cpuctx->active_oncpu++;
1912 1913
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1914 1915
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1916

1917
	if (event->attr.exclusive)
1918 1919
		cpuctx->exclusive = 1;

1920 1921 1922
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1923 1924 1925 1926
out:
	perf_pmu_enable(event->pmu);

	return ret;
1927 1928
}

1929
static int
1930
group_sched_in(struct perf_event *group_event,
1931
	       struct perf_cpu_context *cpuctx,
1932
	       struct perf_event_context *ctx)
1933
{
1934
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1935
	struct pmu *pmu = ctx->pmu;
1936 1937
	u64 now = ctx->time;
	bool simulate = false;
1938

1939
	if (group_event->state == PERF_EVENT_STATE_OFF)
1940 1941
		return 0;

P
Peter Zijlstra 已提交
1942
	pmu->start_txn(pmu);
1943

1944
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1945
		pmu->cancel_txn(pmu);
1946
		perf_mux_hrtimer_restart(cpuctx);
1947
		return -EAGAIN;
1948
	}
1949 1950 1951 1952

	/*
	 * Schedule in siblings as one group (if any):
	 */
1953
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1954
		if (event_sched_in(event, cpuctx, ctx)) {
1955
			partial_group = event;
1956 1957 1958 1959
			goto group_error;
		}
	}

1960
	if (!pmu->commit_txn(pmu))
1961
		return 0;
1962

1963 1964 1965 1966
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1977
	 */
1978 1979
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1980 1981 1982 1983 1984 1985 1986 1987
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1988
	}
1989
	event_sched_out(group_event, cpuctx, ctx);
1990

P
Peter Zijlstra 已提交
1991
	pmu->cancel_txn(pmu);
1992

1993
	perf_mux_hrtimer_restart(cpuctx);
1994

1995 1996 1997
	return -EAGAIN;
}

1998
/*
1999
 * Work out whether we can put this event group on the CPU now.
2000
 */
2001
static int group_can_go_on(struct perf_event *event,
2002 2003 2004 2005
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2006
	 * Groups consisting entirely of software events can always go on.
2007
	 */
2008
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2009 2010 2011
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2012
	 * events can go on.
2013 2014 2015 2016 2017
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2018
	 * events on the CPU, it can't go on.
2019
	 */
2020
	if (event->attr.exclusive && cpuctx->active_oncpu)
2021 2022 2023 2024 2025 2026 2027 2028
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2029 2030
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2031
{
2032 2033
	u64 tstamp = perf_event_time(event);

2034
	list_add_event(event, ctx);
2035
	perf_group_attach(event);
2036 2037 2038
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2039 2040
}

2041 2042 2043 2044 2045 2046
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2047

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2060
/*
2061
 * Cross CPU call to install and enable a performance event
2062 2063
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2064
 */
2065
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2066
{
2067 2068
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2069
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2070 2071 2072
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2073
	perf_ctx_lock(cpuctx, task_ctx);
2074
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2075 2076

	/*
2077
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2078
	 */
2079
	if (task_ctx)
2080
		task_ctx_sched_out(task_ctx);
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2095 2096
		task = task_ctx->task;
	}
2097

2098
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2099

2100
	update_context_time(ctx);
S
Stephane Eranian 已提交
2101 2102 2103 2104 2105 2106
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2107

2108
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2109

2110
	/*
2111
	 * Schedule everything back in
2112
	 */
2113
	perf_event_sched_in(cpuctx, task_ctx, task);
2114 2115 2116

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2117 2118

	return 0;
T
Thomas Gleixner 已提交
2119 2120 2121
}

/*
2122
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2123
 *
2124 2125
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2126
 *
2127
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2128 2129 2130 2131
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2132 2133
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2134 2135 2136 2137
			int cpu)
{
	struct task_struct *task = ctx->task;

2138 2139
	lockdep_assert_held(&ctx->mutex);

2140
	event->ctx = ctx;
2141 2142
	if (event->cpu != -1)
		event->cpu = cpu;
2143

T
Thomas Gleixner 已提交
2144 2145
	if (!task) {
		/*
2146
		 * Per cpu events are installed via an smp call and
2147
		 * the install is always successful.
T
Thomas Gleixner 已提交
2148
		 */
2149
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2150 2151 2152 2153
		return;
	}

retry:
2154 2155
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2156

2157
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2158
	/*
2159 2160
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2161
	 */
2162
	if (ctx->is_active) {
2163
		raw_spin_unlock_irq(&ctx->lock);
2164 2165 2166 2167 2168
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2169 2170 2171 2172
		goto retry;
	}

	/*
2173 2174
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2175
	 */
2176
	add_event_to_ctx(event, ctx);
2177
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2178 2179
}

2180
/*
2181
 * Put a event into inactive state and update time fields.
2182 2183 2184 2185 2186 2187
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2188
static void __perf_event_mark_enabled(struct perf_event *event)
2189
{
2190
	struct perf_event *sub;
2191
	u64 tstamp = perf_event_time(event);
2192

2193
	event->state = PERF_EVENT_STATE_INACTIVE;
2194
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2195
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2196 2197
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2198
	}
2199 2200
}

2201
/*
2202
 * Cross CPU call to enable a performance event
2203
 */
2204
static int __perf_event_enable(void *info)
2205
{
2206 2207 2208
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2209
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2210
	int err;
2211

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2222
		return -EINVAL;
2223

2224
	raw_spin_lock(&ctx->lock);
2225
	update_context_time(ctx);
2226

2227
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2228
		goto unlock;
S
Stephane Eranian 已提交
2229 2230 2231 2232

	/*
	 * set current task's cgroup time reference point
	 */
2233
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2234

2235
	__perf_event_mark_enabled(event);
2236

S
Stephane Eranian 已提交
2237 2238 2239
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2240
		goto unlock;
S
Stephane Eranian 已提交
2241
	}
2242

2243
	/*
2244
	 * If the event is in a group and isn't the group leader,
2245
	 * then don't put it on unless the group is on.
2246
	 */
2247
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2248
		goto unlock;
2249

2250
	if (!group_can_go_on(event, cpuctx, 1)) {
2251
		err = -EEXIST;
2252
	} else {
2253
		if (event == leader)
2254
			err = group_sched_in(event, cpuctx, ctx);
2255
		else
2256
			err = event_sched_in(event, cpuctx, ctx);
2257
	}
2258 2259 2260

	if (err) {
		/*
2261
		 * If this event can't go on and it's part of a
2262 2263
		 * group, then the whole group has to come off.
		 */
2264
		if (leader != event) {
2265
			group_sched_out(leader, cpuctx, ctx);
2266
			perf_mux_hrtimer_restart(cpuctx);
2267
		}
2268
		if (leader->attr.pinned) {
2269
			update_group_times(leader);
2270
			leader->state = PERF_EVENT_STATE_ERROR;
2271
		}
2272 2273
	}

P
Peter Zijlstra 已提交
2274
unlock:
2275
	raw_spin_unlock(&ctx->lock);
2276 2277

	return 0;
2278 2279 2280
}

/*
2281
 * Enable a event.
2282
 *
2283 2284
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2285
 * remains valid.  This condition is satisfied when called through
2286 2287
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2288
 */
P
Peter Zijlstra 已提交
2289
static void _perf_event_enable(struct perf_event *event)
2290
{
2291
	struct perf_event_context *ctx = event->ctx;
2292 2293 2294 2295
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2296
		 * Enable the event on the cpu that it's on
2297
		 */
2298
		cpu_function_call(event->cpu, __perf_event_enable, event);
2299 2300 2301
		return;
	}

2302
	raw_spin_lock_irq(&ctx->lock);
2303
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2304 2305 2306
		goto out;

	/*
2307 2308
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2309 2310 2311 2312
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2313 2314
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2315

P
Peter Zijlstra 已提交
2316
retry:
2317
	if (!ctx->is_active) {
2318
		__perf_event_mark_enabled(event);
2319 2320 2321
		goto out;
	}

2322
	raw_spin_unlock_irq(&ctx->lock);
2323 2324 2325

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2326

2327
	raw_spin_lock_irq(&ctx->lock);
2328 2329

	/*
2330
	 * If the context is active and the event is still off,
2331 2332
	 * we need to retry the cross-call.
	 */
2333 2334 2335 2336 2337 2338
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2339
		goto retry;
2340
	}
2341

P
Peter Zijlstra 已提交
2342
out:
2343
	raw_spin_unlock_irq(&ctx->lock);
2344
}
P
Peter Zijlstra 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2357
EXPORT_SYMBOL_GPL(perf_event_enable);
2358

P
Peter Zijlstra 已提交
2359
static int _perf_event_refresh(struct perf_event *event, int refresh)
2360
{
2361
	/*
2362
	 * not supported on inherited events
2363
	 */
2364
	if (event->attr.inherit || !is_sampling_event(event))
2365 2366
		return -EINVAL;

2367
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2368
	_perf_event_enable(event);
2369 2370

	return 0;
2371
}
P
Peter Zijlstra 已提交
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2387
EXPORT_SYMBOL_GPL(perf_event_refresh);
2388

2389 2390 2391
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2392
{
2393
	struct perf_event *event;
2394
	int is_active = ctx->is_active;
2395

2396
	ctx->is_active &= ~event_type;
2397
	if (likely(!ctx->nr_events))
2398 2399
		return;

2400
	update_context_time(ctx);
S
Stephane Eranian 已提交
2401
	update_cgrp_time_from_cpuctx(cpuctx);
2402
	if (!ctx->nr_active)
2403
		return;
2404

P
Peter Zijlstra 已提交
2405
	perf_pmu_disable(ctx->pmu);
2406
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2407 2408
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2409
	}
2410

2411
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2412
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2413
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2414
	}
P
Peter Zijlstra 已提交
2415
	perf_pmu_enable(ctx->pmu);
2416 2417
}

2418
/*
2419 2420 2421 2422 2423 2424
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2425
 */
2426 2427
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2428
{
2429 2430 2431
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2454 2455
}

2456 2457
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2458 2459 2460
{
	u64 value;

2461
	if (!event->attr.inherit_stat)
2462 2463 2464
		return;

	/*
2465
	 * Update the event value, we cannot use perf_event_read()
2466 2467
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2468
	 * we know the event must be on the current CPU, therefore we
2469 2470
	 * don't need to use it.
	 */
2471 2472
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2473 2474
		event->pmu->read(event);
		/* fall-through */
2475

2476 2477
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2478 2479 2480 2481 2482 2483 2484
		break;

	default:
		break;
	}

	/*
2485
	 * In order to keep per-task stats reliable we need to flip the event
2486 2487
	 * values when we flip the contexts.
	 */
2488 2489 2490
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2491

2492 2493
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2494

2495
	/*
2496
	 * Since we swizzled the values, update the user visible data too.
2497
	 */
2498 2499
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2500 2501
}

2502 2503
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2504
{
2505
	struct perf_event *event, *next_event;
2506 2507 2508 2509

	if (!ctx->nr_stat)
		return;

2510 2511
	update_context_time(ctx);

2512 2513
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2514

2515 2516
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2517

2518 2519
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2520

2521
		__perf_event_sync_stat(event, next_event);
2522

2523 2524
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2525 2526 2527
	}
}

2528 2529
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2530
{
P
Peter Zijlstra 已提交
2531
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2532
	struct perf_event_context *next_ctx;
2533
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2534
	struct perf_cpu_context *cpuctx;
2535
	int do_switch = 1;
T
Thomas Gleixner 已提交
2536

P
Peter Zijlstra 已提交
2537 2538
	if (likely(!ctx))
		return;
2539

P
Peter Zijlstra 已提交
2540 2541
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2542 2543
		return;

2544
	rcu_read_lock();
P
Peter Zijlstra 已提交
2545
	next_ctx = next->perf_event_ctxp[ctxn];
2546 2547 2548 2549 2550 2551 2552
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2553
	if (!parent && !next_parent)
2554 2555 2556
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2557 2558 2559 2560 2561 2562 2563 2564 2565
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2566 2567
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2568
		if (context_equiv(ctx, next_ctx)) {
2569 2570
			/*
			 * XXX do we need a memory barrier of sorts
2571
			 * wrt to rcu_dereference() of perf_event_ctxp
2572
			 */
P
Peter Zijlstra 已提交
2573 2574
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2575 2576
			ctx->task = next;
			next_ctx->task = task;
2577 2578 2579

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2580
			do_switch = 0;
2581

2582
			perf_event_sync_stat(ctx, next_ctx);
2583
		}
2584 2585
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2586
	}
2587
unlock:
2588
	rcu_read_unlock();
2589

2590
	if (do_switch) {
2591
		raw_spin_lock(&ctx->lock);
2592
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2593
		cpuctx->task_ctx = NULL;
2594
		raw_spin_unlock(&ctx->lock);
2595
	}
T
Thomas Gleixner 已提交
2596 2597
}

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2648 2649 2650
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2665 2666
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2667 2668 2669
{
	int ctxn;

2670 2671 2672
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2673 2674 2675
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2676 2677
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2678 2679 2680 2681 2682 2683

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2684
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2685
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2686 2687
}

2688
static void task_ctx_sched_out(struct perf_event_context *ctx)
2689
{
P
Peter Zijlstra 已提交
2690
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2691

2692 2693
	if (!cpuctx->task_ctx)
		return;
2694 2695 2696 2697

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2698
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2699 2700 2701
	cpuctx->task_ctx = NULL;
}

2702 2703 2704 2705 2706 2707 2708
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2709 2710
}

2711
static void
2712
ctx_pinned_sched_in(struct perf_event_context *ctx,
2713
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2714
{
2715
	struct perf_event *event;
T
Thomas Gleixner 已提交
2716

2717 2718
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2719
			continue;
2720
		if (!event_filter_match(event))
2721 2722
			continue;

S
Stephane Eranian 已提交
2723 2724 2725 2726
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2727
		if (group_can_go_on(event, cpuctx, 1))
2728
			group_sched_in(event, cpuctx, ctx);
2729 2730 2731 2732 2733

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2734 2735 2736
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2737
		}
2738
	}
2739 2740 2741 2742
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2743
		      struct perf_cpu_context *cpuctx)
2744 2745 2746
{
	struct perf_event *event;
	int can_add_hw = 1;
2747

2748 2749 2750
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2751
			continue;
2752 2753
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2754
		 * of events:
2755
		 */
2756
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2757 2758
			continue;

S
Stephane Eranian 已提交
2759 2760 2761 2762
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2763
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2764
			if (group_sched_in(event, cpuctx, ctx))
2765
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2766
		}
T
Thomas Gleixner 已提交
2767
	}
2768 2769 2770 2771 2772
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2773 2774
	     enum event_type_t event_type,
	     struct task_struct *task)
2775
{
S
Stephane Eranian 已提交
2776
	u64 now;
2777
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2778

2779
	ctx->is_active |= event_type;
2780
	if (likely(!ctx->nr_events))
2781
		return;
2782

S
Stephane Eranian 已提交
2783 2784
	now = perf_clock();
	ctx->timestamp = now;
2785
	perf_cgroup_set_timestamp(task, ctx);
2786 2787 2788 2789
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2790
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2791
		ctx_pinned_sched_in(ctx, cpuctx);
2792 2793

	/* Then walk through the lower prio flexible groups */
2794
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2795
		ctx_flexible_sched_in(ctx, cpuctx);
2796 2797
}

2798
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2799 2800
			     enum event_type_t event_type,
			     struct task_struct *task)
2801 2802 2803
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2804
	ctx_sched_in(ctx, cpuctx, event_type, task);
2805 2806
}

S
Stephane Eranian 已提交
2807 2808
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2809
{
P
Peter Zijlstra 已提交
2810
	struct perf_cpu_context *cpuctx;
2811

P
Peter Zijlstra 已提交
2812
	cpuctx = __get_cpu_context(ctx);
2813 2814 2815
	if (cpuctx->task_ctx == ctx)
		return;

2816
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2817
	perf_pmu_disable(ctx->pmu);
2818 2819 2820 2821 2822 2823 2824
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2825 2826
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2827

2828 2829
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2830 2831
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2832 2833
}

P
Peter Zijlstra 已提交
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2845 2846
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2847 2848 2849 2850 2851 2852 2853 2854 2855
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2856
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2857
	}
S
Stephane Eranian 已提交
2858 2859 2860 2861 2862
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2863
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2864
		perf_cgroup_sched_in(prev, task);
2865

2866 2867 2868
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2869 2870
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2871 2872
}

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2900
#define REDUCE_FLS(a, b)		\
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2940 2941 2942
	if (!divisor)
		return dividend;

2943 2944 2945
	return div64_u64(dividend, divisor);
}

2946 2947 2948
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2949
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2950
{
2951
	struct hw_perf_event *hwc = &event->hw;
2952
	s64 period, sample_period;
2953 2954
	s64 delta;

2955
	period = perf_calculate_period(event, nsec, count);
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2966

2967
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2968 2969 2970
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2971
		local64_set(&hwc->period_left, 0);
2972 2973 2974

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2975
	}
2976 2977
}

2978 2979 2980 2981 2982 2983 2984
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2985
{
2986 2987
	struct perf_event *event;
	struct hw_perf_event *hwc;
2988
	u64 now, period = TICK_NSEC;
2989
	s64 delta;
2990

2991 2992 2993 2994 2995 2996
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2997 2998
		return;

2999
	raw_spin_lock(&ctx->lock);
3000
	perf_pmu_disable(ctx->pmu);
3001

3002
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3003
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3004 3005
			continue;

3006
		if (!event_filter_match(event))
3007 3008
			continue;

3009 3010
		perf_pmu_disable(event->pmu);

3011
		hwc = &event->hw;
3012

3013
		if (hwc->interrupts == MAX_INTERRUPTS) {
3014
			hwc->interrupts = 0;
3015
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3016
			event->pmu->start(event, 0);
3017 3018
		}

3019
		if (!event->attr.freq || !event->attr.sample_freq)
3020
			goto next;
3021

3022 3023 3024 3025 3026
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3027
		now = local64_read(&event->count);
3028 3029
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3030

3031 3032 3033
		/*
		 * restart the event
		 * reload only if value has changed
3034 3035 3036
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3037
		 */
3038
		if (delta > 0)
3039
			perf_adjust_period(event, period, delta, false);
3040 3041

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3042 3043
	next:
		perf_pmu_enable(event->pmu);
3044
	}
3045

3046
	perf_pmu_enable(ctx->pmu);
3047
	raw_spin_unlock(&ctx->lock);
3048 3049
}

3050
/*
3051
 * Round-robin a context's events:
3052
 */
3053
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3054
{
3055 3056 3057 3058 3059 3060
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3061 3062
}

3063
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3064
{
P
Peter Zijlstra 已提交
3065
	struct perf_event_context *ctx = NULL;
3066
	int rotate = 0;
3067

3068 3069 3070 3071
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3072

P
Peter Zijlstra 已提交
3073
	ctx = cpuctx->task_ctx;
3074 3075 3076 3077
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3078

3079
	if (!rotate)
3080 3081
		goto done;

3082
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3083
	perf_pmu_disable(cpuctx->ctx.pmu);
3084

3085 3086 3087
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3088

3089 3090 3091
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3092

3093
	perf_event_sched_in(cpuctx, ctx, current);
3094

3095 3096
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3097
done:
3098 3099

	return rotate;
3100 3101
}

3102 3103 3104
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3105
	if (atomic_read(&nr_freq_events) ||
3106
	    __this_cpu_read(perf_throttled_count))
3107
		return false;
3108 3109
	else
		return true;
3110 3111 3112
}
#endif

3113 3114
void perf_event_task_tick(void)
{
3115 3116
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3117
	int throttled;
3118

3119 3120
	WARN_ON(!irqs_disabled());

3121 3122 3123
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3124
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3125
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3126 3127
}

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3138
	__perf_event_mark_enabled(event);
3139 3140 3141 3142

	return 1;
}

3143
/*
3144
 * Enable all of a task's events that have been marked enable-on-exec.
3145 3146
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3147
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3148
{
3149
	struct perf_event_context *clone_ctx = NULL;
3150
	struct perf_event *event;
3151 3152
	unsigned long flags;
	int enabled = 0;
3153
	int ret;
3154 3155

	local_irq_save(flags);
3156
	if (!ctx || !ctx->nr_events)
3157 3158
		goto out;

3159 3160 3161 3162 3163 3164 3165
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3166
	perf_cgroup_sched_out(current, NULL);
3167

3168
	raw_spin_lock(&ctx->lock);
3169
	task_ctx_sched_out(ctx);
3170

3171
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3172 3173 3174
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3175 3176 3177
	}

	/*
3178
	 * Unclone this context if we enabled any event.
3179
	 */
3180
	if (enabled)
3181
		clone_ctx = unclone_ctx(ctx);
3182

3183
	raw_spin_unlock(&ctx->lock);
3184

3185 3186 3187
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3188
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3189
out:
3190
	local_irq_restore(flags);
3191 3192 3193

	if (clone_ctx)
		put_ctx(clone_ctx);
3194 3195
}

3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3212
/*
3213
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3214
 */
3215
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3216
{
3217 3218
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3219
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3220

3221 3222 3223 3224
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3225 3226
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3227 3228 3229 3230
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3231
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3232
	if (ctx->is_active) {
3233
		update_context_time(ctx);
S
Stephane Eranian 已提交
3234 3235
		update_cgrp_time_from_event(event);
	}
3236
	update_event_times(event);
3237 3238
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3239
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3240 3241
}

P
Peter Zijlstra 已提交
3242 3243
static inline u64 perf_event_count(struct perf_event *event)
{
3244 3245 3246 3247
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3248 3249
}

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3303
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3304 3305
{
	/*
3306 3307
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3308
	 */
3309 3310 3311 3312
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3313 3314 3315
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3316
		raw_spin_lock_irqsave(&ctx->lock, flags);
3317 3318 3319 3320 3321
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3322
		if (ctx->is_active) {
3323
			update_context_time(ctx);
S
Stephane Eranian 已提交
3324 3325
			update_cgrp_time_from_event(event);
		}
3326
		update_event_times(event);
3327
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3328 3329
	}

P
Peter Zijlstra 已提交
3330
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3331 3332
}

3333
/*
3334
 * Initialize the perf_event context in a task_struct:
3335
 */
3336
static void __perf_event_init_context(struct perf_event_context *ctx)
3337
{
3338
	raw_spin_lock_init(&ctx->lock);
3339
	mutex_init(&ctx->mutex);
3340
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3341 3342
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3343 3344
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3345
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3361
	}
3362 3363 3364
	ctx->pmu = pmu;

	return ctx;
3365 3366
}

3367 3368 3369 3370 3371
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3372 3373

	rcu_read_lock();
3374
	if (!vpid)
T
Thomas Gleixner 已提交
3375 3376
		task = current;
	else
3377
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3378 3379 3380 3381 3382 3383 3384 3385
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3386 3387 3388 3389
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3390 3391 3392 3393 3394 3395 3396
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3397 3398 3399
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3400
static struct perf_event_context *
3401 3402
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3403
{
3404
	struct perf_event_context *ctx, *clone_ctx = NULL;
3405
	struct perf_cpu_context *cpuctx;
3406
	void *task_ctx_data = NULL;
3407
	unsigned long flags;
P
Peter Zijlstra 已提交
3408
	int ctxn, err;
3409
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3410

3411
	if (!task) {
3412
		/* Must be root to operate on a CPU event: */
3413
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3414 3415 3416
			return ERR_PTR(-EACCES);

		/*
3417
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3418 3419 3420
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3421
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3422 3423
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3424
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3425
		ctx = &cpuctx->ctx;
3426
		get_ctx(ctx);
3427
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3428 3429 3430 3431

		return ctx;
	}

P
Peter Zijlstra 已提交
3432 3433 3434 3435 3436
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3437 3438 3439 3440 3441 3442 3443 3444
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3445
retry:
P
Peter Zijlstra 已提交
3446
	ctx = perf_lock_task_context(task, ctxn, &flags);
3447
	if (ctx) {
3448
		clone_ctx = unclone_ctx(ctx);
3449
		++ctx->pin_count;
3450 3451 3452 3453 3454

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3455
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3456 3457 3458

		if (clone_ctx)
			put_ctx(clone_ctx);
3459
	} else {
3460
		ctx = alloc_perf_context(pmu, task);
3461 3462 3463
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3464

3465 3466 3467 3468 3469
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3480
		else {
3481
			get_ctx(ctx);
3482
			++ctx->pin_count;
3483
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3484
		}
3485 3486 3487
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3488
			put_ctx(ctx);
3489 3490 3491 3492

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3493 3494 3495
		}
	}

3496
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3497
	return ctx;
3498

P
Peter Zijlstra 已提交
3499
errout:
3500
	kfree(task_ctx_data);
3501
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3502 3503
}

L
Li Zefan 已提交
3504
static void perf_event_free_filter(struct perf_event *event);
3505
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3506

3507
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3508
{
3509
	struct perf_event *event;
P
Peter Zijlstra 已提交
3510

3511 3512 3513
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3514
	perf_event_free_filter(event);
3515
	kfree(event);
P
Peter Zijlstra 已提交
3516 3517
}

3518 3519
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3520

3521
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3522
{
3523 3524 3525 3526 3527 3528
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3529

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3543 3544
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3545 3546 3547 3548
	if (event->attr.context_switch) {
		static_key_slow_dec_deferred(&perf_sched_events);
		atomic_dec(&nr_switch_events);
	}
3549 3550 3551 3552 3553 3554 3555
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3556

3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3642 3643
static void __free_event(struct perf_event *event)
{
3644
	if (!event->parent) {
3645 3646
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3647
	}
3648

3649 3650
	perf_event_free_bpf_prog(event);

3651 3652 3653 3654 3655 3656
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3657 3658
	if (event->pmu) {
		exclusive_event_destroy(event);
3659
		module_put(event->pmu->module);
3660
	}
3661

3662 3663
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3664 3665

static void _free_event(struct perf_event *event)
3666
{
3667
	irq_work_sync(&event->pending);
3668

3669
	unaccount_event(event);
3670

3671
	if (event->rb) {
3672 3673 3674 3675 3676 3677 3678
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3679
		ring_buffer_attach(event, NULL);
3680
		mutex_unlock(&event->mmap_mutex);
3681 3682
	}

S
Stephane Eranian 已提交
3683 3684 3685
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3686
	__free_event(event);
3687 3688
}

P
Peter Zijlstra 已提交
3689 3690 3691 3692 3693
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3694
{
P
Peter Zijlstra 已提交
3695 3696 3697 3698 3699 3700
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3701

P
Peter Zijlstra 已提交
3702
	_free_event(event);
T
Thomas Gleixner 已提交
3703 3704
}

3705
/*
3706
 * Remove user event from the owner task.
3707
 */
3708
static void perf_remove_from_owner(struct perf_event *event)
3709
{
P
Peter Zijlstra 已提交
3710
	struct task_struct *owner;
3711

P
Peter Zijlstra 已提交
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3753 3754 3755 3756
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3757
	struct perf_event_context *ctx;
3758 3759 3760 3761 3762 3763

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3764

P
Peter Zijlstra 已提交
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3777 3778
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3779
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3780
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3781 3782

	_free_event(event);
3783 3784
}

P
Peter Zijlstra 已提交
3785 3786 3787 3788 3789 3790 3791
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3792 3793 3794
/*
 * Called when the last reference to the file is gone.
 */
3795 3796 3797 3798
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3799 3800
}

3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3837
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3838
{
3839
	struct perf_event *child;
3840 3841
	u64 total = 0;

3842 3843 3844
	*enabled = 0;
	*running = 0;

3845
	mutex_lock(&event->child_mutex);
3846
	total += perf_event_read(event);
3847 3848 3849 3850 3851 3852
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3853
		total += perf_event_read(child);
3854 3855 3856
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3857
	mutex_unlock(&event->child_mutex);
3858 3859 3860

	return total;
}
3861
EXPORT_SYMBOL_GPL(perf_event_read_value);
3862

3863
static int perf_event_read_group(struct perf_event *event,
3864 3865
				   u64 read_format, char __user *buf)
{
3866
	struct perf_event *leader = event->group_leader, *sub;
3867
	struct perf_event_context *ctx = leader->ctx;
P
Peter Zijlstra 已提交
3868
	int n = 0, size = 0, ret;
3869
	u64 count, enabled, running;
P
Peter Zijlstra 已提交
3870 3871 3872
	u64 values[5];

	lockdep_assert_held(&ctx->mutex);
3873

3874
	count = perf_event_read_value(leader, &enabled, &running);
3875 3876

	values[n++] = 1 + leader->nr_siblings;
3877 3878 3879 3880
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3881 3882 3883
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3884 3885 3886 3887

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
P
Peter Zijlstra 已提交
3888
		return -EFAULT;
3889

3890
	ret = size;
3891

3892
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3893
		n = 0;
3894

3895
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3896 3897 3898 3899 3900
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3901
		if (copy_to_user(buf + ret, values, size)) {
P
Peter Zijlstra 已提交
3902
			return -EFAULT;
3903
		}
3904 3905

		ret += size;
3906 3907
	}

3908
	return ret;
3909 3910
}

3911
static int perf_event_read_one(struct perf_event *event,
3912 3913
				 u64 read_format, char __user *buf)
{
3914
	u64 enabled, running;
3915 3916 3917
	u64 values[4];
	int n = 0;

3918 3919 3920 3921 3922
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3923
	if (read_format & PERF_FORMAT_ID)
3924
		values[n++] = primary_event_id(event);
3925 3926 3927 3928 3929 3930 3931

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3945
/*
3946
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3947 3948
 */
static ssize_t
3949
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3950
{
3951
	u64 read_format = event->attr.read_format;
3952
	int ret;
T
Thomas Gleixner 已提交
3953

3954
	/*
3955
	 * Return end-of-file for a read on a event that is in
3956 3957 3958
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3959
	if (event->state == PERF_EVENT_STATE_ERROR)
3960 3961
		return 0;

3962
	if (count < event->read_size)
3963 3964
		return -ENOSPC;

3965
	WARN_ON_ONCE(event->ctx->parent_ctx);
3966
	if (read_format & PERF_FORMAT_GROUP)
3967
		ret = perf_event_read_group(event, read_format, buf);
3968
	else
3969
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3970

3971
	return ret;
T
Thomas Gleixner 已提交
3972 3973 3974 3975 3976
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3977
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3978 3979
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3980

P
Peter Zijlstra 已提交
3981 3982 3983 3984 3985
	ctx = perf_event_ctx_lock(event);
	ret = perf_read_hw(event, buf, count);
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
3986 3987 3988 3989
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3990
	struct perf_event *event = file->private_data;
3991
	struct ring_buffer *rb;
3992
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3993

3994
	poll_wait(file, &event->waitq, wait);
3995

3996
	if (is_event_hup(event))
3997
		return events;
P
Peter Zijlstra 已提交
3998

3999
	/*
4000 4001
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4002 4003
	 */
	mutex_lock(&event->mmap_mutex);
4004 4005
	rb = event->rb;
	if (rb)
4006
		events = atomic_xchg(&rb->poll, 0);
4007
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4008 4009 4010
	return events;
}

P
Peter Zijlstra 已提交
4011
static void _perf_event_reset(struct perf_event *event)
4012
{
4013
	(void)perf_event_read(event);
4014
	local64_set(&event->count, 0);
4015
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4016 4017
}

4018
/*
4019 4020 4021 4022
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4023
 */
4024 4025
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4026
{
4027
	struct perf_event *child;
P
Peter Zijlstra 已提交
4028

4029
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4030

4031 4032 4033
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4034
		func(child);
4035
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4036 4037
}

4038 4039
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4040
{
4041 4042
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4043

P
Peter Zijlstra 已提交
4044 4045
	lockdep_assert_held(&ctx->mutex);

4046
	event = event->group_leader;
4047

4048 4049
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4050
		perf_event_for_each_child(sibling, func);
4051 4052
}

4053 4054
struct period_event {
	struct perf_event *event;
4055
	u64 value;
4056
};
4057

4058 4059 4060 4061 4062 4063 4064
static int __perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	struct perf_event_context *ctx = event->ctx;
	u64 value = pe->value;
	bool active;
4065

4066
	raw_spin_lock(&ctx->lock);
4067 4068
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4069
	} else {
4070 4071
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4072
	}
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4086
	raw_spin_unlock(&ctx->lock);
4087

4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
	return 0;
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	struct period_event pe = { .event = event, };
	struct perf_event_context *ctx = event->ctx;
	struct task_struct *task;
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

	task = ctx->task;
	pe.value = value;

	if (!task) {
		cpu_function_call(event->cpu, __perf_event_period, &pe);
		return 0;
	}

retry:
	if (!task_function_call(task, __perf_event_period, &pe))
		return 0;

	raw_spin_lock_irq(&ctx->lock);
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		task = ctx->task;
		goto retry;
	}

	__perf_event_period(&pe);
4130
	raw_spin_unlock_irq(&ctx->lock);
4131

4132
	return 0;
4133 4134
}

4135 4136
static const struct file_operations perf_fops;

4137
static inline int perf_fget_light(int fd, struct fd *p)
4138
{
4139 4140 4141
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4142

4143 4144 4145
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4146
	}
4147 4148
	*p = f;
	return 0;
4149 4150 4151 4152
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4153
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4154
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4155

P
Peter Zijlstra 已提交
4156
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4157
{
4158
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4159
	u32 flags = arg;
4160 4161

	switch (cmd) {
4162
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4163
		func = _perf_event_enable;
4164
		break;
4165
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4166
		func = _perf_event_disable;
4167
		break;
4168
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4169
		func = _perf_event_reset;
4170
		break;
P
Peter Zijlstra 已提交
4171

4172
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4173
		return _perf_event_refresh(event, arg);
4174

4175 4176
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4177

4178 4179 4180 4181 4182 4183 4184 4185 4186
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4187
	case PERF_EVENT_IOC_SET_OUTPUT:
4188 4189 4190
	{
		int ret;
		if (arg != -1) {
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4201 4202 4203
		}
		return ret;
	}
4204

L
Li Zefan 已提交
4205 4206 4207
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4208 4209 4210
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4211
	default:
P
Peter Zijlstra 已提交
4212
		return -ENOTTY;
4213
	}
P
Peter Zijlstra 已提交
4214 4215

	if (flags & PERF_IOC_FLAG_GROUP)
4216
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4217
	else
4218
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4219 4220

	return 0;
4221 4222
}

P
Peter Zijlstra 已提交
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4256
int perf_event_task_enable(void)
4257
{
P
Peter Zijlstra 已提交
4258
	struct perf_event_context *ctx;
4259
	struct perf_event *event;
4260

4261
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4262 4263 4264 4265 4266
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4267
	mutex_unlock(&current->perf_event_mutex);
4268 4269 4270 4271

	return 0;
}

4272
int perf_event_task_disable(void)
4273
{
P
Peter Zijlstra 已提交
4274
	struct perf_event_context *ctx;
4275
	struct perf_event *event;
4276

4277
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4278 4279 4280 4281 4282
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4283
	mutex_unlock(&current->perf_event_mutex);
4284 4285 4286 4287

	return 0;
}

4288
static int perf_event_index(struct perf_event *event)
4289
{
P
Peter Zijlstra 已提交
4290 4291 4292
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4293
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4294 4295
		return 0;

4296
	return event->pmu->event_idx(event);
4297 4298
}

4299
static void calc_timer_values(struct perf_event *event,
4300
				u64 *now,
4301 4302
				u64 *enabled,
				u64 *running)
4303
{
4304
	u64 ctx_time;
4305

4306 4307
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4308 4309 4310 4311
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4327 4328
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4329 4330 4331 4332 4333

unlock:
	rcu_read_unlock();
}

4334 4335
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4336 4337 4338
{
}

4339 4340 4341 4342 4343
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4344
void perf_event_update_userpage(struct perf_event *event)
4345
{
4346
	struct perf_event_mmap_page *userpg;
4347
	struct ring_buffer *rb;
4348
	u64 enabled, running, now;
4349 4350

	rcu_read_lock();
4351 4352 4353 4354
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4355 4356 4357 4358 4359 4360 4361 4362 4363
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4364
	calc_timer_values(event, &now, &enabled, &running);
4365

4366
	userpg = rb->user_page;
4367 4368 4369 4370 4371
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4372
	++userpg->lock;
4373
	barrier();
4374
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4375
	userpg->offset = perf_event_count(event);
4376
	if (userpg->index)
4377
		userpg->offset -= local64_read(&event->hw.prev_count);
4378

4379
	userpg->time_enabled = enabled +
4380
			atomic64_read(&event->child_total_time_enabled);
4381

4382
	userpg->time_running = running +
4383
			atomic64_read(&event->child_total_time_running);
4384

4385
	arch_perf_update_userpage(event, userpg, now);
4386

4387
	barrier();
4388
	++userpg->lock;
4389
	preempt_enable();
4390
unlock:
4391
	rcu_read_unlock();
4392 4393
}

4394 4395 4396
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4397
	struct ring_buffer *rb;
4398 4399 4400 4401 4402 4403 4404 4405 4406
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4407 4408
	rb = rcu_dereference(event->rb);
	if (!rb)
4409 4410 4411 4412 4413
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4414
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4429 4430 4431
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4432
	struct ring_buffer *old_rb = NULL;
4433 4434
	unsigned long flags;

4435 4436 4437 4438 4439 4440
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4441

4442 4443 4444 4445
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4446

4447 4448
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4449
	}
4450

4451
	if (rb) {
4452 4453 4454 4455 4456
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4473 4474 4475 4476 4477 4478 4479 4480
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4481 4482 4483 4484
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4485 4486 4487
	rcu_read_unlock();
}

4488
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4489
{
4490
	struct ring_buffer *rb;
4491

4492
	rcu_read_lock();
4493 4494 4495 4496
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4497 4498 4499
	}
	rcu_read_unlock();

4500
	return rb;
4501 4502
}

4503
void ring_buffer_put(struct ring_buffer *rb)
4504
{
4505
	if (!atomic_dec_and_test(&rb->refcount))
4506
		return;
4507

4508
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4509

4510
	call_rcu(&rb->rcu_head, rb_free_rcu);
4511 4512 4513 4514
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4515
	struct perf_event *event = vma->vm_file->private_data;
4516

4517
	atomic_inc(&event->mmap_count);
4518
	atomic_inc(&event->rb->mmap_count);
4519

4520 4521 4522
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4523 4524
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4525 4526
}

4527 4528 4529 4530 4531 4532 4533 4534
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4535 4536
static void perf_mmap_close(struct vm_area_struct *vma)
{
4537
	struct perf_event *event = vma->vm_file->private_data;
4538

4539
	struct ring_buffer *rb = ring_buffer_get(event);
4540 4541 4542
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4543

4544 4545 4546
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4561 4562 4563
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4564
		goto out_put;
4565

4566
	ring_buffer_attach(event, NULL);
4567 4568 4569
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4570 4571
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4572

4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4589

4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4601 4602 4603
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4604
		mutex_unlock(&event->mmap_mutex);
4605
		put_event(event);
4606

4607 4608 4609 4610 4611
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4612
	}
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4628
out_put:
4629
	ring_buffer_put(rb); /* could be last */
4630 4631
}

4632
static const struct vm_operations_struct perf_mmap_vmops = {
4633
	.open		= perf_mmap_open,
4634
	.close		= perf_mmap_close, /* non mergable */
4635 4636
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4637 4638 4639 4640
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4641
	struct perf_event *event = file->private_data;
4642
	unsigned long user_locked, user_lock_limit;
4643
	struct user_struct *user = current_user();
4644
	unsigned long locked, lock_limit;
4645
	struct ring_buffer *rb = NULL;
4646 4647
	unsigned long vma_size;
	unsigned long nr_pages;
4648
	long user_extra = 0, extra = 0;
4649
	int ret = 0, flags = 0;
4650

4651 4652 4653
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4654
	 * same rb.
4655 4656 4657 4658
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4659
	if (!(vma->vm_flags & VM_SHARED))
4660
		return -EINVAL;
4661 4662

	vma_size = vma->vm_end - vma->vm_start;
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4723

4724
	/*
4725
	 * If we have rb pages ensure they're a power-of-two number, so we
4726 4727
	 * can do bitmasks instead of modulo.
	 */
4728
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4729 4730
		return -EINVAL;

4731
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4732 4733
		return -EINVAL;

4734
	WARN_ON_ONCE(event->ctx->parent_ctx);
4735
again:
4736
	mutex_lock(&event->mmap_mutex);
4737
	if (event->rb) {
4738
		if (event->rb->nr_pages != nr_pages) {
4739
			ret = -EINVAL;
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4753 4754 4755
		goto unlock;
	}

4756
	user_extra = nr_pages + 1;
4757 4758

accounting:
4759
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4760 4761 4762 4763 4764 4765

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4766
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4767

4768 4769
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4770

4771
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4772
	lock_limit >>= PAGE_SHIFT;
4773
	locked = vma->vm_mm->pinned_vm + extra;
4774

4775 4776
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4777 4778 4779
		ret = -EPERM;
		goto unlock;
	}
4780

4781
	WARN_ON(!rb && event->rb);
4782

4783
	if (vma->vm_flags & VM_WRITE)
4784
		flags |= RING_BUFFER_WRITABLE;
4785

4786
	if (!rb) {
4787 4788 4789
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4790

4791 4792 4793 4794
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4795

4796 4797 4798
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4799

4800
		ring_buffer_attach(event, rb);
4801

4802 4803 4804
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4805 4806
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4807 4808 4809
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4810

4811
unlock:
4812 4813 4814 4815
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4816
		atomic_inc(&event->mmap_count);
4817 4818 4819 4820
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4821
	mutex_unlock(&event->mmap_mutex);
4822

4823 4824 4825 4826
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4827
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4828
	vma->vm_ops = &perf_mmap_vmops;
4829

4830 4831 4832
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4833
	return ret;
4834 4835
}

P
Peter Zijlstra 已提交
4836 4837
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4838
	struct inode *inode = file_inode(filp);
4839
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4840 4841 4842
	int retval;

	mutex_lock(&inode->i_mutex);
4843
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4844 4845 4846 4847 4848 4849 4850 4851
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4852
static const struct file_operations perf_fops = {
4853
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4854 4855 4856
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4857
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4858
	.compat_ioctl		= perf_compat_ioctl,
4859
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4860
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4861 4862
};

4863
/*
4864
 * Perf event wakeup
4865 4866 4867 4868 4869
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4870 4871 4872 4873 4874 4875 4876 4877
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4878
void perf_event_wakeup(struct perf_event *event)
4879
{
4880
	ring_buffer_wakeup(event);
4881

4882
	if (event->pending_kill) {
4883
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4884
		event->pending_kill = 0;
4885
	}
4886 4887
}

4888
static void perf_pending_event(struct irq_work *entry)
4889
{
4890 4891
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4892 4893 4894 4895 4896 4897 4898
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4899

4900 4901 4902
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4903 4904
	}

4905 4906 4907
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4908
	}
4909 4910 4911

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4912 4913
}

4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4950
static void perf_sample_regs_user(struct perf_regs *regs_user,
4951 4952
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4953
{
4954 4955
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4956
		regs_user->regs = regs;
4957 4958
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4959 4960 4961
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4962 4963 4964
	}
}

4965 4966 4967 4968 4969 4970 4971 4972
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5068 5069 5070
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5084
		data->time = perf_event_clock(event);
5085

5086
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5098 5099 5100
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5125 5126 5127

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5128 5129
}

5130 5131 5132
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5133 5134 5135 5136 5137
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5138
static void perf_output_read_one(struct perf_output_handle *handle,
5139 5140
				 struct perf_event *event,
				 u64 enabled, u64 running)
5141
{
5142
	u64 read_format = event->attr.read_format;
5143 5144 5145
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5146
	values[n++] = perf_event_count(event);
5147
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5148
		values[n++] = enabled +
5149
			atomic64_read(&event->child_total_time_enabled);
5150 5151
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5152
		values[n++] = running +
5153
			atomic64_read(&event->child_total_time_running);
5154 5155
	}
	if (read_format & PERF_FORMAT_ID)
5156
		values[n++] = primary_event_id(event);
5157

5158
	__output_copy(handle, values, n * sizeof(u64));
5159 5160 5161
}

/*
5162
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5163 5164
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5165 5166
			    struct perf_event *event,
			    u64 enabled, u64 running)
5167
{
5168 5169
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5170 5171 5172 5173 5174 5175
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5176
		values[n++] = enabled;
5177 5178

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5179
		values[n++] = running;
5180

5181
	if (leader != event)
5182 5183
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5184
	values[n++] = perf_event_count(leader);
5185
	if (read_format & PERF_FORMAT_ID)
5186
		values[n++] = primary_event_id(leader);
5187

5188
	__output_copy(handle, values, n * sizeof(u64));
5189

5190
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5191 5192
		n = 0;

5193 5194
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5195 5196
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5197
		values[n++] = perf_event_count(sub);
5198
		if (read_format & PERF_FORMAT_ID)
5199
			values[n++] = primary_event_id(sub);
5200

5201
		__output_copy(handle, values, n * sizeof(u64));
5202 5203 5204
	}
}

5205 5206 5207
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5208
static void perf_output_read(struct perf_output_handle *handle,
5209
			     struct perf_event *event)
5210
{
5211
	u64 enabled = 0, running = 0, now;
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5223
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5224
		calc_timer_values(event, &now, &enabled, &running);
5225

5226
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5227
		perf_output_read_group(handle, event, enabled, running);
5228
	else
5229
		perf_output_read_one(handle, event, enabled, running);
5230 5231
}

5232 5233 5234
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5235
			struct perf_event *event)
5236 5237 5238 5239 5240
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5241 5242 5243
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5269
		perf_output_read(handle, event);
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5280
			__output_copy(handle, data->callchain, size);
5281 5282 5283 5284 5285 5286 5287 5288 5289
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
5290 5291
			__output_copy(handle, data->raw->data,
					   data->raw->size);
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5303

5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5338

5339
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5340 5341 5342
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5343
	}
A
Andi Kleen 已提交
5344 5345 5346

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5347 5348 5349

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5350

A
Andi Kleen 已提交
5351 5352 5353
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5384 5385 5386 5387
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5388
			 struct perf_event *event,
5389
			 struct pt_regs *regs)
5390
{
5391
	u64 sample_type = event->attr.sample_type;
5392

5393
	header->type = PERF_RECORD_SAMPLE;
5394
	header->size = sizeof(*header) + event->header_size;
5395 5396 5397

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5398

5399
	__perf_event_header__init_id(header, data, event);
5400

5401
	if (sample_type & PERF_SAMPLE_IP)
5402 5403
		data->ip = perf_instruction_pointer(regs);

5404
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5405
		int size = 1;
5406

5407
		data->callchain = perf_callchain(event, regs);
5408 5409 5410 5411 5412

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5413 5414
	}

5415
	if (sample_type & PERF_SAMPLE_RAW) {
5416 5417 5418 5419 5420 5421 5422 5423
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5424
		header->size += size;
5425
	}
5426 5427 5428 5429 5430 5431 5432 5433 5434

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5435

5436
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5437 5438
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5439

5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5463
						     data->regs_user.regs);
5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5491
}
5492

5493 5494 5495
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5496 5497 5498
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5499

5500 5501 5502
	/* protect the callchain buffers */
	rcu_read_lock();

5503
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5504

5505
	if (perf_output_begin(&handle, event, header.size))
5506
		goto exit;
5507

5508
	perf_output_sample(&handle, &header, data, event);
5509

5510
	perf_output_end(&handle);
5511 5512 5513

exit:
	rcu_read_unlock();
5514 5515
}

5516
/*
5517
 * read event_id
5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5528
perf_event_read_event(struct perf_event *event,
5529 5530 5531
			struct task_struct *task)
{
	struct perf_output_handle handle;
5532
	struct perf_sample_data sample;
5533
	struct perf_read_event read_event = {
5534
		.header = {
5535
			.type = PERF_RECORD_READ,
5536
			.misc = 0,
5537
			.size = sizeof(read_event) + event->read_size,
5538
		},
5539 5540
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5541
	};
5542
	int ret;
5543

5544
	perf_event_header__init_id(&read_event.header, &sample, event);
5545
	ret = perf_output_begin(&handle, event, read_event.header.size);
5546 5547 5548
	if (ret)
		return;

5549
	perf_output_put(&handle, read_event);
5550
	perf_output_read(&handle, event);
5551
	perf_event__output_id_sample(event, &handle, &sample);
5552

5553 5554 5555
	perf_output_end(&handle);
}

5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5570
		output(event, data);
5571 5572 5573 5574
	}
}

static void
5575
perf_event_aux(perf_event_aux_output_cb output, void *data,
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5588
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5589 5590 5591 5592 5593 5594 5595
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5596
			perf_event_aux_ctx(ctx, output, data);
5597 5598 5599 5600 5601 5602
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5603
		perf_event_aux_ctx(task_ctx, output, data);
5604 5605 5606 5607 5608
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5609
/*
P
Peter Zijlstra 已提交
5610 5611
 * task tracking -- fork/exit
 *
5612
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5613 5614
 */

P
Peter Zijlstra 已提交
5615
struct perf_task_event {
5616
	struct task_struct		*task;
5617
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5618 5619 5620 5621 5622 5623

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5624 5625
		u32				tid;
		u32				ptid;
5626
		u64				time;
5627
	} event_id;
P
Peter Zijlstra 已提交
5628 5629
};

5630 5631
static int perf_event_task_match(struct perf_event *event)
{
5632 5633 5634
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5635 5636
}

5637
static void perf_event_task_output(struct perf_event *event,
5638
				   void *data)
P
Peter Zijlstra 已提交
5639
{
5640
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5641
	struct perf_output_handle handle;
5642
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5643
	struct task_struct *task = task_event->task;
5644
	int ret, size = task_event->event_id.header.size;
5645

5646 5647 5648
	if (!perf_event_task_match(event))
		return;

5649
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5650

5651
	ret = perf_output_begin(&handle, event,
5652
				task_event->event_id.header.size);
5653
	if (ret)
5654
		goto out;
P
Peter Zijlstra 已提交
5655

5656 5657
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5658

5659 5660
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5661

5662 5663
	task_event->event_id.time = perf_event_clock(event);

5664
	perf_output_put(&handle, task_event->event_id);
5665

5666 5667
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5668
	perf_output_end(&handle);
5669 5670
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5671 5672
}

5673 5674
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5675
			      int new)
P
Peter Zijlstra 已提交
5676
{
P
Peter Zijlstra 已提交
5677
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5678

5679 5680 5681
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5682 5683
		return;

P
Peter Zijlstra 已提交
5684
	task_event = (struct perf_task_event){
5685 5686
		.task	  = task,
		.task_ctx = task_ctx,
5687
		.event_id    = {
P
Peter Zijlstra 已提交
5688
			.header = {
5689
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5690
				.misc = 0,
5691
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5692
			},
5693 5694
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5695 5696
			/* .tid  */
			/* .ptid */
5697
			/* .time */
P
Peter Zijlstra 已提交
5698 5699 5700
		},
	};

5701
	perf_event_aux(perf_event_task_output,
5702 5703
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5704 5705
}

5706
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5707
{
5708
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5709 5710
}

5711 5712 5713 5714 5715
/*
 * comm tracking
 */

struct perf_comm_event {
5716 5717
	struct task_struct	*task;
	char			*comm;
5718 5719 5720 5721 5722 5723 5724
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5725
	} event_id;
5726 5727
};

5728 5729 5730 5731 5732
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5733
static void perf_event_comm_output(struct perf_event *event,
5734
				   void *data)
5735
{
5736
	struct perf_comm_event *comm_event = data;
5737
	struct perf_output_handle handle;
5738
	struct perf_sample_data sample;
5739
	int size = comm_event->event_id.header.size;
5740 5741
	int ret;

5742 5743 5744
	if (!perf_event_comm_match(event))
		return;

5745 5746
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5747
				comm_event->event_id.header.size);
5748 5749

	if (ret)
5750
		goto out;
5751

5752 5753
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5754

5755
	perf_output_put(&handle, comm_event->event_id);
5756
	__output_copy(&handle, comm_event->comm,
5757
				   comm_event->comm_size);
5758 5759 5760

	perf_event__output_id_sample(event, &handle, &sample);

5761
	perf_output_end(&handle);
5762 5763
out:
	comm_event->event_id.header.size = size;
5764 5765
}

5766
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5767
{
5768
	char comm[TASK_COMM_LEN];
5769 5770
	unsigned int size;

5771
	memset(comm, 0, sizeof(comm));
5772
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5773
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5774 5775 5776 5777

	comm_event->comm = comm;
	comm_event->comm_size = size;

5778
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5779

5780
	perf_event_aux(perf_event_comm_output,
5781 5782
		       comm_event,
		       NULL);
5783 5784
}

5785
void perf_event_comm(struct task_struct *task, bool exec)
5786
{
5787 5788
	struct perf_comm_event comm_event;

5789
	if (!atomic_read(&nr_comm_events))
5790
		return;
5791

5792
	comm_event = (struct perf_comm_event){
5793
		.task	= task,
5794 5795
		/* .comm      */
		/* .comm_size */
5796
		.event_id  = {
5797
			.header = {
5798
				.type = PERF_RECORD_COMM,
5799
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5800 5801 5802 5803
				/* .size */
			},
			/* .pid */
			/* .tid */
5804 5805 5806
		},
	};

5807
	perf_event_comm_event(&comm_event);
5808 5809
}

5810 5811 5812 5813 5814
/*
 * mmap tracking
 */

struct perf_mmap_event {
5815 5816 5817 5818
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5819 5820 5821
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5822
	u32			prot, flags;
5823 5824 5825 5826 5827 5828 5829 5830 5831

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5832
	} event_id;
5833 5834
};

5835 5836 5837 5838 5839 5840 5841 5842
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5843
	       (executable && (event->attr.mmap || event->attr.mmap2));
5844 5845
}

5846
static void perf_event_mmap_output(struct perf_event *event,
5847
				   void *data)
5848
{
5849
	struct perf_mmap_event *mmap_event = data;
5850
	struct perf_output_handle handle;
5851
	struct perf_sample_data sample;
5852
	int size = mmap_event->event_id.header.size;
5853
	int ret;
5854

5855 5856 5857
	if (!perf_event_mmap_match(event, data))
		return;

5858 5859 5860 5861 5862
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5863
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5864 5865
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5866 5867
	}

5868 5869
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5870
				mmap_event->event_id.header.size);
5871
	if (ret)
5872
		goto out;
5873

5874 5875
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5876

5877
	perf_output_put(&handle, mmap_event->event_id);
5878 5879 5880 5881 5882 5883

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5884 5885
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5886 5887
	}

5888
	__output_copy(&handle, mmap_event->file_name,
5889
				   mmap_event->file_size);
5890 5891 5892

	perf_event__output_id_sample(event, &handle, &sample);

5893
	perf_output_end(&handle);
5894 5895
out:
	mmap_event->event_id.header.size = size;
5896 5897
}

5898
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5899
{
5900 5901
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5902 5903
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5904
	u32 prot = 0, flags = 0;
5905 5906 5907
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5908
	char *name;
5909

5910
	if (file) {
5911 5912
		struct inode *inode;
		dev_t dev;
5913

5914
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5915
		if (!buf) {
5916 5917
			name = "//enomem";
			goto cpy_name;
5918
		}
5919
		/*
5920
		 * d_path() works from the end of the rb backwards, so we
5921 5922 5923
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5924
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5925
		if (IS_ERR(name)) {
5926 5927
			name = "//toolong";
			goto cpy_name;
5928
		}
5929 5930 5931 5932 5933 5934
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5957
		goto got_name;
5958
	} else {
5959 5960 5961 5962 5963 5964
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5965
		name = (char *)arch_vma_name(vma);
5966 5967
		if (name)
			goto cpy_name;
5968

5969
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5970
				vma->vm_end >= vma->vm_mm->brk) {
5971 5972
			name = "[heap]";
			goto cpy_name;
5973 5974
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5975
				vma->vm_end >= vma->vm_mm->start_stack) {
5976 5977
			name = "[stack]";
			goto cpy_name;
5978 5979
		}

5980 5981
		name = "//anon";
		goto cpy_name;
5982 5983
	}

5984 5985 5986
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5987
got_name:
5988 5989 5990 5991 5992 5993 5994 5995
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5996 5997 5998

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5999 6000 6001 6002
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6003 6004
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6005

6006 6007 6008
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6009
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6010

6011
	perf_event_aux(perf_event_mmap_output,
6012 6013
		       mmap_event,
		       NULL);
6014

6015 6016 6017
	kfree(buf);
}

6018
void perf_event_mmap(struct vm_area_struct *vma)
6019
{
6020 6021
	struct perf_mmap_event mmap_event;

6022
	if (!atomic_read(&nr_mmap_events))
6023 6024 6025
		return;

	mmap_event = (struct perf_mmap_event){
6026
		.vma	= vma,
6027 6028
		/* .file_name */
		/* .file_size */
6029
		.event_id  = {
6030
			.header = {
6031
				.type = PERF_RECORD_MMAP,
6032
				.misc = PERF_RECORD_MISC_USER,
6033 6034 6035 6036
				/* .size */
			},
			/* .pid */
			/* .tid */
6037 6038
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6039
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6040
		},
6041 6042 6043 6044
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6045 6046
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6047 6048
	};

6049
	perf_event_mmap_event(&mmap_event);
6050 6051
}

A
Alexander Shishkin 已提交
6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6204 6205 6206 6207
/*
 * IRQ throttle logging
 */

6208
static void perf_log_throttle(struct perf_event *event, int enable)
6209 6210
{
	struct perf_output_handle handle;
6211
	struct perf_sample_data sample;
6212 6213 6214 6215 6216
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6217
		u64				id;
6218
		u64				stream_id;
6219 6220
	} throttle_event = {
		.header = {
6221
			.type = PERF_RECORD_THROTTLE,
6222 6223 6224
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6225
		.time		= perf_event_clock(event),
6226 6227
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6228 6229
	};

6230
	if (enable)
6231
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6232

6233 6234 6235
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6236
				throttle_event.header.size);
6237 6238 6239 6240
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6241
	perf_event__output_id_sample(event, &handle, &sample);
6242 6243 6244
	perf_output_end(&handle);
}

6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6281
/*
6282
 * Generic event overflow handling, sampling.
6283 6284
 */

6285
static int __perf_event_overflow(struct perf_event *event,
6286 6287
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6288
{
6289 6290
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6291
	u64 seq;
6292 6293
	int ret = 0;

6294 6295 6296 6297 6298 6299 6300
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6301 6302 6303 6304 6305 6306 6307 6308 6309
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6310 6311
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6312
			tick_nohz_full_kick();
6313 6314
			ret = 1;
		}
6315
	}
6316

6317
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6318
		u64 now = perf_clock();
6319
		s64 delta = now - hwc->freq_time_stamp;
6320

6321
		hwc->freq_time_stamp = now;
6322

6323
		if (delta > 0 && delta < 2*TICK_NSEC)
6324
			perf_adjust_period(event, delta, hwc->last_period, true);
6325 6326
	}

6327 6328
	/*
	 * XXX event_limit might not quite work as expected on inherited
6329
	 * events
6330 6331
	 */

6332 6333
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6334
		ret = 1;
6335
		event->pending_kill = POLL_HUP;
6336 6337
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6338 6339
	}

6340
	if (event->overflow_handler)
6341
		event->overflow_handler(event, data, regs);
6342
	else
6343
		perf_event_output(event, data, regs);
6344

6345
	if (*perf_event_fasync(event) && event->pending_kill) {
6346 6347
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6348 6349
	}

6350
	return ret;
6351 6352
}

6353
int perf_event_overflow(struct perf_event *event,
6354 6355
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6356
{
6357
	return __perf_event_overflow(event, 1, data, regs);
6358 6359
}

6360
/*
6361
 * Generic software event infrastructure
6362 6363
 */

6364 6365 6366 6367 6368 6369 6370
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
6371 6372 6373

	/* Keeps track of cpu being initialized/exited */
	bool				online;
6374 6375 6376 6377
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6378
/*
6379 6380
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6381 6382 6383 6384
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6385
u64 perf_swevent_set_period(struct perf_event *event)
6386
{
6387
	struct hw_perf_event *hwc = &event->hw;
6388 6389 6390 6391 6392
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6393 6394

again:
6395
	old = val = local64_read(&hwc->period_left);
6396 6397
	if (val < 0)
		return 0;
6398

6399 6400 6401
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6402
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6403
		goto again;
6404

6405
	return nr;
6406 6407
}

6408
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6409
				    struct perf_sample_data *data,
6410
				    struct pt_regs *regs)
6411
{
6412
	struct hw_perf_event *hwc = &event->hw;
6413
	int throttle = 0;
6414

6415 6416
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6417

6418 6419
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6420

6421
	for (; overflow; overflow--) {
6422
		if (__perf_event_overflow(event, throttle,
6423
					    data, regs)) {
6424 6425 6426 6427 6428 6429
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6430
		throttle = 1;
6431
	}
6432 6433
}

P
Peter Zijlstra 已提交
6434
static void perf_swevent_event(struct perf_event *event, u64 nr,
6435
			       struct perf_sample_data *data,
6436
			       struct pt_regs *regs)
6437
{
6438
	struct hw_perf_event *hwc = &event->hw;
6439

6440
	local64_add(nr, &event->count);
6441

6442 6443 6444
	if (!regs)
		return;

6445
	if (!is_sampling_event(event))
6446
		return;
6447

6448 6449 6450 6451 6452 6453
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6454
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6455
		return perf_swevent_overflow(event, 1, data, regs);
6456

6457
	if (local64_add_negative(nr, &hwc->period_left))
6458
		return;
6459

6460
	perf_swevent_overflow(event, 0, data, regs);
6461 6462
}

6463 6464 6465
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6466
	if (event->hw.state & PERF_HES_STOPPED)
6467
		return 1;
P
Peter Zijlstra 已提交
6468

6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6480
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6481
				enum perf_type_id type,
L
Li Zefan 已提交
6482 6483 6484
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6485
{
6486
	if (event->attr.type != type)
6487
		return 0;
6488

6489
	if (event->attr.config != event_id)
6490 6491
		return 0;

6492 6493
	if (perf_exclude_event(event, regs))
		return 0;
6494 6495 6496 6497

	return 1;
}

6498 6499 6500 6501 6502 6503 6504
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6505 6506
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6507
{
6508 6509 6510 6511
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6512

6513 6514
/* For the read side: events when they trigger */
static inline struct hlist_head *
6515
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6516 6517
{
	struct swevent_hlist *hlist;
6518

6519
	hlist = rcu_dereference(swhash->swevent_hlist);
6520 6521 6522
	if (!hlist)
		return NULL;

6523 6524 6525 6526 6527
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6528
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6529 6530 6531 6532 6533 6534 6535 6536 6537 6538
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6539
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6540 6541 6542 6543 6544
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6545 6546 6547
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6548
				    u64 nr,
6549 6550
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6551
{
6552
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6553
	struct perf_event *event;
6554
	struct hlist_head *head;
6555

6556
	rcu_read_lock();
6557
	head = find_swevent_head_rcu(swhash, type, event_id);
6558 6559 6560
	if (!head)
		goto end;

6561
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6562
		if (perf_swevent_match(event, type, event_id, data, regs))
6563
			perf_swevent_event(event, nr, data, regs);
6564
	}
6565 6566
end:
	rcu_read_unlock();
6567 6568
}

6569 6570
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6571
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6572
{
6573
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6574

6575
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6576
}
I
Ingo Molnar 已提交
6577
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6578

6579
inline void perf_swevent_put_recursion_context(int rctx)
6580
{
6581
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6582

6583
	put_recursion_context(swhash->recursion, rctx);
6584
}
6585

6586
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6587
{
6588
	struct perf_sample_data data;
6589

6590
	if (WARN_ON_ONCE(!regs))
6591
		return;
6592

6593
	perf_sample_data_init(&data, addr, 0);
6594
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6607 6608

	perf_swevent_put_recursion_context(rctx);
6609
fail:
6610
	preempt_enable_notrace();
6611 6612
}

6613
static void perf_swevent_read(struct perf_event *event)
6614 6615 6616
{
}

P
Peter Zijlstra 已提交
6617
static int perf_swevent_add(struct perf_event *event, int flags)
6618
{
6619
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6620
	struct hw_perf_event *hwc = &event->hw;
6621 6622
	struct hlist_head *head;

6623
	if (is_sampling_event(event)) {
6624
		hwc->last_period = hwc->sample_period;
6625
		perf_swevent_set_period(event);
6626
	}
6627

P
Peter Zijlstra 已提交
6628 6629
	hwc->state = !(flags & PERF_EF_START);

6630
	head = find_swevent_head(swhash, event);
6631 6632 6633 6634 6635 6636
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6637
		return -EINVAL;
6638
	}
6639 6640

	hlist_add_head_rcu(&event->hlist_entry, head);
6641
	perf_event_update_userpage(event);
6642

6643 6644 6645
	return 0;
}

P
Peter Zijlstra 已提交
6646
static void perf_swevent_del(struct perf_event *event, int flags)
6647
{
6648
	hlist_del_rcu(&event->hlist_entry);
6649 6650
}

P
Peter Zijlstra 已提交
6651
static void perf_swevent_start(struct perf_event *event, int flags)
6652
{
P
Peter Zijlstra 已提交
6653
	event->hw.state = 0;
6654
}
I
Ingo Molnar 已提交
6655

P
Peter Zijlstra 已提交
6656
static void perf_swevent_stop(struct perf_event *event, int flags)
6657
{
P
Peter Zijlstra 已提交
6658
	event->hw.state = PERF_HES_STOPPED;
6659 6660
}

6661 6662
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6663
swevent_hlist_deref(struct swevent_htable *swhash)
6664
{
6665 6666
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6667 6668
}

6669
static void swevent_hlist_release(struct swevent_htable *swhash)
6670
{
6671
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6672

6673
	if (!hlist)
6674 6675
		return;

6676
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6677
	kfree_rcu(hlist, rcu_head);
6678 6679 6680 6681
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6682
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6683

6684
	mutex_lock(&swhash->hlist_mutex);
6685

6686 6687
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6688

6689
	mutex_unlock(&swhash->hlist_mutex);
6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6702
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6703 6704
	int err = 0;

6705
	mutex_lock(&swhash->hlist_mutex);
6706

6707
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6708 6709 6710 6711 6712 6713 6714
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6715
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6716
	}
6717
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6718
exit:
6719
	mutex_unlock(&swhash->hlist_mutex);
6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6740
fail:
6741 6742 6743 6744 6745 6746 6747 6748 6749 6750
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6751
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6752

6753 6754 6755
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6756

6757 6758
	WARN_ON(event->parent);

6759
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6760 6761 6762 6763 6764
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6765
	u64 event_id = event->attr.config;
6766 6767 6768 6769

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6770 6771 6772 6773 6774 6775
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6776 6777 6778 6779 6780 6781 6782 6783 6784
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6785
	if (event_id >= PERF_COUNT_SW_MAX)
6786 6787 6788 6789 6790 6791 6792 6793 6794
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6795
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6796 6797 6798 6799 6800 6801 6802
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6803
	.task_ctx_nr	= perf_sw_context,
6804

6805 6806
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6807
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6808 6809 6810 6811
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6812 6813 6814
	.read		= perf_swevent_read,
};

6815 6816
#ifdef CONFIG_EVENT_TRACING

6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6831 6832
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6833 6834 6835 6836
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6837 6838 6839 6840 6841 6842 6843 6844 6845
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6846 6847
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6848 6849
{
	struct perf_sample_data data;
6850 6851
	struct perf_event *event;

6852 6853 6854 6855 6856
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6857
	perf_sample_data_init(&data, addr, 0);
6858 6859
	data.raw = &raw;

6860
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6861
		if (perf_tp_event_match(event, &data, regs))
6862
			perf_swevent_event(event, count, &data, regs);
6863
	}
6864

6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6890
	perf_swevent_put_recursion_context(rctx);
6891 6892 6893
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6894
static void tp_perf_event_destroy(struct perf_event *event)
6895
{
6896
	perf_trace_destroy(event);
6897 6898
}

6899
static int perf_tp_event_init(struct perf_event *event)
6900
{
6901 6902
	int err;

6903 6904 6905
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6906 6907 6908 6909 6910 6911
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6912 6913
	err = perf_trace_init(event);
	if (err)
6914
		return err;
6915

6916
	event->destroy = tp_perf_event_destroy;
6917

6918 6919 6920 6921
	return 0;
}

static struct pmu perf_tracepoint = {
6922 6923
	.task_ctx_nr	= perf_sw_context,

6924
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6925 6926 6927 6928
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6929 6930 6931 6932 6933
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6934
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6935
}
L
Li Zefan 已提交
6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6960 6961 6962 6963 6964 6965 6966 6967 6968 6969
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

6970 6971
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
6972 6973 6974 6975 6976 6977
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

6978
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7003
#else
L
Li Zefan 已提交
7004

7005
static inline void perf_tp_register(void)
7006 7007
{
}
L
Li Zefan 已提交
7008 7009 7010 7011 7012 7013 7014 7015 7016 7017

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7018 7019 7020 7021 7022 7023 7024 7025
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7026
#endif /* CONFIG_EVENT_TRACING */
7027

7028
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7029
void perf_bp_event(struct perf_event *bp, void *data)
7030
{
7031 7032 7033
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7034
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7035

P
Peter Zijlstra 已提交
7036
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7037
		perf_swevent_event(bp, 1, &sample, regs);
7038 7039 7040
}
#endif

7041 7042 7043
/*
 * hrtimer based swevent callback
 */
7044

7045
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7046
{
7047 7048 7049 7050 7051
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7052

7053
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7054 7055 7056 7057

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7058
	event->pmu->read(event);
7059

7060
	perf_sample_data_init(&data, 0, event->hw.last_period);
7061 7062 7063
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7064
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7065
			if (__perf_event_overflow(event, 1, &data, regs))
7066 7067
				ret = HRTIMER_NORESTART;
	}
7068

7069 7070
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7071

7072
	return ret;
7073 7074
}

7075
static void perf_swevent_start_hrtimer(struct perf_event *event)
7076
{
7077
	struct hw_perf_event *hwc = &event->hw;
7078 7079 7080 7081
	s64 period;

	if (!is_sampling_event(event))
		return;
7082

7083 7084 7085 7086
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7087

7088 7089 7090 7091
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7092 7093
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7094
}
7095 7096

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7097
{
7098 7099
	struct hw_perf_event *hwc = &event->hw;

7100
	if (is_sampling_event(event)) {
7101
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7102
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7103 7104 7105

		hrtimer_cancel(&hwc->hrtimer);
	}
7106 7107
}

P
Peter Zijlstra 已提交
7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7128
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7129 7130 7131 7132
		event->attr.freq = 0;
	}
}

7133 7134 7135 7136 7137
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7138
{
7139 7140 7141
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7142
	now = local_clock();
7143 7144
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7145 7146
}

P
Peter Zijlstra 已提交
7147
static void cpu_clock_event_start(struct perf_event *event, int flags)
7148
{
P
Peter Zijlstra 已提交
7149
	local64_set(&event->hw.prev_count, local_clock());
7150 7151 7152
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7153
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7154
{
7155 7156 7157
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7158

P
Peter Zijlstra 已提交
7159 7160 7161 7162
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7163
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7164 7165 7166 7167 7168 7169 7170 7171 7172

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7173 7174 7175 7176
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7177

7178 7179 7180 7181 7182 7183 7184 7185
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7186 7187 7188 7189 7190 7191
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7192 7193
	perf_swevent_init_hrtimer(event);

7194
	return 0;
7195 7196
}

7197
static struct pmu perf_cpu_clock = {
7198 7199
	.task_ctx_nr	= perf_sw_context,

7200 7201
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7202
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7203 7204 7205 7206
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7207 7208 7209 7210 7211 7212 7213 7214
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7215
{
7216 7217
	u64 prev;
	s64 delta;
7218

7219 7220 7221 7222
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7223

P
Peter Zijlstra 已提交
7224
static void task_clock_event_start(struct perf_event *event, int flags)
7225
{
P
Peter Zijlstra 已提交
7226
	local64_set(&event->hw.prev_count, event->ctx->time);
7227 7228 7229
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7230
static void task_clock_event_stop(struct perf_event *event, int flags)
7231 7232 7233
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7234 7235 7236 7237 7238 7239
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7240
	perf_event_update_userpage(event);
7241

P
Peter Zijlstra 已提交
7242 7243 7244 7245 7246 7247
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7248 7249 7250 7251
}

static void task_clock_event_read(struct perf_event *event)
{
7252 7253 7254
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7255 7256 7257 7258 7259

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7260
{
7261 7262 7263 7264 7265 7266
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7267 7268 7269 7270 7271 7272
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7273 7274
	perf_swevent_init_hrtimer(event);

7275
	return 0;
L
Li Zefan 已提交
7276 7277
}

7278
static struct pmu perf_task_clock = {
7279 7280
	.task_ctx_nr	= perf_sw_context,

7281 7282
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7283
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7284 7285 7286 7287
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7288 7289
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7290

P
Peter Zijlstra 已提交
7291
static void perf_pmu_nop_void(struct pmu *pmu)
7292 7293
{
}
L
Li Zefan 已提交
7294

P
Peter Zijlstra 已提交
7295
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7296
{
P
Peter Zijlstra 已提交
7297
	return 0;
L
Li Zefan 已提交
7298 7299
}

P
Peter Zijlstra 已提交
7300
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
7301
{
P
Peter Zijlstra 已提交
7302
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7303 7304
}

P
Peter Zijlstra 已提交
7305 7306 7307 7308 7309
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
7310

P
Peter Zijlstra 已提交
7311
static void perf_pmu_cancel_txn(struct pmu *pmu)
7312
{
P
Peter Zijlstra 已提交
7313
	perf_pmu_enable(pmu);
7314 7315
}

7316 7317
static int perf_event_idx_default(struct perf_event *event)
{
7318
	return 0;
7319 7320
}

P
Peter Zijlstra 已提交
7321 7322 7323 7324
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7325
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7326
{
P
Peter Zijlstra 已提交
7327
	struct pmu *pmu;
7328

P
Peter Zijlstra 已提交
7329 7330
	if (ctxn < 0)
		return NULL;
7331

P
Peter Zijlstra 已提交
7332 7333 7334 7335
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7336

P
Peter Zijlstra 已提交
7337
	return NULL;
7338 7339
}

7340
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7341
{
7342 7343 7344 7345 7346 7347 7348
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7349 7350
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7351 7352 7353 7354 7355 7356
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7357

P
Peter Zijlstra 已提交
7358
	mutex_lock(&pmus_lock);
7359
	/*
P
Peter Zijlstra 已提交
7360
	 * Like a real lame refcount.
7361
	 */
7362 7363 7364
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7365
			goto out;
7366
		}
P
Peter Zijlstra 已提交
7367
	}
7368

7369
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7370 7371
out:
	mutex_unlock(&pmus_lock);
7372
}
P
Peter Zijlstra 已提交
7373
static struct idr pmu_idr;
7374

P
Peter Zijlstra 已提交
7375 7376 7377 7378 7379 7380 7381
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7382
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7383

7384 7385 7386 7387 7388 7389 7390 7391 7392 7393
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7394 7395
static DEFINE_MUTEX(mux_interval_mutex);

7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7415
	mutex_lock(&mux_interval_mutex);
7416 7417 7418
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7419 7420
	get_online_cpus();
	for_each_online_cpu(cpu) {
7421 7422 7423 7424
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7425 7426
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7427
	}
7428 7429
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7430 7431 7432

	return count;
}
7433
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7434

7435 7436 7437 7438
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7439
};
7440
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7441 7442 7443 7444

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7445
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7461
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7482
static struct lock_class_key cpuctx_mutex;
7483
static struct lock_class_key cpuctx_lock;
7484

7485
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7486
{
P
Peter Zijlstra 已提交
7487
	int cpu, ret;
7488

7489
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7490 7491 7492 7493
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7494

P
Peter Zijlstra 已提交
7495 7496 7497 7498 7499 7500
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7501 7502 7503
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7504 7505 7506 7507 7508
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7509 7510 7511 7512 7513 7514
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7515
skip_type:
P
Peter Zijlstra 已提交
7516 7517 7518
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7519

W
Wei Yongjun 已提交
7520
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7521 7522
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7523
		goto free_dev;
7524

P
Peter Zijlstra 已提交
7525 7526 7527 7528
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7529
		__perf_event_init_context(&cpuctx->ctx);
7530
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7531
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7532
		cpuctx->ctx.pmu = pmu;
7533

7534
		__perf_mux_hrtimer_init(cpuctx, cpu);
7535

7536
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7537
	}
7538

P
Peter Zijlstra 已提交
7539
got_cpu_context:
P
Peter Zijlstra 已提交
7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7554
		}
7555
	}
7556

P
Peter Zijlstra 已提交
7557 7558 7559 7560 7561
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7562 7563 7564
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7565
	list_add_rcu(&pmu->entry, &pmus);
7566
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7567 7568
	ret = 0;
unlock:
7569 7570
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7571
	return ret;
P
Peter Zijlstra 已提交
7572

P
Peter Zijlstra 已提交
7573 7574 7575 7576
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7577 7578 7579 7580
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7581 7582 7583
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7584
}
7585
EXPORT_SYMBOL_GPL(perf_pmu_register);
7586

7587
void perf_pmu_unregister(struct pmu *pmu)
7588
{
7589 7590 7591
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7592

7593
	/*
P
Peter Zijlstra 已提交
7594 7595
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7596
	 */
7597
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7598
	synchronize_rcu();
7599

P
Peter Zijlstra 已提交
7600
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7601 7602
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7603 7604
	device_del(pmu->dev);
	put_device(pmu->dev);
7605
	free_pmu_context(pmu);
7606
}
7607
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7608

7609 7610
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7611
	struct perf_event_context *ctx = NULL;
7612 7613 7614 7615
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7616 7617

	if (event->group_leader != event) {
7618 7619 7620 7621 7622 7623
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7624 7625 7626
		BUG_ON(!ctx);
	}

7627 7628
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7629 7630 7631 7632

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7633 7634 7635 7636 7637 7638
	if (ret)
		module_put(pmu->module);

	return ret;
}

7639 7640 7641 7642
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
7643
	int ret;
7644 7645

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7646 7647 7648 7649

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7650
	if (pmu) {
7651
		ret = perf_try_init_event(pmu, event);
7652 7653
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7654
		goto unlock;
7655
	}
P
Peter Zijlstra 已提交
7656

7657
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7658
		ret = perf_try_init_event(pmu, event);
7659
		if (!ret)
P
Peter Zijlstra 已提交
7660
			goto unlock;
7661

7662 7663
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7664
			goto unlock;
7665
		}
7666
	}
P
Peter Zijlstra 已提交
7667 7668
	pmu = ERR_PTR(-ENOENT);
unlock:
7669
	srcu_read_unlock(&pmus_srcu, idx);
7670

7671
	return pmu;
7672 7673
}

7674 7675 7676 7677 7678 7679 7680 7681 7682
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7683 7684
static void account_event(struct perf_event *event)
{
7685 7686 7687
	if (event->parent)
		return;

7688 7689 7690 7691 7692 7693 7694 7695
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7696 7697 7698 7699
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7700 7701 7702 7703
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
		static_key_slow_inc(&perf_sched_events.key);
	}
7704
	if (has_branch_stack(event))
7705
		static_key_slow_inc(&perf_sched_events.key);
7706
	if (is_cgroup_event(event))
7707
		static_key_slow_inc(&perf_sched_events.key);
7708 7709

	account_event_cpu(event, event->cpu);
7710 7711
}

T
Thomas Gleixner 已提交
7712
/*
7713
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7714
 */
7715
static struct perf_event *
7716
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7717 7718 7719
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7720
		 perf_overflow_handler_t overflow_handler,
7721
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7722
{
P
Peter Zijlstra 已提交
7723
	struct pmu *pmu;
7724 7725
	struct perf_event *event;
	struct hw_perf_event *hwc;
7726
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7727

7728 7729 7730 7731 7732
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7733
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7734
	if (!event)
7735
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7736

7737
	/*
7738
	 * Single events are their own group leaders, with an
7739 7740 7741
	 * empty sibling list:
	 */
	if (!group_leader)
7742
		group_leader = event;
7743

7744 7745
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7746

7747 7748 7749
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7750
	INIT_LIST_HEAD(&event->rb_entry);
7751
	INIT_LIST_HEAD(&event->active_entry);
7752 7753
	INIT_HLIST_NODE(&event->hlist_entry);

7754

7755
	init_waitqueue_head(&event->waitq);
7756
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7757

7758
	mutex_init(&event->mmap_mutex);
7759

7760
	atomic_long_set(&event->refcount, 1);
7761 7762 7763 7764 7765
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7766

7767
	event->parent		= parent_event;
7768

7769
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7770
	event->id		= atomic64_inc_return(&perf_event_id);
7771

7772
	event->state		= PERF_EVENT_STATE_INACTIVE;
7773

7774 7775 7776
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7777 7778 7779
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7780
		 */
7781
		event->hw.target = task;
7782 7783
	}

7784 7785 7786 7787
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7788
	if (!overflow_handler && parent_event) {
7789
		overflow_handler = parent_event->overflow_handler;
7790 7791
		context = parent_event->overflow_handler_context;
	}
7792

7793
	event->overflow_handler	= overflow_handler;
7794
	event->overflow_handler_context = context;
7795

J
Jiri Olsa 已提交
7796
	perf_event__state_init(event);
7797

7798
	pmu = NULL;
7799

7800
	hwc = &event->hw;
7801
	hwc->sample_period = attr->sample_period;
7802
	if (attr->freq && attr->sample_freq)
7803
		hwc->sample_period = 1;
7804
	hwc->last_period = hwc->sample_period;
7805

7806
	local64_set(&hwc->period_left, hwc->sample_period);
7807

7808
	/*
7809
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7810
	 */
7811
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7812
		goto err_ns;
7813 7814 7815

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7816

7817 7818 7819 7820 7821 7822
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7823
	pmu = perf_init_event(event);
7824
	if (!pmu)
7825 7826
		goto err_ns;
	else if (IS_ERR(pmu)) {
7827
		err = PTR_ERR(pmu);
7828
		goto err_ns;
I
Ingo Molnar 已提交
7829
	}
7830

7831 7832 7833 7834
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7835
	if (!event->parent) {
7836 7837
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7838
			if (err)
7839
				goto err_per_task;
7840
		}
7841
	}
7842

7843
	return event;
7844

7845 7846 7847
err_per_task:
	exclusive_event_destroy(event);

7848 7849 7850
err_pmu:
	if (event->destroy)
		event->destroy(event);
7851
	module_put(pmu->module);
7852
err_ns:
7853 7854
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7855 7856 7857 7858 7859
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7860 7861
}

7862 7863
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7864 7865
{
	u32 size;
7866
	int ret;
7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7891 7892 7893
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7894 7895
	 */
	if (size > sizeof(*attr)) {
7896 7897 7898
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7899

7900 7901
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7902

7903
		for (; addr < end; addr++) {
7904 7905 7906 7907 7908 7909
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7910
		size = sizeof(*attr);
7911 7912 7913 7914 7915 7916
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7917
	if (attr->__reserved_1)
7918 7919 7920 7921 7922 7923 7924 7925
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7954 7955
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7956 7957
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7958
	}
7959

7960
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7961
		ret = perf_reg_validate(attr->sample_regs_user);
7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7980

7981 7982
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
7983 7984 7985 7986 7987 7988 7989 7990 7991
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7992 7993
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7994
{
7995
	struct ring_buffer *rb = NULL;
7996 7997
	int ret = -EINVAL;

7998
	if (!output_event)
7999 8000
		goto set;

8001 8002
	/* don't allow circular references */
	if (event == output_event)
8003 8004
		goto out;

8005 8006 8007 8008 8009 8010 8011
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8012
	 * If its not a per-cpu rb, it must be the same task.
8013 8014 8015 8016
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8017 8018 8019 8020 8021 8022
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8023 8024 8025 8026 8027 8028 8029
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8030
set:
8031
	mutex_lock(&event->mmap_mutex);
8032 8033 8034
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8035

8036
	if (output_event) {
8037 8038 8039
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8040
			goto unlock;
8041 8042
	}

8043
	ring_buffer_attach(event, rb);
8044

8045
	ret = 0;
8046 8047 8048
unlock:
	mutex_unlock(&event->mmap_mutex);

8049 8050 8051 8052
out:
	return ret;
}

P
Peter Zijlstra 已提交
8053 8054 8055 8056 8057 8058 8059 8060 8061
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8099
/**
8100
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8101
 *
8102
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8103
 * @pid:		target pid
I
Ingo Molnar 已提交
8104
 * @cpu:		target cpu
8105
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8106
 */
8107 8108
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8109
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8110
{
8111 8112
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8113
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8114
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8115
	struct file *event_file = NULL;
8116
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8117
	struct task_struct *task = NULL;
8118
	struct pmu *pmu;
8119
	int event_fd;
8120
	int move_group = 0;
8121
	int err;
8122
	int f_flags = O_RDWR;
8123
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8124

8125
	/* for future expandability... */
S
Stephane Eranian 已提交
8126
	if (flags & ~PERF_FLAG_ALL)
8127 8128
		return -EINVAL;

8129 8130 8131
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8132

8133 8134 8135 8136 8137
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8138
	if (attr.freq) {
8139
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8140
			return -EINVAL;
8141 8142 8143
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8144 8145
	}

S
Stephane Eranian 已提交
8146 8147 8148 8149 8150 8151 8152 8153 8154
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8155 8156 8157 8158
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8159 8160 8161
	if (event_fd < 0)
		return event_fd;

8162
	if (group_fd != -1) {
8163 8164
		err = perf_fget_light(group_fd, &group);
		if (err)
8165
			goto err_fd;
8166
		group_leader = group.file->private_data;
8167 8168 8169 8170 8171 8172
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8173
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8174 8175 8176 8177 8178 8179 8180
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8181 8182 8183 8184 8185 8186
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8187 8188
	get_online_cpus();

8189 8190 8191
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8192
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8193
				 NULL, NULL, cgroup_fd);
8194 8195
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8196
		goto err_cpus;
8197 8198
	}

8199 8200 8201 8202 8203 8204 8205
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8206 8207
	account_event(event);

8208 8209 8210 8211 8212
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8213

8214 8215 8216 8217 8218 8219
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8242 8243 8244 8245

	/*
	 * Get the target context (task or percpu):
	 */
8246
	ctx = find_get_context(pmu, task, event);
8247 8248
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8249
		goto err_alloc;
8250 8251
	}

8252 8253 8254 8255 8256
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8257 8258 8259 8260 8261
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8262
	/*
8263
	 * Look up the group leader (we will attach this event to it):
8264
	 */
8265
	if (group_leader) {
8266
		err = -EINVAL;
8267 8268

		/*
I
Ingo Molnar 已提交
8269 8270 8271 8272
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8273
			goto err_context;
8274 8275 8276 8277 8278

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8279 8280 8281
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8282
		 */
8283
		if (move_group) {
8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8297 8298 8299 8300 8301 8302
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8303 8304 8305
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8306
		if (attr.exclusive || attr.pinned)
8307
			goto err_context;
8308 8309 8310 8311 8312
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8313
			goto err_context;
8314
	}
T
Thomas Gleixner 已提交
8315

8316 8317
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8318 8319
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8320
		goto err_context;
8321
	}
8322

8323
	if (move_group) {
P
Peter Zijlstra 已提交
8324
		gctx = group_leader->ctx;
8325 8326 8327 8328 8329
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8330 8331 8332 8333 8334
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);

		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8346

8347 8348 8349
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8350 8351 8352 8353
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8354
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8355

8356 8357
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8358
			perf_remove_from_context(sibling, false);
8359 8360 8361
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8362 8363 8364 8365
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8366
		synchronize_rcu();
P
Peter Zijlstra 已提交
8367

8368 8369 8370 8371 8372 8373 8374 8375 8376 8377
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8378 8379
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8380
			perf_event__state_init(sibling);
8381
			perf_install_in_context(ctx, sibling, sibling->cpu);
8382 8383
			get_ctx(ctx);
		}
8384 8385 8386 8387 8388 8389 8390 8391 8392

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8393

8394 8395 8396 8397 8398 8399
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8400 8401
	}

8402
	perf_install_in_context(ctx, event, event->cpu);
8403
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8404

8405
	if (move_group)
P
Peter Zijlstra 已提交
8406
		mutex_unlock(&gctx->mutex);
8407
	mutex_unlock(&ctx->mutex);
8408

8409 8410
	put_online_cpus();

8411
	event->owner = current;
P
Peter Zijlstra 已提交
8412

8413 8414 8415
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8416

8417 8418 8419 8420
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
8421
	perf_event__id_header_size(event);
8422

8423 8424 8425 8426 8427 8428
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8429
	fdput(group);
8430 8431
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8432

8433 8434 8435 8436 8437 8438
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8439
err_context:
8440
	perf_unpin_context(ctx);
8441
	put_ctx(ctx);
8442
err_alloc:
8443
	free_event(event);
8444
err_cpus:
8445
	put_online_cpus();
8446
err_task:
P
Peter Zijlstra 已提交
8447 8448
	if (task)
		put_task_struct(task);
8449
err_group_fd:
8450
	fdput(group);
8451 8452
err_fd:
	put_unused_fd(event_fd);
8453
	return err;
T
Thomas Gleixner 已提交
8454 8455
}

8456 8457 8458 8459 8460
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8461
 * @task: task to profile (NULL for percpu)
8462 8463 8464
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8465
				 struct task_struct *task,
8466 8467
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8468 8469
{
	struct perf_event_context *ctx;
8470
	struct perf_event *event;
8471
	int err;
8472

8473 8474 8475
	/*
	 * Get the target context (task or percpu):
	 */
8476

8477
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8478
				 overflow_handler, context, -1);
8479 8480 8481 8482
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8483

8484 8485 8486
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8487 8488
	account_event(event);

8489
	ctx = find_get_context(event->pmu, task, event);
8490 8491
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8492
		goto err_free;
8493
	}
8494 8495 8496

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8497 8498 8499 8500 8501 8502 8503 8504
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8505
	perf_install_in_context(ctx, event, cpu);
8506
	perf_unpin_context(ctx);
8507 8508 8509 8510
	mutex_unlock(&ctx->mutex);

	return event;

8511 8512 8513
err_free:
	free_event(event);
err:
8514
	return ERR_PTR(err);
8515
}
8516
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8517

8518 8519 8520 8521 8522 8523 8524 8525 8526 8527
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8528 8529 8530 8531 8532
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8533 8534
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8535
		perf_remove_from_context(event, false);
8536
		unaccount_event_cpu(event, src_cpu);
8537
		put_ctx(src_ctx);
8538
		list_add(&event->migrate_entry, &events);
8539 8540
	}

8541 8542 8543
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8544 8545
	synchronize_rcu();

8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8570 8571
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8572 8573
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8574
		account_event_cpu(event, dst_cpu);
8575 8576 8577 8578
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8579
	mutex_unlock(&src_ctx->mutex);
8580 8581 8582
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8583
static void sync_child_event(struct perf_event *child_event,
8584
			       struct task_struct *child)
8585
{
8586
	struct perf_event *parent_event = child_event->parent;
8587
	u64 child_val;
8588

8589 8590
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8591

P
Peter Zijlstra 已提交
8592
	child_val = perf_event_count(child_event);
8593 8594 8595 8596

	/*
	 * Add back the child's count to the parent's count:
	 */
8597
	atomic64_add(child_val, &parent_event->child_count);
8598 8599 8600 8601
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8602 8603

	/*
8604
	 * Remove this event from the parent's list
8605
	 */
8606 8607 8608 8609
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8610

8611 8612 8613 8614 8615 8616
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8617
	/*
8618
	 * Release the parent event, if this was the last
8619 8620
	 * reference to it.
	 */
8621
	put_event(parent_event);
8622 8623
}

8624
static void
8625 8626
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8627
			 struct task_struct *child)
8628
{
8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8642

8643
	/*
8644
	 * It can happen that the parent exits first, and has events
8645
	 * that are still around due to the child reference. These
8646
	 * events need to be zapped.
8647
	 */
8648
	if (child_event->parent) {
8649 8650
		sync_child_event(child_event, child);
		free_event(child_event);
8651 8652 8653
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8654
	}
8655 8656
}

P
Peter Zijlstra 已提交
8657
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8658
{
8659
	struct perf_event *child_event, *next;
8660
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8661
	unsigned long flags;
8662

P
Peter Zijlstra 已提交
8663
	if (likely(!child->perf_event_ctxp[ctxn])) {
8664
		perf_event_task(child, NULL, 0);
8665
		return;
P
Peter Zijlstra 已提交
8666
	}
8667

8668
	local_irq_save(flags);
8669 8670 8671 8672 8673 8674
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8675
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8676 8677 8678

	/*
	 * Take the context lock here so that if find_get_context is
8679
	 * reading child->perf_event_ctxp, we wait until it has
8680 8681
	 * incremented the context's refcount before we do put_ctx below.
	 */
8682
	raw_spin_lock(&child_ctx->lock);
8683
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
8684
	child->perf_event_ctxp[ctxn] = NULL;
8685

8686 8687 8688
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8689
	 * the events from it.
8690
	 */
8691
	clone_ctx = unclone_ctx(child_ctx);
8692
	update_context_time(child_ctx);
8693
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8694

8695 8696
	if (clone_ctx)
		put_ctx(clone_ctx);
8697

P
Peter Zijlstra 已提交
8698
	/*
8699 8700 8701
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8702
	 */
8703
	perf_event_task(child, child_ctx, 0);
8704

8705 8706 8707
	/*
	 * We can recurse on the same lock type through:
	 *
8708 8709
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8710 8711
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8712 8713 8714
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8715
	mutex_lock(&child_ctx->mutex);
8716

8717
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8718
		__perf_event_exit_task(child_event, child_ctx, child);
8719

8720 8721 8722
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8723 8724
}

P
Peter Zijlstra 已提交
8725 8726 8727 8728 8729
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8730
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8731 8732
	int ctxn;

P
Peter Zijlstra 已提交
8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8748 8749 8750 8751
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8764
	put_event(parent);
8765

P
Peter Zijlstra 已提交
8766
	raw_spin_lock_irq(&ctx->lock);
8767
	perf_group_detach(event);
8768
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8769
	raw_spin_unlock_irq(&ctx->lock);
8770 8771 8772
	free_event(event);
}

8773
/*
P
Peter Zijlstra 已提交
8774
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8775
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8776 8777 8778
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8779
 */
8780
void perf_event_free_task(struct task_struct *task)
8781
{
P
Peter Zijlstra 已提交
8782
	struct perf_event_context *ctx;
8783
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8784
	int ctxn;
8785

P
Peter Zijlstra 已提交
8786 8787 8788 8789
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8790

P
Peter Zijlstra 已提交
8791
		mutex_lock(&ctx->mutex);
8792
again:
P
Peter Zijlstra 已提交
8793 8794 8795
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8796

P
Peter Zijlstra 已提交
8797 8798 8799
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8800

P
Peter Zijlstra 已提交
8801 8802 8803
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8804

P
Peter Zijlstra 已提交
8805
		mutex_unlock(&ctx->mutex);
8806

P
Peter Zijlstra 已提交
8807 8808
		put_ctx(ctx);
	}
8809 8810
}

8811 8812 8813 8814 8815 8816 8817 8818
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843
struct perf_event *perf_event_get(unsigned int fd)
{
	int err;
	struct fd f;
	struct perf_event *event;

	err = perf_fget_light(fd, &f);
	if (err)
		return ERR_PTR(err);

	event = f.file->private_data;
	atomic_long_inc(&event->refcount);
	fdput(f);

	return event;
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8855
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8856
	struct perf_event *child_event;
8857
	unsigned long flags;
P
Peter Zijlstra 已提交
8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8870
					   child,
P
Peter Zijlstra 已提交
8871
					   group_leader, parent_event,
8872
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8873 8874
	if (IS_ERR(child_event))
		return child_event;
8875

8876 8877
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8878 8879 8880 8881
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8882 8883 8884 8885 8886 8887 8888
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8889
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8906 8907
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8908

8909 8910 8911 8912
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8913
	perf_event__id_header_size(child_event);
8914

P
Peter Zijlstra 已提交
8915 8916 8917
	/*
	 * Link it up in the child's context:
	 */
8918
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8919
	add_event_to_ctx(child_event, child_ctx);
8920
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
8954 8955 8956 8957 8958
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
8959
		   struct task_struct *child, int ctxn,
8960 8961 8962
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
8963
	struct perf_event_context *child_ctx;
8964 8965 8966 8967

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
8968 8969
	}

8970
	child_ctx = child->perf_event_ctxp[ctxn];
8971 8972 8973 8974 8975 8976 8977
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
8978

8979
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8980 8981
		if (!child_ctx)
			return -ENOMEM;
8982

P
Peter Zijlstra 已提交
8983
		child->perf_event_ctxp[ctxn] = child_ctx;
8984 8985 8986 8987 8988 8989 8990 8991 8992
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
8993 8994
}

8995
/*
8996
 * Initialize the perf_event context in task_struct
8997
 */
8998
static int perf_event_init_context(struct task_struct *child, int ctxn)
8999
{
9000
	struct perf_event_context *child_ctx, *parent_ctx;
9001 9002
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9003
	struct task_struct *parent = current;
9004
	int inherited_all = 1;
9005
	unsigned long flags;
9006
	int ret = 0;
9007

P
Peter Zijlstra 已提交
9008
	if (likely(!parent->perf_event_ctxp[ctxn]))
9009 9010
		return 0;

9011
	/*
9012 9013
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9014
	 */
P
Peter Zijlstra 已提交
9015
	parent_ctx = perf_pin_task_context(parent, ctxn);
9016 9017
	if (!parent_ctx)
		return 0;
9018

9019 9020 9021 9022 9023 9024 9025
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9026 9027 9028 9029
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9030
	mutex_lock(&parent_ctx->mutex);
9031 9032 9033 9034 9035

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9036
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9037 9038
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9039 9040 9041
		if (ret)
			break;
	}
9042

9043 9044 9045 9046 9047 9048 9049 9050 9051
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9052
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9053 9054
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9055
		if (ret)
9056
			break;
9057 9058
	}

9059 9060 9061
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9062
	child_ctx = child->perf_event_ctxp[ctxn];
9063

9064
	if (child_ctx && inherited_all) {
9065 9066 9067
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9068 9069 9070
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9071
		 */
P
Peter Zijlstra 已提交
9072
		cloned_ctx = parent_ctx->parent_ctx;
9073 9074
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9075
			child_ctx->parent_gen = parent_ctx->parent_gen;
9076 9077 9078 9079 9080
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9081 9082
	}

P
Peter Zijlstra 已提交
9083
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9084
	mutex_unlock(&parent_ctx->mutex);
9085

9086
	perf_unpin_context(parent_ctx);
9087
	put_ctx(parent_ctx);
9088

9089
	return ret;
9090 9091
}

P
Peter Zijlstra 已提交
9092 9093 9094 9095 9096 9097 9098
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9099 9100 9101 9102
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9103 9104
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9105 9106
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9107
			return ret;
P
Peter Zijlstra 已提交
9108
		}
P
Peter Zijlstra 已提交
9109 9110 9111 9112 9113
	}

	return 0;
}

9114 9115
static void __init perf_event_init_all_cpus(void)
{
9116
	struct swevent_htable *swhash;
9117 9118 9119
	int cpu;

	for_each_possible_cpu(cpu) {
9120 9121
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9122
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9123 9124 9125
	}
}

9126
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9127
{
P
Peter Zijlstra 已提交
9128
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9129

9130
	mutex_lock(&swhash->hlist_mutex);
9131
	swhash->online = true;
9132
	if (swhash->hlist_refcount > 0) {
9133 9134
		struct swevent_hlist *hlist;

9135 9136 9137
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9138
	}
9139
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9140 9141
}

9142
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9143
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9144
{
9145
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
9146
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
9147

P
Peter Zijlstra 已提交
9148
	rcu_read_lock();
9149 9150
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
9151
	rcu_read_unlock();
T
Thomas Gleixner 已提交
9152
}
P
Peter Zijlstra 已提交
9153 9154 9155 9156 9157 9158 9159 9160 9161

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9162
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9163 9164 9165 9166 9167 9168 9169 9170

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9171
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9172
{
9173
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9174

P
Peter Zijlstra 已提交
9175 9176
	perf_event_exit_cpu_context(cpu);

9177
	mutex_lock(&swhash->hlist_mutex);
9178
	swhash->online = false;
9179 9180
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9181 9182
}
#else
9183
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9184 9185
#endif

P
Peter Zijlstra 已提交
9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9206
static int
T
Thomas Gleixner 已提交
9207 9208 9209 9210
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9211
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9212 9213

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9214
	case CPU_DOWN_FAILED:
9215
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9216 9217
		break;

P
Peter Zijlstra 已提交
9218
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9219
	case CPU_DOWN_PREPARE:
9220
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9221 9222 9223 9224 9225 9226 9227 9228
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9229
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9230
{
9231 9232
	int ret;

P
Peter Zijlstra 已提交
9233 9234
	idr_init(&pmu_idr);

9235
	perf_event_init_all_cpus();
9236
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9237 9238 9239
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9240 9241
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9242
	register_reboot_notifier(&perf_reboot_notifier);
9243 9244 9245

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9246 9247 9248

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9249 9250 9251 9252 9253 9254 9255

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9256
}
P
Peter Zijlstra 已提交
9257

9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9297 9298

#ifdef CONFIG_CGROUP_PERF
9299 9300
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9301 9302 9303
{
	struct perf_cgroup *jc;

9304
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9317
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9318
{
9319 9320
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

9332 9333
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9334
{
9335 9336
	struct task_struct *task;

9337
	cgroup_taskset_for_each(task, tset)
9338
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9339 9340
}

9341 9342
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
9343
			     struct task_struct *task)
S
Stephane Eranian 已提交
9344 9345 9346 9347 9348 9349 9350 9351 9352
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

9353
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9354 9355
}

9356
struct cgroup_subsys perf_event_cgrp_subsys = {
9357 9358
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9359
	.exit		= perf_cgroup_exit,
9360
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9361 9362
};
#endif /* CONFIG_CGROUP_PERF */