core.c 194.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
T
Thomas Gleixner 已提交
45

46 47
#include "internal.h"

48 49
#include <asm/irq_regs.h>

50 51
static struct workqueue_struct *perf_wq;

52
struct remote_function_call {
53 54 55 56
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
90 91 92 93
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
114 115 116 117
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
118 119 120 121 122 123 124
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

125 126 127 128 129 130 131
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
132 133
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
134 135
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
136

137 138 139 140 141 142 143
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

144 145 146 147 148 149
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
150 151 152 153
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
154
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
155
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
157

158 159 160
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
161
static atomic_t nr_freq_events __read_mostly;
162

P
Peter Zijlstra 已提交
163 164 165 166
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

167
/*
168
 * perf event paranoia level:
169 170
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
171
 *   1 - disallow cpu events for unpriv
172
 *   2 - disallow kernel profiling for unpriv
173
 */
174
int sysctl_perf_event_paranoid __read_mostly = 1;
175

176 177
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178 179

/*
180
 * max perf event sample rate
181
 */
182 183 184 185 186 187 188 189 190
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
191 192
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193 194 195 196 197 198

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
199
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
200
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201
}
P
Peter Zijlstra 已提交
202

203 204
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
205 206 207 208
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
209
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
210 211 212 213 214

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
233 234 235

	return 0;
}
236

237 238 239 240 241 242 243
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
244
static DEFINE_PER_CPU(u64, running_sample_length);
245

246
static void perf_duration_warn(struct irq_work *w)
247
{
248
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249
	u64 avg_local_sample_len;
250
	u64 local_samples_len;
251

252
	local_samples_len = __this_cpu_read(running_sample_length);
253 254 255 256 257
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
258
			avg_local_sample_len, allowed_ns >> 1,
259 260 261 262 263 264 265
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
266
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 268
	u64 avg_local_sample_len;
	u64 local_samples_len;
269

P
Peter Zijlstra 已提交
270
	if (allowed_ns == 0)
271 272 273
		return;

	/* decay the counter by 1 average sample */
274
	local_samples_len = __this_cpu_read(running_sample_length);
275 276
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
277
	__this_cpu_write(running_sample_length, local_samples_len);
278 279 280 281 282 283 284 285

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
286
	if (avg_local_sample_len <= allowed_ns)
287 288 289 290 291 292 293 294 295 296
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
297

298 299 300 301 302 303
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
304 305
}

306
static atomic64_t perf_event_id;
307

308 309 310 311
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
312 313 314 315 316
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
317

318
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
319

320
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
321
{
322
	return "pmu";
T
Thomas Gleixner 已提交
323 324
}

325 326 327 328 329
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
330 331 332 333 334 335
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
352 353
#ifdef CONFIG_CGROUP_PERF

354 355 356 357 358 359 360 361 362 363 364
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
365
	struct perf_cgroup_info	__percpu *info;
366 367
};

368 369 370 371 372
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
373 374 375
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
376
	return container_of(task_css(task, perf_event_cgrp_id),
377
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
378 379 380 381 382 383 384 385
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
402 403 404 405
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
406
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
445 446
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
447
	/*
448 449
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
450
	 */
451
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
452 453
		return;

454 455 456 457 458 459
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
460 461 462
}

static inline void
463 464
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
465 466 467 468
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

469 470 471 472 473 474
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
475 476 477 478
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
479
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 513
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
514 515 516 517 518 519 520 521 522

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
523 524
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
525 526 527 528 529 530 531 532 533 534 535

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
536
				WARN_ON_ONCE(cpuctx->cgrp);
537 538 539 540
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
541 542 543 544
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
545 546
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
547 548 549 550 551 552 553 554
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

555 556
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
557
{
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
580 581
}

582 583
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
584
{
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
603 604 605 606 607 608 609 610
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
611 612
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
613

614
	if (!f.file)
S
Stephane Eranian 已提交
615 616
		return -EBADF;

A
Al Viro 已提交
617
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
618
					 &perf_event_cgrp_subsys);
619 620 621 622
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
636
out:
637
	fdput(f);
S
Stephane Eranian 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

711 712
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
713 714 715
{
}

716 717
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
718 719 720 721 722 723 724 725 726 727 728
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
729 730
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
824
	int timer;
825 826 827 828 829

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

830 831 832 833 834 835 836 837 838
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
861
void perf_pmu_disable(struct pmu *pmu)
862
{
P
Peter Zijlstra 已提交
863 864 865
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
866 867
}

P
Peter Zijlstra 已提交
868
void perf_pmu_enable(struct pmu *pmu)
869
{
P
Peter Zijlstra 已提交
870 871 872
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
873 874
}

875 876 877 878 879 880 881
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
882
static void perf_pmu_rotate_start(struct pmu *pmu)
883
{
P
Peter Zijlstra 已提交
884
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
885
	struct list_head *head = this_cpu_ptr(&rotation_list);
886

887
	WARN_ON(!irqs_disabled());
888

889
	if (list_empty(&cpuctx->rotation_list))
890
		list_add(&cpuctx->rotation_list, head);
891 892
}

893
static void get_ctx(struct perf_event_context *ctx)
894
{
895
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
896 897
}

898
static void put_ctx(struct perf_event_context *ctx)
899
{
900 901 902
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
903 904
		if (ctx->task)
			put_task_struct(ctx->task);
905
		kfree_rcu(ctx, rcu_head);
906
	}
907 908
}

909 910 911 912 913 914 915
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
916
{
917 918 919 920 921
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
922
		ctx->parent_ctx = NULL;
923
	ctx->generation++;
924 925

	return parent_ctx;
926 927
}

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

950
/*
951
 * If we inherit events we want to return the parent event id
952 953
 * to userspace.
 */
954
static u64 primary_event_id(struct perf_event *event)
955
{
956
	u64 id = event->id;
957

958 959
	if (event->parent)
		id = event->parent->id;
960 961 962 963

	return id;
}

964
/*
965
 * Get the perf_event_context for a task and lock it.
966 967 968
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
969
static struct perf_event_context *
P
Peter Zijlstra 已提交
970
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
971
{
972
	struct perf_event_context *ctx;
973

P
Peter Zijlstra 已提交
974
retry:
975 976 977 978 979 980 981 982 983 984 985
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
986
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
987 988 989 990
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
991
		 * perf_event_task_sched_out, though the
992 993 994 995 996 997
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
998
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
999
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1000
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1001 1002
			rcu_read_unlock();
			preempt_enable();
1003 1004
			goto retry;
		}
1005 1006

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1007
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1008 1009
			ctx = NULL;
		}
1010 1011
	}
	rcu_read_unlock();
1012
	preempt_enable();
1013 1014 1015 1016 1017 1018 1019 1020
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1021 1022
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1023
{
1024
	struct perf_event_context *ctx;
1025 1026
	unsigned long flags;

P
Peter Zijlstra 已提交
1027
	ctx = perf_lock_task_context(task, ctxn, &flags);
1028 1029
	if (ctx) {
		++ctx->pin_count;
1030
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1031 1032 1033 1034
	}
	return ctx;
}

1035
static void perf_unpin_context(struct perf_event_context *ctx)
1036 1037 1038
{
	unsigned long flags;

1039
	raw_spin_lock_irqsave(&ctx->lock, flags);
1040
	--ctx->pin_count;
1041
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1042 1043
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1055 1056 1057
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1058 1059 1060 1061

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1062 1063 1064
	return ctx ? ctx->time : 0;
}

1065 1066
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1067
 * The caller of this function needs to hold the ctx->lock.
1068 1069 1070 1071 1072 1073 1074 1075 1076
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1088
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1089 1090
	else if (ctx->is_active)
		run_end = ctx->time;
1091 1092 1093 1094
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1095 1096 1097 1098

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1099
		run_end = perf_event_time(event);
1100 1101

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1102

1103 1104
}

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1117 1118 1119 1120 1121 1122 1123 1124 1125
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1126
/*
1127
 * Add a event from the lists for its context.
1128 1129
 * Must be called with ctx->mutex and ctx->lock held.
 */
1130
static void
1131
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1132
{
1133 1134
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1135 1136

	/*
1137 1138 1139
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1140
	 */
1141
	if (event->group_leader == event) {
1142 1143
		struct list_head *list;

1144 1145 1146
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1147 1148
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1149
	}
P
Peter Zijlstra 已提交
1150

1151
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1152 1153
		ctx->nr_cgroups++;

1154 1155 1156
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1157
	list_add_rcu(&event->event_entry, &ctx->event_list);
1158
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1159
		perf_pmu_rotate_start(ctx->pmu);
1160 1161
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1162
		ctx->nr_stat++;
1163 1164

	ctx->generation++;
1165 1166
}

J
Jiri Olsa 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1215 1216 1217 1218 1219 1220
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1221 1222 1223
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1224 1225 1226
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1227 1228 1229
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1230 1231 1232
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1233 1234 1235 1236 1237 1238 1239 1240 1241
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1242 1243 1244 1245 1246 1247
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1248 1249 1250
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1251 1252 1253 1254 1255 1256 1257 1258 1259
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1260
	event->id_header_size = size;
1261 1262
}

1263 1264
static void perf_group_attach(struct perf_event *event)
{
1265
	struct perf_event *group_leader = event->group_leader, *pos;
1266

P
Peter Zijlstra 已提交
1267 1268 1269 1270 1271 1272
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1273 1274 1275 1276 1277
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1278 1279
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1280 1281 1282 1283 1284 1285
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1286 1287 1288 1289 1290

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1291 1292
}

1293
/*
1294
 * Remove a event from the lists for its context.
1295
 * Must be called with ctx->mutex and ctx->lock held.
1296
 */
1297
static void
1298
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1299
{
1300
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1301 1302 1303 1304

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1305 1306 1307 1308
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1309
		return;
1310 1311 1312

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1313
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1314
		ctx->nr_cgroups--;
1315 1316 1317 1318 1319 1320 1321 1322 1323
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1324

1325 1326 1327
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1328 1329
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1330
		ctx->nr_stat--;
1331

1332
	list_del_rcu(&event->event_entry);
1333

1334 1335
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1336

1337
	update_group_times(event);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1348 1349

	ctx->generation++;
1350 1351
}

1352
static void perf_group_detach(struct perf_event *event)
1353 1354
{
	struct perf_event *sibling, *tmp;
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1371
		goto out;
1372 1373 1374 1375
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1376

1377
	/*
1378 1379
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1380
	 * to whatever list we are on.
1381
	 */
1382
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1383 1384
		if (list)
			list_move_tail(&sibling->group_entry, list);
1385
		sibling->group_leader = sibling;
1386 1387 1388

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1389 1390

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1391
	}
1392 1393 1394 1395 1396 1397

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1398 1399
}

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1439 1440 1441
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1442 1443
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1444 1445
}

1446 1447
static void
event_sched_out(struct perf_event *event,
1448
		  struct perf_cpu_context *cpuctx,
1449
		  struct perf_event_context *ctx)
1450
{
1451
	u64 tstamp = perf_event_time(event);
1452
	u64 delta;
P
Peter Zijlstra 已提交
1453 1454 1455 1456

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1457 1458 1459 1460 1461 1462 1463 1464
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1465
		delta = tstamp - event->tstamp_stopped;
1466
		event->tstamp_running += delta;
1467
		event->tstamp_stopped = tstamp;
1468 1469
	}

1470
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1471
		return;
1472

1473 1474
	perf_pmu_disable(event->pmu);

1475 1476 1477 1478
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1479
	}
1480
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1481
	event->pmu->del(event, 0);
1482
	event->oncpu = -1;
1483

1484
	if (!is_software_event(event))
1485 1486
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1487 1488
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1489
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1490
		cpuctx->exclusive = 0;
1491

1492 1493 1494
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1495
	perf_pmu_enable(event->pmu);
1496 1497
}

1498
static void
1499
group_sched_out(struct perf_event *group_event,
1500
		struct perf_cpu_context *cpuctx,
1501
		struct perf_event_context *ctx)
1502
{
1503
	struct perf_event *event;
1504
	int state = group_event->state;
1505

1506
	event_sched_out(group_event, cpuctx, ctx);
1507 1508 1509 1510

	/*
	 * Schedule out siblings (if any):
	 */
1511 1512
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1513

1514
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1515 1516 1517
		cpuctx->exclusive = 0;
}

1518 1519 1520 1521 1522
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1523
/*
1524
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1525
 *
1526
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1527 1528
 * remove it from the context list.
 */
1529
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1530
{
1531 1532
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1533
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1534
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1535

1536
	raw_spin_lock(&ctx->lock);
1537
	event_sched_out(event, cpuctx, ctx);
1538 1539
	if (re->detach_group)
		perf_group_detach(event);
1540
	list_del_event(event, ctx);
1541 1542 1543 1544
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1545
	raw_spin_unlock(&ctx->lock);
1546 1547

	return 0;
T
Thomas Gleixner 已提交
1548 1549 1550 1551
}


/*
1552
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1553
 *
1554
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1555
 * call when the task is on a CPU.
1556
 *
1557 1558
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1559 1560
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1561
 * When called from perf_event_exit_task, it's OK because the
1562
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1563
 */
1564
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1565
{
1566
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1567
	struct task_struct *task = ctx->task;
1568 1569 1570 1571
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1572

1573 1574
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1575 1576
	if (!task) {
		/*
1577 1578 1579 1580
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1581
		 */
1582
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1583 1584 1585 1586
		return;
	}

retry:
1587
	if (!task_function_call(task, __perf_remove_from_context, &re))
1588
		return;
T
Thomas Gleixner 已提交
1589

1590
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1591
	/*
1592 1593
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1594
	 */
1595
	if (ctx->is_active) {
1596
		raw_spin_unlock_irq(&ctx->lock);
1597 1598 1599 1600 1601
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1602 1603 1604 1605
		goto retry;
	}

	/*
1606 1607
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1608
	 */
1609 1610
	if (detach_group)
		perf_group_detach(event);
1611
	list_del_event(event, ctx);
1612
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1613 1614
}

1615
/*
1616
 * Cross CPU call to disable a performance event
1617
 */
1618
int __perf_event_disable(void *info)
1619
{
1620 1621
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1622
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1623 1624

	/*
1625 1626
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1627 1628 1629
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1630
	 */
1631
	if (ctx->task && cpuctx->task_ctx != ctx)
1632
		return -EINVAL;
1633

1634
	raw_spin_lock(&ctx->lock);
1635 1636

	/*
1637
	 * If the event is on, turn it off.
1638 1639
	 * If it is in error state, leave it in error state.
	 */
1640
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1641
		update_context_time(ctx);
S
Stephane Eranian 已提交
1642
		update_cgrp_time_from_event(event);
1643 1644 1645
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1646
		else
1647 1648
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1649 1650
	}

1651
	raw_spin_unlock(&ctx->lock);
1652 1653

	return 0;
1654 1655 1656
}

/*
1657
 * Disable a event.
1658
 *
1659 1660
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1661
 * remains valid.  This condition is satisifed when called through
1662 1663 1664 1665
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1666
 * is the current context on this CPU and preemption is disabled,
1667
 * hence we can't get into perf_event_task_sched_out for this context.
1668
 */
1669
void perf_event_disable(struct perf_event *event)
1670
{
1671
	struct perf_event_context *ctx = event->ctx;
1672 1673 1674 1675
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1676
		 * Disable the event on the cpu that it's on
1677
		 */
1678
		cpu_function_call(event->cpu, __perf_event_disable, event);
1679 1680 1681
		return;
	}

P
Peter Zijlstra 已提交
1682
retry:
1683 1684
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1685

1686
	raw_spin_lock_irq(&ctx->lock);
1687
	/*
1688
	 * If the event is still active, we need to retry the cross-call.
1689
	 */
1690
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1691
		raw_spin_unlock_irq(&ctx->lock);
1692 1693 1694 1695 1696
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1697 1698 1699 1700 1701 1702 1703
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1704 1705 1706
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1707
	}
1708
	raw_spin_unlock_irq(&ctx->lock);
1709
}
1710
EXPORT_SYMBOL_GPL(perf_event_disable);
1711

S
Stephane Eranian 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1747 1748 1749 1750
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1751
static int
1752
event_sched_in(struct perf_event *event,
1753
		 struct perf_cpu_context *cpuctx,
1754
		 struct perf_event_context *ctx)
1755
{
1756
	u64 tstamp = perf_event_time(event);
1757
	int ret = 0;
1758

1759 1760
	lockdep_assert_held(&ctx->lock);

1761
	if (event->state <= PERF_EVENT_STATE_OFF)
1762 1763
		return 0;

1764
	event->state = PERF_EVENT_STATE_ACTIVE;
1765
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1777 1778 1779 1780 1781
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1782 1783
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1784
	if (event->pmu->add(event, PERF_EF_START)) {
1785 1786
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1787 1788
		ret = -EAGAIN;
		goto out;
1789 1790
	}

1791
	event->tstamp_running += tstamp - event->tstamp_stopped;
1792

S
Stephane Eranian 已提交
1793
	perf_set_shadow_time(event, ctx, tstamp);
1794

1795
	if (!is_software_event(event))
1796
		cpuctx->active_oncpu++;
1797
	ctx->nr_active++;
1798 1799
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1800

1801
	if (event->attr.exclusive)
1802 1803
		cpuctx->exclusive = 1;

1804 1805 1806
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1807 1808 1809 1810
out:
	perf_pmu_enable(event->pmu);

	return ret;
1811 1812
}

1813
static int
1814
group_sched_in(struct perf_event *group_event,
1815
	       struct perf_cpu_context *cpuctx,
1816
	       struct perf_event_context *ctx)
1817
{
1818
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1819
	struct pmu *pmu = ctx->pmu;
1820 1821
	u64 now = ctx->time;
	bool simulate = false;
1822

1823
	if (group_event->state == PERF_EVENT_STATE_OFF)
1824 1825
		return 0;

P
Peter Zijlstra 已提交
1826
	pmu->start_txn(pmu);
1827

1828
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1829
		pmu->cancel_txn(pmu);
1830
		perf_cpu_hrtimer_restart(cpuctx);
1831
		return -EAGAIN;
1832
	}
1833 1834 1835 1836

	/*
	 * Schedule in siblings as one group (if any):
	 */
1837
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1838
		if (event_sched_in(event, cpuctx, ctx)) {
1839
			partial_group = event;
1840 1841 1842 1843
			goto group_error;
		}
	}

1844
	if (!pmu->commit_txn(pmu))
1845
		return 0;
1846

1847 1848 1849 1850
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1861
	 */
1862 1863
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1864 1865 1866 1867 1868 1869 1870 1871
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1872
	}
1873
	event_sched_out(group_event, cpuctx, ctx);
1874

P
Peter Zijlstra 已提交
1875
	pmu->cancel_txn(pmu);
1876

1877 1878
	perf_cpu_hrtimer_restart(cpuctx);

1879 1880 1881
	return -EAGAIN;
}

1882
/*
1883
 * Work out whether we can put this event group on the CPU now.
1884
 */
1885
static int group_can_go_on(struct perf_event *event,
1886 1887 1888 1889
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1890
	 * Groups consisting entirely of software events can always go on.
1891
	 */
1892
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1893 1894 1895
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1896
	 * events can go on.
1897 1898 1899 1900 1901
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1902
	 * events on the CPU, it can't go on.
1903
	 */
1904
	if (event->attr.exclusive && cpuctx->active_oncpu)
1905 1906 1907 1908 1909 1910 1911 1912
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1913 1914
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1915
{
1916 1917
	u64 tstamp = perf_event_time(event);

1918
	list_add_event(event, ctx);
1919
	perf_group_attach(event);
1920 1921 1922
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1923 1924
}

1925 1926 1927 1928 1929 1930
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1931

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1944
/*
1945
 * Cross CPU call to install and enable a performance event
1946 1947
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1948
 */
1949
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1950
{
1951 1952
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1953
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1954 1955 1956
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1957
	perf_ctx_lock(cpuctx, task_ctx);
1958
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1959 1960

	/*
1961
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1962
	 */
1963
	if (task_ctx)
1964
		task_ctx_sched_out(task_ctx);
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1979 1980
		task = task_ctx->task;
	}
1981

1982
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1983

1984
	update_context_time(ctx);
S
Stephane Eranian 已提交
1985 1986 1987 1988 1989 1990
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1991

1992
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1993

1994
	/*
1995
	 * Schedule everything back in
1996
	 */
1997
	perf_event_sched_in(cpuctx, task_ctx, task);
1998 1999 2000

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2001 2002

	return 0;
T
Thomas Gleixner 已提交
2003 2004 2005
}

/*
2006
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2007
 *
2008 2009
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2010
 *
2011
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2012 2013 2014 2015
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2016 2017
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2018 2019 2020 2021
			int cpu)
{
	struct task_struct *task = ctx->task;

2022 2023
	lockdep_assert_held(&ctx->mutex);

2024
	event->ctx = ctx;
2025 2026
	if (event->cpu != -1)
		event->cpu = cpu;
2027

T
Thomas Gleixner 已提交
2028 2029
	if (!task) {
		/*
2030
		 * Per cpu events are installed via an smp call and
2031
		 * the install is always successful.
T
Thomas Gleixner 已提交
2032
		 */
2033
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2034 2035 2036 2037
		return;
	}

retry:
2038 2039
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2040

2041
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2042
	/*
2043 2044
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2045
	 */
2046
	if (ctx->is_active) {
2047
		raw_spin_unlock_irq(&ctx->lock);
2048 2049 2050 2051 2052
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2053 2054 2055 2056
		goto retry;
	}

	/*
2057 2058
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2059
	 */
2060
	add_event_to_ctx(event, ctx);
2061
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2062 2063
}

2064
/*
2065
 * Put a event into inactive state and update time fields.
2066 2067 2068 2069 2070 2071
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2072
static void __perf_event_mark_enabled(struct perf_event *event)
2073
{
2074
	struct perf_event *sub;
2075
	u64 tstamp = perf_event_time(event);
2076

2077
	event->state = PERF_EVENT_STATE_INACTIVE;
2078
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2079
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2080 2081
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2082
	}
2083 2084
}

2085
/*
2086
 * Cross CPU call to enable a performance event
2087
 */
2088
static int __perf_event_enable(void *info)
2089
{
2090 2091 2092
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2093
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2094
	int err;
2095

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2106
		return -EINVAL;
2107

2108
	raw_spin_lock(&ctx->lock);
2109
	update_context_time(ctx);
2110

2111
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2112
		goto unlock;
S
Stephane Eranian 已提交
2113 2114 2115 2116

	/*
	 * set current task's cgroup time reference point
	 */
2117
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2118

2119
	__perf_event_mark_enabled(event);
2120

S
Stephane Eranian 已提交
2121 2122 2123
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2124
		goto unlock;
S
Stephane Eranian 已提交
2125
	}
2126

2127
	/*
2128
	 * If the event is in a group and isn't the group leader,
2129
	 * then don't put it on unless the group is on.
2130
	 */
2131
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2132
		goto unlock;
2133

2134
	if (!group_can_go_on(event, cpuctx, 1)) {
2135
		err = -EEXIST;
2136
	} else {
2137
		if (event == leader)
2138
			err = group_sched_in(event, cpuctx, ctx);
2139
		else
2140
			err = event_sched_in(event, cpuctx, ctx);
2141
	}
2142 2143 2144

	if (err) {
		/*
2145
		 * If this event can't go on and it's part of a
2146 2147
		 * group, then the whole group has to come off.
		 */
2148
		if (leader != event) {
2149
			group_sched_out(leader, cpuctx, ctx);
2150 2151
			perf_cpu_hrtimer_restart(cpuctx);
		}
2152
		if (leader->attr.pinned) {
2153
			update_group_times(leader);
2154
			leader->state = PERF_EVENT_STATE_ERROR;
2155
		}
2156 2157
	}

P
Peter Zijlstra 已提交
2158
unlock:
2159
	raw_spin_unlock(&ctx->lock);
2160 2161

	return 0;
2162 2163 2164
}

/*
2165
 * Enable a event.
2166
 *
2167 2168
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2169
 * remains valid.  This condition is satisfied when called through
2170 2171
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2172
 */
2173
void perf_event_enable(struct perf_event *event)
2174
{
2175
	struct perf_event_context *ctx = event->ctx;
2176 2177 2178 2179
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2180
		 * Enable the event on the cpu that it's on
2181
		 */
2182
		cpu_function_call(event->cpu, __perf_event_enable, event);
2183 2184 2185
		return;
	}

2186
	raw_spin_lock_irq(&ctx->lock);
2187
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2188 2189 2190
		goto out;

	/*
2191 2192
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2193 2194 2195 2196
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2197 2198
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2199

P
Peter Zijlstra 已提交
2200
retry:
2201
	if (!ctx->is_active) {
2202
		__perf_event_mark_enabled(event);
2203 2204 2205
		goto out;
	}

2206
	raw_spin_unlock_irq(&ctx->lock);
2207 2208 2209

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2210

2211
	raw_spin_lock_irq(&ctx->lock);
2212 2213

	/*
2214
	 * If the context is active and the event is still off,
2215 2216
	 * we need to retry the cross-call.
	 */
2217 2218 2219 2220 2221 2222
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2223
		goto retry;
2224
	}
2225

P
Peter Zijlstra 已提交
2226
out:
2227
	raw_spin_unlock_irq(&ctx->lock);
2228
}
2229
EXPORT_SYMBOL_GPL(perf_event_enable);
2230

2231
int perf_event_refresh(struct perf_event *event, int refresh)
2232
{
2233
	/*
2234
	 * not supported on inherited events
2235
	 */
2236
	if (event->attr.inherit || !is_sampling_event(event))
2237 2238
		return -EINVAL;

2239 2240
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2241 2242

	return 0;
2243
}
2244
EXPORT_SYMBOL_GPL(perf_event_refresh);
2245

2246 2247 2248
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2249
{
2250
	struct perf_event *event;
2251
	int is_active = ctx->is_active;
2252

2253
	ctx->is_active &= ~event_type;
2254
	if (likely(!ctx->nr_events))
2255 2256
		return;

2257
	update_context_time(ctx);
S
Stephane Eranian 已提交
2258
	update_cgrp_time_from_cpuctx(cpuctx);
2259
	if (!ctx->nr_active)
2260
		return;
2261

P
Peter Zijlstra 已提交
2262
	perf_pmu_disable(ctx->pmu);
2263
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2264 2265
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2266
	}
2267

2268
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2269
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2270
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2271
	}
P
Peter Zijlstra 已提交
2272
	perf_pmu_enable(ctx->pmu);
2273 2274
}

2275
/*
2276 2277 2278 2279 2280 2281
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2282
 */
2283 2284
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2285
{
2286 2287 2288
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2311 2312
}

2313 2314
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2315 2316 2317
{
	u64 value;

2318
	if (!event->attr.inherit_stat)
2319 2320 2321
		return;

	/*
2322
	 * Update the event value, we cannot use perf_event_read()
2323 2324
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2325
	 * we know the event must be on the current CPU, therefore we
2326 2327
	 * don't need to use it.
	 */
2328 2329
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2330 2331
		event->pmu->read(event);
		/* fall-through */
2332

2333 2334
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2335 2336 2337 2338 2339 2340 2341
		break;

	default:
		break;
	}

	/*
2342
	 * In order to keep per-task stats reliable we need to flip the event
2343 2344
	 * values when we flip the contexts.
	 */
2345 2346 2347
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2348

2349 2350
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2351

2352
	/*
2353
	 * Since we swizzled the values, update the user visible data too.
2354
	 */
2355 2356
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2357 2358
}

2359 2360
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2361
{
2362
	struct perf_event *event, *next_event;
2363 2364 2365 2366

	if (!ctx->nr_stat)
		return;

2367 2368
	update_context_time(ctx);

2369 2370
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2371

2372 2373
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2374

2375 2376
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2377

2378
		__perf_event_sync_stat(event, next_event);
2379

2380 2381
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2382 2383 2384
	}
}

2385 2386
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2387
{
P
Peter Zijlstra 已提交
2388
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2389
	struct perf_event_context *next_ctx;
2390
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2391
	struct perf_cpu_context *cpuctx;
2392
	int do_switch = 1;
T
Thomas Gleixner 已提交
2393

P
Peter Zijlstra 已提交
2394 2395
	if (likely(!ctx))
		return;
2396

P
Peter Zijlstra 已提交
2397 2398
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2399 2400
		return;

2401
	rcu_read_lock();
P
Peter Zijlstra 已提交
2402
	next_ctx = next->perf_event_ctxp[ctxn];
2403 2404 2405 2406 2407 2408 2409
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2410
	if (!parent && !next_parent)
2411 2412 2413
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2414 2415 2416 2417 2418 2419 2420 2421 2422
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2423 2424
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2425
		if (context_equiv(ctx, next_ctx)) {
2426 2427
			/*
			 * XXX do we need a memory barrier of sorts
2428
			 * wrt to rcu_dereference() of perf_event_ctxp
2429
			 */
P
Peter Zijlstra 已提交
2430 2431
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2432 2433 2434
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2435

2436
			perf_event_sync_stat(ctx, next_ctx);
2437
		}
2438 2439
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2440
	}
2441
unlock:
2442
	rcu_read_unlock();
2443

2444
	if (do_switch) {
2445
		raw_spin_lock(&ctx->lock);
2446
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2447
		cpuctx->task_ctx = NULL;
2448
		raw_spin_unlock(&ctx->lock);
2449
	}
T
Thomas Gleixner 已提交
2450 2451
}

P
Peter Zijlstra 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2466 2467
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2468 2469 2470 2471 2472
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2473 2474 2475 2476 2477 2478

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2479
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2480
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2481 2482
}

2483
static void task_ctx_sched_out(struct perf_event_context *ctx)
2484
{
P
Peter Zijlstra 已提交
2485
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2486

2487 2488
	if (!cpuctx->task_ctx)
		return;
2489 2490 2491 2492

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2493
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2494 2495 2496
	cpuctx->task_ctx = NULL;
}

2497 2498 2499 2500 2501 2502 2503
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2504 2505
}

2506
static void
2507
ctx_pinned_sched_in(struct perf_event_context *ctx,
2508
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2509
{
2510
	struct perf_event *event;
T
Thomas Gleixner 已提交
2511

2512 2513
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2514
			continue;
2515
		if (!event_filter_match(event))
2516 2517
			continue;

S
Stephane Eranian 已提交
2518 2519 2520 2521
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2522
		if (group_can_go_on(event, cpuctx, 1))
2523
			group_sched_in(event, cpuctx, ctx);
2524 2525 2526 2527 2528

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2529 2530 2531
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2532
		}
2533
	}
2534 2535 2536 2537
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2538
		      struct perf_cpu_context *cpuctx)
2539 2540 2541
{
	struct perf_event *event;
	int can_add_hw = 1;
2542

2543 2544 2545
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2546
			continue;
2547 2548
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2549
		 * of events:
2550
		 */
2551
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2552 2553
			continue;

S
Stephane Eranian 已提交
2554 2555 2556 2557
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2558
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2559
			if (group_sched_in(event, cpuctx, ctx))
2560
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2561
		}
T
Thomas Gleixner 已提交
2562
	}
2563 2564 2565 2566 2567
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2568 2569
	     enum event_type_t event_type,
	     struct task_struct *task)
2570
{
S
Stephane Eranian 已提交
2571
	u64 now;
2572
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2573

2574
	ctx->is_active |= event_type;
2575
	if (likely(!ctx->nr_events))
2576
		return;
2577

S
Stephane Eranian 已提交
2578 2579
	now = perf_clock();
	ctx->timestamp = now;
2580
	perf_cgroup_set_timestamp(task, ctx);
2581 2582 2583 2584
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2585
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2586
		ctx_pinned_sched_in(ctx, cpuctx);
2587 2588

	/* Then walk through the lower prio flexible groups */
2589
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2590
		ctx_flexible_sched_in(ctx, cpuctx);
2591 2592
}

2593
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2594 2595
			     enum event_type_t event_type,
			     struct task_struct *task)
2596 2597 2598
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2599
	ctx_sched_in(ctx, cpuctx, event_type, task);
2600 2601
}

S
Stephane Eranian 已提交
2602 2603
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2604
{
P
Peter Zijlstra 已提交
2605
	struct perf_cpu_context *cpuctx;
2606

P
Peter Zijlstra 已提交
2607
	cpuctx = __get_cpu_context(ctx);
2608 2609 2610
	if (cpuctx->task_ctx == ctx)
		return;

2611
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2612
	perf_pmu_disable(ctx->pmu);
2613 2614 2615 2616 2617 2618 2619
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2620 2621
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2622

2623 2624
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2625 2626 2627
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2628 2629 2630 2631
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2632
	perf_pmu_rotate_start(ctx->pmu);
2633 2634
}

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2704 2705
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2706 2707 2708 2709 2710 2711 2712 2713 2714
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2715
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2716
	}
S
Stephane Eranian 已提交
2717 2718 2719 2720 2721
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2722
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2723
		perf_cgroup_sched_in(prev, task);
2724 2725

	/* check for system-wide branch_stack events */
2726
	if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
2727
		perf_branch_stack_sched_in(prev, task);
2728 2729
}

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2757
#define REDUCE_FLS(a, b)		\
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2797 2798 2799
	if (!divisor)
		return dividend;

2800 2801 2802
	return div64_u64(dividend, divisor);
}

2803 2804 2805
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2806
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2807
{
2808
	struct hw_perf_event *hwc = &event->hw;
2809
	s64 period, sample_period;
2810 2811
	s64 delta;

2812
	period = perf_calculate_period(event, nsec, count);
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2823

2824
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2825 2826 2827
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2828
		local64_set(&hwc->period_left, 0);
2829 2830 2831

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2832
	}
2833 2834
}

2835 2836 2837 2838 2839 2840 2841
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2842
{
2843 2844
	struct perf_event *event;
	struct hw_perf_event *hwc;
2845
	u64 now, period = TICK_NSEC;
2846
	s64 delta;
2847

2848 2849 2850 2851 2852 2853
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2854 2855
		return;

2856
	raw_spin_lock(&ctx->lock);
2857
	perf_pmu_disable(ctx->pmu);
2858

2859
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2860
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2861 2862
			continue;

2863
		if (!event_filter_match(event))
2864 2865
			continue;

2866 2867
		perf_pmu_disable(event->pmu);

2868
		hwc = &event->hw;
2869

2870
		if (hwc->interrupts == MAX_INTERRUPTS) {
2871
			hwc->interrupts = 0;
2872
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2873
			event->pmu->start(event, 0);
2874 2875
		}

2876
		if (!event->attr.freq || !event->attr.sample_freq)
2877
			goto next;
2878

2879 2880 2881 2882 2883
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2884
		now = local64_read(&event->count);
2885 2886
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2887

2888 2889 2890
		/*
		 * restart the event
		 * reload only if value has changed
2891 2892 2893
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2894
		 */
2895
		if (delta > 0)
2896
			perf_adjust_period(event, period, delta, false);
2897 2898

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2899 2900
	next:
		perf_pmu_enable(event->pmu);
2901
	}
2902

2903
	perf_pmu_enable(ctx->pmu);
2904
	raw_spin_unlock(&ctx->lock);
2905 2906
}

2907
/*
2908
 * Round-robin a context's events:
2909
 */
2910
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2911
{
2912 2913 2914 2915 2916 2917
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2918 2919
}

2920
/*
2921 2922 2923
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2924
 */
2925
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2926
{
P
Peter Zijlstra 已提交
2927
	struct perf_event_context *ctx = NULL;
2928
	int rotate = 0, remove = 1;
2929

2930
	if (cpuctx->ctx.nr_events) {
2931
		remove = 0;
2932 2933 2934
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2935

P
Peter Zijlstra 已提交
2936
	ctx = cpuctx->task_ctx;
2937
	if (ctx && ctx->nr_events) {
2938
		remove = 0;
2939 2940 2941
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2942

2943
	if (!rotate)
2944 2945
		goto done;

2946
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2947
	perf_pmu_disable(cpuctx->ctx.pmu);
2948

2949 2950 2951
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2952

2953 2954 2955
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2956

2957
	perf_event_sched_in(cpuctx, ctx, current);
2958

2959 2960
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2961
done:
2962 2963
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2964 2965

	return rotate;
2966 2967
}

2968 2969 2970
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2971
	if (atomic_read(&nr_freq_events) ||
2972
	    __this_cpu_read(perf_throttled_count))
2973
		return false;
2974 2975
	else
		return true;
2976 2977 2978
}
#endif

2979 2980
void perf_event_task_tick(void)
{
2981
	struct list_head *head = this_cpu_ptr(&rotation_list);
2982
	struct perf_cpu_context *cpuctx, *tmp;
2983 2984
	struct perf_event_context *ctx;
	int throttled;
2985

2986 2987
	WARN_ON(!irqs_disabled());

2988 2989 2990
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2991
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2992 2993 2994 2995 2996 2997
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2998
	}
T
Thomas Gleixner 已提交
2999 3000
}

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3011
	__perf_event_mark_enabled(event);
3012 3013 3014 3015

	return 1;
}

3016
/*
3017
 * Enable all of a task's events that have been marked enable-on-exec.
3018 3019
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3020
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3021
{
3022
	struct perf_event_context *clone_ctx = NULL;
3023
	struct perf_event *event;
3024 3025
	unsigned long flags;
	int enabled = 0;
3026
	int ret;
3027 3028

	local_irq_save(flags);
3029
	if (!ctx || !ctx->nr_events)
3030 3031
		goto out;

3032 3033 3034 3035 3036 3037 3038
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3039
	perf_cgroup_sched_out(current, NULL);
3040

3041
	raw_spin_lock(&ctx->lock);
3042
	task_ctx_sched_out(ctx);
3043

3044
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3045 3046 3047
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3048 3049 3050
	}

	/*
3051
	 * Unclone this context if we enabled any event.
3052
	 */
3053
	if (enabled)
3054
		clone_ctx = unclone_ctx(ctx);
3055

3056
	raw_spin_unlock(&ctx->lock);
3057

3058 3059 3060
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3061
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3062
out:
3063
	local_irq_restore(flags);
3064 3065 3066

	if (clone_ctx)
		put_ctx(clone_ctx);
3067 3068
}

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3085
/*
3086
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3087
 */
3088
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3089
{
3090 3091
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3092
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3093

3094 3095 3096 3097
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3098 3099
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3100 3101 3102 3103
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3104
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3105
	if (ctx->is_active) {
3106
		update_context_time(ctx);
S
Stephane Eranian 已提交
3107 3108
		update_cgrp_time_from_event(event);
	}
3109
	update_event_times(event);
3110 3111
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3112
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3113 3114
}

P
Peter Zijlstra 已提交
3115 3116
static inline u64 perf_event_count(struct perf_event *event)
{
3117
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3118 3119
}

3120
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3121 3122
{
	/*
3123 3124
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3125
	 */
3126 3127 3128 3129
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3130 3131 3132
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3133
		raw_spin_lock_irqsave(&ctx->lock, flags);
3134 3135 3136 3137 3138
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3139
		if (ctx->is_active) {
3140
			update_context_time(ctx);
S
Stephane Eranian 已提交
3141 3142
			update_cgrp_time_from_event(event);
		}
3143
		update_event_times(event);
3144
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3145 3146
	}

P
Peter Zijlstra 已提交
3147
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3148 3149
}

3150
/*
3151
 * Initialize the perf_event context in a task_struct:
3152
 */
3153
static void __perf_event_init_context(struct perf_event_context *ctx)
3154
{
3155
	raw_spin_lock_init(&ctx->lock);
3156
	mutex_init(&ctx->mutex);
3157 3158
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3159 3160
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3161
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3177
	}
3178 3179 3180
	ctx->pmu = pmu;

	return ctx;
3181 3182
}

3183 3184 3185 3186 3187
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3188 3189

	rcu_read_lock();
3190
	if (!vpid)
T
Thomas Gleixner 已提交
3191 3192
		task = current;
	else
3193
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3194 3195 3196 3197 3198 3199 3200 3201
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3202 3203 3204 3205
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3206 3207 3208 3209 3210 3211 3212
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3213 3214 3215
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3216
static struct perf_event_context *
M
Matt Helsley 已提交
3217
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3218
{
3219
	struct perf_event_context *ctx, *clone_ctx = NULL;
3220
	struct perf_cpu_context *cpuctx;
3221
	unsigned long flags;
P
Peter Zijlstra 已提交
3222
	int ctxn, err;
T
Thomas Gleixner 已提交
3223

3224
	if (!task) {
3225
		/* Must be root to operate on a CPU event: */
3226
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3227 3228 3229
			return ERR_PTR(-EACCES);

		/*
3230
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3231 3232 3233
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3234
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3235 3236
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3237
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3238
		ctx = &cpuctx->ctx;
3239
		get_ctx(ctx);
3240
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3241 3242 3243 3244

		return ctx;
	}

P
Peter Zijlstra 已提交
3245 3246 3247 3248 3249
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3250
retry:
P
Peter Zijlstra 已提交
3251
	ctx = perf_lock_task_context(task, ctxn, &flags);
3252
	if (ctx) {
3253
		clone_ctx = unclone_ctx(ctx);
3254
		++ctx->pin_count;
3255
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3256 3257 3258

		if (clone_ctx)
			put_ctx(clone_ctx);
3259
	} else {
3260
		ctx = alloc_perf_context(pmu, task);
3261 3262 3263
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3264

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3275
		else {
3276
			get_ctx(ctx);
3277
			++ctx->pin_count;
3278
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3279
		}
3280 3281 3282
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3283
			put_ctx(ctx);
3284 3285 3286 3287

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3288 3289 3290
		}
	}

T
Thomas Gleixner 已提交
3291
	return ctx;
3292

P
Peter Zijlstra 已提交
3293
errout:
3294
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3295 3296
}

L
Li Zefan 已提交
3297 3298
static void perf_event_free_filter(struct perf_event *event);

3299
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3300
{
3301
	struct perf_event *event;
P
Peter Zijlstra 已提交
3302

3303 3304 3305
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3306
	perf_event_free_filter(event);
3307
	kfree(event);
P
Peter Zijlstra 已提交
3308 3309
}

3310
static void ring_buffer_put(struct ring_buffer *rb);
3311 3312
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3313

3314
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3315
{
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3326

3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3340 3341
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3342 3343 3344 3345 3346 3347 3348
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3349

3350 3351
static void __free_event(struct perf_event *event)
{
3352
	if (!event->parent) {
3353 3354
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3355
	}
3356

3357 3358 3359 3360 3361 3362
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3363 3364 3365
	if (event->pmu)
		module_put(event->pmu->module);

3366 3367
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3368 3369

static void _free_event(struct perf_event *event)
3370
{
3371
	irq_work_sync(&event->pending);
3372

3373
	unaccount_event(event);
3374

3375
	if (event->rb) {
3376 3377 3378 3379 3380 3381 3382
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3383
		ring_buffer_attach(event, NULL);
3384
		mutex_unlock(&event->mmap_mutex);
3385 3386
	}

S
Stephane Eranian 已提交
3387 3388 3389
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3390
	__free_event(event);
3391 3392
}

P
Peter Zijlstra 已提交
3393 3394 3395 3396 3397
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3398
{
P
Peter Zijlstra 已提交
3399 3400 3401 3402 3403 3404
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3405

P
Peter Zijlstra 已提交
3406
	_free_event(event);
T
Thomas Gleixner 已提交
3407 3408
}

3409
/*
3410
 * Remove user event from the owner task.
3411
 */
3412
static void perf_remove_from_owner(struct perf_event *event)
3413
{
P
Peter Zijlstra 已提交
3414
	struct task_struct *owner;
3415

P
Peter Zijlstra 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
}

/*
 * Called when the last reference to the file is gone.
 */
static void put_event(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3462

P
Peter Zijlstra 已提交
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
	WARN_ON_ONCE(ctx->parent_ctx);
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
	perf_remove_from_context(event, true);
	mutex_unlock(&ctx->mutex);

	_free_event(event);
3481 3482
}

P
Peter Zijlstra 已提交
3483 3484 3485 3486 3487 3488 3489
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3490 3491 3492 3493
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3494 3495
}

3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3532
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3533
{
3534
	struct perf_event *child;
3535 3536
	u64 total = 0;

3537 3538 3539
	*enabled = 0;
	*running = 0;

3540
	mutex_lock(&event->child_mutex);
3541
	total += perf_event_read(event);
3542 3543 3544 3545 3546 3547
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3548
		total += perf_event_read(child);
3549 3550 3551
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3552
	mutex_unlock(&event->child_mutex);
3553 3554 3555

	return total;
}
3556
EXPORT_SYMBOL_GPL(perf_event_read_value);
3557

3558
static int perf_event_read_group(struct perf_event *event,
3559 3560
				   u64 read_format, char __user *buf)
{
3561
	struct perf_event *leader = event->group_leader, *sub;
3562 3563
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3564
	u64 values[5];
3565
	u64 count, enabled, running;
3566

3567
	mutex_lock(&ctx->mutex);
3568
	count = perf_event_read_value(leader, &enabled, &running);
3569 3570

	values[n++] = 1 + leader->nr_siblings;
3571 3572 3573 3574
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3575 3576 3577
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3578 3579 3580 3581

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3582
		goto unlock;
3583

3584
	ret = size;
3585

3586
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3587
		n = 0;
3588

3589
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3590 3591 3592 3593 3594
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3595
		if (copy_to_user(buf + ret, values, size)) {
3596 3597 3598
			ret = -EFAULT;
			goto unlock;
		}
3599 3600

		ret += size;
3601
	}
3602 3603
unlock:
	mutex_unlock(&ctx->mutex);
3604

3605
	return ret;
3606 3607
}

3608
static int perf_event_read_one(struct perf_event *event,
3609 3610
				 u64 read_format, char __user *buf)
{
3611
	u64 enabled, running;
3612 3613 3614
	u64 values[4];
	int n = 0;

3615 3616 3617 3618 3619
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3620
	if (read_format & PERF_FORMAT_ID)
3621
		values[n++] = primary_event_id(event);
3622 3623 3624 3625 3626 3627 3628

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3642
/*
3643
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3644 3645
 */
static ssize_t
3646
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3647
{
3648
	u64 read_format = event->attr.read_format;
3649
	int ret;
T
Thomas Gleixner 已提交
3650

3651
	/*
3652
	 * Return end-of-file for a read on a event that is in
3653 3654 3655
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3656
	if (event->state == PERF_EVENT_STATE_ERROR)
3657 3658
		return 0;

3659
	if (count < event->read_size)
3660 3661
		return -ENOSPC;

3662
	WARN_ON_ONCE(event->ctx->parent_ctx);
3663
	if (read_format & PERF_FORMAT_GROUP)
3664
		ret = perf_event_read_group(event, read_format, buf);
3665
	else
3666
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3667

3668
	return ret;
T
Thomas Gleixner 已提交
3669 3670 3671 3672 3673
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3674
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3675

3676
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3677 3678 3679 3680
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3681
	struct perf_event *event = file->private_data;
3682
	struct ring_buffer *rb;
3683
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3684

3685
	poll_wait(file, &event->waitq, wait);
3686

3687
	if (is_event_hup(event))
3688
		return events;
P
Peter Zijlstra 已提交
3689

3690
	/*
3691 3692
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3693 3694
	 */
	mutex_lock(&event->mmap_mutex);
3695 3696
	rb = event->rb;
	if (rb)
3697
		events = atomic_xchg(&rb->poll, 0);
3698
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
3699 3700 3701
	return events;
}

3702
static void perf_event_reset(struct perf_event *event)
3703
{
3704
	(void)perf_event_read(event);
3705
	local64_set(&event->count, 0);
3706
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3707 3708
}

3709
/*
3710 3711 3712 3713
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3714
 */
3715 3716
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3717
{
3718
	struct perf_event *child;
P
Peter Zijlstra 已提交
3719

3720 3721 3722 3723
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3724
		func(child);
3725
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3726 3727
}

3728 3729
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3730
{
3731 3732
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3733

3734 3735
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3736
	event = event->group_leader;
3737

3738 3739
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3740
		perf_event_for_each_child(sibling, func);
3741
	mutex_unlock(&ctx->mutex);
3742 3743
}

3744
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3745
{
3746
	struct perf_event_context *ctx = event->ctx;
3747
	int ret = 0, active;
3748 3749
	u64 value;

3750
	if (!is_sampling_event(event))
3751 3752
		return -EINVAL;

3753
	if (copy_from_user(&value, arg, sizeof(value)))
3754 3755 3756 3757 3758
		return -EFAULT;

	if (!value)
		return -EINVAL;

3759
	raw_spin_lock_irq(&ctx->lock);
3760 3761
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3762 3763 3764 3765
			ret = -EINVAL;
			goto unlock;
		}

3766
		event->attr.sample_freq = value;
3767
	} else {
3768 3769
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3770
	}
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3785
unlock:
3786
	raw_spin_unlock_irq(&ctx->lock);
3787 3788 3789 3790

	return ret;
}

3791 3792
static const struct file_operations perf_fops;

3793
static inline int perf_fget_light(int fd, struct fd *p)
3794
{
3795 3796 3797
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3798

3799 3800 3801
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3802
	}
3803 3804
	*p = f;
	return 0;
3805 3806 3807 3808
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3809
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3810

3811 3812
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3813 3814
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3815
	u32 flags = arg;
3816 3817

	switch (cmd) {
3818 3819
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3820
		break;
3821 3822
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3823
		break;
3824 3825
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3826
		break;
P
Peter Zijlstra 已提交
3827

3828 3829
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3830

3831 3832
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3833

3834 3835 3836 3837 3838 3839 3840 3841 3842
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3843
	case PERF_EVENT_IOC_SET_OUTPUT:
3844 3845 3846
	{
		int ret;
		if (arg != -1) {
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3857 3858 3859
		}
		return ret;
	}
3860

L
Li Zefan 已提交
3861 3862 3863
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3864
	default:
P
Peter Zijlstra 已提交
3865
		return -ENOTTY;
3866
	}
P
Peter Zijlstra 已提交
3867 3868

	if (flags & PERF_IOC_FLAG_GROUP)
3869
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3870
	else
3871
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3872 3873

	return 0;
3874 3875
}

P
Pawel Moll 已提交
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

3896
int perf_event_task_enable(void)
3897
{
3898
	struct perf_event *event;
3899

3900 3901 3902 3903
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3904 3905 3906 3907

	return 0;
}

3908
int perf_event_task_disable(void)
3909
{
3910
	struct perf_event *event;
3911

3912 3913 3914 3915
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3916 3917 3918 3919

	return 0;
}

3920
static int perf_event_index(struct perf_event *event)
3921
{
P
Peter Zijlstra 已提交
3922 3923 3924
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3925
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3926 3927
		return 0;

3928
	return event->pmu->event_idx(event);
3929 3930
}

3931
static void calc_timer_values(struct perf_event *event,
3932
				u64 *now,
3933 3934
				u64 *enabled,
				u64 *running)
3935
{
3936
	u64 ctx_time;
3937

3938 3939
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3940 3941 3942 3943
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

3964
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3965 3966 3967
{
}

3968 3969 3970 3971 3972
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3973
void perf_event_update_userpage(struct perf_event *event)
3974
{
3975
	struct perf_event_mmap_page *userpg;
3976
	struct ring_buffer *rb;
3977
	u64 enabled, running, now;
3978 3979

	rcu_read_lock();
3980 3981 3982 3983
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3984 3985 3986 3987 3988 3989 3990 3991 3992
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3993
	calc_timer_values(event, &now, &enabled, &running);
3994

3995
	userpg = rb->user_page;
3996 3997 3998 3999 4000
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4001
	++userpg->lock;
4002
	barrier();
4003
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4004
	userpg->offset = perf_event_count(event);
4005
	if (userpg->index)
4006
		userpg->offset -= local64_read(&event->hw.prev_count);
4007

4008
	userpg->time_enabled = enabled +
4009
			atomic64_read(&event->child_total_time_enabled);
4010

4011
	userpg->time_running = running +
4012
			atomic64_read(&event->child_total_time_running);
4013

4014
	arch_perf_update_userpage(userpg, now);
4015

4016
	barrier();
4017
	++userpg->lock;
4018
	preempt_enable();
4019
unlock:
4020
	rcu_read_unlock();
4021 4022
}

4023 4024 4025
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4026
	struct ring_buffer *rb;
4027 4028 4029 4030 4031 4032 4033 4034 4035
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4036 4037
	rb = rcu_dereference(event->rb);
	if (!rb)
4038 4039 4040 4041 4042
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4043
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4058 4059 4060
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4061
	struct ring_buffer *old_rb = NULL;
4062 4063
	unsigned long flags;

4064 4065 4066 4067 4068 4069
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4070

4071 4072 4073
		old_rb = event->rb;
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4074

4075 4076 4077 4078
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
	}
4079

4080 4081 4082 4083
	if (event->rcu_pending && rb) {
		cond_synchronize_rcu(event->rcu_batches);
		event->rcu_pending = 0;
	}
4084

4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
	if (rb) {
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4102 4103 4104 4105 4106 4107 4108 4109
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4110 4111 4112 4113
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4114 4115 4116
	rcu_read_unlock();
}

4117
static void rb_free_rcu(struct rcu_head *rcu_head)
4118
{
4119
	struct ring_buffer *rb;
4120

4121 4122
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
4123 4124
}

4125
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4126
{
4127
	struct ring_buffer *rb;
4128

4129
	rcu_read_lock();
4130 4131 4132 4133
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4134 4135 4136
	}
	rcu_read_unlock();

4137
	return rb;
4138 4139
}

4140
static void ring_buffer_put(struct ring_buffer *rb)
4141
{
4142
	if (!atomic_dec_and_test(&rb->refcount))
4143
		return;
4144

4145
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4146

4147
	call_rcu(&rb->rcu_head, rb_free_rcu);
4148 4149 4150 4151
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4152
	struct perf_event *event = vma->vm_file->private_data;
4153

4154
	atomic_inc(&event->mmap_count);
4155
	atomic_inc(&event->rb->mmap_count);
4156 4157
}

4158 4159 4160 4161 4162 4163 4164 4165
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4166 4167
static void perf_mmap_close(struct vm_area_struct *vma)
{
4168
	struct perf_event *event = vma->vm_file->private_data;
4169

4170
	struct ring_buffer *rb = ring_buffer_get(event);
4171 4172 4173
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4174

4175 4176 4177
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4178
		goto out_put;
4179

4180
	ring_buffer_attach(event, NULL);
4181 4182 4183
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4184 4185
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4186

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4203

4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4215 4216 4217
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4218
		mutex_unlock(&event->mmap_mutex);
4219
		put_event(event);
4220

4221 4222 4223 4224 4225
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4226
	}
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4242
out_put:
4243
	ring_buffer_put(rb); /* could be last */
4244 4245
}

4246
static const struct vm_operations_struct perf_mmap_vmops = {
4247 4248 4249 4250
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4251 4252 4253 4254
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4255
	struct perf_event *event = file->private_data;
4256
	unsigned long user_locked, user_lock_limit;
4257
	struct user_struct *user = current_user();
4258
	unsigned long locked, lock_limit;
4259
	struct ring_buffer *rb;
4260 4261
	unsigned long vma_size;
	unsigned long nr_pages;
4262
	long user_extra, extra;
4263
	int ret = 0, flags = 0;
4264

4265 4266 4267
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4268
	 * same rb.
4269 4270 4271 4272
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4273
	if (!(vma->vm_flags & VM_SHARED))
4274
		return -EINVAL;
4275 4276 4277 4278

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4279
	/*
4280
	 * If we have rb pages ensure they're a power-of-two number, so we
4281 4282 4283
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4284 4285
		return -EINVAL;

4286
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4287 4288
		return -EINVAL;

4289 4290
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4291

4292
	WARN_ON_ONCE(event->ctx->parent_ctx);
4293
again:
4294
	mutex_lock(&event->mmap_mutex);
4295
	if (event->rb) {
4296
		if (event->rb->nr_pages != nr_pages) {
4297
			ret = -EINVAL;
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4311 4312 4313
		goto unlock;
	}

4314
	user_extra = nr_pages + 1;
4315
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4316 4317 4318 4319 4320 4321

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4322
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4323

4324 4325 4326
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4327

4328
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4329
	lock_limit >>= PAGE_SHIFT;
4330
	locked = vma->vm_mm->pinned_vm + extra;
4331

4332 4333
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4334 4335 4336
		ret = -EPERM;
		goto unlock;
	}
4337

4338
	WARN_ON(event->rb);
4339

4340
	if (vma->vm_flags & VM_WRITE)
4341
		flags |= RING_BUFFER_WRITABLE;
4342

4343 4344 4345 4346
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4347
	if (!rb) {
4348
		ret = -ENOMEM;
4349
		goto unlock;
4350
	}
P
Peter Zijlstra 已提交
4351

4352
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4353 4354
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4355

4356
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4357 4358
	vma->vm_mm->pinned_vm += extra;

4359
	ring_buffer_attach(event, rb);
4360

4361
	perf_event_init_userpage(event);
4362 4363
	perf_event_update_userpage(event);

4364
unlock:
4365 4366
	if (!ret)
		atomic_inc(&event->mmap_count);
4367
	mutex_unlock(&event->mmap_mutex);
4368

4369 4370 4371 4372
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4373
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4374
	vma->vm_ops = &perf_mmap_vmops;
4375 4376

	return ret;
4377 4378
}

P
Peter Zijlstra 已提交
4379 4380
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4381
	struct inode *inode = file_inode(filp);
4382
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4383 4384 4385
	int retval;

	mutex_lock(&inode->i_mutex);
4386
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4387 4388 4389 4390 4391 4392 4393 4394
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4395
static const struct file_operations perf_fops = {
4396
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4397 4398 4399
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4400
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4401
	.compat_ioctl		= perf_compat_ioctl,
4402
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4403
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4404 4405
};

4406
/*
4407
 * Perf event wakeup
4408 4409 4410 4411 4412
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4413
void perf_event_wakeup(struct perf_event *event)
4414
{
4415
	ring_buffer_wakeup(event);
4416

4417 4418 4419
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4420
	}
4421 4422
}

4423
static void perf_pending_event(struct irq_work *entry)
4424
{
4425 4426
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4427

4428 4429 4430
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4431 4432
	}

4433 4434 4435
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4436 4437 4438
	}
}

4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4475
static void perf_sample_regs_user(struct perf_regs *regs_user,
4476 4477
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4478
{
4479 4480
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4481
		regs_user->regs = regs;
4482 4483
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4484 4485 4486
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4487 4488 4489
	}
}

4490 4491 4492 4493 4494 4495 4496 4497
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4593 4594 4595
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4611
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4623 4624 4625
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4650 4651 4652

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4653 4654
}

4655 4656 4657
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4658 4659 4660 4661 4662
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4663
static void perf_output_read_one(struct perf_output_handle *handle,
4664 4665
				 struct perf_event *event,
				 u64 enabled, u64 running)
4666
{
4667
	u64 read_format = event->attr.read_format;
4668 4669 4670
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4671
	values[n++] = perf_event_count(event);
4672
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4673
		values[n++] = enabled +
4674
			atomic64_read(&event->child_total_time_enabled);
4675 4676
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4677
		values[n++] = running +
4678
			atomic64_read(&event->child_total_time_running);
4679 4680
	}
	if (read_format & PERF_FORMAT_ID)
4681
		values[n++] = primary_event_id(event);
4682

4683
	__output_copy(handle, values, n * sizeof(u64));
4684 4685 4686
}

/*
4687
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4688 4689
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4690 4691
			    struct perf_event *event,
			    u64 enabled, u64 running)
4692
{
4693 4694
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4695 4696 4697 4698 4699 4700
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4701
		values[n++] = enabled;
4702 4703

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4704
		values[n++] = running;
4705

4706
	if (leader != event)
4707 4708
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4709
	values[n++] = perf_event_count(leader);
4710
	if (read_format & PERF_FORMAT_ID)
4711
		values[n++] = primary_event_id(leader);
4712

4713
	__output_copy(handle, values, n * sizeof(u64));
4714

4715
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4716 4717
		n = 0;

4718 4719
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4720 4721
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4722
		values[n++] = perf_event_count(sub);
4723
		if (read_format & PERF_FORMAT_ID)
4724
			values[n++] = primary_event_id(sub);
4725

4726
		__output_copy(handle, values, n * sizeof(u64));
4727 4728 4729
	}
}

4730 4731 4732
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4733
static void perf_output_read(struct perf_output_handle *handle,
4734
			     struct perf_event *event)
4735
{
4736
	u64 enabled = 0, running = 0, now;
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4748
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4749
		calc_timer_values(event, &now, &enabled, &running);
4750

4751
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4752
		perf_output_read_group(handle, event, enabled, running);
4753
	else
4754
		perf_output_read_one(handle, event, enabled, running);
4755 4756
}

4757 4758 4759
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4760
			struct perf_event *event)
4761 4762 4763 4764 4765
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4766 4767 4768
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4794
		perf_output_read(handle, event);
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4805
			__output_copy(handle, data->callchain, size);
4806 4807 4808 4809 4810 4811 4812 4813 4814
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4815 4816
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4828

4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4863

4864
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4865 4866 4867
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4868
	}
A
Andi Kleen 已提交
4869 4870 4871

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4872 4873 4874

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4875

A
Andi Kleen 已提交
4876 4877 4878
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4909 4910 4911 4912
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4913
			 struct perf_event *event,
4914
			 struct pt_regs *regs)
4915
{
4916
	u64 sample_type = event->attr.sample_type;
4917

4918
	header->type = PERF_RECORD_SAMPLE;
4919
	header->size = sizeof(*header) + event->header_size;
4920 4921 4922

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4923

4924
	__perf_event_header__init_id(header, data, event);
4925

4926
	if (sample_type & PERF_SAMPLE_IP)
4927 4928
		data->ip = perf_instruction_pointer(regs);

4929
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4930
		int size = 1;
4931

4932
		data->callchain = perf_callchain(event, regs);
4933 4934 4935 4936 4937

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4938 4939
	}

4940
	if (sample_type & PERF_SAMPLE_RAW) {
4941 4942 4943 4944 4945 4946 4947 4948
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4949
		header->size += size;
4950
	}
4951 4952 4953 4954 4955 4956 4957 4958 4959

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4960

4961
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
4962 4963
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
4964

4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
4988
						     data->regs_user.regs);
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5016
}
5017

5018
static void perf_event_output(struct perf_event *event,
5019 5020 5021 5022 5023
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5024

5025 5026 5027
	/* protect the callchain buffers */
	rcu_read_lock();

5028
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5029

5030
	if (perf_output_begin(&handle, event, header.size))
5031
		goto exit;
5032

5033
	perf_output_sample(&handle, &header, data, event);
5034

5035
	perf_output_end(&handle);
5036 5037 5038

exit:
	rcu_read_unlock();
5039 5040
}

5041
/*
5042
 * read event_id
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5053
perf_event_read_event(struct perf_event *event,
5054 5055 5056
			struct task_struct *task)
{
	struct perf_output_handle handle;
5057
	struct perf_sample_data sample;
5058
	struct perf_read_event read_event = {
5059
		.header = {
5060
			.type = PERF_RECORD_READ,
5061
			.misc = 0,
5062
			.size = sizeof(read_event) + event->read_size,
5063
		},
5064 5065
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5066
	};
5067
	int ret;
5068

5069
	perf_event_header__init_id(&read_event.header, &sample, event);
5070
	ret = perf_output_begin(&handle, event, read_event.header.size);
5071 5072 5073
	if (ret)
		return;

5074
	perf_output_put(&handle, read_event);
5075
	perf_output_read(&handle, event);
5076
	perf_event__output_id_sample(event, &handle, &sample);
5077

5078 5079 5080
	perf_output_end(&handle);
}

5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5095
		output(event, data);
5096 5097 5098 5099
	}
}

static void
5100
perf_event_aux(perf_event_aux_output_cb output, void *data,
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5113
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5114 5115 5116 5117 5118 5119 5120
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5121
			perf_event_aux_ctx(ctx, output, data);
5122 5123 5124 5125 5126 5127
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5128
		perf_event_aux_ctx(task_ctx, output, data);
5129 5130 5131 5132 5133
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5134
/*
P
Peter Zijlstra 已提交
5135 5136
 * task tracking -- fork/exit
 *
5137
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5138 5139
 */

P
Peter Zijlstra 已提交
5140
struct perf_task_event {
5141
	struct task_struct		*task;
5142
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5143 5144 5145 5146 5147 5148

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5149 5150
		u32				tid;
		u32				ptid;
5151
		u64				time;
5152
	} event_id;
P
Peter Zijlstra 已提交
5153 5154
};

5155 5156
static int perf_event_task_match(struct perf_event *event)
{
5157 5158 5159
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5160 5161
}

5162
static void perf_event_task_output(struct perf_event *event,
5163
				   void *data)
P
Peter Zijlstra 已提交
5164
{
5165
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5166
	struct perf_output_handle handle;
5167
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5168
	struct task_struct *task = task_event->task;
5169
	int ret, size = task_event->event_id.header.size;
5170

5171 5172 5173
	if (!perf_event_task_match(event))
		return;

5174
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5175

5176
	ret = perf_output_begin(&handle, event,
5177
				task_event->event_id.header.size);
5178
	if (ret)
5179
		goto out;
P
Peter Zijlstra 已提交
5180

5181 5182
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5183

5184 5185
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5186

5187
	perf_output_put(&handle, task_event->event_id);
5188

5189 5190
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5191
	perf_output_end(&handle);
5192 5193
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5194 5195
}

5196 5197
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5198
			      int new)
P
Peter Zijlstra 已提交
5199
{
P
Peter Zijlstra 已提交
5200
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5201

5202 5203 5204
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5205 5206
		return;

P
Peter Zijlstra 已提交
5207
	task_event = (struct perf_task_event){
5208 5209
		.task	  = task,
		.task_ctx = task_ctx,
5210
		.event_id    = {
P
Peter Zijlstra 已提交
5211
			.header = {
5212
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5213
				.misc = 0,
5214
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5215
			},
5216 5217
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5218 5219
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
5220
			.time = perf_clock(),
P
Peter Zijlstra 已提交
5221 5222 5223
		},
	};

5224
	perf_event_aux(perf_event_task_output,
5225 5226
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5227 5228
}

5229
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5230
{
5231
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5232 5233
}

5234 5235 5236 5237 5238
/*
 * comm tracking
 */

struct perf_comm_event {
5239 5240
	struct task_struct	*task;
	char			*comm;
5241 5242 5243 5244 5245 5246 5247
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5248
	} event_id;
5249 5250
};

5251 5252 5253 5254 5255
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5256
static void perf_event_comm_output(struct perf_event *event,
5257
				   void *data)
5258
{
5259
	struct perf_comm_event *comm_event = data;
5260
	struct perf_output_handle handle;
5261
	struct perf_sample_data sample;
5262
	int size = comm_event->event_id.header.size;
5263 5264
	int ret;

5265 5266 5267
	if (!perf_event_comm_match(event))
		return;

5268 5269
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5270
				comm_event->event_id.header.size);
5271 5272

	if (ret)
5273
		goto out;
5274

5275 5276
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5277

5278
	perf_output_put(&handle, comm_event->event_id);
5279
	__output_copy(&handle, comm_event->comm,
5280
				   comm_event->comm_size);
5281 5282 5283

	perf_event__output_id_sample(event, &handle, &sample);

5284
	perf_output_end(&handle);
5285 5286
out:
	comm_event->event_id.header.size = size;
5287 5288
}

5289
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5290
{
5291
	char comm[TASK_COMM_LEN];
5292 5293
	unsigned int size;

5294
	memset(comm, 0, sizeof(comm));
5295
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5296
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5297 5298 5299 5300

	comm_event->comm = comm;
	comm_event->comm_size = size;

5301
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5302

5303
	perf_event_aux(perf_event_comm_output,
5304 5305
		       comm_event,
		       NULL);
5306 5307
}

5308
void perf_event_comm(struct task_struct *task, bool exec)
5309
{
5310 5311
	struct perf_comm_event comm_event;

5312
	if (!atomic_read(&nr_comm_events))
5313
		return;
5314

5315
	comm_event = (struct perf_comm_event){
5316
		.task	= task,
5317 5318
		/* .comm      */
		/* .comm_size */
5319
		.event_id  = {
5320
			.header = {
5321
				.type = PERF_RECORD_COMM,
5322
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5323 5324 5325 5326
				/* .size */
			},
			/* .pid */
			/* .tid */
5327 5328 5329
		},
	};

5330
	perf_event_comm_event(&comm_event);
5331 5332
}

5333 5334 5335 5336 5337
/*
 * mmap tracking
 */

struct perf_mmap_event {
5338 5339 5340 5341
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5342 5343 5344
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5345
	u32			prot, flags;
5346 5347 5348 5349 5350 5351 5352 5353 5354

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5355
	} event_id;
5356 5357
};

5358 5359 5360 5361 5362 5363 5364 5365
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5366
	       (executable && (event->attr.mmap || event->attr.mmap2));
5367 5368
}

5369
static void perf_event_mmap_output(struct perf_event *event,
5370
				   void *data)
5371
{
5372
	struct perf_mmap_event *mmap_event = data;
5373
	struct perf_output_handle handle;
5374
	struct perf_sample_data sample;
5375
	int size = mmap_event->event_id.header.size;
5376
	int ret;
5377

5378 5379 5380
	if (!perf_event_mmap_match(event, data))
		return;

5381 5382 5383 5384 5385
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5386
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5387 5388
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5389 5390
	}

5391 5392
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5393
				mmap_event->event_id.header.size);
5394
	if (ret)
5395
		goto out;
5396

5397 5398
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5399

5400
	perf_output_put(&handle, mmap_event->event_id);
5401 5402 5403 5404 5405 5406

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5407 5408
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5409 5410
	}

5411
	__output_copy(&handle, mmap_event->file_name,
5412
				   mmap_event->file_size);
5413 5414 5415

	perf_event__output_id_sample(event, &handle, &sample);

5416
	perf_output_end(&handle);
5417 5418
out:
	mmap_event->event_id.header.size = size;
5419 5420
}

5421
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5422
{
5423 5424
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5425 5426
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5427
	u32 prot = 0, flags = 0;
5428 5429 5430
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5431
	char *name;
5432

5433
	if (file) {
5434 5435
		struct inode *inode;
		dev_t dev;
5436

5437
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5438
		if (!buf) {
5439 5440
			name = "//enomem";
			goto cpy_name;
5441
		}
5442
		/*
5443
		 * d_path() works from the end of the rb backwards, so we
5444 5445 5446
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5447
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5448
		if (IS_ERR(name)) {
5449 5450
			name = "//toolong";
			goto cpy_name;
5451
		}
5452 5453 5454 5455 5456 5457
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5480
		goto got_name;
5481
	} else {
5482 5483 5484 5485 5486 5487
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5488
		name = (char *)arch_vma_name(vma);
5489 5490
		if (name)
			goto cpy_name;
5491

5492
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5493
				vma->vm_end >= vma->vm_mm->brk) {
5494 5495
			name = "[heap]";
			goto cpy_name;
5496 5497
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5498
				vma->vm_end >= vma->vm_mm->start_stack) {
5499 5500
			name = "[stack]";
			goto cpy_name;
5501 5502
		}

5503 5504
		name = "//anon";
		goto cpy_name;
5505 5506
	}

5507 5508 5509
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5510
got_name:
5511 5512 5513 5514 5515 5516 5517 5518
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5519 5520 5521

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5522 5523 5524 5525
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5526 5527
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5528

5529 5530 5531
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5532
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5533

5534
	perf_event_aux(perf_event_mmap_output,
5535 5536
		       mmap_event,
		       NULL);
5537

5538 5539 5540
	kfree(buf);
}

5541
void perf_event_mmap(struct vm_area_struct *vma)
5542
{
5543 5544
	struct perf_mmap_event mmap_event;

5545
	if (!atomic_read(&nr_mmap_events))
5546 5547 5548
		return;

	mmap_event = (struct perf_mmap_event){
5549
		.vma	= vma,
5550 5551
		/* .file_name */
		/* .file_size */
5552
		.event_id  = {
5553
			.header = {
5554
				.type = PERF_RECORD_MMAP,
5555
				.misc = PERF_RECORD_MISC_USER,
5556 5557 5558 5559
				/* .size */
			},
			/* .pid */
			/* .tid */
5560 5561
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5562
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5563
		},
5564 5565 5566 5567
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5568 5569
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5570 5571
	};

5572
	perf_event_mmap_event(&mmap_event);
5573 5574
}

5575 5576 5577 5578
/*
 * IRQ throttle logging
 */

5579
static void perf_log_throttle(struct perf_event *event, int enable)
5580 5581
{
	struct perf_output_handle handle;
5582
	struct perf_sample_data sample;
5583 5584 5585 5586 5587
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5588
		u64				id;
5589
		u64				stream_id;
5590 5591
	} throttle_event = {
		.header = {
5592
			.type = PERF_RECORD_THROTTLE,
5593 5594 5595
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5596
		.time		= perf_clock(),
5597 5598
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5599 5600
	};

5601
	if (enable)
5602
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5603

5604 5605 5606
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5607
				throttle_event.header.size);
5608 5609 5610 5611
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5612
	perf_event__output_id_sample(event, &handle, &sample);
5613 5614 5615
	perf_output_end(&handle);
}

5616
/*
5617
 * Generic event overflow handling, sampling.
5618 5619
 */

5620
static int __perf_event_overflow(struct perf_event *event,
5621 5622
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5623
{
5624 5625
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5626
	u64 seq;
5627 5628
	int ret = 0;

5629 5630 5631 5632 5633 5634 5635
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5636 5637 5638 5639 5640 5641 5642 5643 5644
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5645 5646
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5647
			tick_nohz_full_kick();
5648 5649
			ret = 1;
		}
5650
	}
5651

5652
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5653
		u64 now = perf_clock();
5654
		s64 delta = now - hwc->freq_time_stamp;
5655

5656
		hwc->freq_time_stamp = now;
5657

5658
		if (delta > 0 && delta < 2*TICK_NSEC)
5659
			perf_adjust_period(event, delta, hwc->last_period, true);
5660 5661
	}

5662 5663
	/*
	 * XXX event_limit might not quite work as expected on inherited
5664
	 * events
5665 5666
	 */

5667 5668
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5669
		ret = 1;
5670
		event->pending_kill = POLL_HUP;
5671 5672
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5673 5674
	}

5675
	if (event->overflow_handler)
5676
		event->overflow_handler(event, data, regs);
5677
	else
5678
		perf_event_output(event, data, regs);
5679

P
Peter Zijlstra 已提交
5680
	if (event->fasync && event->pending_kill) {
5681 5682
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5683 5684
	}

5685
	return ret;
5686 5687
}

5688
int perf_event_overflow(struct perf_event *event,
5689 5690
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5691
{
5692
	return __perf_event_overflow(event, 1, data, regs);
5693 5694
}

5695
/*
5696
 * Generic software event infrastructure
5697 5698
 */

5699 5700 5701 5702 5703 5704 5705
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
5706 5707 5708

	/* Keeps track of cpu being initialized/exited */
	bool				online;
5709 5710 5711 5712
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5713
/*
5714 5715
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5716 5717 5718 5719
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5720
u64 perf_swevent_set_period(struct perf_event *event)
5721
{
5722
	struct hw_perf_event *hwc = &event->hw;
5723 5724 5725 5726 5727
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5728 5729

again:
5730
	old = val = local64_read(&hwc->period_left);
5731 5732
	if (val < 0)
		return 0;
5733

5734 5735 5736
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5737
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5738
		goto again;
5739

5740
	return nr;
5741 5742
}

5743
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5744
				    struct perf_sample_data *data,
5745
				    struct pt_regs *regs)
5746
{
5747
	struct hw_perf_event *hwc = &event->hw;
5748
	int throttle = 0;
5749

5750 5751
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5752

5753 5754
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5755

5756
	for (; overflow; overflow--) {
5757
		if (__perf_event_overflow(event, throttle,
5758
					    data, regs)) {
5759 5760 5761 5762 5763 5764
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5765
		throttle = 1;
5766
	}
5767 5768
}

P
Peter Zijlstra 已提交
5769
static void perf_swevent_event(struct perf_event *event, u64 nr,
5770
			       struct perf_sample_data *data,
5771
			       struct pt_regs *regs)
5772
{
5773
	struct hw_perf_event *hwc = &event->hw;
5774

5775
	local64_add(nr, &event->count);
5776

5777 5778 5779
	if (!regs)
		return;

5780
	if (!is_sampling_event(event))
5781
		return;
5782

5783 5784 5785 5786 5787 5788
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5789
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5790
		return perf_swevent_overflow(event, 1, data, regs);
5791

5792
	if (local64_add_negative(nr, &hwc->period_left))
5793
		return;
5794

5795
	perf_swevent_overflow(event, 0, data, regs);
5796 5797
}

5798 5799 5800
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5801
	if (event->hw.state & PERF_HES_STOPPED)
5802
		return 1;
P
Peter Zijlstra 已提交
5803

5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5815
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5816
				enum perf_type_id type,
L
Li Zefan 已提交
5817 5818 5819
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5820
{
5821
	if (event->attr.type != type)
5822
		return 0;
5823

5824
	if (event->attr.config != event_id)
5825 5826
		return 0;

5827 5828
	if (perf_exclude_event(event, regs))
		return 0;
5829 5830 5831 5832

	return 1;
}

5833 5834 5835 5836 5837 5838 5839
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5840 5841
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5842
{
5843 5844 5845 5846
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5847

5848 5849
/* For the read side: events when they trigger */
static inline struct hlist_head *
5850
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5851 5852
{
	struct swevent_hlist *hlist;
5853

5854
	hlist = rcu_dereference(swhash->swevent_hlist);
5855 5856 5857
	if (!hlist)
		return NULL;

5858 5859 5860 5861 5862
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5863
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5874
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5875 5876 5877 5878 5879
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5880 5881 5882
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5883
				    u64 nr,
5884 5885
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5886
{
5887
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5888
	struct perf_event *event;
5889
	struct hlist_head *head;
5890

5891
	rcu_read_lock();
5892
	head = find_swevent_head_rcu(swhash, type, event_id);
5893 5894 5895
	if (!head)
		goto end;

5896
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5897
		if (perf_swevent_match(event, type, event_id, data, regs))
5898
			perf_swevent_event(event, nr, data, regs);
5899
	}
5900 5901
end:
	rcu_read_unlock();
5902 5903
}

5904 5905
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

5906
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5907
{
5908
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
5909

5910
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5911
}
I
Ingo Molnar 已提交
5912
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5913

5914
inline void perf_swevent_put_recursion_context(int rctx)
5915
{
5916
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5917

5918
	put_recursion_context(swhash->recursion, rctx);
5919
}
5920

5921
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5922
{
5923
	struct perf_sample_data data;
5924

5925
	if (WARN_ON_ONCE(!regs))
5926
		return;
5927

5928
	perf_sample_data_init(&data, addr, 0);
5929
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
5942 5943

	perf_swevent_put_recursion_context(rctx);
5944
fail:
5945
	preempt_enable_notrace();
5946 5947
}

5948
static void perf_swevent_read(struct perf_event *event)
5949 5950 5951
{
}

P
Peter Zijlstra 已提交
5952
static int perf_swevent_add(struct perf_event *event, int flags)
5953
{
5954
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5955
	struct hw_perf_event *hwc = &event->hw;
5956 5957
	struct hlist_head *head;

5958
	if (is_sampling_event(event)) {
5959
		hwc->last_period = hwc->sample_period;
5960
		perf_swevent_set_period(event);
5961
	}
5962

P
Peter Zijlstra 已提交
5963 5964
	hwc->state = !(flags & PERF_EF_START);

5965
	head = find_swevent_head(swhash, event);
5966 5967 5968 5969 5970 5971
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
5972
		return -EINVAL;
5973
	}
5974 5975 5976

	hlist_add_head_rcu(&event->hlist_entry, head);

5977 5978 5979
	return 0;
}

P
Peter Zijlstra 已提交
5980
static void perf_swevent_del(struct perf_event *event, int flags)
5981
{
5982
	hlist_del_rcu(&event->hlist_entry);
5983 5984
}

P
Peter Zijlstra 已提交
5985
static void perf_swevent_start(struct perf_event *event, int flags)
5986
{
P
Peter Zijlstra 已提交
5987
	event->hw.state = 0;
5988
}
I
Ingo Molnar 已提交
5989

P
Peter Zijlstra 已提交
5990
static void perf_swevent_stop(struct perf_event *event, int flags)
5991
{
P
Peter Zijlstra 已提交
5992
	event->hw.state = PERF_HES_STOPPED;
5993 5994
}

5995 5996
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5997
swevent_hlist_deref(struct swevent_htable *swhash)
5998
{
5999 6000
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6001 6002
}

6003
static void swevent_hlist_release(struct swevent_htable *swhash)
6004
{
6005
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6006

6007
	if (!hlist)
6008 6009
		return;

6010
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6011
	kfree_rcu(hlist, rcu_head);
6012 6013 6014 6015
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6016
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6017

6018
	mutex_lock(&swhash->hlist_mutex);
6019

6020 6021
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6022

6023
	mutex_unlock(&swhash->hlist_mutex);
6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6036
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6037 6038
	int err = 0;

6039
	mutex_lock(&swhash->hlist_mutex);
6040

6041
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6042 6043 6044 6045 6046 6047 6048
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6049
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6050
	}
6051
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6052
exit:
6053
	mutex_unlock(&swhash->hlist_mutex);
6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6074
fail:
6075 6076 6077 6078 6079 6080 6081 6082 6083 6084
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6085
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6086

6087 6088 6089
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6090

6091 6092
	WARN_ON(event->parent);

6093
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6094 6095 6096 6097 6098
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6099
	u64 event_id = event->attr.config;
6100 6101 6102 6103

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6104 6105 6106 6107 6108 6109
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6110 6111 6112 6113 6114 6115 6116 6117 6118
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6119
	if (event_id >= PERF_COUNT_SW_MAX)
6120 6121 6122 6123 6124 6125 6126 6127 6128
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6129
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6130 6131 6132 6133 6134 6135 6136
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6137
	.task_ctx_nr	= perf_sw_context,
6138

6139
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6140 6141 6142 6143
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6144 6145 6146
	.read		= perf_swevent_read,
};

6147 6148
#ifdef CONFIG_EVENT_TRACING

6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6163 6164
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6165 6166 6167 6168
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6169 6170 6171 6172 6173 6174 6175 6176 6177
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6178 6179
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6180 6181
{
	struct perf_sample_data data;
6182 6183
	struct perf_event *event;

6184 6185 6186 6187 6188
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6189
	perf_sample_data_init(&data, addr, 0);
6190 6191
	data.raw = &raw;

6192
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6193
		if (perf_tp_event_match(event, &data, regs))
6194
			perf_swevent_event(event, count, &data, regs);
6195
	}
6196

6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6222
	perf_swevent_put_recursion_context(rctx);
6223 6224 6225
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6226
static void tp_perf_event_destroy(struct perf_event *event)
6227
{
6228
	perf_trace_destroy(event);
6229 6230
}

6231
static int perf_tp_event_init(struct perf_event *event)
6232
{
6233 6234
	int err;

6235 6236 6237
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6238 6239 6240 6241 6242 6243
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6244 6245
	err = perf_trace_init(event);
	if (err)
6246
		return err;
6247

6248
	event->destroy = tp_perf_event_destroy;
6249

6250 6251 6252 6253
	return 0;
}

static struct pmu perf_tracepoint = {
6254 6255
	.task_ctx_nr	= perf_sw_context,

6256
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6257 6258 6259 6260
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6261 6262 6263 6264 6265
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6266
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6267
}
L
Li Zefan 已提交
6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6292
#else
L
Li Zefan 已提交
6293

6294
static inline void perf_tp_register(void)
6295 6296
{
}
L
Li Zefan 已提交
6297 6298 6299 6300 6301 6302 6303 6304 6305 6306

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6307
#endif /* CONFIG_EVENT_TRACING */
6308

6309
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6310
void perf_bp_event(struct perf_event *bp, void *data)
6311
{
6312 6313 6314
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6315
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6316

P
Peter Zijlstra 已提交
6317
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6318
		perf_swevent_event(bp, 1, &sample, regs);
6319 6320 6321
}
#endif

6322 6323 6324
/*
 * hrtimer based swevent callback
 */
6325

6326
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6327
{
6328 6329 6330 6331 6332
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6333

6334
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6335 6336 6337 6338

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6339
	event->pmu->read(event);
6340

6341
	perf_sample_data_init(&data, 0, event->hw.last_period);
6342 6343 6344
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6345
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6346
			if (__perf_event_overflow(event, 1, &data, regs))
6347 6348
				ret = HRTIMER_NORESTART;
	}
6349

6350 6351
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6352

6353
	return ret;
6354 6355
}

6356
static void perf_swevent_start_hrtimer(struct perf_event *event)
6357
{
6358
	struct hw_perf_event *hwc = &event->hw;
6359 6360 6361 6362
	s64 period;

	if (!is_sampling_event(event))
		return;
6363

6364 6365 6366 6367
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6368

6369 6370 6371 6372 6373
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6374
				ns_to_ktime(period), 0,
6375
				HRTIMER_MODE_REL_PINNED, 0);
6376
}
6377 6378

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6379
{
6380 6381
	struct hw_perf_event *hwc = &event->hw;

6382
	if (is_sampling_event(event)) {
6383
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6384
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6385 6386 6387

		hrtimer_cancel(&hwc->hrtimer);
	}
6388 6389
}

P
Peter Zijlstra 已提交
6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6410
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6411 6412 6413 6414
		event->attr.freq = 0;
	}
}

6415 6416 6417 6418 6419
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6420
{
6421 6422 6423
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6424
	now = local_clock();
6425 6426
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6427 6428
}

P
Peter Zijlstra 已提交
6429
static void cpu_clock_event_start(struct perf_event *event, int flags)
6430
{
P
Peter Zijlstra 已提交
6431
	local64_set(&event->hw.prev_count, local_clock());
6432 6433 6434
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6435
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6436
{
6437 6438 6439
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6440

P
Peter Zijlstra 已提交
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6454 6455 6456 6457
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6458

6459 6460 6461 6462 6463 6464 6465 6466
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6467 6468 6469 6470 6471 6472
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6473 6474
	perf_swevent_init_hrtimer(event);

6475
	return 0;
6476 6477
}

6478
static struct pmu perf_cpu_clock = {
6479 6480
	.task_ctx_nr	= perf_sw_context,

6481
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6482 6483 6484 6485
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6486 6487 6488 6489 6490 6491 6492 6493
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6494
{
6495 6496
	u64 prev;
	s64 delta;
6497

6498 6499 6500 6501
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6502

P
Peter Zijlstra 已提交
6503
static void task_clock_event_start(struct perf_event *event, int flags)
6504
{
P
Peter Zijlstra 已提交
6505
	local64_set(&event->hw.prev_count, event->ctx->time);
6506 6507 6508
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6509
static void task_clock_event_stop(struct perf_event *event, int flags)
6510 6511 6512
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6513 6514 6515 6516 6517 6518
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6519

P
Peter Zijlstra 已提交
6520 6521 6522 6523 6524 6525
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6526 6527 6528 6529
}

static void task_clock_event_read(struct perf_event *event)
{
6530 6531 6532
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6533 6534 6535 6536 6537

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6538
{
6539 6540 6541 6542 6543 6544
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6545 6546 6547 6548 6549 6550
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6551 6552
	perf_swevent_init_hrtimer(event);

6553
	return 0;
L
Li Zefan 已提交
6554 6555
}

6556
static struct pmu perf_task_clock = {
6557 6558
	.task_ctx_nr	= perf_sw_context,

6559
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6560 6561 6562 6563
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6564 6565
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
6566

P
Peter Zijlstra 已提交
6567
static void perf_pmu_nop_void(struct pmu *pmu)
6568 6569
{
}
L
Li Zefan 已提交
6570

P
Peter Zijlstra 已提交
6571
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6572
{
P
Peter Zijlstra 已提交
6573
	return 0;
L
Li Zefan 已提交
6574 6575
}

P
Peter Zijlstra 已提交
6576
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6577
{
P
Peter Zijlstra 已提交
6578
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6579 6580
}

P
Peter Zijlstra 已提交
6581 6582 6583 6584 6585
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6586

P
Peter Zijlstra 已提交
6587
static void perf_pmu_cancel_txn(struct pmu *pmu)
6588
{
P
Peter Zijlstra 已提交
6589
	perf_pmu_enable(pmu);
6590 6591
}

6592 6593
static int perf_event_idx_default(struct perf_event *event)
{
6594
	return 0;
6595 6596
}

P
Peter Zijlstra 已提交
6597 6598 6599 6600
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6601
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6602
{
P
Peter Zijlstra 已提交
6603
	struct pmu *pmu;
6604

P
Peter Zijlstra 已提交
6605 6606
	if (ctxn < 0)
		return NULL;
6607

P
Peter Zijlstra 已提交
6608 6609 6610 6611
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6612

P
Peter Zijlstra 已提交
6613
	return NULL;
6614 6615
}

6616
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6617
{
6618 6619 6620 6621 6622 6623 6624
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6625 6626
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6627 6628 6629 6630 6631 6632
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6633

P
Peter Zijlstra 已提交
6634
	mutex_lock(&pmus_lock);
6635
	/*
P
Peter Zijlstra 已提交
6636
	 * Like a real lame refcount.
6637
	 */
6638 6639 6640
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6641
			goto out;
6642
		}
P
Peter Zijlstra 已提交
6643
	}
6644

6645
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6646 6647
out:
	mutex_unlock(&pmus_lock);
6648
}
P
Peter Zijlstra 已提交
6649
static struct idr pmu_idr;
6650

P
Peter Zijlstra 已提交
6651 6652 6653 6654 6655 6656 6657
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6658
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6659

6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6703
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6704

6705 6706 6707 6708
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6709
};
6710
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6711 6712 6713 6714

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6715
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6731
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6752
static struct lock_class_key cpuctx_mutex;
6753
static struct lock_class_key cpuctx_lock;
6754

6755
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6756
{
P
Peter Zijlstra 已提交
6757
	int cpu, ret;
6758

6759
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6760 6761 6762 6763
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6764

P
Peter Zijlstra 已提交
6765 6766 6767 6768 6769 6770
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6771 6772 6773
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6774 6775 6776 6777 6778
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6779 6780 6781 6782 6783 6784
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6785
skip_type:
P
Peter Zijlstra 已提交
6786 6787 6788
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6789

W
Wei Yongjun 已提交
6790
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6791 6792
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6793
		goto free_dev;
6794

P
Peter Zijlstra 已提交
6795 6796 6797 6798
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6799
		__perf_event_init_context(&cpuctx->ctx);
6800
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6801
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
6802
		cpuctx->ctx.pmu = pmu;
6803 6804 6805

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6806
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6807
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6808
	}
6809

P
Peter Zijlstra 已提交
6810
got_cpu_context:
P
Peter Zijlstra 已提交
6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6825
		}
6826
	}
6827

P
Peter Zijlstra 已提交
6828 6829 6830 6831 6832
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6833 6834 6835
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6836
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6837 6838
	ret = 0;
unlock:
6839 6840
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6841
	return ret;
P
Peter Zijlstra 已提交
6842

P
Peter Zijlstra 已提交
6843 6844 6845 6846
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6847 6848 6849 6850
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6851 6852 6853
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6854
}
6855
EXPORT_SYMBOL_GPL(perf_pmu_register);
6856

6857
void perf_pmu_unregister(struct pmu *pmu)
6858
{
6859 6860 6861
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6862

6863
	/*
P
Peter Zijlstra 已提交
6864 6865
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6866
	 */
6867
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6868
	synchronize_rcu();
6869

P
Peter Zijlstra 已提交
6870
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6871 6872
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6873 6874
	device_del(pmu->dev);
	put_device(pmu->dev);
6875
	free_pmu_context(pmu);
6876
}
6877
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6878

6879 6880 6881 6882
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6883
	int ret;
6884 6885

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6886 6887 6888 6889

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6890
	if (pmu) {
6891 6892 6893 6894
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
6895
		event->pmu = pmu;
6896 6897 6898
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6899
		goto unlock;
6900
	}
P
Peter Zijlstra 已提交
6901

6902
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6903 6904 6905 6906
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
6907
		event->pmu = pmu;
6908
		ret = pmu->event_init(event);
6909
		if (!ret)
P
Peter Zijlstra 已提交
6910
			goto unlock;
6911

6912 6913
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6914
			goto unlock;
6915
		}
6916
	}
P
Peter Zijlstra 已提交
6917 6918
	pmu = ERR_PTR(-ENOENT);
unlock:
6919
	srcu_read_unlock(&pmus_srcu, idx);
6920

6921
	return pmu;
6922 6923
}

6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6937 6938
static void account_event(struct perf_event *event)
{
6939 6940 6941
	if (event->parent)
		return;

6942 6943 6944 6945 6946 6947 6948 6949
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6950 6951 6952 6953
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6954
	if (has_branch_stack(event))
6955
		static_key_slow_inc(&perf_sched_events.key);
6956
	if (is_cgroup_event(event))
6957
		static_key_slow_inc(&perf_sched_events.key);
6958 6959

	account_event_cpu(event, event->cpu);
6960 6961
}

T
Thomas Gleixner 已提交
6962
/*
6963
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6964
 */
6965
static struct perf_event *
6966
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6967 6968 6969
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6970 6971
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6972
{
P
Peter Zijlstra 已提交
6973
	struct pmu *pmu;
6974 6975
	struct perf_event *event;
	struct hw_perf_event *hwc;
6976
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6977

6978 6979 6980 6981 6982
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6983
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6984
	if (!event)
6985
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6986

6987
	/*
6988
	 * Single events are their own group leaders, with an
6989 6990 6991
	 * empty sibling list:
	 */
	if (!group_leader)
6992
		group_leader = event;
6993

6994 6995
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6996

6997 6998 6999
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7000
	INIT_LIST_HEAD(&event->rb_entry);
7001
	INIT_LIST_HEAD(&event->active_entry);
7002 7003
	INIT_HLIST_NODE(&event->hlist_entry);

7004

7005
	init_waitqueue_head(&event->waitq);
7006
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7007

7008
	mutex_init(&event->mmap_mutex);
7009

7010
	atomic_long_set(&event->refcount, 1);
7011 7012 7013 7014 7015
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7016

7017
	event->parent		= parent_event;
7018

7019
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7020
	event->id		= atomic64_inc_return(&perf_event_id);
7021

7022
	event->state		= PERF_EVENT_STATE_INACTIVE;
7023

7024 7025
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
7026 7027 7028

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
7029 7030 7031 7032
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
7033
		else if (attr->type == PERF_TYPE_BREAKPOINT)
7034 7035 7036 7037
			event->hw.bp_target = task;
#endif
	}

7038
	if (!overflow_handler && parent_event) {
7039
		overflow_handler = parent_event->overflow_handler;
7040 7041
		context = parent_event->overflow_handler_context;
	}
7042

7043
	event->overflow_handler	= overflow_handler;
7044
	event->overflow_handler_context = context;
7045

J
Jiri Olsa 已提交
7046
	perf_event__state_init(event);
7047

7048
	pmu = NULL;
7049

7050
	hwc = &event->hw;
7051
	hwc->sample_period = attr->sample_period;
7052
	if (attr->freq && attr->sample_freq)
7053
		hwc->sample_period = 1;
7054
	hwc->last_period = hwc->sample_period;
7055

7056
	local64_set(&hwc->period_left, hwc->sample_period);
7057

7058
	/*
7059
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7060
	 */
7061
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7062
		goto err_ns;
7063

7064
	pmu = perf_init_event(event);
7065
	if (!pmu)
7066 7067
		goto err_ns;
	else if (IS_ERR(pmu)) {
7068
		err = PTR_ERR(pmu);
7069
		goto err_ns;
I
Ingo Molnar 已提交
7070
	}
7071

7072
	if (!event->parent) {
7073 7074
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7075 7076
			if (err)
				goto err_pmu;
7077
		}
7078
	}
7079

7080
	return event;
7081 7082 7083 7084

err_pmu:
	if (event->destroy)
		event->destroy(event);
7085
	module_put(pmu->module);
7086 7087 7088 7089 7090 7091
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7092 7093
}

7094 7095
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7096 7097
{
	u32 size;
7098
	int ret;
7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7123 7124 7125
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7126 7127
	 */
	if (size > sizeof(*attr)) {
7128 7129 7130
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7131

7132 7133
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7134

7135
		for (; addr < end; addr++) {
7136 7137 7138 7139 7140 7141
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7142
		size = sizeof(*attr);
7143 7144 7145 7146 7147 7148
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7149
	if (attr->__reserved_1)
7150 7151 7152 7153 7154 7155 7156 7157
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7186 7187
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7188 7189
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7190
	}
7191

7192
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7193
		ret = perf_reg_validate(attr->sample_regs_user);
7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7212

7213 7214
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
7215 7216 7217 7218 7219 7220 7221 7222 7223
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7224 7225
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7226
{
7227
	struct ring_buffer *rb = NULL;
7228 7229
	int ret = -EINVAL;

7230
	if (!output_event)
7231 7232
		goto set;

7233 7234
	/* don't allow circular references */
	if (event == output_event)
7235 7236
		goto out;

7237 7238 7239 7240 7241 7242 7243
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7244
	 * If its not a per-cpu rb, it must be the same task.
7245 7246 7247 7248
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7249
set:
7250
	mutex_lock(&event->mmap_mutex);
7251 7252 7253
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7254

7255
	if (output_event) {
7256 7257 7258
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7259
			goto unlock;
7260 7261
	}

7262
	ring_buffer_attach(event, rb);
7263

7264
	ret = 0;
7265 7266 7267
unlock:
	mutex_unlock(&event->mmap_mutex);

7268 7269 7270 7271
out:
	return ret;
}

T
Thomas Gleixner 已提交
7272
/**
7273
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7274
 *
7275
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7276
 * @pid:		target pid
I
Ingo Molnar 已提交
7277
 * @cpu:		target cpu
7278
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7279
 */
7280 7281
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7282
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7283
{
7284 7285
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7286 7287 7288
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
7289
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7290
	struct task_struct *task = NULL;
7291
	struct pmu *pmu;
7292
	int event_fd;
7293
	int move_group = 0;
7294
	int err;
7295
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7296

7297
	/* for future expandability... */
S
Stephane Eranian 已提交
7298
	if (flags & ~PERF_FLAG_ALL)
7299 7300
		return -EINVAL;

7301 7302 7303
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7304

7305 7306 7307 7308 7309
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7310
	if (attr.freq) {
7311
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7312
			return -EINVAL;
7313 7314 7315
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7316 7317
	}

S
Stephane Eranian 已提交
7318 7319 7320 7321 7322 7323 7324 7325 7326
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7327 7328 7329 7330
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7331 7332 7333
	if (event_fd < 0)
		return event_fd;

7334
	if (group_fd != -1) {
7335 7336
		err = perf_fget_light(group_fd, &group);
		if (err)
7337
			goto err_fd;
7338
		group_leader = group.file->private_data;
7339 7340 7341 7342 7343 7344
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7345
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7346 7347 7348 7349 7350 7351 7352
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7353 7354 7355 7356 7357 7358
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7359 7360
	get_online_cpus();

7361 7362
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7363 7364
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7365
		goto err_cpus;
7366 7367
	}

S
Stephane Eranian 已提交
7368 7369
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7370 7371
		if (err) {
			__free_event(event);
7372
			goto err_cpus;
7373
		}
S
Stephane Eranian 已提交
7374 7375
	}

7376 7377 7378 7379 7380 7381 7382
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

7383 7384
	account_event(event);

7385 7386 7387 7388 7389
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7413 7414 7415 7416

	/*
	 * Get the target context (task or percpu):
	 */
7417
	ctx = find_get_context(pmu, task, event->cpu);
7418 7419
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7420
		goto err_alloc;
7421 7422
	}

7423 7424 7425 7426 7427
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7428
	/*
7429
	 * Look up the group leader (we will attach this event to it):
7430
	 */
7431
	if (group_leader) {
7432
		err = -EINVAL;
7433 7434

		/*
I
Ingo Molnar 已提交
7435 7436 7437 7438
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7439
			goto err_context;
I
Ingo Molnar 已提交
7440 7441 7442
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7443
		 */
7444
		if (move_group) {
7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
7458 7459 7460 7461 7462 7463
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7464 7465 7466
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7467
		if (attr.exclusive || attr.pinned)
7468
			goto err_context;
7469 7470 7471 7472 7473
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7474
			goto err_context;
7475
	}
T
Thomas Gleixner 已提交
7476

7477 7478
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7479 7480
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7481
		goto err_context;
7482
	}
7483

7484 7485 7486 7487
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7488
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
7489 7490 7491 7492 7493 7494 7495

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7496 7497
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7498
			perf_remove_from_context(sibling, false);
J
Jiri Olsa 已提交
7499
			perf_event__state_init(sibling);
7500 7501 7502 7503
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7504
	}
7505

7506
	WARN_ON_ONCE(ctx->parent_ctx);
7507
	mutex_lock(&ctx->mutex);
7508 7509

	if (move_group) {
7510
		synchronize_rcu();
7511
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
7512 7513 7514
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7515
			perf_install_in_context(ctx, sibling, sibling->cpu);
7516 7517 7518 7519
			get_ctx(ctx);
		}
	}

7520
	perf_install_in_context(ctx, event, event->cpu);
7521
	perf_unpin_context(ctx);
7522
	mutex_unlock(&ctx->mutex);
7523

7524 7525
	put_online_cpus();

7526
	event->owner = current;
P
Peter Zijlstra 已提交
7527

7528 7529 7530
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7531

7532 7533 7534 7535
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7536
	perf_event__id_header_size(event);
7537

7538 7539 7540 7541 7542 7543
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7544
	fdput(group);
7545 7546
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7547

7548
err_context:
7549
	perf_unpin_context(ctx);
7550
	put_ctx(ctx);
7551
err_alloc:
7552
	free_event(event);
7553
err_cpus:
7554
	put_online_cpus();
7555
err_task:
P
Peter Zijlstra 已提交
7556 7557
	if (task)
		put_task_struct(task);
7558
err_group_fd:
7559
	fdput(group);
7560 7561
err_fd:
	put_unused_fd(event_fd);
7562
	return err;
T
Thomas Gleixner 已提交
7563 7564
}

7565 7566 7567 7568 7569
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7570
 * @task: task to profile (NULL for percpu)
7571 7572 7573
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7574
				 struct task_struct *task,
7575 7576
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7577 7578
{
	struct perf_event_context *ctx;
7579
	struct perf_event *event;
7580
	int err;
7581

7582 7583 7584
	/*
	 * Get the target context (task or percpu):
	 */
7585

7586 7587
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7588 7589 7590 7591
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7592

7593 7594 7595
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

7596 7597
	account_event(event);

M
Matt Helsley 已提交
7598
	ctx = find_get_context(event->pmu, task, cpu);
7599 7600
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7601
		goto err_free;
7602
	}
7603 7604 7605 7606

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7607
	perf_unpin_context(ctx);
7608 7609 7610 7611
	mutex_unlock(&ctx->mutex);

	return event;

7612 7613 7614
err_free:
	free_event(event);
err:
7615
	return ERR_PTR(err);
7616
}
7617
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7618

7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
7632
		perf_remove_from_context(event, false);
7633
		unaccount_event_cpu(event, src_cpu);
7634
		put_ctx(src_ctx);
7635
		list_add(&event->migrate_entry, &events);
7636 7637 7638 7639 7640 7641
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
7642 7643
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7644 7645
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7646
		account_event_cpu(event, dst_cpu);
7647 7648 7649 7650 7651 7652 7653
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7654
static void sync_child_event(struct perf_event *child_event,
7655
			       struct task_struct *child)
7656
{
7657
	struct perf_event *parent_event = child_event->parent;
7658
	u64 child_val;
7659

7660 7661
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7662

P
Peter Zijlstra 已提交
7663
	child_val = perf_event_count(child_event);
7664 7665 7666 7667

	/*
	 * Add back the child's count to the parent's count:
	 */
7668
	atomic64_add(child_val, &parent_event->child_count);
7669 7670 7671 7672
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7673 7674

	/*
7675
	 * Remove this event from the parent's list
7676
	 */
7677 7678 7679 7680
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7681

7682 7683 7684 7685 7686 7687
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

7688
	/*
7689
	 * Release the parent event, if this was the last
7690 7691
	 * reference to it.
	 */
7692
	put_event(parent_event);
7693 7694
}

7695
static void
7696 7697
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7698
			 struct task_struct *child)
7699
{
7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
7713

7714
	/*
7715
	 * It can happen that the parent exits first, and has events
7716
	 * that are still around due to the child reference. These
7717
	 * events need to be zapped.
7718
	 */
7719
	if (child_event->parent) {
7720 7721
		sync_child_event(child_event, child);
		free_event(child_event);
7722 7723 7724
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
7725
	}
7726 7727
}

P
Peter Zijlstra 已提交
7728
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7729
{
7730
	struct perf_event *child_event, *next;
7731
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
7732
	unsigned long flags;
7733

P
Peter Zijlstra 已提交
7734
	if (likely(!child->perf_event_ctxp[ctxn])) {
7735
		perf_event_task(child, NULL, 0);
7736
		return;
P
Peter Zijlstra 已提交
7737
	}
7738

7739
	local_irq_save(flags);
7740 7741 7742 7743 7744 7745
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7746
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7747 7748 7749

	/*
	 * Take the context lock here so that if find_get_context is
7750
	 * reading child->perf_event_ctxp, we wait until it has
7751 7752
	 * incremented the context's refcount before we do put_ctx below.
	 */
7753
	raw_spin_lock(&child_ctx->lock);
7754
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7755
	child->perf_event_ctxp[ctxn] = NULL;
7756

7757 7758 7759
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7760
	 * the events from it.
7761
	 */
7762
	clone_ctx = unclone_ctx(child_ctx);
7763
	update_context_time(child_ctx);
7764
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7765

7766 7767
	if (clone_ctx)
		put_ctx(clone_ctx);
7768

P
Peter Zijlstra 已提交
7769
	/*
7770 7771 7772
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7773
	 */
7774
	perf_event_task(child, child_ctx, 0);
7775

7776 7777 7778
	/*
	 * We can recurse on the same lock type through:
	 *
7779 7780
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7781 7782
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7783 7784 7785
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7786
	mutex_lock(&child_ctx->mutex);
7787

7788
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7789
		__perf_event_exit_task(child_event, child_ctx, child);
7790

7791 7792 7793
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7794 7795
}

P
Peter Zijlstra 已提交
7796 7797 7798 7799 7800
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7801
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7802 7803
	int ctxn;

P
Peter Zijlstra 已提交
7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7819 7820 7821 7822
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7835
	put_event(parent);
7836

P
Peter Zijlstra 已提交
7837
	raw_spin_lock_irq(&ctx->lock);
7838
	perf_group_detach(event);
7839
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
7840
	raw_spin_unlock_irq(&ctx->lock);
7841 7842 7843
	free_event(event);
}

7844
/*
P
Peter Zijlstra 已提交
7845
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7846
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
7847 7848 7849
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
7850
 */
7851
void perf_event_free_task(struct task_struct *task)
7852
{
P
Peter Zijlstra 已提交
7853
	struct perf_event_context *ctx;
7854
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7855
	int ctxn;
7856

P
Peter Zijlstra 已提交
7857 7858 7859 7860
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7861

P
Peter Zijlstra 已提交
7862
		mutex_lock(&ctx->mutex);
7863
again:
P
Peter Zijlstra 已提交
7864 7865 7866
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7867

P
Peter Zijlstra 已提交
7868 7869 7870
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7871

P
Peter Zijlstra 已提交
7872 7873 7874
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7875

P
Peter Zijlstra 已提交
7876
		mutex_unlock(&ctx->mutex);
7877

P
Peter Zijlstra 已提交
7878 7879
		put_ctx(ctx);
	}
7880 7881
}

7882 7883 7884 7885 7886 7887 7888 7889
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
7901
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
7902
	struct perf_event *child_event;
7903
	unsigned long flags;
P
Peter Zijlstra 已提交
7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7916
					   child,
P
Peter Zijlstra 已提交
7917
					   group_leader, parent_event,
7918
				           NULL, NULL);
P
Peter Zijlstra 已提交
7919 7920
	if (IS_ERR(child_event))
		return child_event;
7921

7922 7923
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
7924 7925 7926 7927
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7928 7929 7930 7931 7932 7933 7934
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
7935
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7952 7953
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7954

7955 7956 7957 7958
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7959
	perf_event__id_header_size(child_event);
7960

P
Peter Zijlstra 已提交
7961 7962 7963
	/*
	 * Link it up in the child's context:
	 */
7964
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7965
	add_event_to_ctx(child_event, child_ctx);
7966
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
8000 8001 8002 8003 8004
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
8005
		   struct task_struct *child, int ctxn,
8006 8007 8008
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
8009
	struct perf_event_context *child_ctx;
8010 8011 8012 8013

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
8014 8015
	}

8016
	child_ctx = child->perf_event_ctxp[ctxn];
8017 8018 8019 8020 8021 8022 8023
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
8024

8025
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8026 8027
		if (!child_ctx)
			return -ENOMEM;
8028

P
Peter Zijlstra 已提交
8029
		child->perf_event_ctxp[ctxn] = child_ctx;
8030 8031 8032 8033 8034 8035 8036 8037 8038
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
8039 8040
}

8041
/*
8042
 * Initialize the perf_event context in task_struct
8043
 */
8044
static int perf_event_init_context(struct task_struct *child, int ctxn)
8045
{
8046
	struct perf_event_context *child_ctx, *parent_ctx;
8047 8048
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
8049
	struct task_struct *parent = current;
8050
	int inherited_all = 1;
8051
	unsigned long flags;
8052
	int ret = 0;
8053

P
Peter Zijlstra 已提交
8054
	if (likely(!parent->perf_event_ctxp[ctxn]))
8055 8056
		return 0;

8057
	/*
8058 8059
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
8060
	 */
P
Peter Zijlstra 已提交
8061
	parent_ctx = perf_pin_task_context(parent, ctxn);
8062 8063
	if (!parent_ctx)
		return 0;
8064

8065 8066 8067 8068 8069 8070 8071
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

8072 8073 8074 8075
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
8076
	mutex_lock(&parent_ctx->mutex);
8077 8078 8079 8080 8081

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
8082
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
8083 8084
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8085 8086 8087
		if (ret)
			break;
	}
8088

8089 8090 8091 8092 8093 8094 8095 8096 8097
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

8098
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
8099 8100
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8101
		if (ret)
8102
			break;
8103 8104
	}

8105 8106 8107
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
8108
	child_ctx = child->perf_event_ctxp[ctxn];
8109

8110
	if (child_ctx && inherited_all) {
8111 8112 8113
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
8114 8115 8116
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
8117
		 */
P
Peter Zijlstra 已提交
8118
		cloned_ctx = parent_ctx->parent_ctx;
8119 8120
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
8121
			child_ctx->parent_gen = parent_ctx->parent_gen;
8122 8123 8124 8125 8126
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
8127 8128
	}

P
Peter Zijlstra 已提交
8129
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8130
	mutex_unlock(&parent_ctx->mutex);
8131

8132
	perf_unpin_context(parent_ctx);
8133
	put_ctx(parent_ctx);
8134

8135
	return ret;
8136 8137
}

P
Peter Zijlstra 已提交
8138 8139 8140 8141 8142 8143 8144
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

8145 8146 8147 8148
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
8149 8150
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
8151 8152
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
8153
			return ret;
P
Peter Zijlstra 已提交
8154
		}
P
Peter Zijlstra 已提交
8155 8156 8157 8158 8159
	}

	return 0;
}

8160 8161
static void __init perf_event_init_all_cpus(void)
{
8162
	struct swevent_htable *swhash;
8163 8164 8165
	int cpu;

	for_each_possible_cpu(cpu) {
8166 8167
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
8168
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
8169 8170 8171
	}
}

8172
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
8173
{
P
Peter Zijlstra 已提交
8174
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
8175

8176
	mutex_lock(&swhash->hlist_mutex);
8177
	swhash->online = true;
8178
	if (swhash->hlist_refcount > 0) {
8179 8180
		struct swevent_hlist *hlist;

8181 8182 8183
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8184
	}
8185
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8186 8187
}

P
Peter Zijlstra 已提交
8188
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8189
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
8190
{
8191 8192 8193 8194 8195 8196 8197
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
8198
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
8199
{
8200
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
8201
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
8202

P
Peter Zijlstra 已提交
8203
	perf_pmu_rotate_stop(ctx->pmu);
8204

P
Peter Zijlstra 已提交
8205
	rcu_read_lock();
8206 8207
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
8208
	rcu_read_unlock();
T
Thomas Gleixner 已提交
8209
}
P
Peter Zijlstra 已提交
8210 8211 8212 8213 8214 8215 8216 8217 8218

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8219
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
8220 8221 8222 8223 8224 8225 8226 8227

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

8228
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
8229
{
8230
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8231

P
Peter Zijlstra 已提交
8232 8233
	perf_event_exit_cpu_context(cpu);

8234
	mutex_lock(&swhash->hlist_mutex);
8235
	swhash->online = false;
8236 8237
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8238 8239
}
#else
8240
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
8241 8242
#endif

P
Peter Zijlstra 已提交
8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

8263
static int
T
Thomas Gleixner 已提交
8264 8265 8266 8267
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

8268
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
8269 8270

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
8271
	case CPU_DOWN_FAILED:
8272
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
8273 8274
		break;

P
Peter Zijlstra 已提交
8275
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
8276
	case CPU_DOWN_PREPARE:
8277
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
8278 8279 8280 8281 8282 8283 8284 8285
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

8286
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
8287
{
8288 8289
	int ret;

P
Peter Zijlstra 已提交
8290 8291
	idr_init(&pmu_idr);

8292
	perf_event_init_all_cpus();
8293
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
8294 8295 8296
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
8297 8298
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
8299
	register_reboot_notifier(&perf_reboot_notifier);
8300 8301 8302

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8303 8304 8305

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
8306 8307 8308 8309 8310 8311 8312

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8313
}
P
Peter Zijlstra 已提交
8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8342 8343

#ifdef CONFIG_CGROUP_PERF
8344 8345
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8346 8347 8348
{
	struct perf_cgroup *jc;

8349
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8362
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8363
{
8364 8365
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8377 8378
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8379
{
8380 8381
	struct task_struct *task;

8382
	cgroup_taskset_for_each(task, tset)
8383
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8384 8385
}

8386 8387
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8388
			     struct task_struct *task)
S
Stephane Eranian 已提交
8389 8390 8391 8392 8393 8394 8395 8396 8397
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8398
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8399 8400
}

8401
struct cgroup_subsys perf_event_cgrp_subsys = {
8402 8403
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8404
	.exit		= perf_cgroup_exit,
8405
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8406 8407
};
#endif /* CONFIG_CGROUP_PERF */