core.c 187.2 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
42
#include <linux/module.h>
T
Thomas Gleixner 已提交
43

44 45
#include "internal.h"

46 47
#include <asm/irq_regs.h>

48
struct remote_function_call {
49 50 51 52
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
86 87 88 89
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
110 111 112 113
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
114 115 116 117 118 119 120
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
121 122
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
123 124
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
125

126 127 128 129 130 131 132
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

133 134 135 136 137 138
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
139 140 141 142
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
143
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
144
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
145
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
146

147 148 149
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
150
static atomic_t nr_freq_events __read_mostly;
151

P
Peter Zijlstra 已提交
152 153 154 155
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

156
/*
157
 * perf event paranoia level:
158 159
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
160
 *   1 - disallow cpu events for unpriv
161
 *   2 - disallow kernel profiling for unpriv
162
 */
163
int sysctl_perf_event_paranoid __read_mostly = 1;
164

165 166
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
167 168

/*
169
 * max perf event sample rate
170
 */
171 172 173 174 175 176 177 178 179
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
180 181
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
182 183 184 185 186 187

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
188
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
189
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
190
}
P
Peter Zijlstra 已提交
191

192 193
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
194 195 196 197
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
198
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
199 200 201 202 203

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
222 223 224

	return 0;
}
225

226 227 228 229 230 231 232
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
233
static DEFINE_PER_CPU(u64, running_sample_length);
234

235
static void perf_duration_warn(struct irq_work *w)
236
{
237
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
238
	u64 avg_local_sample_len;
239
	u64 local_samples_len;
240 241 242 243 244 245 246

	local_samples_len = __get_cpu_var(running_sample_length);
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
247
			avg_local_sample_len, allowed_ns >> 1,
248 249 250 251 252 253 254
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
255
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
256 257
	u64 avg_local_sample_len;
	u64 local_samples_len;
258

P
Peter Zijlstra 已提交
259
	if (allowed_ns == 0)
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
275
	if (avg_local_sample_len <= allowed_ns)
276 277 278 279 280 281 282 283 284 285
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
286

287 288 289 290 291 292
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
293 294
}

295
static atomic64_t perf_event_id;
296

297 298 299 300
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
301 302 303 304 305
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
306

307
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
308

309
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
310
{
311
	return "pmu";
T
Thomas Gleixner 已提交
312 313
}

314 315 316 317 318
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
319 320 321 322 323 324
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
341 342
#ifdef CONFIG_CGROUP_PERF

343 344 345 346 347 348 349 350 351 352 353
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
354
	struct perf_cgroup_info	__percpu *info;
355 356
};

357 358 359 360 361
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
362 363 364
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
365
	return container_of(task_css(task, perf_event_cgrp_id),
366
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
367 368 369 370 371 372 373 374
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
439 440
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
441
	/*
442 443
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
444
	 */
445
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
446 447
		return;

448 449 450 451 452 453
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
454 455 456
}

static inline void
457 458
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
459 460 461 462
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

463 464 465 466 467 468
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
469 470 471 472
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
473
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
506 507
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
508 509 510 511 512 513 514 515 516

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
517 518
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
519 520 521 522 523 524 525 526 527 528 529

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
530
				WARN_ON_ONCE(cpuctx->cgrp);
531 532 533 534
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
535 536 537 538
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
539 540
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
541 542 543 544 545 546 547 548
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

549 550
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
551
{
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
574 575
}

576 577
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
578
{
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
597 598 599 600 601 602 603 604
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
605 606
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
607

608
	if (!f.file)
S
Stephane Eranian 已提交
609 610
		return -EBADF;

611
	css = css_tryget_from_dir(f.file->f_dentry, &perf_event_cgrp_subsys);
612 613 614 615
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
629
out:
630
	fdput(f);
S
Stephane Eranian 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

704 705
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
706 707 708
{
}

709 710
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
711 712 713 714 715 716 717 718 719 720 721
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
722 723
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
817
	int timer;
818 819 820 821 822

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

823 824 825 826 827 828 829 830 831
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
854
void perf_pmu_disable(struct pmu *pmu)
855
{
P
Peter Zijlstra 已提交
856 857 858
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
859 860
}

P
Peter Zijlstra 已提交
861
void perf_pmu_enable(struct pmu *pmu)
862
{
P
Peter Zijlstra 已提交
863 864 865
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
866 867
}

868 869 870 871 872 873 874
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
875
static void perf_pmu_rotate_start(struct pmu *pmu)
876
{
P
Peter Zijlstra 已提交
877
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
878
	struct list_head *head = &__get_cpu_var(rotation_list);
879

880
	WARN_ON(!irqs_disabled());
881

882
	if (list_empty(&cpuctx->rotation_list))
883
		list_add(&cpuctx->rotation_list, head);
884 885
}

886
static void get_ctx(struct perf_event_context *ctx)
887
{
888
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
889 890
}

891
static void put_ctx(struct perf_event_context *ctx)
892
{
893 894 895
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
896 897
		if (ctx->task)
			put_task_struct(ctx->task);
898
		kfree_rcu(ctx, rcu_head);
899
	}
900 901
}

902
static void unclone_ctx(struct perf_event_context *ctx)
903 904 905 906 907
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
908
	ctx->generation++;
909 910
}

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

933
/*
934
 * If we inherit events we want to return the parent event id
935 936
 * to userspace.
 */
937
static u64 primary_event_id(struct perf_event *event)
938
{
939
	u64 id = event->id;
940

941 942
	if (event->parent)
		id = event->parent->id;
943 944 945 946

	return id;
}

947
/*
948
 * Get the perf_event_context for a task and lock it.
949 950 951
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
952
static struct perf_event_context *
P
Peter Zijlstra 已提交
953
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
954
{
955
	struct perf_event_context *ctx;
956

P
Peter Zijlstra 已提交
957
retry:
958 959 960 961 962 963 964 965 966 967 968
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
969
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
970 971 972 973
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
974
		 * perf_event_task_sched_out, though the
975 976 977 978 979 980
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
981
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
982
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
983
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
984 985
			rcu_read_unlock();
			preempt_enable();
986 987
			goto retry;
		}
988 989

		if (!atomic_inc_not_zero(&ctx->refcount)) {
990
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
991 992
			ctx = NULL;
		}
993 994
	}
	rcu_read_unlock();
995
	preempt_enable();
996 997 998 999 1000 1001 1002 1003
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1004 1005
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1006
{
1007
	struct perf_event_context *ctx;
1008 1009
	unsigned long flags;

P
Peter Zijlstra 已提交
1010
	ctx = perf_lock_task_context(task, ctxn, &flags);
1011 1012
	if (ctx) {
		++ctx->pin_count;
1013
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1014 1015 1016 1017
	}
	return ctx;
}

1018
static void perf_unpin_context(struct perf_event_context *ctx)
1019 1020 1021
{
	unsigned long flags;

1022
	raw_spin_lock_irqsave(&ctx->lock, flags);
1023
	--ctx->pin_count;
1024
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1025 1026
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1038 1039 1040
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1041 1042 1043 1044

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1045 1046 1047
	return ctx ? ctx->time : 0;
}

1048 1049
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1050
 * The caller of this function needs to hold the ctx->lock.
1051 1052 1053 1054 1055 1056 1057 1058 1059
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1071
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1072 1073
	else if (ctx->is_active)
		run_end = ctx->time;
1074 1075 1076 1077
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1078 1079 1080 1081

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1082
		run_end = perf_event_time(event);
1083 1084

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1085

1086 1087
}

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1100 1101 1102 1103 1104 1105 1106 1107 1108
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1109
/*
1110
 * Add a event from the lists for its context.
1111 1112
 * Must be called with ctx->mutex and ctx->lock held.
 */
1113
static void
1114
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1115
{
1116 1117
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1118 1119

	/*
1120 1121 1122
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1123
	 */
1124
	if (event->group_leader == event) {
1125 1126
		struct list_head *list;

1127 1128 1129
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1130 1131
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1132
	}
P
Peter Zijlstra 已提交
1133

1134
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1135 1136
		ctx->nr_cgroups++;

1137 1138 1139
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1140
	list_add_rcu(&event->event_entry, &ctx->event_list);
1141
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1142
		perf_pmu_rotate_start(ctx->pmu);
1143 1144
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1145
		ctx->nr_stat++;
1146 1147

	ctx->generation++;
1148 1149
}

J
Jiri Olsa 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1198 1199 1200 1201 1202 1203
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1204 1205 1206
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1207 1208 1209
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1210 1211 1212
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1213 1214 1215
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1216 1217 1218 1219 1220 1221 1222 1223 1224
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1225 1226 1227 1228 1229 1230
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1231 1232 1233
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1234 1235 1236 1237 1238 1239 1240 1241 1242
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1243
	event->id_header_size = size;
1244 1245
}

1246 1247
static void perf_group_attach(struct perf_event *event)
{
1248
	struct perf_event *group_leader = event->group_leader, *pos;
1249

P
Peter Zijlstra 已提交
1250 1251 1252 1253 1254 1255
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1267 1268 1269 1270 1271

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1272 1273
}

1274
/*
1275
 * Remove a event from the lists for its context.
1276
 * Must be called with ctx->mutex and ctx->lock held.
1277
 */
1278
static void
1279
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1280
{
1281
	struct perf_cpu_context *cpuctx;
1282 1283 1284 1285
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1286
		return;
1287 1288 1289

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1290
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1291
		ctx->nr_cgroups--;
1292 1293 1294 1295 1296 1297 1298 1299 1300
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1301

1302 1303 1304
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1305 1306
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1307
		ctx->nr_stat--;
1308

1309
	list_del_rcu(&event->event_entry);
1310

1311 1312
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1313

1314
	update_group_times(event);
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1325 1326

	ctx->generation++;
1327 1328
}

1329
static void perf_group_detach(struct perf_event *event)
1330 1331
{
	struct perf_event *sibling, *tmp;
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1348
		goto out;
1349 1350 1351 1352
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1353

1354
	/*
1355 1356
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1357
	 * to whatever list we are on.
1358
	 */
1359
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1360 1361
		if (list)
			list_move_tail(&sibling->group_entry, list);
1362
		sibling->group_leader = sibling;
1363 1364 1365

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1366
	}
1367 1368 1369 1370 1371 1372

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1373 1374
}

1375 1376 1377
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1378 1379
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1380 1381
}

1382 1383
static void
event_sched_out(struct perf_event *event,
1384
		  struct perf_cpu_context *cpuctx,
1385
		  struct perf_event_context *ctx)
1386
{
1387
	u64 tstamp = perf_event_time(event);
1388 1389 1390 1391 1392 1393 1394 1395 1396
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1397
		delta = tstamp - event->tstamp_stopped;
1398
		event->tstamp_running += delta;
1399
		event->tstamp_stopped = tstamp;
1400 1401
	}

1402
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1403
		return;
1404

1405 1406
	perf_pmu_disable(event->pmu);

1407 1408 1409 1410
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1411
	}
1412
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1413
	event->pmu->del(event, 0);
1414
	event->oncpu = -1;
1415

1416
	if (!is_software_event(event))
1417 1418
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1419 1420
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1421
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1422
		cpuctx->exclusive = 0;
1423 1424

	perf_pmu_enable(event->pmu);
1425 1426
}

1427
static void
1428
group_sched_out(struct perf_event *group_event,
1429
		struct perf_cpu_context *cpuctx,
1430
		struct perf_event_context *ctx)
1431
{
1432
	struct perf_event *event;
1433
	int state = group_event->state;
1434

1435
	event_sched_out(group_event, cpuctx, ctx);
1436 1437 1438 1439

	/*
	 * Schedule out siblings (if any):
	 */
1440 1441
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1442

1443
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1444 1445 1446
		cpuctx->exclusive = 0;
}

1447 1448 1449 1450 1451
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1452
/*
1453
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1454
 *
1455
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1456 1457
 * remove it from the context list.
 */
1458
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1459
{
1460 1461
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1462
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1463
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1464

1465
	raw_spin_lock(&ctx->lock);
1466
	event_sched_out(event, cpuctx, ctx);
1467 1468
	if (re->detach_group)
		perf_group_detach(event);
1469
	list_del_event(event, ctx);
1470 1471 1472 1473
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1474
	raw_spin_unlock(&ctx->lock);
1475 1476

	return 0;
T
Thomas Gleixner 已提交
1477 1478 1479 1480
}


/*
1481
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1482
 *
1483
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1484
 * call when the task is on a CPU.
1485
 *
1486 1487
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1488 1489
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1490
 * When called from perf_event_exit_task, it's OK because the
1491
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1492
 */
1493
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1494
{
1495
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1496
	struct task_struct *task = ctx->task;
1497 1498 1499 1500
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1501

1502 1503
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1504 1505
	if (!task) {
		/*
1506
		 * Per cpu events are removed via an smp call and
1507
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1508
		 */
1509
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1510 1511 1512 1513
		return;
	}

retry:
1514
	if (!task_function_call(task, __perf_remove_from_context, &re))
1515
		return;
T
Thomas Gleixner 已提交
1516

1517
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1518
	/*
1519 1520
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1521
	 */
1522
	if (ctx->is_active) {
1523
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1524 1525 1526 1527
		goto retry;
	}

	/*
1528 1529
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1530
	 */
1531 1532
	if (detach_group)
		perf_group_detach(event);
1533
	list_del_event(event, ctx);
1534
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1535 1536
}

1537
/*
1538
 * Cross CPU call to disable a performance event
1539
 */
1540
int __perf_event_disable(void *info)
1541
{
1542 1543
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1544
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1545 1546

	/*
1547 1548
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1549 1550 1551
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1552
	 */
1553
	if (ctx->task && cpuctx->task_ctx != ctx)
1554
		return -EINVAL;
1555

1556
	raw_spin_lock(&ctx->lock);
1557 1558

	/*
1559
	 * If the event is on, turn it off.
1560 1561
	 * If it is in error state, leave it in error state.
	 */
1562
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1563
		update_context_time(ctx);
S
Stephane Eranian 已提交
1564
		update_cgrp_time_from_event(event);
1565 1566 1567
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1568
		else
1569 1570
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1571 1572
	}

1573
	raw_spin_unlock(&ctx->lock);
1574 1575

	return 0;
1576 1577 1578
}

/*
1579
 * Disable a event.
1580
 *
1581 1582
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1583
 * remains valid.  This condition is satisifed when called through
1584 1585 1586 1587
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1588
 * is the current context on this CPU and preemption is disabled,
1589
 * hence we can't get into perf_event_task_sched_out for this context.
1590
 */
1591
void perf_event_disable(struct perf_event *event)
1592
{
1593
	struct perf_event_context *ctx = event->ctx;
1594 1595 1596 1597
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1598
		 * Disable the event on the cpu that it's on
1599
		 */
1600
		cpu_function_call(event->cpu, __perf_event_disable, event);
1601 1602 1603
		return;
	}

P
Peter Zijlstra 已提交
1604
retry:
1605 1606
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1607

1608
	raw_spin_lock_irq(&ctx->lock);
1609
	/*
1610
	 * If the event is still active, we need to retry the cross-call.
1611
	 */
1612
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1613
		raw_spin_unlock_irq(&ctx->lock);
1614 1615 1616 1617 1618
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1619 1620 1621 1622 1623 1624 1625
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1626 1627 1628
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1629
	}
1630
	raw_spin_unlock_irq(&ctx->lock);
1631
}
1632
EXPORT_SYMBOL_GPL(perf_event_disable);
1633

S
Stephane Eranian 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1669 1670 1671 1672
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1673
static int
1674
event_sched_in(struct perf_event *event,
1675
		 struct perf_cpu_context *cpuctx,
1676
		 struct perf_event_context *ctx)
1677
{
1678
	u64 tstamp = perf_event_time(event);
1679
	int ret = 0;
1680

1681
	if (event->state <= PERF_EVENT_STATE_OFF)
1682 1683
		return 0;

1684
	event->state = PERF_EVENT_STATE_ACTIVE;
1685
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1697 1698 1699 1700 1701
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1702 1703
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1704
	if (event->pmu->add(event, PERF_EF_START)) {
1705 1706
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1707 1708
		ret = -EAGAIN;
		goto out;
1709 1710
	}

1711
	event->tstamp_running += tstamp - event->tstamp_stopped;
1712

S
Stephane Eranian 已提交
1713
	perf_set_shadow_time(event, ctx, tstamp);
1714

1715
	if (!is_software_event(event))
1716
		cpuctx->active_oncpu++;
1717
	ctx->nr_active++;
1718 1719
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1720

1721
	if (event->attr.exclusive)
1722 1723
		cpuctx->exclusive = 1;

1724 1725 1726 1727
out:
	perf_pmu_enable(event->pmu);

	return ret;
1728 1729
}

1730
static int
1731
group_sched_in(struct perf_event *group_event,
1732
	       struct perf_cpu_context *cpuctx,
1733
	       struct perf_event_context *ctx)
1734
{
1735
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1736
	struct pmu *pmu = ctx->pmu;
1737 1738
	u64 now = ctx->time;
	bool simulate = false;
1739

1740
	if (group_event->state == PERF_EVENT_STATE_OFF)
1741 1742
		return 0;

P
Peter Zijlstra 已提交
1743
	pmu->start_txn(pmu);
1744

1745
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1746
		pmu->cancel_txn(pmu);
1747
		perf_cpu_hrtimer_restart(cpuctx);
1748
		return -EAGAIN;
1749
	}
1750 1751 1752 1753

	/*
	 * Schedule in siblings as one group (if any):
	 */
1754
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1755
		if (event_sched_in(event, cpuctx, ctx)) {
1756
			partial_group = event;
1757 1758 1759 1760
			goto group_error;
		}
	}

1761
	if (!pmu->commit_txn(pmu))
1762
		return 0;
1763

1764 1765 1766 1767
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1778
	 */
1779 1780
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1781 1782 1783 1784 1785 1786 1787 1788
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1789
	}
1790
	event_sched_out(group_event, cpuctx, ctx);
1791

P
Peter Zijlstra 已提交
1792
	pmu->cancel_txn(pmu);
1793

1794 1795
	perf_cpu_hrtimer_restart(cpuctx);

1796 1797 1798
	return -EAGAIN;
}

1799
/*
1800
 * Work out whether we can put this event group on the CPU now.
1801
 */
1802
static int group_can_go_on(struct perf_event *event,
1803 1804 1805 1806
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1807
	 * Groups consisting entirely of software events can always go on.
1808
	 */
1809
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1810 1811 1812
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1813
	 * events can go on.
1814 1815 1816 1817 1818
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1819
	 * events on the CPU, it can't go on.
1820
	 */
1821
	if (event->attr.exclusive && cpuctx->active_oncpu)
1822 1823 1824 1825 1826 1827 1828 1829
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1830 1831
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1832
{
1833 1834
	u64 tstamp = perf_event_time(event);

1835
	list_add_event(event, ctx);
1836
	perf_group_attach(event);
1837 1838 1839
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1840 1841
}

1842 1843 1844 1845 1846 1847
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1848

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1861
/*
1862
 * Cross CPU call to install and enable a performance event
1863 1864
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1865
 */
1866
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1867
{
1868 1869
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1870
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1871 1872 1873
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1874
	perf_ctx_lock(cpuctx, task_ctx);
1875
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1876 1877

	/*
1878
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1879
	 */
1880
	if (task_ctx)
1881
		task_ctx_sched_out(task_ctx);
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1896 1897
		task = task_ctx->task;
	}
1898

1899
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1900

1901
	update_context_time(ctx);
S
Stephane Eranian 已提交
1902 1903 1904 1905 1906 1907
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1908

1909
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1910

1911
	/*
1912
	 * Schedule everything back in
1913
	 */
1914
	perf_event_sched_in(cpuctx, task_ctx, task);
1915 1916 1917

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1918 1919

	return 0;
T
Thomas Gleixner 已提交
1920 1921 1922
}

/*
1923
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1924
 *
1925 1926
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1927
 *
1928
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1929 1930 1931 1932
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1933 1934
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1935 1936 1937 1938
			int cpu)
{
	struct task_struct *task = ctx->task;

1939 1940
	lockdep_assert_held(&ctx->mutex);

1941
	event->ctx = ctx;
1942 1943
	if (event->cpu != -1)
		event->cpu = cpu;
1944

T
Thomas Gleixner 已提交
1945 1946
	if (!task) {
		/*
1947
		 * Per cpu events are installed via an smp call and
1948
		 * the install is always successful.
T
Thomas Gleixner 已提交
1949
		 */
1950
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1951 1952 1953 1954
		return;
	}

retry:
1955 1956
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1957

1958
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1959
	/*
1960 1961
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1962
	 */
1963
	if (ctx->is_active) {
1964
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1965 1966 1967 1968
		goto retry;
	}

	/*
1969 1970
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1971
	 */
1972
	add_event_to_ctx(event, ctx);
1973
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1974 1975
}

1976
/*
1977
 * Put a event into inactive state and update time fields.
1978 1979 1980 1981 1982 1983
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1984
static void __perf_event_mark_enabled(struct perf_event *event)
1985
{
1986
	struct perf_event *sub;
1987
	u64 tstamp = perf_event_time(event);
1988

1989
	event->state = PERF_EVENT_STATE_INACTIVE;
1990
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1991
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1992 1993
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1994
	}
1995 1996
}

1997
/*
1998
 * Cross CPU call to enable a performance event
1999
 */
2000
static int __perf_event_enable(void *info)
2001
{
2002 2003 2004
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2005
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2006
	int err;
2007

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2018
		return -EINVAL;
2019

2020
	raw_spin_lock(&ctx->lock);
2021
	update_context_time(ctx);
2022

2023
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2024
		goto unlock;
S
Stephane Eranian 已提交
2025 2026 2027 2028

	/*
	 * set current task's cgroup time reference point
	 */
2029
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2030

2031
	__perf_event_mark_enabled(event);
2032

S
Stephane Eranian 已提交
2033 2034 2035
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2036
		goto unlock;
S
Stephane Eranian 已提交
2037
	}
2038

2039
	/*
2040
	 * If the event is in a group and isn't the group leader,
2041
	 * then don't put it on unless the group is on.
2042
	 */
2043
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2044
		goto unlock;
2045

2046
	if (!group_can_go_on(event, cpuctx, 1)) {
2047
		err = -EEXIST;
2048
	} else {
2049
		if (event == leader)
2050
			err = group_sched_in(event, cpuctx, ctx);
2051
		else
2052
			err = event_sched_in(event, cpuctx, ctx);
2053
	}
2054 2055 2056

	if (err) {
		/*
2057
		 * If this event can't go on and it's part of a
2058 2059
		 * group, then the whole group has to come off.
		 */
2060
		if (leader != event) {
2061
			group_sched_out(leader, cpuctx, ctx);
2062 2063
			perf_cpu_hrtimer_restart(cpuctx);
		}
2064
		if (leader->attr.pinned) {
2065
			update_group_times(leader);
2066
			leader->state = PERF_EVENT_STATE_ERROR;
2067
		}
2068 2069
	}

P
Peter Zijlstra 已提交
2070
unlock:
2071
	raw_spin_unlock(&ctx->lock);
2072 2073

	return 0;
2074 2075 2076
}

/*
2077
 * Enable a event.
2078
 *
2079 2080
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2081
 * remains valid.  This condition is satisfied when called through
2082 2083
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2084
 */
2085
void perf_event_enable(struct perf_event *event)
2086
{
2087
	struct perf_event_context *ctx = event->ctx;
2088 2089 2090 2091
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2092
		 * Enable the event on the cpu that it's on
2093
		 */
2094
		cpu_function_call(event->cpu, __perf_event_enable, event);
2095 2096 2097
		return;
	}

2098
	raw_spin_lock_irq(&ctx->lock);
2099
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2100 2101 2102
		goto out;

	/*
2103 2104
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2105 2106 2107 2108
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2109 2110
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2111

P
Peter Zijlstra 已提交
2112
retry:
2113
	if (!ctx->is_active) {
2114
		__perf_event_mark_enabled(event);
2115 2116 2117
		goto out;
	}

2118
	raw_spin_unlock_irq(&ctx->lock);
2119 2120 2121

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2122

2123
	raw_spin_lock_irq(&ctx->lock);
2124 2125

	/*
2126
	 * If the context is active and the event is still off,
2127 2128
	 * we need to retry the cross-call.
	 */
2129 2130 2131 2132 2133 2134
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2135
		goto retry;
2136
	}
2137

P
Peter Zijlstra 已提交
2138
out:
2139
	raw_spin_unlock_irq(&ctx->lock);
2140
}
2141
EXPORT_SYMBOL_GPL(perf_event_enable);
2142

2143
int perf_event_refresh(struct perf_event *event, int refresh)
2144
{
2145
	/*
2146
	 * not supported on inherited events
2147
	 */
2148
	if (event->attr.inherit || !is_sampling_event(event))
2149 2150
		return -EINVAL;

2151 2152
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2153 2154

	return 0;
2155
}
2156
EXPORT_SYMBOL_GPL(perf_event_refresh);
2157

2158 2159 2160
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2161
{
2162
	struct perf_event *event;
2163
	int is_active = ctx->is_active;
2164

2165
	ctx->is_active &= ~event_type;
2166
	if (likely(!ctx->nr_events))
2167 2168
		return;

2169
	update_context_time(ctx);
S
Stephane Eranian 已提交
2170
	update_cgrp_time_from_cpuctx(cpuctx);
2171
	if (!ctx->nr_active)
2172
		return;
2173

P
Peter Zijlstra 已提交
2174
	perf_pmu_disable(ctx->pmu);
2175
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2176 2177
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2178
	}
2179

2180
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2181
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2182
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2183
	}
P
Peter Zijlstra 已提交
2184
	perf_pmu_enable(ctx->pmu);
2185 2186
}

2187
/*
2188 2189 2190 2191 2192 2193
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2194
 */
2195 2196
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2197
{
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2220 2221
}

2222 2223
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2224 2225 2226
{
	u64 value;

2227
	if (!event->attr.inherit_stat)
2228 2229 2230
		return;

	/*
2231
	 * Update the event value, we cannot use perf_event_read()
2232 2233
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2234
	 * we know the event must be on the current CPU, therefore we
2235 2236
	 * don't need to use it.
	 */
2237 2238
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2239 2240
		event->pmu->read(event);
		/* fall-through */
2241

2242 2243
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2244 2245 2246 2247 2248 2249 2250
		break;

	default:
		break;
	}

	/*
2251
	 * In order to keep per-task stats reliable we need to flip the event
2252 2253
	 * values when we flip the contexts.
	 */
2254 2255 2256
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2257

2258 2259
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2260

2261
	/*
2262
	 * Since we swizzled the values, update the user visible data too.
2263
	 */
2264 2265
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2266 2267
}

2268 2269
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2270
{
2271
	struct perf_event *event, *next_event;
2272 2273 2274 2275

	if (!ctx->nr_stat)
		return;

2276 2277
	update_context_time(ctx);

2278 2279
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2280

2281 2282
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2283

2284 2285
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2286

2287
		__perf_event_sync_stat(event, next_event);
2288

2289 2290
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2291 2292 2293
	}
}

2294 2295
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2296
{
P
Peter Zijlstra 已提交
2297
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2298
	struct perf_event_context *next_ctx;
2299
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2300
	struct perf_cpu_context *cpuctx;
2301
	int do_switch = 1;
T
Thomas Gleixner 已提交
2302

P
Peter Zijlstra 已提交
2303 2304
	if (likely(!ctx))
		return;
2305

P
Peter Zijlstra 已提交
2306 2307
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2308 2309
		return;

2310
	rcu_read_lock();
P
Peter Zijlstra 已提交
2311
	next_ctx = next->perf_event_ctxp[ctxn];
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
	if (!parent && !next_parent)
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2323 2324 2325 2326 2327 2328 2329 2330 2331
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2332 2333
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2334
		if (context_equiv(ctx, next_ctx)) {
2335 2336
			/*
			 * XXX do we need a memory barrier of sorts
2337
			 * wrt to rcu_dereference() of perf_event_ctxp
2338
			 */
P
Peter Zijlstra 已提交
2339 2340
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2341 2342 2343
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2344

2345
			perf_event_sync_stat(ctx, next_ctx);
2346
		}
2347 2348
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2349
	}
2350
unlock:
2351
	rcu_read_unlock();
2352

2353
	if (do_switch) {
2354
		raw_spin_lock(&ctx->lock);
2355
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2356
		cpuctx->task_ctx = NULL;
2357
		raw_spin_unlock(&ctx->lock);
2358
	}
T
Thomas Gleixner 已提交
2359 2360
}

P
Peter Zijlstra 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2375 2376
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2377 2378 2379 2380 2381
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2382 2383 2384 2385 2386 2387 2388

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2389
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2390 2391
}

2392
static void task_ctx_sched_out(struct perf_event_context *ctx)
2393
{
P
Peter Zijlstra 已提交
2394
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2395

2396 2397
	if (!cpuctx->task_ctx)
		return;
2398 2399 2400 2401

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2402
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2403 2404 2405
	cpuctx->task_ctx = NULL;
}

2406 2407 2408 2409 2410 2411 2412
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2413 2414
}

2415
static void
2416
ctx_pinned_sched_in(struct perf_event_context *ctx,
2417
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2418
{
2419
	struct perf_event *event;
T
Thomas Gleixner 已提交
2420

2421 2422
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2423
			continue;
2424
		if (!event_filter_match(event))
2425 2426
			continue;

S
Stephane Eranian 已提交
2427 2428 2429 2430
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2431
		if (group_can_go_on(event, cpuctx, 1))
2432
			group_sched_in(event, cpuctx, ctx);
2433 2434 2435 2436 2437

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2438 2439 2440
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2441
		}
2442
	}
2443 2444 2445 2446
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2447
		      struct perf_cpu_context *cpuctx)
2448 2449 2450
{
	struct perf_event *event;
	int can_add_hw = 1;
2451

2452 2453 2454
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2455
			continue;
2456 2457
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2458
		 * of events:
2459
		 */
2460
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2461 2462
			continue;

S
Stephane Eranian 已提交
2463 2464 2465 2466
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2467
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2468
			if (group_sched_in(event, cpuctx, ctx))
2469
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2470
		}
T
Thomas Gleixner 已提交
2471
	}
2472 2473 2474 2475 2476
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2477 2478
	     enum event_type_t event_type,
	     struct task_struct *task)
2479
{
S
Stephane Eranian 已提交
2480
	u64 now;
2481
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2482

2483
	ctx->is_active |= event_type;
2484
	if (likely(!ctx->nr_events))
2485
		return;
2486

S
Stephane Eranian 已提交
2487 2488
	now = perf_clock();
	ctx->timestamp = now;
2489
	perf_cgroup_set_timestamp(task, ctx);
2490 2491 2492 2493
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2494
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2495
		ctx_pinned_sched_in(ctx, cpuctx);
2496 2497

	/* Then walk through the lower prio flexible groups */
2498
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2499
		ctx_flexible_sched_in(ctx, cpuctx);
2500 2501
}

2502
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2503 2504
			     enum event_type_t event_type,
			     struct task_struct *task)
2505 2506 2507
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2508
	ctx_sched_in(ctx, cpuctx, event_type, task);
2509 2510
}

S
Stephane Eranian 已提交
2511 2512
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2513
{
P
Peter Zijlstra 已提交
2514
	struct perf_cpu_context *cpuctx;
2515

P
Peter Zijlstra 已提交
2516
	cpuctx = __get_cpu_context(ctx);
2517 2518 2519
	if (cpuctx->task_ctx == ctx)
		return;

2520
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2521
	perf_pmu_disable(ctx->pmu);
2522 2523 2524 2525 2526 2527 2528
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2529 2530
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2531

2532 2533
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2534 2535 2536
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2537 2538 2539 2540
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2541
	perf_pmu_rotate_start(ctx->pmu);
2542 2543
}

2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2613 2614
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2615 2616 2617 2618 2619 2620 2621 2622 2623
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2624
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2625
	}
S
Stephane Eranian 已提交
2626 2627 2628 2629 2630 2631
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2632
		perf_cgroup_sched_in(prev, task);
2633 2634 2635 2636

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2637 2638
}

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2666
#define REDUCE_FLS(a, b)		\
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2706 2707 2708
	if (!divisor)
		return dividend;

2709 2710 2711
	return div64_u64(dividend, divisor);
}

2712 2713 2714
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2715
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2716
{
2717
	struct hw_perf_event *hwc = &event->hw;
2718
	s64 period, sample_period;
2719 2720
	s64 delta;

2721
	period = perf_calculate_period(event, nsec, count);
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2732

2733
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2734 2735 2736
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2737
		local64_set(&hwc->period_left, 0);
2738 2739 2740

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2741
	}
2742 2743
}

2744 2745 2746 2747 2748 2749 2750
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2751
{
2752 2753
	struct perf_event *event;
	struct hw_perf_event *hwc;
2754
	u64 now, period = TICK_NSEC;
2755
	s64 delta;
2756

2757 2758 2759 2760 2761 2762
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2763 2764
		return;

2765
	raw_spin_lock(&ctx->lock);
2766
	perf_pmu_disable(ctx->pmu);
2767

2768
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2769
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2770 2771
			continue;

2772
		if (!event_filter_match(event))
2773 2774
			continue;

2775 2776
		perf_pmu_disable(event->pmu);

2777
		hwc = &event->hw;
2778

2779
		if (hwc->interrupts == MAX_INTERRUPTS) {
2780
			hwc->interrupts = 0;
2781
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2782
			event->pmu->start(event, 0);
2783 2784
		}

2785
		if (!event->attr.freq || !event->attr.sample_freq)
2786
			goto next;
2787

2788 2789 2790 2791 2792
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2793
		now = local64_read(&event->count);
2794 2795
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2796

2797 2798 2799
		/*
		 * restart the event
		 * reload only if value has changed
2800 2801 2802
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2803
		 */
2804
		if (delta > 0)
2805
			perf_adjust_period(event, period, delta, false);
2806 2807

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2808 2809
	next:
		perf_pmu_enable(event->pmu);
2810
	}
2811

2812
	perf_pmu_enable(ctx->pmu);
2813
	raw_spin_unlock(&ctx->lock);
2814 2815
}

2816
/*
2817
 * Round-robin a context's events:
2818
 */
2819
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2820
{
2821 2822 2823 2824 2825 2826
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2827 2828
}

2829
/*
2830 2831 2832
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2833
 */
2834
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2835
{
P
Peter Zijlstra 已提交
2836
	struct perf_event_context *ctx = NULL;
2837
	int rotate = 0, remove = 1;
2838

2839
	if (cpuctx->ctx.nr_events) {
2840
		remove = 0;
2841 2842 2843
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2844

P
Peter Zijlstra 已提交
2845
	ctx = cpuctx->task_ctx;
2846
	if (ctx && ctx->nr_events) {
2847
		remove = 0;
2848 2849 2850
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2851

2852
	if (!rotate)
2853 2854
		goto done;

2855
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2856
	perf_pmu_disable(cpuctx->ctx.pmu);
2857

2858 2859 2860
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2861

2862 2863 2864
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2865

2866
	perf_event_sched_in(cpuctx, ctx, current);
2867

2868 2869
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2870
done:
2871 2872
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2873 2874

	return rotate;
2875 2876
}

2877 2878 2879
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2880
	if (atomic_read(&nr_freq_events) ||
2881
	    __this_cpu_read(perf_throttled_count))
2882
		return false;
2883 2884
	else
		return true;
2885 2886 2887
}
#endif

2888 2889 2890 2891
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2892 2893
	struct perf_event_context *ctx;
	int throttled;
2894

2895 2896
	WARN_ON(!irqs_disabled());

2897 2898 2899
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2900
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2901 2902 2903 2904 2905 2906
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2907
	}
T
Thomas Gleixner 已提交
2908 2909
}

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2920
	__perf_event_mark_enabled(event);
2921 2922 2923 2924

	return 1;
}

2925
/*
2926
 * Enable all of a task's events that have been marked enable-on-exec.
2927 2928
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2929
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2930
{
2931
	struct perf_event *event;
2932 2933
	unsigned long flags;
	int enabled = 0;
2934
	int ret;
2935 2936

	local_irq_save(flags);
2937
	if (!ctx || !ctx->nr_events)
2938 2939
		goto out;

2940 2941 2942 2943 2944 2945 2946
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2947
	perf_cgroup_sched_out(current, NULL);
2948

2949
	raw_spin_lock(&ctx->lock);
2950
	task_ctx_sched_out(ctx);
2951

2952
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2953 2954 2955
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2956 2957 2958
	}

	/*
2959
	 * Unclone this context if we enabled any event.
2960
	 */
2961 2962
	if (enabled)
		unclone_ctx(ctx);
2963

2964
	raw_spin_unlock(&ctx->lock);
2965

2966 2967 2968
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2969
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2970
out:
2971 2972 2973
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2974
/*
2975
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2976
 */
2977
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2978
{
2979 2980
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2981
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2982

2983 2984 2985 2986
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2987 2988
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2989 2990 2991 2992
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2993
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2994
	if (ctx->is_active) {
2995
		update_context_time(ctx);
S
Stephane Eranian 已提交
2996 2997
		update_cgrp_time_from_event(event);
	}
2998
	update_event_times(event);
2999 3000
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3001
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3002 3003
}

P
Peter Zijlstra 已提交
3004 3005
static inline u64 perf_event_count(struct perf_event *event)
{
3006
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3007 3008
}

3009
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3010 3011
{
	/*
3012 3013
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3014
	 */
3015 3016 3017 3018
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3019 3020 3021
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3022
		raw_spin_lock_irqsave(&ctx->lock, flags);
3023 3024 3025 3026 3027
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3028
		if (ctx->is_active) {
3029
			update_context_time(ctx);
S
Stephane Eranian 已提交
3030 3031
			update_cgrp_time_from_event(event);
		}
3032
		update_event_times(event);
3033
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3034 3035
	}

P
Peter Zijlstra 已提交
3036
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3037 3038
}

3039
/*
3040
 * Initialize the perf_event context in a task_struct:
3041
 */
3042
static void __perf_event_init_context(struct perf_event_context *ctx)
3043
{
3044
	raw_spin_lock_init(&ctx->lock);
3045
	mutex_init(&ctx->mutex);
3046 3047
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3048 3049
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3065
	}
3066 3067 3068
	ctx->pmu = pmu;

	return ctx;
3069 3070
}

3071 3072 3073 3074 3075
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3076 3077

	rcu_read_lock();
3078
	if (!vpid)
T
Thomas Gleixner 已提交
3079 3080
		task = current;
	else
3081
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3082 3083 3084 3085 3086 3087 3088 3089
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3090 3091 3092 3093
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3094 3095 3096 3097 3098 3099 3100
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3101 3102 3103
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3104
static struct perf_event_context *
M
Matt Helsley 已提交
3105
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3106
{
3107
	struct perf_event_context *ctx;
3108
	struct perf_cpu_context *cpuctx;
3109
	unsigned long flags;
P
Peter Zijlstra 已提交
3110
	int ctxn, err;
T
Thomas Gleixner 已提交
3111

3112
	if (!task) {
3113
		/* Must be root to operate on a CPU event: */
3114
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3115 3116 3117
			return ERR_PTR(-EACCES);

		/*
3118
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3119 3120 3121
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3122
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3123 3124
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3125
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3126
		ctx = &cpuctx->ctx;
3127
		get_ctx(ctx);
3128
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3129 3130 3131 3132

		return ctx;
	}

P
Peter Zijlstra 已提交
3133 3134 3135 3136 3137
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3138
retry:
P
Peter Zijlstra 已提交
3139
	ctx = perf_lock_task_context(task, ctxn, &flags);
3140
	if (ctx) {
3141
		unclone_ctx(ctx);
3142
		++ctx->pin_count;
3143
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3144
	} else {
3145
		ctx = alloc_perf_context(pmu, task);
3146 3147 3148
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3149

3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3160
		else {
3161
			get_ctx(ctx);
3162
			++ctx->pin_count;
3163
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3164
		}
3165 3166 3167
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3168
			put_ctx(ctx);
3169 3170 3171 3172

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3173 3174 3175
		}
	}

T
Thomas Gleixner 已提交
3176
	return ctx;
3177

P
Peter Zijlstra 已提交
3178
errout:
3179
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3180 3181
}

L
Li Zefan 已提交
3182 3183
static void perf_event_free_filter(struct perf_event *event);

3184
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3185
{
3186
	struct perf_event *event;
P
Peter Zijlstra 已提交
3187

3188 3189 3190
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3191
	perf_event_free_filter(event);
3192
	kfree(event);
P
Peter Zijlstra 已提交
3193 3194
}

3195
static void ring_buffer_put(struct ring_buffer *rb);
3196
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3197

3198
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3199
{
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3210

3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3224 3225
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3226 3227 3228 3229 3230 3231 3232
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3233

3234 3235
static void __free_event(struct perf_event *event)
{
3236
	if (!event->parent) {
3237 3238
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3239
	}
3240

3241 3242 3243 3244 3245 3246
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3247 3248 3249
	if (event->pmu)
		module_put(event->pmu->module);

3250 3251
	call_rcu(&event->rcu_head, free_event_rcu);
}
3252
static void free_event(struct perf_event *event)
3253
{
3254
	irq_work_sync(&event->pending);
3255

3256
	unaccount_event(event);
3257

3258
	if (event->rb) {
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3275 3276
	}

S
Stephane Eranian 已提交
3277 3278 3279
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3280

3281
	__free_event(event);
3282 3283
}

3284
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3285
{
3286
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3287

3288
	WARN_ON_ONCE(ctx->parent_ctx);
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3302
	perf_remove_from_context(event, true);
3303
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3304

3305
	free_event(event);
T
Thomas Gleixner 已提交
3306 3307 3308

	return 0;
}
3309
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3310

3311 3312 3313
/*
 * Called when the last reference to the file is gone.
 */
3314
static void put_event(struct perf_event *event)
3315
{
P
Peter Zijlstra 已提交
3316
	struct task_struct *owner;
3317

3318 3319
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3320

P
Peter Zijlstra 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3354 3355 3356 3357 3358 3359 3360
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3361 3362
}

3363
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3364
{
3365
	struct perf_event *child;
3366 3367
	u64 total = 0;

3368 3369 3370
	*enabled = 0;
	*running = 0;

3371
	mutex_lock(&event->child_mutex);
3372
	total += perf_event_read(event);
3373 3374 3375 3376 3377 3378
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3379
		total += perf_event_read(child);
3380 3381 3382
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3383
	mutex_unlock(&event->child_mutex);
3384 3385 3386

	return total;
}
3387
EXPORT_SYMBOL_GPL(perf_event_read_value);
3388

3389
static int perf_event_read_group(struct perf_event *event,
3390 3391
				   u64 read_format, char __user *buf)
{
3392
	struct perf_event *leader = event->group_leader, *sub;
3393 3394
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3395
	u64 values[5];
3396
	u64 count, enabled, running;
3397

3398
	mutex_lock(&ctx->mutex);
3399
	count = perf_event_read_value(leader, &enabled, &running);
3400 3401

	values[n++] = 1 + leader->nr_siblings;
3402 3403 3404 3405
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3406 3407 3408
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3409 3410 3411 3412

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3413
		goto unlock;
3414

3415
	ret = size;
3416

3417
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3418
		n = 0;
3419

3420
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3421 3422 3423 3424 3425
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3426
		if (copy_to_user(buf + ret, values, size)) {
3427 3428 3429
			ret = -EFAULT;
			goto unlock;
		}
3430 3431

		ret += size;
3432
	}
3433 3434
unlock:
	mutex_unlock(&ctx->mutex);
3435

3436
	return ret;
3437 3438
}

3439
static int perf_event_read_one(struct perf_event *event,
3440 3441
				 u64 read_format, char __user *buf)
{
3442
	u64 enabled, running;
3443 3444 3445
	u64 values[4];
	int n = 0;

3446 3447 3448 3449 3450
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3451
	if (read_format & PERF_FORMAT_ID)
3452
		values[n++] = primary_event_id(event);
3453 3454 3455 3456 3457 3458 3459

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3460
/*
3461
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3462 3463
 */
static ssize_t
3464
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3465
{
3466
	u64 read_format = event->attr.read_format;
3467
	int ret;
T
Thomas Gleixner 已提交
3468

3469
	/*
3470
	 * Return end-of-file for a read on a event that is in
3471 3472 3473
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3474
	if (event->state == PERF_EVENT_STATE_ERROR)
3475 3476
		return 0;

3477
	if (count < event->read_size)
3478 3479
		return -ENOSPC;

3480
	WARN_ON_ONCE(event->ctx->parent_ctx);
3481
	if (read_format & PERF_FORMAT_GROUP)
3482
		ret = perf_event_read_group(event, read_format, buf);
3483
	else
3484
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3485

3486
	return ret;
T
Thomas Gleixner 已提交
3487 3488 3489 3490 3491
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3492
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3493

3494
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3495 3496 3497 3498
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3499
	struct perf_event *event = file->private_data;
3500
	struct ring_buffer *rb;
3501
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3502

3503
	/*
3504 3505
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3506 3507
	 */
	mutex_lock(&event->mmap_mutex);
3508 3509
	rb = event->rb;
	if (rb)
3510
		events = atomic_xchg(&rb->poll, 0);
3511 3512
	mutex_unlock(&event->mmap_mutex);

3513
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3514 3515 3516 3517

	return events;
}

3518
static void perf_event_reset(struct perf_event *event)
3519
{
3520
	(void)perf_event_read(event);
3521
	local64_set(&event->count, 0);
3522
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3523 3524
}

3525
/*
3526 3527 3528 3529
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3530
 */
3531 3532
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3533
{
3534
	struct perf_event *child;
P
Peter Zijlstra 已提交
3535

3536 3537 3538 3539
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3540
		func(child);
3541
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3542 3543
}

3544 3545
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3546
{
3547 3548
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3549

3550 3551
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3552
	event = event->group_leader;
3553

3554 3555
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3556
		perf_event_for_each_child(sibling, func);
3557
	mutex_unlock(&ctx->mutex);
3558 3559
}

3560
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3561
{
3562
	struct perf_event_context *ctx = event->ctx;
3563
	int ret = 0, active;
3564 3565
	u64 value;

3566
	if (!is_sampling_event(event))
3567 3568
		return -EINVAL;

3569
	if (copy_from_user(&value, arg, sizeof(value)))
3570 3571 3572 3573 3574
		return -EFAULT;

	if (!value)
		return -EINVAL;

3575
	raw_spin_lock_irq(&ctx->lock);
3576 3577
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3578 3579 3580 3581
			ret = -EINVAL;
			goto unlock;
		}

3582
		event->attr.sample_freq = value;
3583
	} else {
3584 3585
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3586
	}
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3601
unlock:
3602
	raw_spin_unlock_irq(&ctx->lock);
3603 3604 3605 3606

	return ret;
}

3607 3608
static const struct file_operations perf_fops;

3609
static inline int perf_fget_light(int fd, struct fd *p)
3610
{
3611 3612 3613
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3614

3615 3616 3617
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3618
	}
3619 3620
	*p = f;
	return 0;
3621 3622 3623 3624
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3625
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3626

3627 3628
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3629 3630
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3631
	u32 flags = arg;
3632 3633

	switch (cmd) {
3634 3635
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3636
		break;
3637 3638
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3639
		break;
3640 3641
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3642
		break;
P
Peter Zijlstra 已提交
3643

3644 3645
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3646

3647 3648
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3649

3650 3651 3652 3653 3654 3655 3656 3657 3658
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3659
	case PERF_EVENT_IOC_SET_OUTPUT:
3660 3661 3662
	{
		int ret;
		if (arg != -1) {
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3673 3674 3675
		}
		return ret;
	}
3676

L
Li Zefan 已提交
3677 3678 3679
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3680
	default:
P
Peter Zijlstra 已提交
3681
		return -ENOTTY;
3682
	}
P
Peter Zijlstra 已提交
3683 3684

	if (flags & PERF_IOC_FLAG_GROUP)
3685
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3686
	else
3687
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3688 3689

	return 0;
3690 3691
}

3692
int perf_event_task_enable(void)
3693
{
3694
	struct perf_event *event;
3695

3696 3697 3698 3699
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3700 3701 3702 3703

	return 0;
}

3704
int perf_event_task_disable(void)
3705
{
3706
	struct perf_event *event;
3707

3708 3709 3710 3711
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3712 3713 3714 3715

	return 0;
}

3716
static int perf_event_index(struct perf_event *event)
3717
{
P
Peter Zijlstra 已提交
3718 3719 3720
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3721
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3722 3723
		return 0;

3724
	return event->pmu->event_idx(event);
3725 3726
}

3727
static void calc_timer_values(struct perf_event *event,
3728
				u64 *now,
3729 3730
				u64 *enabled,
				u64 *running)
3731
{
3732
	u64 ctx_time;
3733

3734 3735
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3736 3737 3738 3739
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

3760
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3761 3762 3763
{
}

3764 3765 3766 3767 3768
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3769
void perf_event_update_userpage(struct perf_event *event)
3770
{
3771
	struct perf_event_mmap_page *userpg;
3772
	struct ring_buffer *rb;
3773
	u64 enabled, running, now;
3774 3775

	rcu_read_lock();
3776 3777 3778 3779
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3780 3781 3782 3783 3784 3785 3786 3787 3788
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3789
	calc_timer_values(event, &now, &enabled, &running);
3790

3791
	userpg = rb->user_page;
3792 3793 3794 3795 3796
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3797
	++userpg->lock;
3798
	barrier();
3799
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3800
	userpg->offset = perf_event_count(event);
3801
	if (userpg->index)
3802
		userpg->offset -= local64_read(&event->hw.prev_count);
3803

3804
	userpg->time_enabled = enabled +
3805
			atomic64_read(&event->child_total_time_enabled);
3806

3807
	userpg->time_running = running +
3808
			atomic64_read(&event->child_total_time_running);
3809

3810
	arch_perf_update_userpage(userpg, now);
3811

3812
	barrier();
3813
	++userpg->lock;
3814
	preempt_enable();
3815
unlock:
3816
	rcu_read_unlock();
3817 3818
}

3819 3820 3821
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3822
	struct ring_buffer *rb;
3823 3824 3825 3826 3827 3828 3829 3830 3831
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3832 3833
	rb = rcu_dereference(event->rb);
	if (!rb)
3834 3835 3836 3837 3838
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3839
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3854 3855 3856 3857 3858 3859 3860 3861 3862
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3863 3864
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3865 3866 3867
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3868
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3887 3888 3889 3890
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3891 3892 3893
	rcu_read_unlock();
}

3894
static void rb_free_rcu(struct rcu_head *rcu_head)
3895
{
3896
	struct ring_buffer *rb;
3897

3898 3899
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3900 3901
}

3902
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3903
{
3904
	struct ring_buffer *rb;
3905

3906
	rcu_read_lock();
3907 3908 3909 3910
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3911 3912 3913
	}
	rcu_read_unlock();

3914
	return rb;
3915 3916
}

3917
static void ring_buffer_put(struct ring_buffer *rb)
3918
{
3919
	if (!atomic_dec_and_test(&rb->refcount))
3920
		return;
3921

3922
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3923

3924
	call_rcu(&rb->rcu_head, rb_free_rcu);
3925 3926 3927 3928
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3929
	struct perf_event *event = vma->vm_file->private_data;
3930

3931
	atomic_inc(&event->mmap_count);
3932
	atomic_inc(&event->rb->mmap_count);
3933 3934
}

3935 3936 3937 3938 3939 3940 3941 3942
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3943 3944
static void perf_mmap_close(struct vm_area_struct *vma)
{
3945
	struct perf_event *event = vma->vm_file->private_data;
3946

3947 3948 3949 3950
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3951

3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3967

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3984

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
4000
		}
4001
		mutex_unlock(&event->mmap_mutex);
4002
		put_event(event);
4003

4004 4005 4006 4007 4008
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4009
	}
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
4026 4027
}

4028
static const struct vm_operations_struct perf_mmap_vmops = {
4029 4030 4031 4032
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4033 4034 4035 4036
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4037
	struct perf_event *event = file->private_data;
4038
	unsigned long user_locked, user_lock_limit;
4039
	struct user_struct *user = current_user();
4040
	unsigned long locked, lock_limit;
4041
	struct ring_buffer *rb;
4042 4043
	unsigned long vma_size;
	unsigned long nr_pages;
4044
	long user_extra, extra;
4045
	int ret = 0, flags = 0;
4046

4047 4048 4049
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4050
	 * same rb.
4051 4052 4053 4054
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4055
	if (!(vma->vm_flags & VM_SHARED))
4056
		return -EINVAL;
4057 4058 4059 4060

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4061
	/*
4062
	 * If we have rb pages ensure they're a power-of-two number, so we
4063 4064 4065
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4066 4067
		return -EINVAL;

4068
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4069 4070
		return -EINVAL;

4071 4072
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4073

4074
	WARN_ON_ONCE(event->ctx->parent_ctx);
4075
again:
4076
	mutex_lock(&event->mmap_mutex);
4077
	if (event->rb) {
4078
		if (event->rb->nr_pages != nr_pages) {
4079
			ret = -EINVAL;
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4093 4094 4095
		goto unlock;
	}

4096
	user_extra = nr_pages + 1;
4097
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4098 4099 4100 4101 4102 4103

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4104
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4105

4106 4107 4108
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4109

4110
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4111
	lock_limit >>= PAGE_SHIFT;
4112
	locked = vma->vm_mm->pinned_vm + extra;
4113

4114 4115
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4116 4117 4118
		ret = -EPERM;
		goto unlock;
	}
4119

4120
	WARN_ON(event->rb);
4121

4122
	if (vma->vm_flags & VM_WRITE)
4123
		flags |= RING_BUFFER_WRITABLE;
4124

4125 4126 4127 4128
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4129
	if (!rb) {
4130
		ret = -ENOMEM;
4131
		goto unlock;
4132
	}
P
Peter Zijlstra 已提交
4133

4134
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4135 4136
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4137

4138
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4139 4140
	vma->vm_mm->pinned_vm += extra;

4141
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
4142
	rcu_assign_pointer(event->rb, rb);
4143

4144
	perf_event_init_userpage(event);
4145 4146
	perf_event_update_userpage(event);

4147
unlock:
4148 4149
	if (!ret)
		atomic_inc(&event->mmap_count);
4150
	mutex_unlock(&event->mmap_mutex);
4151

4152 4153 4154 4155
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4156
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4157
	vma->vm_ops = &perf_mmap_vmops;
4158 4159

	return ret;
4160 4161
}

P
Peter Zijlstra 已提交
4162 4163
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4164
	struct inode *inode = file_inode(filp);
4165
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4166 4167 4168
	int retval;

	mutex_lock(&inode->i_mutex);
4169
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4170 4171 4172 4173 4174 4175 4176 4177
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4178
static const struct file_operations perf_fops = {
4179
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4180 4181 4182
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4183 4184
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4185
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4186
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4187 4188
};

4189
/*
4190
 * Perf event wakeup
4191 4192 4193 4194 4195
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4196
void perf_event_wakeup(struct perf_event *event)
4197
{
4198
	ring_buffer_wakeup(event);
4199

4200 4201 4202
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4203
	}
4204 4205
}

4206
static void perf_pending_event(struct irq_work *entry)
4207
{
4208 4209
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4210

4211 4212 4213
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4214 4215
	}

4216 4217 4218
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4219 4220 4221
	}
}

4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4369 4370 4371
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4387
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4399 4400 4401
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4426 4427 4428

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4429 4430
}

4431 4432 4433
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4434 4435 4436 4437 4438
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4439
static void perf_output_read_one(struct perf_output_handle *handle,
4440 4441
				 struct perf_event *event,
				 u64 enabled, u64 running)
4442
{
4443
	u64 read_format = event->attr.read_format;
4444 4445 4446
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4447
	values[n++] = perf_event_count(event);
4448
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4449
		values[n++] = enabled +
4450
			atomic64_read(&event->child_total_time_enabled);
4451 4452
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4453
		values[n++] = running +
4454
			atomic64_read(&event->child_total_time_running);
4455 4456
	}
	if (read_format & PERF_FORMAT_ID)
4457
		values[n++] = primary_event_id(event);
4458

4459
	__output_copy(handle, values, n * sizeof(u64));
4460 4461 4462
}

/*
4463
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4464 4465
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4466 4467
			    struct perf_event *event,
			    u64 enabled, u64 running)
4468
{
4469 4470
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4471 4472 4473 4474 4475 4476
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4477
		values[n++] = enabled;
4478 4479

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4480
		values[n++] = running;
4481

4482
	if (leader != event)
4483 4484
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4485
	values[n++] = perf_event_count(leader);
4486
	if (read_format & PERF_FORMAT_ID)
4487
		values[n++] = primary_event_id(leader);
4488

4489
	__output_copy(handle, values, n * sizeof(u64));
4490

4491
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4492 4493
		n = 0;

4494 4495
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4496 4497
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4498
		values[n++] = perf_event_count(sub);
4499
		if (read_format & PERF_FORMAT_ID)
4500
			values[n++] = primary_event_id(sub);
4501

4502
		__output_copy(handle, values, n * sizeof(u64));
4503 4504 4505
	}
}

4506 4507 4508
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4509
static void perf_output_read(struct perf_output_handle *handle,
4510
			     struct perf_event *event)
4511
{
4512
	u64 enabled = 0, running = 0, now;
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4524
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4525
		calc_timer_values(event, &now, &enabled, &running);
4526

4527
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4528
		perf_output_read_group(handle, event, enabled, running);
4529
	else
4530
		perf_output_read_one(handle, event, enabled, running);
4531 4532
}

4533 4534 4535
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4536
			struct perf_event *event)
4537 4538 4539 4540 4541
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4542 4543 4544
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4570
		perf_output_read(handle, event);
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4581
			__output_copy(handle, data->callchain, size);
4582 4583 4584 4585 4586 4587 4588 4589 4590
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4591 4592
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4604

4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4639

4640
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4641 4642 4643
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4644
	}
A
Andi Kleen 已提交
4645 4646 4647

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4648 4649 4650

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4651

A
Andi Kleen 已提交
4652 4653 4654
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4668 4669 4670 4671
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4672
			 struct perf_event *event,
4673
			 struct pt_regs *regs)
4674
{
4675
	u64 sample_type = event->attr.sample_type;
4676

4677
	header->type = PERF_RECORD_SAMPLE;
4678
	header->size = sizeof(*header) + event->header_size;
4679 4680 4681

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4682

4683
	__perf_event_header__init_id(header, data, event);
4684

4685
	if (sample_type & PERF_SAMPLE_IP)
4686 4687
		data->ip = perf_instruction_pointer(regs);

4688
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4689
		int size = 1;
4690

4691
		data->callchain = perf_callchain(event, regs);
4692 4693 4694 4695 4696

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4697 4698
	}

4699
	if (sample_type & PERF_SAMPLE_RAW) {
4700 4701 4702 4703 4704 4705 4706 4707
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4708
		header->size += size;
4709
	}
4710 4711 4712 4713 4714 4715 4716 4717 4718

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4762
}
4763

4764
static void perf_event_output(struct perf_event *event,
4765 4766 4767 4768 4769
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4770

4771 4772 4773
	/* protect the callchain buffers */
	rcu_read_lock();

4774
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4775

4776
	if (perf_output_begin(&handle, event, header.size))
4777
		goto exit;
4778

4779
	perf_output_sample(&handle, &header, data, event);
4780

4781
	perf_output_end(&handle);
4782 4783 4784

exit:
	rcu_read_unlock();
4785 4786
}

4787
/*
4788
 * read event_id
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4799
perf_event_read_event(struct perf_event *event,
4800 4801 4802
			struct task_struct *task)
{
	struct perf_output_handle handle;
4803
	struct perf_sample_data sample;
4804
	struct perf_read_event read_event = {
4805
		.header = {
4806
			.type = PERF_RECORD_READ,
4807
			.misc = 0,
4808
			.size = sizeof(read_event) + event->read_size,
4809
		},
4810 4811
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4812
	};
4813
	int ret;
4814

4815
	perf_event_header__init_id(&read_event.header, &sample, event);
4816
	ret = perf_output_begin(&handle, event, read_event.header.size);
4817 4818 4819
	if (ret)
		return;

4820
	perf_output_put(&handle, read_event);
4821
	perf_output_read(&handle, event);
4822
	perf_event__output_id_sample(event, &handle, &sample);
4823

4824 4825 4826
	perf_output_end(&handle);
}

4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4841
		output(event, data);
4842 4843 4844 4845
	}
}

static void
4846
perf_event_aux(perf_event_aux_output_cb output, void *data,
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4859
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4860 4861 4862 4863 4864 4865 4866
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4867
			perf_event_aux_ctx(ctx, output, data);
4868 4869 4870 4871 4872 4873
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4874
		perf_event_aux_ctx(task_ctx, output, data);
4875 4876 4877 4878 4879
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4880
/*
P
Peter Zijlstra 已提交
4881 4882
 * task tracking -- fork/exit
 *
4883
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4884 4885
 */

P
Peter Zijlstra 已提交
4886
struct perf_task_event {
4887
	struct task_struct		*task;
4888
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4889 4890 4891 4892 4893 4894

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4895 4896
		u32				tid;
		u32				ptid;
4897
		u64				time;
4898
	} event_id;
P
Peter Zijlstra 已提交
4899 4900
};

4901 4902
static int perf_event_task_match(struct perf_event *event)
{
4903 4904 4905
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
4906 4907
}

4908
static void perf_event_task_output(struct perf_event *event,
4909
				   void *data)
P
Peter Zijlstra 已提交
4910
{
4911
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4912
	struct perf_output_handle handle;
4913
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4914
	struct task_struct *task = task_event->task;
4915
	int ret, size = task_event->event_id.header.size;
4916

4917 4918 4919
	if (!perf_event_task_match(event))
		return;

4920
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4921

4922
	ret = perf_output_begin(&handle, event,
4923
				task_event->event_id.header.size);
4924
	if (ret)
4925
		goto out;
P
Peter Zijlstra 已提交
4926

4927 4928
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4929

4930 4931
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4932

4933
	perf_output_put(&handle, task_event->event_id);
4934

4935 4936
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4937
	perf_output_end(&handle);
4938 4939
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4940 4941
}

4942 4943
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4944
			      int new)
P
Peter Zijlstra 已提交
4945
{
P
Peter Zijlstra 已提交
4946
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4947

4948 4949 4950
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4951 4952
		return;

P
Peter Zijlstra 已提交
4953
	task_event = (struct perf_task_event){
4954 4955
		.task	  = task,
		.task_ctx = task_ctx,
4956
		.event_id    = {
P
Peter Zijlstra 已提交
4957
			.header = {
4958
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4959
				.misc = 0,
4960
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4961
			},
4962 4963
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4964 4965
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4966
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4967 4968 4969
		},
	};

4970
	perf_event_aux(perf_event_task_output,
4971 4972
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4973 4974
}

4975
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4976
{
4977
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4978 4979
}

4980 4981 4982 4983 4984
/*
 * comm tracking
 */

struct perf_comm_event {
4985 4986
	struct task_struct	*task;
	char			*comm;
4987 4988 4989 4990 4991 4992 4993
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4994
	} event_id;
4995 4996
};

4997 4998 4999 5000 5001
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5002
static void perf_event_comm_output(struct perf_event *event,
5003
				   void *data)
5004
{
5005
	struct perf_comm_event *comm_event = data;
5006
	struct perf_output_handle handle;
5007
	struct perf_sample_data sample;
5008
	int size = comm_event->event_id.header.size;
5009 5010
	int ret;

5011 5012 5013
	if (!perf_event_comm_match(event))
		return;

5014 5015
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5016
				comm_event->event_id.header.size);
5017 5018

	if (ret)
5019
		goto out;
5020

5021 5022
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5023

5024
	perf_output_put(&handle, comm_event->event_id);
5025
	__output_copy(&handle, comm_event->comm,
5026
				   comm_event->comm_size);
5027 5028 5029

	perf_event__output_id_sample(event, &handle, &sample);

5030
	perf_output_end(&handle);
5031 5032
out:
	comm_event->event_id.header.size = size;
5033 5034
}

5035
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5036
{
5037
	char comm[TASK_COMM_LEN];
5038 5039
	unsigned int size;

5040
	memset(comm, 0, sizeof(comm));
5041
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5042
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5043 5044 5045 5046

	comm_event->comm = comm;
	comm_event->comm_size = size;

5047
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5048

5049
	perf_event_aux(perf_event_comm_output,
5050 5051
		       comm_event,
		       NULL);
5052 5053
}

5054
void perf_event_comm(struct task_struct *task)
5055
{
5056
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
5057 5058
	struct perf_event_context *ctx;
	int ctxn;
5059

5060
	rcu_read_lock();
P
Peter Zijlstra 已提交
5061 5062 5063 5064
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5065

P
Peter Zijlstra 已提交
5066 5067
		perf_event_enable_on_exec(ctx);
	}
5068
	rcu_read_unlock();
5069

5070
	if (!atomic_read(&nr_comm_events))
5071
		return;
5072

5073
	comm_event = (struct perf_comm_event){
5074
		.task	= task,
5075 5076
		/* .comm      */
		/* .comm_size */
5077
		.event_id  = {
5078
			.header = {
5079
				.type = PERF_RECORD_COMM,
5080 5081 5082 5083 5084
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
5085 5086 5087
		},
	};

5088
	perf_event_comm_event(&comm_event);
5089 5090
}

5091 5092 5093 5094 5095
/*
 * mmap tracking
 */

struct perf_mmap_event {
5096 5097 5098 5099
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5100 5101 5102
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5103 5104 5105 5106 5107 5108 5109 5110 5111

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5112
	} event_id;
5113 5114
};

5115 5116 5117 5118 5119 5120 5121 5122
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5123
	       (executable && (event->attr.mmap || event->attr.mmap2));
5124 5125
}

5126
static void perf_event_mmap_output(struct perf_event *event,
5127
				   void *data)
5128
{
5129
	struct perf_mmap_event *mmap_event = data;
5130
	struct perf_output_handle handle;
5131
	struct perf_sample_data sample;
5132
	int size = mmap_event->event_id.header.size;
5133
	int ret;
5134

5135 5136 5137
	if (!perf_event_mmap_match(event, data))
		return;

5138 5139 5140 5141 5142
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5143
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5144 5145
	}

5146 5147
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5148
				mmap_event->event_id.header.size);
5149
	if (ret)
5150
		goto out;
5151

5152 5153
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5154

5155
	perf_output_put(&handle, mmap_event->event_id);
5156 5157 5158 5159 5160 5161 5162 5163

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
	}

5164
	__output_copy(&handle, mmap_event->file_name,
5165
				   mmap_event->file_size);
5166 5167 5168

	perf_event__output_id_sample(event, &handle, &sample);

5169
	perf_output_end(&handle);
5170 5171
out:
	mmap_event->event_id.header.size = size;
5172 5173
}

5174
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5175
{
5176 5177
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5178 5179
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5180 5181 5182
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5183
	char *name;
5184

5185
	if (file) {
5186 5187
		struct inode *inode;
		dev_t dev;
5188

5189
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5190
		if (!buf) {
5191 5192
			name = "//enomem";
			goto cpy_name;
5193
		}
5194
		/*
5195
		 * d_path() works from the end of the rb backwards, so we
5196 5197 5198
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5199
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5200
		if (IS_ERR(name)) {
5201 5202
			name = "//toolong";
			goto cpy_name;
5203
		}
5204 5205 5206 5207 5208 5209
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5210
		goto got_name;
5211
	} else {
5212
		name = (char *)arch_vma_name(vma);
5213 5214
		if (name)
			goto cpy_name;
5215

5216
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5217
				vma->vm_end >= vma->vm_mm->brk) {
5218 5219
			name = "[heap]";
			goto cpy_name;
5220 5221
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5222
				vma->vm_end >= vma->vm_mm->start_stack) {
5223 5224
			name = "[stack]";
			goto cpy_name;
5225 5226
		}

5227 5228
		name = "//anon";
		goto cpy_name;
5229 5230
	}

5231 5232 5233
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5234
got_name:
5235 5236 5237 5238 5239 5240 5241 5242
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5243 5244 5245

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5246 5247 5248 5249
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5250

5251 5252 5253
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5254
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5255

5256
	perf_event_aux(perf_event_mmap_output,
5257 5258
		       mmap_event,
		       NULL);
5259

5260 5261 5262
	kfree(buf);
}

5263
void perf_event_mmap(struct vm_area_struct *vma)
5264
{
5265 5266
	struct perf_mmap_event mmap_event;

5267
	if (!atomic_read(&nr_mmap_events))
5268 5269 5270
		return;

	mmap_event = (struct perf_mmap_event){
5271
		.vma	= vma,
5272 5273
		/* .file_name */
		/* .file_size */
5274
		.event_id  = {
5275
			.header = {
5276
				.type = PERF_RECORD_MMAP,
5277
				.misc = PERF_RECORD_MISC_USER,
5278 5279 5280 5281
				/* .size */
			},
			/* .pid */
			/* .tid */
5282 5283
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5284
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5285
		},
5286 5287 5288 5289
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5290 5291
	};

5292
	perf_event_mmap_event(&mmap_event);
5293 5294
}

5295 5296 5297 5298
/*
 * IRQ throttle logging
 */

5299
static void perf_log_throttle(struct perf_event *event, int enable)
5300 5301
{
	struct perf_output_handle handle;
5302
	struct perf_sample_data sample;
5303 5304 5305 5306 5307
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5308
		u64				id;
5309
		u64				stream_id;
5310 5311
	} throttle_event = {
		.header = {
5312
			.type = PERF_RECORD_THROTTLE,
5313 5314 5315
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5316
		.time		= perf_clock(),
5317 5318
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5319 5320
	};

5321
	if (enable)
5322
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5323

5324 5325 5326
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5327
				throttle_event.header.size);
5328 5329 5330 5331
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5332
	perf_event__output_id_sample(event, &handle, &sample);
5333 5334 5335
	perf_output_end(&handle);
}

5336
/*
5337
 * Generic event overflow handling, sampling.
5338 5339
 */

5340
static int __perf_event_overflow(struct perf_event *event,
5341 5342
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5343
{
5344 5345
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5346
	u64 seq;
5347 5348
	int ret = 0;

5349 5350 5351 5352 5353 5354 5355
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5356 5357 5358 5359 5360 5361 5362 5363 5364
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5365 5366
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5367
			tick_nohz_full_kick();
5368 5369
			ret = 1;
		}
5370
	}
5371

5372
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5373
		u64 now = perf_clock();
5374
		s64 delta = now - hwc->freq_time_stamp;
5375

5376
		hwc->freq_time_stamp = now;
5377

5378
		if (delta > 0 && delta < 2*TICK_NSEC)
5379
			perf_adjust_period(event, delta, hwc->last_period, true);
5380 5381
	}

5382 5383
	/*
	 * XXX event_limit might not quite work as expected on inherited
5384
	 * events
5385 5386
	 */

5387 5388
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5389
		ret = 1;
5390
		event->pending_kill = POLL_HUP;
5391 5392
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5393 5394
	}

5395
	if (event->overflow_handler)
5396
		event->overflow_handler(event, data, regs);
5397
	else
5398
		perf_event_output(event, data, regs);
5399

P
Peter Zijlstra 已提交
5400
	if (event->fasync && event->pending_kill) {
5401 5402
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5403 5404
	}

5405
	return ret;
5406 5407
}

5408
int perf_event_overflow(struct perf_event *event,
5409 5410
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5411
{
5412
	return __perf_event_overflow(event, 1, data, regs);
5413 5414
}

5415
/*
5416
 * Generic software event infrastructure
5417 5418
 */

5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5430
/*
5431 5432
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5433 5434 5435 5436
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5437
u64 perf_swevent_set_period(struct perf_event *event)
5438
{
5439
	struct hw_perf_event *hwc = &event->hw;
5440 5441 5442 5443 5444
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5445 5446

again:
5447
	old = val = local64_read(&hwc->period_left);
5448 5449
	if (val < 0)
		return 0;
5450

5451 5452 5453
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5454
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5455
		goto again;
5456

5457
	return nr;
5458 5459
}

5460
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5461
				    struct perf_sample_data *data,
5462
				    struct pt_regs *regs)
5463
{
5464
	struct hw_perf_event *hwc = &event->hw;
5465
	int throttle = 0;
5466

5467 5468
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5469

5470 5471
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5472

5473
	for (; overflow; overflow--) {
5474
		if (__perf_event_overflow(event, throttle,
5475
					    data, regs)) {
5476 5477 5478 5479 5480 5481
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5482
		throttle = 1;
5483
	}
5484 5485
}

P
Peter Zijlstra 已提交
5486
static void perf_swevent_event(struct perf_event *event, u64 nr,
5487
			       struct perf_sample_data *data,
5488
			       struct pt_regs *regs)
5489
{
5490
	struct hw_perf_event *hwc = &event->hw;
5491

5492
	local64_add(nr, &event->count);
5493

5494 5495 5496
	if (!regs)
		return;

5497
	if (!is_sampling_event(event))
5498
		return;
5499

5500 5501 5502 5503 5504 5505
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5506
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5507
		return perf_swevent_overflow(event, 1, data, regs);
5508

5509
	if (local64_add_negative(nr, &hwc->period_left))
5510
		return;
5511

5512
	perf_swevent_overflow(event, 0, data, regs);
5513 5514
}

5515 5516 5517
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5518
	if (event->hw.state & PERF_HES_STOPPED)
5519
		return 1;
P
Peter Zijlstra 已提交
5520

5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5532
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5533
				enum perf_type_id type,
L
Li Zefan 已提交
5534 5535 5536
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5537
{
5538
	if (event->attr.type != type)
5539
		return 0;
5540

5541
	if (event->attr.config != event_id)
5542 5543
		return 0;

5544 5545
	if (perf_exclude_event(event, regs))
		return 0;
5546 5547 5548 5549

	return 1;
}

5550 5551 5552 5553 5554 5555 5556
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5557 5558
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5559
{
5560 5561 5562 5563
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5564

5565 5566
/* For the read side: events when they trigger */
static inline struct hlist_head *
5567
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5568 5569
{
	struct swevent_hlist *hlist;
5570

5571
	hlist = rcu_dereference(swhash->swevent_hlist);
5572 5573 5574
	if (!hlist)
		return NULL;

5575 5576 5577 5578 5579
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5580
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5591
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5592 5593 5594 5595 5596
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5597 5598 5599
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5600
				    u64 nr,
5601 5602
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5603
{
5604
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5605
	struct perf_event *event;
5606
	struct hlist_head *head;
5607

5608
	rcu_read_lock();
5609
	head = find_swevent_head_rcu(swhash, type, event_id);
5610 5611 5612
	if (!head)
		goto end;

5613
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5614
		if (perf_swevent_match(event, type, event_id, data, regs))
5615
			perf_swevent_event(event, nr, data, regs);
5616
	}
5617 5618
end:
	rcu_read_unlock();
5619 5620
}

5621
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5622
{
5623
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5624

5625
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5626
}
I
Ingo Molnar 已提交
5627
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5628

5629
inline void perf_swevent_put_recursion_context(int rctx)
5630
{
5631
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5632

5633
	put_recursion_context(swhash->recursion, rctx);
5634
}
5635

5636
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5637
{
5638
	struct perf_sample_data data;
5639 5640
	int rctx;

5641
	preempt_disable_notrace();
5642 5643 5644
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5645

5646
	perf_sample_data_init(&data, addr, 0);
5647

5648
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5649 5650

	perf_swevent_put_recursion_context(rctx);
5651
	preempt_enable_notrace();
5652 5653
}

5654
static void perf_swevent_read(struct perf_event *event)
5655 5656 5657
{
}

P
Peter Zijlstra 已提交
5658
static int perf_swevent_add(struct perf_event *event, int flags)
5659
{
5660
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5661
	struct hw_perf_event *hwc = &event->hw;
5662 5663
	struct hlist_head *head;

5664
	if (is_sampling_event(event)) {
5665
		hwc->last_period = hwc->sample_period;
5666
		perf_swevent_set_period(event);
5667
	}
5668

P
Peter Zijlstra 已提交
5669 5670
	hwc->state = !(flags & PERF_EF_START);

5671
	head = find_swevent_head(swhash, event);
5672 5673 5674 5675 5676
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5677 5678 5679
	return 0;
}

P
Peter Zijlstra 已提交
5680
static void perf_swevent_del(struct perf_event *event, int flags)
5681
{
5682
	hlist_del_rcu(&event->hlist_entry);
5683 5684
}

P
Peter Zijlstra 已提交
5685
static void perf_swevent_start(struct perf_event *event, int flags)
5686
{
P
Peter Zijlstra 已提交
5687
	event->hw.state = 0;
5688
}
I
Ingo Molnar 已提交
5689

P
Peter Zijlstra 已提交
5690
static void perf_swevent_stop(struct perf_event *event, int flags)
5691
{
P
Peter Zijlstra 已提交
5692
	event->hw.state = PERF_HES_STOPPED;
5693 5694
}

5695 5696
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5697
swevent_hlist_deref(struct swevent_htable *swhash)
5698
{
5699 5700
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5701 5702
}

5703
static void swevent_hlist_release(struct swevent_htable *swhash)
5704
{
5705
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5706

5707
	if (!hlist)
5708 5709
		return;

5710
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5711
	kfree_rcu(hlist, rcu_head);
5712 5713 5714 5715
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5716
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5717

5718
	mutex_lock(&swhash->hlist_mutex);
5719

5720 5721
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5722

5723
	mutex_unlock(&swhash->hlist_mutex);
5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5736
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5737 5738
	int err = 0;

5739
	mutex_lock(&swhash->hlist_mutex);
5740

5741
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5742 5743 5744 5745 5746 5747 5748
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5749
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5750
	}
5751
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5752
exit:
5753
	mutex_unlock(&swhash->hlist_mutex);
5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5774
fail:
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5785
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5786

5787 5788 5789
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5790

5791 5792
	WARN_ON(event->parent);

5793
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5794 5795 5796 5797 5798
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5799
	u64 event_id = event->attr.config;
5800 5801 5802 5803

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5804 5805 5806 5807 5808 5809
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5810 5811 5812 5813 5814 5815 5816 5817 5818
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5819
	if (event_id >= PERF_COUNT_SW_MAX)
5820 5821 5822 5823 5824 5825 5826 5827 5828
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5829
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5830 5831 5832 5833 5834 5835
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5836 5837 5838 5839 5840
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5841
static struct pmu perf_swevent = {
5842
	.task_ctx_nr	= perf_sw_context,
5843

5844
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5845 5846 5847 5848
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5849
	.read		= perf_swevent_read,
5850 5851

	.event_idx	= perf_swevent_event_idx,
5852 5853
};

5854 5855
#ifdef CONFIG_EVENT_TRACING

5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5870 5871
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5872 5873 5874 5875
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5876 5877 5878 5879 5880 5881 5882 5883 5884
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5885 5886
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5887 5888
{
	struct perf_sample_data data;
5889 5890
	struct perf_event *event;

5891 5892 5893 5894 5895
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5896
	perf_sample_data_init(&data, addr, 0);
5897 5898
	data.raw = &raw;

5899
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5900
		if (perf_tp_event_match(event, &data, regs))
5901
			perf_swevent_event(event, count, &data, regs);
5902
	}
5903

5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5929
	perf_swevent_put_recursion_context(rctx);
5930 5931 5932
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5933
static void tp_perf_event_destroy(struct perf_event *event)
5934
{
5935
	perf_trace_destroy(event);
5936 5937
}

5938
static int perf_tp_event_init(struct perf_event *event)
5939
{
5940 5941
	int err;

5942 5943 5944
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5945 5946 5947 5948 5949 5950
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5951 5952
	err = perf_trace_init(event);
	if (err)
5953
		return err;
5954

5955
	event->destroy = tp_perf_event_destroy;
5956

5957 5958 5959 5960
	return 0;
}

static struct pmu perf_tracepoint = {
5961 5962
	.task_ctx_nr	= perf_sw_context,

5963
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5964 5965 5966 5967
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5968
	.read		= perf_swevent_read,
5969 5970

	.event_idx	= perf_swevent_event_idx,
5971 5972 5973 5974
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5975
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5976
}
L
Li Zefan 已提交
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6001
#else
L
Li Zefan 已提交
6002

6003
static inline void perf_tp_register(void)
6004 6005
{
}
L
Li Zefan 已提交
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6016
#endif /* CONFIG_EVENT_TRACING */
6017

6018
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6019
void perf_bp_event(struct perf_event *bp, void *data)
6020
{
6021 6022 6023
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6024
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6025

P
Peter Zijlstra 已提交
6026
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6027
		perf_swevent_event(bp, 1, &sample, regs);
6028 6029 6030
}
#endif

6031 6032 6033
/*
 * hrtimer based swevent callback
 */
6034

6035
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6036
{
6037 6038 6039 6040 6041
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6042

6043
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6044 6045 6046 6047

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6048
	event->pmu->read(event);
6049

6050
	perf_sample_data_init(&data, 0, event->hw.last_period);
6051 6052 6053
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6054
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6055
			if (__perf_event_overflow(event, 1, &data, regs))
6056 6057
				ret = HRTIMER_NORESTART;
	}
6058

6059 6060
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6061

6062
	return ret;
6063 6064
}

6065
static void perf_swevent_start_hrtimer(struct perf_event *event)
6066
{
6067
	struct hw_perf_event *hwc = &event->hw;
6068 6069 6070 6071
	s64 period;

	if (!is_sampling_event(event))
		return;
6072

6073 6074 6075 6076
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6077

6078 6079 6080 6081 6082
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6083
				ns_to_ktime(period), 0,
6084
				HRTIMER_MODE_REL_PINNED, 0);
6085
}
6086 6087

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6088
{
6089 6090
	struct hw_perf_event *hwc = &event->hw;

6091
	if (is_sampling_event(event)) {
6092
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6093
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6094 6095 6096

		hrtimer_cancel(&hwc->hrtimer);
	}
6097 6098
}

P
Peter Zijlstra 已提交
6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6119
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6120 6121 6122 6123
		event->attr.freq = 0;
	}
}

6124 6125 6126 6127 6128
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6129
{
6130 6131 6132
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6133
	now = local_clock();
6134 6135
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6136 6137
}

P
Peter Zijlstra 已提交
6138
static void cpu_clock_event_start(struct perf_event *event, int flags)
6139
{
P
Peter Zijlstra 已提交
6140
	local64_set(&event->hw.prev_count, local_clock());
6141 6142 6143
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6144
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6145
{
6146 6147 6148
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6149

P
Peter Zijlstra 已提交
6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6163 6164 6165 6166
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6167

6168 6169 6170 6171 6172 6173 6174 6175
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6176 6177 6178 6179 6180 6181
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6182 6183
	perf_swevent_init_hrtimer(event);

6184
	return 0;
6185 6186
}

6187
static struct pmu perf_cpu_clock = {
6188 6189
	.task_ctx_nr	= perf_sw_context,

6190
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6191 6192 6193 6194
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6195
	.read		= cpu_clock_event_read,
6196 6197

	.event_idx	= perf_swevent_event_idx,
6198 6199 6200 6201 6202 6203 6204
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6205
{
6206 6207
	u64 prev;
	s64 delta;
6208

6209 6210 6211 6212
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6213

P
Peter Zijlstra 已提交
6214
static void task_clock_event_start(struct perf_event *event, int flags)
6215
{
P
Peter Zijlstra 已提交
6216
	local64_set(&event->hw.prev_count, event->ctx->time);
6217 6218 6219
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6220
static void task_clock_event_stop(struct perf_event *event, int flags)
6221 6222 6223
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6224 6225 6226 6227 6228 6229
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6230

P
Peter Zijlstra 已提交
6231 6232 6233 6234 6235 6236
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6237 6238 6239 6240
}

static void task_clock_event_read(struct perf_event *event)
{
6241 6242 6243
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6244 6245 6246 6247 6248

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6249
{
6250 6251 6252 6253 6254 6255
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6256 6257 6258 6259 6260 6261
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6262 6263
	perf_swevent_init_hrtimer(event);

6264
	return 0;
L
Li Zefan 已提交
6265 6266
}

6267
static struct pmu perf_task_clock = {
6268 6269
	.task_ctx_nr	= perf_sw_context,

6270
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6271 6272 6273 6274
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6275
	.read		= task_clock_event_read,
6276 6277

	.event_idx	= perf_swevent_event_idx,
6278
};
L
Li Zefan 已提交
6279

P
Peter Zijlstra 已提交
6280
static void perf_pmu_nop_void(struct pmu *pmu)
6281 6282
{
}
L
Li Zefan 已提交
6283

P
Peter Zijlstra 已提交
6284
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6285
{
P
Peter Zijlstra 已提交
6286
	return 0;
L
Li Zefan 已提交
6287 6288
}

P
Peter Zijlstra 已提交
6289
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6290
{
P
Peter Zijlstra 已提交
6291
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6292 6293
}

P
Peter Zijlstra 已提交
6294 6295 6296 6297 6298
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6299

P
Peter Zijlstra 已提交
6300
static void perf_pmu_cancel_txn(struct pmu *pmu)
6301
{
P
Peter Zijlstra 已提交
6302
	perf_pmu_enable(pmu);
6303 6304
}

6305 6306 6307 6308 6309
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6310 6311 6312 6313
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6314
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6315
{
P
Peter Zijlstra 已提交
6316
	struct pmu *pmu;
6317

P
Peter Zijlstra 已提交
6318 6319
	if (ctxn < 0)
		return NULL;
6320

P
Peter Zijlstra 已提交
6321 6322 6323 6324
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6325

P
Peter Zijlstra 已提交
6326
	return NULL;
6327 6328
}

6329
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6330
{
6331 6332 6333 6334 6335 6336 6337
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6338 6339
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6340 6341 6342 6343 6344 6345
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6346

P
Peter Zijlstra 已提交
6347
	mutex_lock(&pmus_lock);
6348
	/*
P
Peter Zijlstra 已提交
6349
	 * Like a real lame refcount.
6350
	 */
6351 6352 6353
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6354
			goto out;
6355
		}
P
Peter Zijlstra 已提交
6356
	}
6357

6358
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6359 6360
out:
	mutex_unlock(&pmus_lock);
6361
}
P
Peter Zijlstra 已提交
6362
static struct idr pmu_idr;
6363

P
Peter Zijlstra 已提交
6364 6365 6366 6367 6368 6369 6370
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6371
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6372

6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6416
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6417

6418 6419 6420 6421
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6422
};
6423
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6424 6425 6426 6427

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6428
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6444
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6465
static struct lock_class_key cpuctx_mutex;
6466
static struct lock_class_key cpuctx_lock;
6467

6468
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6469
{
P
Peter Zijlstra 已提交
6470
	int cpu, ret;
6471

6472
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6473 6474 6475 6476
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6477

P
Peter Zijlstra 已提交
6478 6479 6480 6481 6482 6483
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6484 6485 6486
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6487 6488 6489 6490 6491
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6492 6493 6494 6495 6496 6497
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6498
skip_type:
P
Peter Zijlstra 已提交
6499 6500 6501
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6502

W
Wei Yongjun 已提交
6503
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6504 6505
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6506
		goto free_dev;
6507

P
Peter Zijlstra 已提交
6508 6509 6510 6511
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6512
		__perf_event_init_context(&cpuctx->ctx);
6513
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6514
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6515
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6516
		cpuctx->ctx.pmu = pmu;
6517 6518 6519

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6520
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6521
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6522
	}
6523

P
Peter Zijlstra 已提交
6524
got_cpu_context:
P
Peter Zijlstra 已提交
6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6539
		}
6540
	}
6541

P
Peter Zijlstra 已提交
6542 6543 6544 6545 6546
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6547 6548 6549
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6550
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6551 6552
	ret = 0;
unlock:
6553 6554
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6555
	return ret;
P
Peter Zijlstra 已提交
6556

P
Peter Zijlstra 已提交
6557 6558 6559 6560
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6561 6562 6563 6564
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6565 6566 6567
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6568
}
6569
EXPORT_SYMBOL_GPL(perf_pmu_register);
6570

6571
void perf_pmu_unregister(struct pmu *pmu)
6572
{
6573 6574 6575
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6576

6577
	/*
P
Peter Zijlstra 已提交
6578 6579
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6580
	 */
6581
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6582
	synchronize_rcu();
6583

P
Peter Zijlstra 已提交
6584
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6585 6586
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6587 6588
	device_del(pmu->dev);
	put_device(pmu->dev);
6589
	free_pmu_context(pmu);
6590
}
6591
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6592

6593 6594 6595 6596
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6597
	int ret;
6598 6599

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6600 6601 6602 6603

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6604
	if (pmu) {
6605 6606 6607 6608
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
6609
		event->pmu = pmu;
6610 6611 6612
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6613
		goto unlock;
6614
	}
P
Peter Zijlstra 已提交
6615

6616
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6617 6618 6619 6620
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
6621
		event->pmu = pmu;
6622
		ret = pmu->event_init(event);
6623
		if (!ret)
P
Peter Zijlstra 已提交
6624
			goto unlock;
6625

6626 6627
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6628
			goto unlock;
6629
		}
6630
	}
P
Peter Zijlstra 已提交
6631 6632
	pmu = ERR_PTR(-ENOENT);
unlock:
6633
	srcu_read_unlock(&pmus_srcu, idx);
6634

6635
	return pmu;
6636 6637
}

6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6651 6652
static void account_event(struct perf_event *event)
{
6653 6654 6655
	if (event->parent)
		return;

6656 6657 6658 6659 6660 6661 6662 6663
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6664 6665 6666 6667
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6668
	if (has_branch_stack(event))
6669
		static_key_slow_inc(&perf_sched_events.key);
6670
	if (is_cgroup_event(event))
6671
		static_key_slow_inc(&perf_sched_events.key);
6672 6673

	account_event_cpu(event, event->cpu);
6674 6675
}

T
Thomas Gleixner 已提交
6676
/*
6677
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6678
 */
6679
static struct perf_event *
6680
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6681 6682 6683
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6684 6685
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6686
{
P
Peter Zijlstra 已提交
6687
	struct pmu *pmu;
6688 6689
	struct perf_event *event;
	struct hw_perf_event *hwc;
6690
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6691

6692 6693 6694 6695 6696
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6697
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6698
	if (!event)
6699
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6700

6701
	/*
6702
	 * Single events are their own group leaders, with an
6703 6704 6705
	 * empty sibling list:
	 */
	if (!group_leader)
6706
		group_leader = event;
6707

6708 6709
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6710

6711 6712 6713
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6714
	INIT_LIST_HEAD(&event->rb_entry);
6715
	INIT_LIST_HEAD(&event->active_entry);
6716 6717
	INIT_HLIST_NODE(&event->hlist_entry);

6718

6719
	init_waitqueue_head(&event->waitq);
6720
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6721

6722
	mutex_init(&event->mmap_mutex);
6723

6724
	atomic_long_set(&event->refcount, 1);
6725 6726 6727 6728 6729
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6730

6731
	event->parent		= parent_event;
6732

6733
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6734
	event->id		= atomic64_inc_return(&perf_event_id);
6735

6736
	event->state		= PERF_EVENT_STATE_INACTIVE;
6737

6738 6739
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6740 6741 6742

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6743 6744 6745 6746
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6747
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6748 6749 6750 6751
			event->hw.bp_target = task;
#endif
	}

6752
	if (!overflow_handler && parent_event) {
6753
		overflow_handler = parent_event->overflow_handler;
6754 6755
		context = parent_event->overflow_handler_context;
	}
6756

6757
	event->overflow_handler	= overflow_handler;
6758
	event->overflow_handler_context = context;
6759

J
Jiri Olsa 已提交
6760
	perf_event__state_init(event);
6761

6762
	pmu = NULL;
6763

6764
	hwc = &event->hw;
6765
	hwc->sample_period = attr->sample_period;
6766
	if (attr->freq && attr->sample_freq)
6767
		hwc->sample_period = 1;
6768
	hwc->last_period = hwc->sample_period;
6769

6770
	local64_set(&hwc->period_left, hwc->sample_period);
6771

6772
	/*
6773
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6774
	 */
6775
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6776
		goto err_ns;
6777

6778
	pmu = perf_init_event(event);
6779
	if (!pmu)
6780 6781
		goto err_ns;
	else if (IS_ERR(pmu)) {
6782
		err = PTR_ERR(pmu);
6783
		goto err_ns;
I
Ingo Molnar 已提交
6784
	}
6785

6786
	if (!event->parent) {
6787 6788
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
6789 6790
			if (err)
				goto err_pmu;
6791
		}
6792
	}
6793

6794
	return event;
6795 6796 6797 6798

err_pmu:
	if (event->destroy)
		event->destroy(event);
6799
	module_put(pmu->module);
6800 6801 6802 6803 6804 6805
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6806 6807
}

6808 6809
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6810 6811
{
	u32 size;
6812
	int ret;
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6837 6838 6839
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6840 6841
	 */
	if (size > sizeof(*attr)) {
6842 6843 6844
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6845

6846 6847
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6848

6849
		for (; addr < end; addr++) {
6850 6851 6852 6853 6854 6855
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6856
		size = sizeof(*attr);
6857 6858 6859 6860 6861 6862
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6863 6864 6865 6866
	/* disabled for now */
	if (attr->mmap2)
		return -EINVAL;

6867
	if (attr->__reserved_1)
6868 6869 6870 6871 6872 6873 6874 6875
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6904 6905
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6906 6907
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6908
	}
6909

6910
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6911
		ret = perf_reg_validate(attr->sample_regs_user);
6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6930

6931 6932 6933 6934 6935 6936 6937 6938 6939
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6940 6941
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6942
{
6943
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6944 6945
	int ret = -EINVAL;

6946
	if (!output_event)
6947 6948
		goto set;

6949 6950
	/* don't allow circular references */
	if (event == output_event)
6951 6952
		goto out;

6953 6954 6955 6956 6957 6958 6959
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6960
	 * If its not a per-cpu rb, it must be the same task.
6961 6962 6963 6964
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6965
set:
6966
	mutex_lock(&event->mmap_mutex);
6967 6968 6969
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6970

6971 6972
	old_rb = event->rb;

6973
	if (output_event) {
6974 6975 6976
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6977
			goto unlock;
6978 6979
	}

6980 6981
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

6998
	ret = 0;
6999 7000 7001
unlock:
	mutex_unlock(&event->mmap_mutex);

7002 7003 7004 7005
out:
	return ret;
}

T
Thomas Gleixner 已提交
7006
/**
7007
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7008
 *
7009
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7010
 * @pid:		target pid
I
Ingo Molnar 已提交
7011
 * @cpu:		target cpu
7012
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7013
 */
7014 7015
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7016
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7017
{
7018 7019
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7020 7021 7022
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
7023
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7024
	struct task_struct *task = NULL;
7025
	struct pmu *pmu;
7026
	int event_fd;
7027
	int move_group = 0;
7028
	int err;
7029
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7030

7031
	/* for future expandability... */
S
Stephane Eranian 已提交
7032
	if (flags & ~PERF_FLAG_ALL)
7033 7034
		return -EINVAL;

7035 7036 7037
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7038

7039 7040 7041 7042 7043
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7044
	if (attr.freq) {
7045
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7046 7047 7048
			return -EINVAL;
	}

S
Stephane Eranian 已提交
7049 7050 7051 7052 7053 7054 7055 7056 7057
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7058 7059 7060 7061
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7062 7063 7064
	if (event_fd < 0)
		return event_fd;

7065
	if (group_fd != -1) {
7066 7067
		err = perf_fget_light(group_fd, &group);
		if (err)
7068
			goto err_fd;
7069
		group_leader = group.file->private_data;
7070 7071 7072 7073 7074 7075
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7076
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7077 7078 7079 7080 7081 7082 7083
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7084 7085 7086 7087 7088 7089
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7090 7091
	get_online_cpus();

7092 7093
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7094 7095
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7096
		goto err_cpus;
7097 7098
	}

S
Stephane Eranian 已提交
7099 7100
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7101 7102
		if (err) {
			__free_event(event);
7103
			goto err_cpus;
7104
		}
S
Stephane Eranian 已提交
7105 7106
	}

7107 7108
	account_event(event);

7109 7110 7111 7112 7113
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7137 7138 7139 7140

	/*
	 * Get the target context (task or percpu):
	 */
7141
	ctx = find_get_context(pmu, task, event->cpu);
7142 7143
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7144
		goto err_alloc;
7145 7146
	}

7147 7148 7149 7150 7151
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7152
	/*
7153
	 * Look up the group leader (we will attach this event to it):
7154
	 */
7155
	if (group_leader) {
7156
		err = -EINVAL;
7157 7158

		/*
I
Ingo Molnar 已提交
7159 7160 7161 7162
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7163
			goto err_context;
I
Ingo Molnar 已提交
7164 7165 7166
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7167
		 */
7168 7169 7170 7171 7172 7173 7174 7175
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7176 7177 7178
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7179
		if (attr.exclusive || attr.pinned)
7180
			goto err_context;
7181 7182 7183 7184 7185
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7186
			goto err_context;
7187
	}
T
Thomas Gleixner 已提交
7188

7189 7190
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7191 7192
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7193
		goto err_context;
7194
	}
7195

7196 7197 7198 7199
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7200
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
7201 7202 7203 7204 7205 7206 7207

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7208 7209
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7210
			perf_remove_from_context(sibling, false);
J
Jiri Olsa 已提交
7211
			perf_event__state_init(sibling);
7212 7213 7214 7215
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7216
	}
7217

7218
	WARN_ON_ONCE(ctx->parent_ctx);
7219
	mutex_lock(&ctx->mutex);
7220 7221

	if (move_group) {
7222
		synchronize_rcu();
7223
		perf_install_in_context(ctx, group_leader, event->cpu);
7224 7225 7226
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7227
			perf_install_in_context(ctx, sibling, event->cpu);
7228 7229 7230 7231
			get_ctx(ctx);
		}
	}

7232
	perf_install_in_context(ctx, event, event->cpu);
7233
	perf_unpin_context(ctx);
7234
	mutex_unlock(&ctx->mutex);
7235

7236 7237
	put_online_cpus();

7238
	event->owner = current;
P
Peter Zijlstra 已提交
7239

7240 7241 7242
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7243

7244 7245 7246 7247
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7248
	perf_event__id_header_size(event);
7249

7250 7251 7252 7253 7254 7255
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7256
	fdput(group);
7257 7258
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7259

7260
err_context:
7261
	perf_unpin_context(ctx);
7262
	put_ctx(ctx);
7263
err_alloc:
7264
	free_event(event);
7265
err_cpus:
7266
	put_online_cpus();
7267
err_task:
P
Peter Zijlstra 已提交
7268 7269
	if (task)
		put_task_struct(task);
7270
err_group_fd:
7271
	fdput(group);
7272 7273
err_fd:
	put_unused_fd(event_fd);
7274
	return err;
T
Thomas Gleixner 已提交
7275 7276
}

7277 7278 7279 7280 7281
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7282
 * @task: task to profile (NULL for percpu)
7283 7284 7285
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7286
				 struct task_struct *task,
7287 7288
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7289 7290
{
	struct perf_event_context *ctx;
7291
	struct perf_event *event;
7292
	int err;
7293

7294 7295 7296
	/*
	 * Get the target context (task or percpu):
	 */
7297

7298 7299
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7300 7301 7302 7303
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7304

7305 7306
	account_event(event);

M
Matt Helsley 已提交
7307
	ctx = find_get_context(event->pmu, task, cpu);
7308 7309
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7310
		goto err_free;
7311
	}
7312 7313 7314 7315

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7316
	perf_unpin_context(ctx);
7317 7318 7319 7320
	mutex_unlock(&ctx->mutex);

	return event;

7321 7322 7323
err_free:
	free_event(event);
err:
7324
	return ERR_PTR(err);
7325
}
7326
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7327

7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
7341
		perf_remove_from_context(event, false);
7342
		unaccount_event_cpu(event, src_cpu);
7343
		put_ctx(src_ctx);
7344
		list_add(&event->migrate_entry, &events);
7345 7346 7347 7348 7349 7350
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
7351 7352
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7353 7354
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7355
		account_event_cpu(event, dst_cpu);
7356 7357 7358 7359 7360 7361 7362
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7363
static void sync_child_event(struct perf_event *child_event,
7364
			       struct task_struct *child)
7365
{
7366
	struct perf_event *parent_event = child_event->parent;
7367
	u64 child_val;
7368

7369 7370
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7371

P
Peter Zijlstra 已提交
7372
	child_val = perf_event_count(child_event);
7373 7374 7375 7376

	/*
	 * Add back the child's count to the parent's count:
	 */
7377
	atomic64_add(child_val, &parent_event->child_count);
7378 7379 7380 7381
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7382 7383

	/*
7384
	 * Remove this event from the parent's list
7385
	 */
7386 7387 7388 7389
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7390 7391

	/*
7392
	 * Release the parent event, if this was the last
7393 7394
	 * reference to it.
	 */
7395
	put_event(parent_event);
7396 7397
}

7398
static void
7399 7400
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7401
			 struct task_struct *child)
7402
{
7403
	perf_remove_from_context(child_event, true);
7404

7405
	/*
7406
	 * It can happen that the parent exits first, and has events
7407
	 * that are still around due to the child reference. These
7408
	 * events need to be zapped.
7409
	 */
7410
	if (child_event->parent) {
7411 7412
		sync_child_event(child_event, child);
		free_event(child_event);
7413
	}
7414 7415
}

P
Peter Zijlstra 已提交
7416
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7417
{
7418 7419
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7420
	unsigned long flags;
7421

P
Peter Zijlstra 已提交
7422
	if (likely(!child->perf_event_ctxp[ctxn])) {
7423
		perf_event_task(child, NULL, 0);
7424
		return;
P
Peter Zijlstra 已提交
7425
	}
7426

7427
	local_irq_save(flags);
7428 7429 7430 7431 7432 7433
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7434
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7435 7436 7437

	/*
	 * Take the context lock here so that if find_get_context is
7438
	 * reading child->perf_event_ctxp, we wait until it has
7439 7440
	 * incremented the context's refcount before we do put_ctx below.
	 */
7441
	raw_spin_lock(&child_ctx->lock);
7442
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7443
	child->perf_event_ctxp[ctxn] = NULL;
7444 7445 7446
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7447
	 * the events from it.
7448 7449
	 */
	unclone_ctx(child_ctx);
7450
	update_context_time(child_ctx);
7451
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7452 7453

	/*
7454 7455 7456
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7457
	 */
7458
	perf_event_task(child, child_ctx, 0);
7459

7460 7461 7462
	/*
	 * We can recurse on the same lock type through:
	 *
7463 7464
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7465 7466
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7467 7468 7469
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7470
	mutex_lock(&child_ctx->mutex);
7471

7472
again:
7473 7474 7475 7476 7477
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7478
				 group_entry)
7479
		__perf_event_exit_task(child_event, child_ctx, child);
7480 7481

	/*
7482
	 * If the last event was a group event, it will have appended all
7483 7484 7485
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7486 7487
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7488
		goto again;
7489 7490 7491 7492

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7493 7494
}

P
Peter Zijlstra 已提交
7495 7496 7497 7498 7499
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7500
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7501 7502
	int ctxn;

P
Peter Zijlstra 已提交
7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7518 7519 7520 7521
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7534
	put_event(parent);
7535

7536
	perf_group_detach(event);
7537 7538 7539 7540
	list_del_event(event, ctx);
	free_event(event);
}

7541 7542
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7543
 * perf_event_init_task below, used by fork() in case of fail.
7544
 */
7545
void perf_event_free_task(struct task_struct *task)
7546
{
P
Peter Zijlstra 已提交
7547
	struct perf_event_context *ctx;
7548
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7549
	int ctxn;
7550

P
Peter Zijlstra 已提交
7551 7552 7553 7554
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7555

P
Peter Zijlstra 已提交
7556
		mutex_lock(&ctx->mutex);
7557
again:
P
Peter Zijlstra 已提交
7558 7559 7560
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7561

P
Peter Zijlstra 已提交
7562 7563 7564
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7565

P
Peter Zijlstra 已提交
7566 7567 7568
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7569

P
Peter Zijlstra 已提交
7570
		mutex_unlock(&ctx->mutex);
7571

P
Peter Zijlstra 已提交
7572 7573
		put_ctx(ctx);
	}
7574 7575
}

7576 7577 7578 7579 7580 7581 7582 7583
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7596
	unsigned long flags;
P
Peter Zijlstra 已提交
7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7609
					   child,
P
Peter Zijlstra 已提交
7610
					   group_leader, parent_event,
7611
				           NULL, NULL);
P
Peter Zijlstra 已提交
7612 7613
	if (IS_ERR(child_event))
		return child_event;
7614 7615 7616 7617 7618 7619

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7644 7645
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7646

7647 7648 7649 7650
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7651
	perf_event__id_header_size(child_event);
7652

P
Peter Zijlstra 已提交
7653 7654 7655
	/*
	 * Link it up in the child's context:
	 */
7656
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7657
	add_event_to_ctx(child_event, child_ctx);
7658
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7692 7693 7694 7695 7696
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7697
		   struct task_struct *child, int ctxn,
7698 7699 7700
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7701
	struct perf_event_context *child_ctx;
7702 7703 7704 7705

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7706 7707
	}

7708
	child_ctx = child->perf_event_ctxp[ctxn];
7709 7710 7711 7712 7713 7714 7715
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7716

7717
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7718 7719
		if (!child_ctx)
			return -ENOMEM;
7720

P
Peter Zijlstra 已提交
7721
		child->perf_event_ctxp[ctxn] = child_ctx;
7722 7723 7724 7725 7726 7727 7728 7729 7730
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7731 7732
}

7733
/*
7734
 * Initialize the perf_event context in task_struct
7735
 */
P
Peter Zijlstra 已提交
7736
int perf_event_init_context(struct task_struct *child, int ctxn)
7737
{
7738
	struct perf_event_context *child_ctx, *parent_ctx;
7739 7740
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7741
	struct task_struct *parent = current;
7742
	int inherited_all = 1;
7743
	unsigned long flags;
7744
	int ret = 0;
7745

P
Peter Zijlstra 已提交
7746
	if (likely(!parent->perf_event_ctxp[ctxn]))
7747 7748
		return 0;

7749
	/*
7750 7751
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7752
	 */
P
Peter Zijlstra 已提交
7753
	parent_ctx = perf_pin_task_context(parent, ctxn);
7754 7755
	if (!parent_ctx)
		return 0;
7756

7757 7758 7759 7760 7761 7762 7763
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7764 7765 7766 7767
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7768
	mutex_lock(&parent_ctx->mutex);
7769 7770 7771 7772 7773

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7774
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7775 7776
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7777 7778 7779
		if (ret)
			break;
	}
7780

7781 7782 7783 7784 7785 7786 7787 7788 7789
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7790
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7791 7792
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7793
		if (ret)
7794
			break;
7795 7796
	}

7797 7798 7799
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7800
	child_ctx = child->perf_event_ctxp[ctxn];
7801

7802
	if (child_ctx && inherited_all) {
7803 7804 7805
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7806 7807 7808
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7809
		 */
P
Peter Zijlstra 已提交
7810
		cloned_ctx = parent_ctx->parent_ctx;
7811 7812
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7813
			child_ctx->parent_gen = parent_ctx->parent_gen;
7814 7815 7816 7817 7818
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7819 7820
	}

P
Peter Zijlstra 已提交
7821
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7822
	mutex_unlock(&parent_ctx->mutex);
7823

7824
	perf_unpin_context(parent_ctx);
7825
	put_ctx(parent_ctx);
7826

7827
	return ret;
7828 7829
}

P
Peter Zijlstra 已提交
7830 7831 7832 7833 7834 7835 7836
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7837 7838 7839 7840
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7841 7842 7843 7844 7845 7846 7847 7848 7849
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7850 7851
static void __init perf_event_init_all_cpus(void)
{
7852
	struct swevent_htable *swhash;
7853 7854 7855
	int cpu;

	for_each_possible_cpu(cpu) {
7856 7857
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7858
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7859 7860 7861
	}
}

7862
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7863
{
P
Peter Zijlstra 已提交
7864
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7865

7866
	mutex_lock(&swhash->hlist_mutex);
7867
	if (swhash->hlist_refcount > 0) {
7868 7869
		struct swevent_hlist *hlist;

7870 7871 7872
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7873
	}
7874
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7875 7876
}

P
Peter Zijlstra 已提交
7877
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7878
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7879
{
7880 7881 7882 7883 7884 7885 7886
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7887
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7888
{
7889
	struct remove_event re = { .detach_group = false };
P
Peter Zijlstra 已提交
7890
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
7891

P
Peter Zijlstra 已提交
7892
	perf_pmu_rotate_stop(ctx->pmu);
7893

P
Peter Zijlstra 已提交
7894
	rcu_read_lock();
7895 7896
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
7897
	rcu_read_unlock();
T
Thomas Gleixner 已提交
7898
}
P
Peter Zijlstra 已提交
7899 7900 7901 7902 7903 7904 7905 7906 7907

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7908
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7909 7910 7911 7912 7913 7914 7915 7916

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7917
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7918
{
7919
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7920

P
Peter Zijlstra 已提交
7921 7922
	perf_event_exit_cpu_context(cpu);

7923 7924 7925
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7926 7927
}
#else
7928
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7929 7930
#endif

P
Peter Zijlstra 已提交
7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

7951
static int
T
Thomas Gleixner 已提交
7952 7953 7954 7955
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7956
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7957 7958

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7959
	case CPU_DOWN_FAILED:
7960
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7961 7962
		break;

P
Peter Zijlstra 已提交
7963
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7964
	case CPU_DOWN_PREPARE:
7965
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7966 7967 7968 7969 7970 7971 7972 7973
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7974
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7975
{
7976 7977
	int ret;

P
Peter Zijlstra 已提交
7978 7979
	idr_init(&pmu_idr);

7980
	perf_event_init_all_cpus();
7981
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7982 7983 7984
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7985 7986
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7987
	register_reboot_notifier(&perf_reboot_notifier);
7988 7989 7990

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7991 7992 7993

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7994 7995 7996 7997 7998 7999 8000

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8001
}
P
Peter Zijlstra 已提交
8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8030 8031

#ifdef CONFIG_CGROUP_PERF
8032 8033
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8034 8035 8036
{
	struct perf_cgroup *jc;

8037
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8050
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8051
{
8052 8053
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8065 8066
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8067
{
8068 8069
	struct task_struct *task;

8070
	cgroup_taskset_for_each(task, tset)
8071
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8072 8073
}

8074 8075
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8076
			     struct task_struct *task)
S
Stephane Eranian 已提交
8077 8078 8079 8080 8081 8082 8083 8084 8085
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8086
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8087 8088
}

8089
struct cgroup_subsys perf_event_cgrp_subsys = {
8090 8091
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8092
	.exit		= perf_cgroup_exit,
8093
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8094 8095
};
#endif /* CONFIG_CGROUP_PERF */