core.c 199.6 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
L
Li Zefan 已提交
39
#include <linux/ftrace_event.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
T
Thomas Gleixner 已提交
45

46 47
#include "internal.h"

48 49
#include <asm/irq_regs.h>

50 51
static struct workqueue_struct *perf_wq;

52
struct remote_function_call {
53 54 55 56
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
90 91 92 93
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
114 115 116 117
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
118 119 120 121 122 123 124
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

125 126 127 128 129 130 131
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
132 133
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
134 135
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
136

137 138 139 140 141 142 143
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

144 145 146 147 148 149
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
150 151 152 153
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
154
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
155
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
157

158 159 160
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
161
static atomic_t nr_freq_events __read_mostly;
162

P
Peter Zijlstra 已提交
163 164 165 166
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

167
/*
168
 * perf event paranoia level:
169 170
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
171
 *   1 - disallow cpu events for unpriv
172
 *   2 - disallow kernel profiling for unpriv
173
 */
174
int sysctl_perf_event_paranoid __read_mostly = 1;
175

176 177
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178 179

/*
180
 * max perf event sample rate
181
 */
182 183 184 185 186 187 188 189 190
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
191 192
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193 194 195 196 197 198

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
199
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
200
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201
}
P
Peter Zijlstra 已提交
202

203 204
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
205 206 207 208
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
209
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
210 211 212 213 214

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
233 234 235

	return 0;
}
236

237 238 239 240 241 242 243
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
244
static DEFINE_PER_CPU(u64, running_sample_length);
245

246
static void perf_duration_warn(struct irq_work *w)
247
{
248
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249
	u64 avg_local_sample_len;
250
	u64 local_samples_len;
251

252
	local_samples_len = __this_cpu_read(running_sample_length);
253 254 255 256 257
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
258
			avg_local_sample_len, allowed_ns >> 1,
259 260 261 262 263 264 265
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
266
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 268
	u64 avg_local_sample_len;
	u64 local_samples_len;
269

P
Peter Zijlstra 已提交
270
	if (allowed_ns == 0)
271 272 273
		return;

	/* decay the counter by 1 average sample */
274
	local_samples_len = __this_cpu_read(running_sample_length);
275 276
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
277
	__this_cpu_write(running_sample_length, local_samples_len);
278 279 280 281 282 283 284 285

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
286
	if (avg_local_sample_len <= allowed_ns)
287 288 289 290 291 292 293 294 295 296
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
297

298 299 300 301 302 303
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
304 305
}

306
static atomic64_t perf_event_id;
307

308 309 310 311
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
312 313 314 315 316
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
317

318
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
319

320
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
321
{
322
	return "pmu";
T
Thomas Gleixner 已提交
323 324
}

325 326 327 328 329
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
330 331 332 333 334 335
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
352 353 354 355 356 357 358 359
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
376 377 378 379
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
380
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
419 420
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
421
	/*
422 423
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
424
	 */
425
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
426 427
		return;

428 429 430 431 432 433
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
434 435 436
}

static inline void
437 438
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
439 440 441 442
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

443 444 445 446 447 448
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
449 450 451 452
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
453
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
486 487
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
488 489 490 491 492 493 494 495 496

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
497 498
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
499 500 501 502 503 504 505 506 507 508 509

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
510
				WARN_ON_ONCE(cpuctx->cgrp);
511 512 513 514
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
515 516 517 518
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
519 520
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
521 522 523 524 525 526 527 528
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

529 530
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
531
{
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
554 555
}

556 557
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
558
{
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
577 578 579 580 581 582 583 584
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
585 586
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
587

588
	if (!f.file)
S
Stephane Eranian 已提交
589 590
		return -EBADF;

A
Al Viro 已提交
591
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
592
					 &perf_event_cgrp_subsys);
593 594 595 596
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
610
out:
611
	fdput(f);
S
Stephane Eranian 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

685 686
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
687 688 689
{
}

690 691
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
692 693 694 695 696 697 698 699 700 701 702
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
703 704
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
798
	int timer;
799 800 801 802 803

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

804 805 806 807 808 809 810 811 812
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
835
void perf_pmu_disable(struct pmu *pmu)
836
{
P
Peter Zijlstra 已提交
837 838 839
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
840 841
}

P
Peter Zijlstra 已提交
842
void perf_pmu_enable(struct pmu *pmu)
843
{
P
Peter Zijlstra 已提交
844 845 846
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
847 848
}

849
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
850 851

/*
852 853 854 855
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
856
 */
857
static void perf_event_ctx_activate(struct perf_event_context *ctx)
858
{
859
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
860

861
	WARN_ON(!irqs_disabled());
862

863 864 865 866 867 868 869 870 871 872 873 874
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
875 876
}

877
static void get_ctx(struct perf_event_context *ctx)
878
{
879
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
880 881
}

882 883 884 885 886 887 888 889 890
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

891
static void put_ctx(struct perf_event_context *ctx)
892
{
893 894 895
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
896 897
		if (ctx->task)
			put_task_struct(ctx->task);
898
		call_rcu(&ctx->rcu_head, free_ctx);
899
	}
900 901
}

P
Peter Zijlstra 已提交
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
 * Lock ordering is by mutex address. There is one other site where
 * perf_event_context::mutex nests and that is put_event(). But remember that
 * that is a parent<->child context relation, and migration does not affect
 * children, therefore these two orderings should not interact.
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
943 944
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
945 946 947 948 949 950 951 952 953 954 955 956
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
957
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
958 959 960 961 962 963 964 965 966
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
967 968 969 970 971 972
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
973 974 975 976 977 978 979
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

980 981 982 983 984 985 986
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
987
{
988 989 990 991 992
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
993
		ctx->parent_ctx = NULL;
994
	ctx->generation++;
995 996

	return parent_ctx;
997 998
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1021
/*
1022
 * If we inherit events we want to return the parent event id
1023 1024
 * to userspace.
 */
1025
static u64 primary_event_id(struct perf_event *event)
1026
{
1027
	u64 id = event->id;
1028

1029 1030
	if (event->parent)
		id = event->parent->id;
1031 1032 1033 1034

	return id;
}

1035
/*
1036
 * Get the perf_event_context for a task and lock it.
1037 1038 1039
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1040
static struct perf_event_context *
P
Peter Zijlstra 已提交
1041
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1042
{
1043
	struct perf_event_context *ctx;
1044

P
Peter Zijlstra 已提交
1045
retry:
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1057
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1058 1059 1060 1061
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1062
		 * perf_event_task_sched_out, though the
1063 1064 1065 1066 1067 1068
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1069
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1070
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1071
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1072 1073
			rcu_read_unlock();
			preempt_enable();
1074 1075
			goto retry;
		}
1076 1077

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1078
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1079 1080
			ctx = NULL;
		}
1081 1082
	}
	rcu_read_unlock();
1083
	preempt_enable();
1084 1085 1086 1087 1088 1089 1090 1091
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1092 1093
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1094
{
1095
	struct perf_event_context *ctx;
1096 1097
	unsigned long flags;

P
Peter Zijlstra 已提交
1098
	ctx = perf_lock_task_context(task, ctxn, &flags);
1099 1100
	if (ctx) {
		++ctx->pin_count;
1101
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1102 1103 1104 1105
	}
	return ctx;
}

1106
static void perf_unpin_context(struct perf_event_context *ctx)
1107 1108 1109
{
	unsigned long flags;

1110
	raw_spin_lock_irqsave(&ctx->lock, flags);
1111
	--ctx->pin_count;
1112
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1113 1114
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1126 1127 1128
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1129 1130 1131 1132

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1133 1134 1135
	return ctx ? ctx->time : 0;
}

1136 1137
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1138
 * The caller of this function needs to hold the ctx->lock.
1139 1140 1141 1142 1143 1144 1145 1146 1147
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1159
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1160 1161
	else if (ctx->is_active)
		run_end = ctx->time;
1162 1163 1164 1165
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1166 1167 1168 1169

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1170
		run_end = perf_event_time(event);
1171 1172

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1173

1174 1175
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1188 1189 1190 1191 1192 1193 1194 1195 1196
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1197
/*
1198
 * Add a event from the lists for its context.
1199 1200
 * Must be called with ctx->mutex and ctx->lock held.
 */
1201
static void
1202
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1203
{
1204 1205
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1206 1207

	/*
1208 1209 1210
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1211
	 */
1212
	if (event->group_leader == event) {
1213 1214
		struct list_head *list;

1215 1216 1217
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1218 1219
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1220
	}
P
Peter Zijlstra 已提交
1221

1222
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1223 1224
		ctx->nr_cgroups++;

1225 1226 1227
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1228
		ctx->nr_stat++;
1229 1230

	ctx->generation++;
1231 1232
}

J
Jiri Olsa 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1281 1282 1283 1284 1285 1286
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1287 1288 1289
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1290 1291 1292
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1293 1294 1295
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1296 1297 1298
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1299 1300 1301 1302 1303 1304 1305 1306 1307
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1308 1309 1310 1311 1312 1313
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1314 1315 1316
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1317 1318 1319 1320 1321 1322 1323 1324 1325
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1326
	event->id_header_size = size;
1327 1328
}

1329 1330
static void perf_group_attach(struct perf_event *event)
{
1331
	struct perf_event *group_leader = event->group_leader, *pos;
1332

P
Peter Zijlstra 已提交
1333 1334 1335 1336 1337 1338
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1339 1340 1341 1342 1343
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1344 1345
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1346 1347 1348 1349 1350 1351
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1352 1353 1354 1355 1356

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1357 1358
}

1359
/*
1360
 * Remove a event from the lists for its context.
1361
 * Must be called with ctx->mutex and ctx->lock held.
1362
 */
1363
static void
1364
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1365
{
1366
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1367 1368 1369 1370

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1371 1372 1373 1374
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1375
		return;
1376 1377 1378

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1379
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1380
		ctx->nr_cgroups--;
1381 1382 1383 1384 1385 1386 1387 1388 1389
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1390

1391 1392
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1393
		ctx->nr_stat--;
1394

1395
	list_del_rcu(&event->event_entry);
1396

1397 1398
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1399

1400
	update_group_times(event);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1411 1412

	ctx->generation++;
1413 1414
}

1415
static void perf_group_detach(struct perf_event *event)
1416 1417
{
	struct perf_event *sibling, *tmp;
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1434
		goto out;
1435 1436 1437 1438
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1439

1440
	/*
1441 1442
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1443
	 * to whatever list we are on.
1444
	 */
1445
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1446 1447
		if (list)
			list_move_tail(&sibling->group_entry, list);
1448
		sibling->group_leader = sibling;
1449 1450 1451

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1452 1453

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1454
	}
1455 1456 1457 1458 1459 1460

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1461 1462
}

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1502 1503 1504
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1505 1506
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1507 1508
}

1509 1510
static void
event_sched_out(struct perf_event *event,
1511
		  struct perf_cpu_context *cpuctx,
1512
		  struct perf_event_context *ctx)
1513
{
1514
	u64 tstamp = perf_event_time(event);
1515
	u64 delta;
P
Peter Zijlstra 已提交
1516 1517 1518 1519

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1520 1521 1522 1523 1524 1525 1526 1527
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1528
		delta = tstamp - event->tstamp_stopped;
1529
		event->tstamp_running += delta;
1530
		event->tstamp_stopped = tstamp;
1531 1532
	}

1533
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1534
		return;
1535

1536 1537
	perf_pmu_disable(event->pmu);

1538 1539 1540 1541
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1542
	}
1543
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1544
	event->pmu->del(event, 0);
1545
	event->oncpu = -1;
1546

1547
	if (!is_software_event(event))
1548
		cpuctx->active_oncpu--;
1549 1550
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1551 1552
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1553
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1554
		cpuctx->exclusive = 0;
1555

1556 1557 1558
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1559
	perf_pmu_enable(event->pmu);
1560 1561
}

1562
static void
1563
group_sched_out(struct perf_event *group_event,
1564
		struct perf_cpu_context *cpuctx,
1565
		struct perf_event_context *ctx)
1566
{
1567
	struct perf_event *event;
1568
	int state = group_event->state;
1569

1570
	event_sched_out(group_event, cpuctx, ctx);
1571 1572 1573 1574

	/*
	 * Schedule out siblings (if any):
	 */
1575 1576
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1577

1578
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1579 1580 1581
		cpuctx->exclusive = 0;
}

1582 1583 1584 1585 1586
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1587
/*
1588
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1589
 *
1590
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1591 1592
 * remove it from the context list.
 */
1593
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1594
{
1595 1596
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1597
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1598
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1599

1600
	raw_spin_lock(&ctx->lock);
1601
	event_sched_out(event, cpuctx, ctx);
1602 1603
	if (re->detach_group)
		perf_group_detach(event);
1604
	list_del_event(event, ctx);
1605 1606 1607 1608
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1609
	raw_spin_unlock(&ctx->lock);
1610 1611

	return 0;
T
Thomas Gleixner 已提交
1612 1613 1614 1615
}


/*
1616
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1617
 *
1618
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1619
 * call when the task is on a CPU.
1620
 *
1621 1622
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1623 1624
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1625
 * When called from perf_event_exit_task, it's OK because the
1626
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1627
 */
1628
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1629
{
1630
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1631
	struct task_struct *task = ctx->task;
1632 1633 1634 1635
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1636

1637 1638
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1639 1640
	if (!task) {
		/*
1641 1642 1643 1644
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1645
		 */
1646
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1647 1648 1649 1650
		return;
	}

retry:
1651
	if (!task_function_call(task, __perf_remove_from_context, &re))
1652
		return;
T
Thomas Gleixner 已提交
1653

1654
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1655
	/*
1656 1657
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1658
	 */
1659
	if (ctx->is_active) {
1660
		raw_spin_unlock_irq(&ctx->lock);
1661 1662 1663 1664 1665
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1666 1667 1668 1669
		goto retry;
	}

	/*
1670 1671
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1672
	 */
1673 1674
	if (detach_group)
		perf_group_detach(event);
1675
	list_del_event(event, ctx);
1676
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1677 1678
}

1679
/*
1680
 * Cross CPU call to disable a performance event
1681
 */
1682
int __perf_event_disable(void *info)
1683
{
1684 1685
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1686
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1687 1688

	/*
1689 1690
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1691 1692 1693
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1694
	 */
1695
	if (ctx->task && cpuctx->task_ctx != ctx)
1696
		return -EINVAL;
1697

1698
	raw_spin_lock(&ctx->lock);
1699 1700

	/*
1701
	 * If the event is on, turn it off.
1702 1703
	 * If it is in error state, leave it in error state.
	 */
1704
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1705
		update_context_time(ctx);
S
Stephane Eranian 已提交
1706
		update_cgrp_time_from_event(event);
1707 1708 1709
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1710
		else
1711 1712
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1713 1714
	}

1715
	raw_spin_unlock(&ctx->lock);
1716 1717

	return 0;
1718 1719 1720
}

/*
1721
 * Disable a event.
1722
 *
1723 1724
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1725
 * remains valid.  This condition is satisifed when called through
1726 1727 1728 1729
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1730
 * is the current context on this CPU and preemption is disabled,
1731
 * hence we can't get into perf_event_task_sched_out for this context.
1732
 */
P
Peter Zijlstra 已提交
1733
static void _perf_event_disable(struct perf_event *event)
1734
{
1735
	struct perf_event_context *ctx = event->ctx;
1736 1737 1738 1739
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1740
		 * Disable the event on the cpu that it's on
1741
		 */
1742
		cpu_function_call(event->cpu, __perf_event_disable, event);
1743 1744 1745
		return;
	}

P
Peter Zijlstra 已提交
1746
retry:
1747 1748
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1749

1750
	raw_spin_lock_irq(&ctx->lock);
1751
	/*
1752
	 * If the event is still active, we need to retry the cross-call.
1753
	 */
1754
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1755
		raw_spin_unlock_irq(&ctx->lock);
1756 1757 1758 1759 1760
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1761 1762 1763 1764 1765 1766 1767
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1768 1769 1770
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1771
	}
1772
	raw_spin_unlock_irq(&ctx->lock);
1773
}
P
Peter Zijlstra 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1787
EXPORT_SYMBOL_GPL(perf_event_disable);
1788

S
Stephane Eranian 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1824 1825 1826 1827
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1828
static int
1829
event_sched_in(struct perf_event *event,
1830
		 struct perf_cpu_context *cpuctx,
1831
		 struct perf_event_context *ctx)
1832
{
1833
	u64 tstamp = perf_event_time(event);
1834
	int ret = 0;
1835

1836 1837
	lockdep_assert_held(&ctx->lock);

1838
	if (event->state <= PERF_EVENT_STATE_OFF)
1839 1840
		return 0;

1841
	event->state = PERF_EVENT_STATE_ACTIVE;
1842
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1854 1855 1856 1857 1858
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1859 1860
	perf_pmu_disable(event->pmu);

1861 1862 1863 1864
	event->tstamp_running += tstamp - event->tstamp_stopped;

	perf_set_shadow_time(event, ctx, tstamp);

P
Peter Zijlstra 已提交
1865
	if (event->pmu->add(event, PERF_EF_START)) {
1866 1867
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1868 1869
		ret = -EAGAIN;
		goto out;
1870 1871
	}

1872
	if (!is_software_event(event))
1873
		cpuctx->active_oncpu++;
1874 1875
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1876 1877
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1878

1879
	if (event->attr.exclusive)
1880 1881
		cpuctx->exclusive = 1;

1882 1883 1884
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1885 1886 1887 1888
out:
	perf_pmu_enable(event->pmu);

	return ret;
1889 1890
}

1891
static int
1892
group_sched_in(struct perf_event *group_event,
1893
	       struct perf_cpu_context *cpuctx,
1894
	       struct perf_event_context *ctx)
1895
{
1896
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1897
	struct pmu *pmu = ctx->pmu;
1898 1899
	u64 now = ctx->time;
	bool simulate = false;
1900

1901
	if (group_event->state == PERF_EVENT_STATE_OFF)
1902 1903
		return 0;

P
Peter Zijlstra 已提交
1904
	pmu->start_txn(pmu);
1905

1906
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1907
		pmu->cancel_txn(pmu);
1908
		perf_cpu_hrtimer_restart(cpuctx);
1909
		return -EAGAIN;
1910
	}
1911 1912 1913 1914

	/*
	 * Schedule in siblings as one group (if any):
	 */
1915
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1916
		if (event_sched_in(event, cpuctx, ctx)) {
1917
			partial_group = event;
1918 1919 1920 1921
			goto group_error;
		}
	}

1922
	if (!pmu->commit_txn(pmu))
1923
		return 0;
1924

1925 1926 1927 1928
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1939
	 */
1940 1941
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1942 1943 1944 1945 1946 1947 1948 1949
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1950
	}
1951
	event_sched_out(group_event, cpuctx, ctx);
1952

P
Peter Zijlstra 已提交
1953
	pmu->cancel_txn(pmu);
1954

1955 1956
	perf_cpu_hrtimer_restart(cpuctx);

1957 1958 1959
	return -EAGAIN;
}

1960
/*
1961
 * Work out whether we can put this event group on the CPU now.
1962
 */
1963
static int group_can_go_on(struct perf_event *event,
1964 1965 1966 1967
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1968
	 * Groups consisting entirely of software events can always go on.
1969
	 */
1970
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1971 1972 1973
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1974
	 * events can go on.
1975 1976 1977 1978 1979
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1980
	 * events on the CPU, it can't go on.
1981
	 */
1982
	if (event->attr.exclusive && cpuctx->active_oncpu)
1983 1984 1985 1986 1987 1988 1989 1990
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1991 1992
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1993
{
1994 1995
	u64 tstamp = perf_event_time(event);

1996
	list_add_event(event, ctx);
1997
	perf_group_attach(event);
1998 1999 2000
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2001 2002
}

2003 2004 2005 2006 2007 2008
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2009

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2022
/*
2023
 * Cross CPU call to install and enable a performance event
2024 2025
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2026
 */
2027
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2028
{
2029 2030
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2031
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2032 2033 2034
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2035
	perf_ctx_lock(cpuctx, task_ctx);
2036
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2037 2038

	/*
2039
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2040
	 */
2041
	if (task_ctx)
2042
		task_ctx_sched_out(task_ctx);
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2057 2058
		task = task_ctx->task;
	}
2059

2060
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2061

2062
	update_context_time(ctx);
S
Stephane Eranian 已提交
2063 2064 2065 2066 2067 2068
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2069

2070
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2071

2072
	/*
2073
	 * Schedule everything back in
2074
	 */
2075
	perf_event_sched_in(cpuctx, task_ctx, task);
2076 2077 2078

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2079 2080

	return 0;
T
Thomas Gleixner 已提交
2081 2082 2083
}

/*
2084
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2085
 *
2086 2087
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2088
 *
2089
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2090 2091 2092 2093
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2094 2095
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2096 2097 2098 2099
			int cpu)
{
	struct task_struct *task = ctx->task;

2100 2101
	lockdep_assert_held(&ctx->mutex);

2102
	event->ctx = ctx;
2103 2104
	if (event->cpu != -1)
		event->cpu = cpu;
2105

T
Thomas Gleixner 已提交
2106 2107
	if (!task) {
		/*
2108
		 * Per cpu events are installed via an smp call and
2109
		 * the install is always successful.
T
Thomas Gleixner 已提交
2110
		 */
2111
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2112 2113 2114 2115
		return;
	}

retry:
2116 2117
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2118

2119
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2120
	/*
2121 2122
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2123
	 */
2124
	if (ctx->is_active) {
2125
		raw_spin_unlock_irq(&ctx->lock);
2126 2127 2128 2129 2130
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2131 2132 2133 2134
		goto retry;
	}

	/*
2135 2136
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2137
	 */
2138
	add_event_to_ctx(event, ctx);
2139
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2140 2141
}

2142
/*
2143
 * Put a event into inactive state and update time fields.
2144 2145 2146 2147 2148 2149
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2150
static void __perf_event_mark_enabled(struct perf_event *event)
2151
{
2152
	struct perf_event *sub;
2153
	u64 tstamp = perf_event_time(event);
2154

2155
	event->state = PERF_EVENT_STATE_INACTIVE;
2156
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2157
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2158 2159
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2160
	}
2161 2162
}

2163
/*
2164
 * Cross CPU call to enable a performance event
2165
 */
2166
static int __perf_event_enable(void *info)
2167
{
2168 2169 2170
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2171
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2172
	int err;
2173

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2184
		return -EINVAL;
2185

2186
	raw_spin_lock(&ctx->lock);
2187
	update_context_time(ctx);
2188

2189
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2190
		goto unlock;
S
Stephane Eranian 已提交
2191 2192 2193 2194

	/*
	 * set current task's cgroup time reference point
	 */
2195
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2196

2197
	__perf_event_mark_enabled(event);
2198

S
Stephane Eranian 已提交
2199 2200 2201
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2202
		goto unlock;
S
Stephane Eranian 已提交
2203
	}
2204

2205
	/*
2206
	 * If the event is in a group and isn't the group leader,
2207
	 * then don't put it on unless the group is on.
2208
	 */
2209
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2210
		goto unlock;
2211

2212
	if (!group_can_go_on(event, cpuctx, 1)) {
2213
		err = -EEXIST;
2214
	} else {
2215
		if (event == leader)
2216
			err = group_sched_in(event, cpuctx, ctx);
2217
		else
2218
			err = event_sched_in(event, cpuctx, ctx);
2219
	}
2220 2221 2222

	if (err) {
		/*
2223
		 * If this event can't go on and it's part of a
2224 2225
		 * group, then the whole group has to come off.
		 */
2226
		if (leader != event) {
2227
			group_sched_out(leader, cpuctx, ctx);
2228 2229
			perf_cpu_hrtimer_restart(cpuctx);
		}
2230
		if (leader->attr.pinned) {
2231
			update_group_times(leader);
2232
			leader->state = PERF_EVENT_STATE_ERROR;
2233
		}
2234 2235
	}

P
Peter Zijlstra 已提交
2236
unlock:
2237
	raw_spin_unlock(&ctx->lock);
2238 2239

	return 0;
2240 2241 2242
}

/*
2243
 * Enable a event.
2244
 *
2245 2246
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2247
 * remains valid.  This condition is satisfied when called through
2248 2249
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2250
 */
P
Peter Zijlstra 已提交
2251
static void _perf_event_enable(struct perf_event *event)
2252
{
2253
	struct perf_event_context *ctx = event->ctx;
2254 2255 2256 2257
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2258
		 * Enable the event on the cpu that it's on
2259
		 */
2260
		cpu_function_call(event->cpu, __perf_event_enable, event);
2261 2262 2263
		return;
	}

2264
	raw_spin_lock_irq(&ctx->lock);
2265
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2266 2267 2268
		goto out;

	/*
2269 2270
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2271 2272 2273 2274
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2275 2276
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2277

P
Peter Zijlstra 已提交
2278
retry:
2279
	if (!ctx->is_active) {
2280
		__perf_event_mark_enabled(event);
2281 2282 2283
		goto out;
	}

2284
	raw_spin_unlock_irq(&ctx->lock);
2285 2286 2287

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2288

2289
	raw_spin_lock_irq(&ctx->lock);
2290 2291

	/*
2292
	 * If the context is active and the event is still off,
2293 2294
	 * we need to retry the cross-call.
	 */
2295 2296 2297 2298 2299 2300
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2301
		goto retry;
2302
	}
2303

P
Peter Zijlstra 已提交
2304
out:
2305
	raw_spin_unlock_irq(&ctx->lock);
2306
}
P
Peter Zijlstra 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2319
EXPORT_SYMBOL_GPL(perf_event_enable);
2320

P
Peter Zijlstra 已提交
2321
static int _perf_event_refresh(struct perf_event *event, int refresh)
2322
{
2323
	/*
2324
	 * not supported on inherited events
2325
	 */
2326
	if (event->attr.inherit || !is_sampling_event(event))
2327 2328
		return -EINVAL;

2329
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2330
	_perf_event_enable(event);
2331 2332

	return 0;
2333
}
P
Peter Zijlstra 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2349
EXPORT_SYMBOL_GPL(perf_event_refresh);
2350

2351 2352 2353
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2354
{
2355
	struct perf_event *event;
2356
	int is_active = ctx->is_active;
2357

2358
	ctx->is_active &= ~event_type;
2359
	if (likely(!ctx->nr_events))
2360 2361
		return;

2362
	update_context_time(ctx);
S
Stephane Eranian 已提交
2363
	update_cgrp_time_from_cpuctx(cpuctx);
2364
	if (!ctx->nr_active)
2365
		return;
2366

P
Peter Zijlstra 已提交
2367
	perf_pmu_disable(ctx->pmu);
2368
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2369 2370
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2371
	}
2372

2373
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2374
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2375
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2376
	}
P
Peter Zijlstra 已提交
2377
	perf_pmu_enable(ctx->pmu);
2378 2379
}

2380
/*
2381 2382 2383 2384 2385 2386
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2387
 */
2388 2389
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2390
{
2391 2392 2393
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2416 2417
}

2418 2419
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2420 2421 2422
{
	u64 value;

2423
	if (!event->attr.inherit_stat)
2424 2425 2426
		return;

	/*
2427
	 * Update the event value, we cannot use perf_event_read()
2428 2429
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2430
	 * we know the event must be on the current CPU, therefore we
2431 2432
	 * don't need to use it.
	 */
2433 2434
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2435 2436
		event->pmu->read(event);
		/* fall-through */
2437

2438 2439
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2440 2441 2442 2443 2444 2445 2446
		break;

	default:
		break;
	}

	/*
2447
	 * In order to keep per-task stats reliable we need to flip the event
2448 2449
	 * values when we flip the contexts.
	 */
2450 2451 2452
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2453

2454 2455
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2456

2457
	/*
2458
	 * Since we swizzled the values, update the user visible data too.
2459
	 */
2460 2461
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2462 2463
}

2464 2465
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2466
{
2467
	struct perf_event *event, *next_event;
2468 2469 2470 2471

	if (!ctx->nr_stat)
		return;

2472 2473
	update_context_time(ctx);

2474 2475
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2476

2477 2478
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2479

2480 2481
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2482

2483
		__perf_event_sync_stat(event, next_event);
2484

2485 2486
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2487 2488 2489
	}
}

2490 2491
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2492
{
P
Peter Zijlstra 已提交
2493
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2494
	struct perf_event_context *next_ctx;
2495
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2496
	struct perf_cpu_context *cpuctx;
2497
	int do_switch = 1;
T
Thomas Gleixner 已提交
2498

P
Peter Zijlstra 已提交
2499 2500
	if (likely(!ctx))
		return;
2501

P
Peter Zijlstra 已提交
2502 2503
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2504 2505
		return;

2506
	rcu_read_lock();
P
Peter Zijlstra 已提交
2507
	next_ctx = next->perf_event_ctxp[ctxn];
2508 2509 2510 2511 2512 2513 2514
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2515
	if (!parent && !next_parent)
2516 2517 2518
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2519 2520 2521 2522 2523 2524 2525 2526 2527
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2528 2529
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2530
		if (context_equiv(ctx, next_ctx)) {
2531 2532
			/*
			 * XXX do we need a memory barrier of sorts
2533
			 * wrt to rcu_dereference() of perf_event_ctxp
2534
			 */
P
Peter Zijlstra 已提交
2535 2536
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2537 2538
			ctx->task = next;
			next_ctx->task = task;
2539 2540 2541

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2542
			do_switch = 0;
2543

2544
			perf_event_sync_stat(ctx, next_ctx);
2545
		}
2546 2547
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2548
	}
2549
unlock:
2550
	rcu_read_unlock();
2551

2552
	if (do_switch) {
2553
		raw_spin_lock(&ctx->lock);
2554
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2555
		cpuctx->task_ctx = NULL;
2556
		raw_spin_unlock(&ctx->lock);
2557
	}
T
Thomas Gleixner 已提交
2558 2559
}

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2624 2625
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2626 2627 2628
{
	int ctxn;

2629 2630 2631
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

P
Peter Zijlstra 已提交
2632 2633
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2634 2635 2636 2637 2638 2639

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2640
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2641
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2642 2643
}

2644
static void task_ctx_sched_out(struct perf_event_context *ctx)
2645
{
P
Peter Zijlstra 已提交
2646
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2647

2648 2649
	if (!cpuctx->task_ctx)
		return;
2650 2651 2652 2653

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2654
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2655 2656 2657
	cpuctx->task_ctx = NULL;
}

2658 2659 2660 2661 2662 2663 2664
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2665 2666
}

2667
static void
2668
ctx_pinned_sched_in(struct perf_event_context *ctx,
2669
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2670
{
2671
	struct perf_event *event;
T
Thomas Gleixner 已提交
2672

2673 2674
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2675
			continue;
2676
		if (!event_filter_match(event))
2677 2678
			continue;

S
Stephane Eranian 已提交
2679 2680 2681 2682
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2683
		if (group_can_go_on(event, cpuctx, 1))
2684
			group_sched_in(event, cpuctx, ctx);
2685 2686 2687 2688 2689

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2690 2691 2692
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2693
		}
2694
	}
2695 2696 2697 2698
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2699
		      struct perf_cpu_context *cpuctx)
2700 2701 2702
{
	struct perf_event *event;
	int can_add_hw = 1;
2703

2704 2705 2706
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2707
			continue;
2708 2709
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2710
		 * of events:
2711
		 */
2712
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2713 2714
			continue;

S
Stephane Eranian 已提交
2715 2716 2717 2718
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2719
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2720
			if (group_sched_in(event, cpuctx, ctx))
2721
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2722
		}
T
Thomas Gleixner 已提交
2723
	}
2724 2725 2726 2727 2728
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2729 2730
	     enum event_type_t event_type,
	     struct task_struct *task)
2731
{
S
Stephane Eranian 已提交
2732
	u64 now;
2733
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2734

2735
	ctx->is_active |= event_type;
2736
	if (likely(!ctx->nr_events))
2737
		return;
2738

S
Stephane Eranian 已提交
2739 2740
	now = perf_clock();
	ctx->timestamp = now;
2741
	perf_cgroup_set_timestamp(task, ctx);
2742 2743 2744 2745
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2746
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2747
		ctx_pinned_sched_in(ctx, cpuctx);
2748 2749

	/* Then walk through the lower prio flexible groups */
2750
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2751
		ctx_flexible_sched_in(ctx, cpuctx);
2752 2753
}

2754
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2755 2756
			     enum event_type_t event_type,
			     struct task_struct *task)
2757 2758 2759
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2760
	ctx_sched_in(ctx, cpuctx, event_type, task);
2761 2762
}

S
Stephane Eranian 已提交
2763 2764
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2765
{
P
Peter Zijlstra 已提交
2766
	struct perf_cpu_context *cpuctx;
2767

P
Peter Zijlstra 已提交
2768
	cpuctx = __get_cpu_context(ctx);
2769 2770 2771
	if (cpuctx->task_ctx == ctx)
		return;

2772
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2773
	perf_pmu_disable(ctx->pmu);
2774 2775 2776 2777 2778 2779 2780
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2781 2782
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2783

2784 2785
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2786 2787
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2788 2789
}

P
Peter Zijlstra 已提交
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2801 2802
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2803 2804 2805 2806 2807 2808 2809 2810 2811
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2812
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2813
	}
S
Stephane Eranian 已提交
2814 2815 2816 2817 2818
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2819
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2820
		perf_cgroup_sched_in(prev, task);
2821

2822 2823
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2824 2825
}

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2853
#define REDUCE_FLS(a, b)		\
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2893 2894 2895
	if (!divisor)
		return dividend;

2896 2897 2898
	return div64_u64(dividend, divisor);
}

2899 2900 2901
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2902
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2903
{
2904
	struct hw_perf_event *hwc = &event->hw;
2905
	s64 period, sample_period;
2906 2907
	s64 delta;

2908
	period = perf_calculate_period(event, nsec, count);
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2919

2920
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2921 2922 2923
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2924
		local64_set(&hwc->period_left, 0);
2925 2926 2927

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2928
	}
2929 2930
}

2931 2932 2933 2934 2935 2936 2937
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2938
{
2939 2940
	struct perf_event *event;
	struct hw_perf_event *hwc;
2941
	u64 now, period = TICK_NSEC;
2942
	s64 delta;
2943

2944 2945 2946 2947 2948 2949
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2950 2951
		return;

2952
	raw_spin_lock(&ctx->lock);
2953
	perf_pmu_disable(ctx->pmu);
2954

2955
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2956
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2957 2958
			continue;

2959
		if (!event_filter_match(event))
2960 2961
			continue;

2962 2963
		perf_pmu_disable(event->pmu);

2964
		hwc = &event->hw;
2965

2966
		if (hwc->interrupts == MAX_INTERRUPTS) {
2967
			hwc->interrupts = 0;
2968
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2969
			event->pmu->start(event, 0);
2970 2971
		}

2972
		if (!event->attr.freq || !event->attr.sample_freq)
2973
			goto next;
2974

2975 2976 2977 2978 2979
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2980
		now = local64_read(&event->count);
2981 2982
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2983

2984 2985 2986
		/*
		 * restart the event
		 * reload only if value has changed
2987 2988 2989
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2990
		 */
2991
		if (delta > 0)
2992
			perf_adjust_period(event, period, delta, false);
2993 2994

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2995 2996
	next:
		perf_pmu_enable(event->pmu);
2997
	}
2998

2999
	perf_pmu_enable(ctx->pmu);
3000
	raw_spin_unlock(&ctx->lock);
3001 3002
}

3003
/*
3004
 * Round-robin a context's events:
3005
 */
3006
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3007
{
3008 3009 3010 3011 3012 3013
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3014 3015
}

3016
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3017
{
P
Peter Zijlstra 已提交
3018
	struct perf_event_context *ctx = NULL;
3019
	int rotate = 0;
3020

3021 3022 3023 3024
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3025

P
Peter Zijlstra 已提交
3026
	ctx = cpuctx->task_ctx;
3027 3028 3029 3030
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3031

3032
	if (!rotate)
3033 3034
		goto done;

3035
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3036
	perf_pmu_disable(cpuctx->ctx.pmu);
3037

3038 3039 3040
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3041

3042 3043 3044
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3045

3046
	perf_event_sched_in(cpuctx, ctx, current);
3047

3048 3049
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3050
done:
3051 3052

	return rotate;
3053 3054
}

3055 3056 3057
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3058
	if (atomic_read(&nr_freq_events) ||
3059
	    __this_cpu_read(perf_throttled_count))
3060
		return false;
3061 3062
	else
		return true;
3063 3064 3065
}
#endif

3066 3067
void perf_event_task_tick(void)
{
3068 3069
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3070
	int throttled;
3071

3072 3073
	WARN_ON(!irqs_disabled());

3074 3075 3076
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3077
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3078
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3079 3080
}

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3091
	__perf_event_mark_enabled(event);
3092 3093 3094 3095

	return 1;
}

3096
/*
3097
 * Enable all of a task's events that have been marked enable-on-exec.
3098 3099
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3100
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3101
{
3102
	struct perf_event_context *clone_ctx = NULL;
3103
	struct perf_event *event;
3104 3105
	unsigned long flags;
	int enabled = 0;
3106
	int ret;
3107 3108

	local_irq_save(flags);
3109
	if (!ctx || !ctx->nr_events)
3110 3111
		goto out;

3112 3113 3114 3115 3116 3117 3118
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3119
	perf_cgroup_sched_out(current, NULL);
3120

3121
	raw_spin_lock(&ctx->lock);
3122
	task_ctx_sched_out(ctx);
3123

3124
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3125 3126 3127
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3128 3129 3130
	}

	/*
3131
	 * Unclone this context if we enabled any event.
3132
	 */
3133
	if (enabled)
3134
		clone_ctx = unclone_ctx(ctx);
3135

3136
	raw_spin_unlock(&ctx->lock);
3137

3138 3139 3140
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3141
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3142
out:
3143
	local_irq_restore(flags);
3144 3145 3146

	if (clone_ctx)
		put_ctx(clone_ctx);
3147 3148
}

3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3165
/*
3166
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3167
 */
3168
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3169
{
3170 3171
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3172
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3173

3174 3175 3176 3177
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3178 3179
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3180 3181 3182 3183
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3184
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3185
	if (ctx->is_active) {
3186
		update_context_time(ctx);
S
Stephane Eranian 已提交
3187 3188
		update_cgrp_time_from_event(event);
	}
3189
	update_event_times(event);
3190 3191
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3192
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3193 3194
}

P
Peter Zijlstra 已提交
3195 3196
static inline u64 perf_event_count(struct perf_event *event)
{
3197 3198 3199 3200
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3201 3202
}

3203
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3204 3205
{
	/*
3206 3207
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3208
	 */
3209 3210 3211 3212
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3213 3214 3215
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3216
		raw_spin_lock_irqsave(&ctx->lock, flags);
3217 3218 3219 3220 3221
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3222
		if (ctx->is_active) {
3223
			update_context_time(ctx);
S
Stephane Eranian 已提交
3224 3225
			update_cgrp_time_from_event(event);
		}
3226
		update_event_times(event);
3227
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3228 3229
	}

P
Peter Zijlstra 已提交
3230
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3231 3232
}

3233
/*
3234
 * Initialize the perf_event context in a task_struct:
3235
 */
3236
static void __perf_event_init_context(struct perf_event_context *ctx)
3237
{
3238
	raw_spin_lock_init(&ctx->lock);
3239
	mutex_init(&ctx->mutex);
3240
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3241 3242
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3243 3244
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3245
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3261
	}
3262 3263 3264
	ctx->pmu = pmu;

	return ctx;
3265 3266
}

3267 3268 3269 3270 3271
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3272 3273

	rcu_read_lock();
3274
	if (!vpid)
T
Thomas Gleixner 已提交
3275 3276
		task = current;
	else
3277
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3278 3279 3280 3281 3282 3283 3284 3285
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3286 3287 3288 3289
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3290 3291 3292 3293 3294 3295 3296
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3297 3298 3299
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3300
static struct perf_event_context *
3301 3302
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3303
{
3304
	struct perf_event_context *ctx, *clone_ctx = NULL;
3305
	struct perf_cpu_context *cpuctx;
3306
	void *task_ctx_data = NULL;
3307
	unsigned long flags;
P
Peter Zijlstra 已提交
3308
	int ctxn, err;
3309
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3310

3311
	if (!task) {
3312
		/* Must be root to operate on a CPU event: */
3313
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3314 3315 3316
			return ERR_PTR(-EACCES);

		/*
3317
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3318 3319 3320
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3321
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3322 3323
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3324
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3325
		ctx = &cpuctx->ctx;
3326
		get_ctx(ctx);
3327
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3328 3329 3330 3331

		return ctx;
	}

P
Peter Zijlstra 已提交
3332 3333 3334 3335 3336
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3337 3338 3339 3340 3341 3342 3343 3344
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3345
retry:
P
Peter Zijlstra 已提交
3346
	ctx = perf_lock_task_context(task, ctxn, &flags);
3347
	if (ctx) {
3348
		clone_ctx = unclone_ctx(ctx);
3349
		++ctx->pin_count;
3350 3351 3352 3353 3354

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3355
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3356 3357 3358

		if (clone_ctx)
			put_ctx(clone_ctx);
3359
	} else {
3360
		ctx = alloc_perf_context(pmu, task);
3361 3362 3363
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3364

3365 3366 3367 3368 3369
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3380
		else {
3381
			get_ctx(ctx);
3382
			++ctx->pin_count;
3383
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3384
		}
3385 3386 3387
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3388
			put_ctx(ctx);
3389 3390 3391 3392

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3393 3394 3395
		}
	}

3396
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3397
	return ctx;
3398

P
Peter Zijlstra 已提交
3399
errout:
3400
	kfree(task_ctx_data);
3401
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3402 3403
}

L
Li Zefan 已提交
3404 3405
static void perf_event_free_filter(struct perf_event *event);

3406
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3407
{
3408
	struct perf_event *event;
P
Peter Zijlstra 已提交
3409

3410 3411 3412
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3413
	perf_event_free_filter(event);
3414
	kfree(event);
P
Peter Zijlstra 已提交
3415 3416
}

3417
static void ring_buffer_put(struct ring_buffer *rb);
3418 3419
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3420

3421
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3422
{
3423 3424 3425 3426 3427 3428
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3429

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3443 3444
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3445 3446 3447 3448 3449 3450 3451
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3452

3453 3454
static void __free_event(struct perf_event *event)
{
3455
	if (!event->parent) {
3456 3457
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3458
	}
3459

3460 3461 3462 3463 3464 3465
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3466 3467 3468
	if (event->pmu)
		module_put(event->pmu->module);

3469 3470
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3471 3472

static void _free_event(struct perf_event *event)
3473
{
3474
	irq_work_sync(&event->pending);
3475

3476
	unaccount_event(event);
3477

3478
	if (event->rb) {
3479 3480 3481 3482 3483 3484 3485
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3486
		ring_buffer_attach(event, NULL);
3487
		mutex_unlock(&event->mmap_mutex);
3488 3489
	}

S
Stephane Eranian 已提交
3490 3491 3492
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3493
	__free_event(event);
3494 3495
}

P
Peter Zijlstra 已提交
3496 3497 3498 3499 3500
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3501
{
P
Peter Zijlstra 已提交
3502 3503 3504 3505 3506 3507
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3508

P
Peter Zijlstra 已提交
3509
	_free_event(event);
T
Thomas Gleixner 已提交
3510 3511
}

3512
/*
3513
 * Remove user event from the owner task.
3514
 */
3515
static void perf_remove_from_owner(struct perf_event *event)
3516
{
P
Peter Zijlstra 已提交
3517
	struct task_struct *owner;
3518

P
Peter Zijlstra 已提交
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3560 3561 3562 3563 3564 3565 3566
}

/*
 * Called when the last reference to the file is gone.
 */
static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3567
	struct perf_event_context *ctx;
3568 3569 3570 3571 3572 3573

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3574

P
Peter Zijlstra 已提交
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3587 3588
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3589 3590 3591 3592
	perf_remove_from_context(event, true);
	mutex_unlock(&ctx->mutex);

	_free_event(event);
3593 3594
}

P
Peter Zijlstra 已提交
3595 3596 3597 3598 3599 3600 3601
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3602 3603 3604 3605
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3606 3607
}

3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3644
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3645
{
3646
	struct perf_event *child;
3647 3648
	u64 total = 0;

3649 3650 3651
	*enabled = 0;
	*running = 0;

3652
	mutex_lock(&event->child_mutex);
3653
	total += perf_event_read(event);
3654 3655 3656 3657 3658 3659
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3660
		total += perf_event_read(child);
3661 3662 3663
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3664
	mutex_unlock(&event->child_mutex);
3665 3666 3667

	return total;
}
3668
EXPORT_SYMBOL_GPL(perf_event_read_value);
3669

3670
static int perf_event_read_group(struct perf_event *event,
3671 3672
				   u64 read_format, char __user *buf)
{
3673
	struct perf_event *leader = event->group_leader, *sub;
3674
	struct perf_event_context *ctx = leader->ctx;
P
Peter Zijlstra 已提交
3675
	int n = 0, size = 0, ret;
3676
	u64 count, enabled, running;
P
Peter Zijlstra 已提交
3677 3678 3679
	u64 values[5];

	lockdep_assert_held(&ctx->mutex);
3680

3681
	count = perf_event_read_value(leader, &enabled, &running);
3682 3683

	values[n++] = 1 + leader->nr_siblings;
3684 3685 3686 3687
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3688 3689 3690
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3691 3692 3693 3694

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
P
Peter Zijlstra 已提交
3695
		return -EFAULT;
3696

3697
	ret = size;
3698

3699
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3700
		n = 0;
3701

3702
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3703 3704 3705 3706 3707
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3708
		if (copy_to_user(buf + ret, values, size)) {
P
Peter Zijlstra 已提交
3709
			return -EFAULT;
3710
		}
3711 3712

		ret += size;
3713 3714
	}

3715
	return ret;
3716 3717
}

3718
static int perf_event_read_one(struct perf_event *event,
3719 3720
				 u64 read_format, char __user *buf)
{
3721
	u64 enabled, running;
3722 3723 3724
	u64 values[4];
	int n = 0;

3725 3726 3727 3728 3729
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3730
	if (read_format & PERF_FORMAT_ID)
3731
		values[n++] = primary_event_id(event);
3732 3733 3734 3735 3736 3737 3738

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3752
/*
3753
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3754 3755
 */
static ssize_t
3756
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3757
{
3758
	u64 read_format = event->attr.read_format;
3759
	int ret;
T
Thomas Gleixner 已提交
3760

3761
	/*
3762
	 * Return end-of-file for a read on a event that is in
3763 3764 3765
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3766
	if (event->state == PERF_EVENT_STATE_ERROR)
3767 3768
		return 0;

3769
	if (count < event->read_size)
3770 3771
		return -ENOSPC;

3772
	WARN_ON_ONCE(event->ctx->parent_ctx);
3773
	if (read_format & PERF_FORMAT_GROUP)
3774
		ret = perf_event_read_group(event, read_format, buf);
3775
	else
3776
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3777

3778
	return ret;
T
Thomas Gleixner 已提交
3779 3780 3781 3782 3783
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3784
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3785 3786
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3787

P
Peter Zijlstra 已提交
3788 3789 3790 3791 3792
	ctx = perf_event_ctx_lock(event);
	ret = perf_read_hw(event, buf, count);
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
3793 3794 3795 3796
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3797
	struct perf_event *event = file->private_data;
3798
	struct ring_buffer *rb;
3799
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3800

3801
	poll_wait(file, &event->waitq, wait);
3802

3803
	if (is_event_hup(event))
3804
		return events;
P
Peter Zijlstra 已提交
3805

3806
	/*
3807 3808
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3809 3810
	 */
	mutex_lock(&event->mmap_mutex);
3811 3812
	rb = event->rb;
	if (rb)
3813
		events = atomic_xchg(&rb->poll, 0);
3814
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
3815 3816 3817
	return events;
}

P
Peter Zijlstra 已提交
3818
static void _perf_event_reset(struct perf_event *event)
3819
{
3820
	(void)perf_event_read(event);
3821
	local64_set(&event->count, 0);
3822
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3823 3824
}

3825
/*
3826 3827 3828 3829
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3830
 */
3831 3832
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3833
{
3834
	struct perf_event *child;
P
Peter Zijlstra 已提交
3835

3836
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
3837

3838 3839 3840
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3841
		func(child);
3842
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3843 3844
}

3845 3846
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3847
{
3848 3849
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3850

P
Peter Zijlstra 已提交
3851 3852
	lockdep_assert_held(&ctx->mutex);

3853
	event = event->group_leader;
3854

3855 3856
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3857
		perf_event_for_each_child(sibling, func);
3858 3859
}

3860
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3861
{
3862
	struct perf_event_context *ctx = event->ctx;
3863
	int ret = 0, active;
3864 3865
	u64 value;

3866
	if (!is_sampling_event(event))
3867 3868
		return -EINVAL;

3869
	if (copy_from_user(&value, arg, sizeof(value)))
3870 3871 3872 3873 3874
		return -EFAULT;

	if (!value)
		return -EINVAL;

3875
	raw_spin_lock_irq(&ctx->lock);
3876 3877
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3878 3879 3880 3881
			ret = -EINVAL;
			goto unlock;
		}

3882
		event->attr.sample_freq = value;
3883
	} else {
3884 3885
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3886
	}
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3901
unlock:
3902
	raw_spin_unlock_irq(&ctx->lock);
3903 3904 3905 3906

	return ret;
}

3907 3908
static const struct file_operations perf_fops;

3909
static inline int perf_fget_light(int fd, struct fd *p)
3910
{
3911 3912 3913
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3914

3915 3916 3917
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3918
	}
3919 3920
	*p = f;
	return 0;
3921 3922 3923 3924
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3925
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3926

P
Peter Zijlstra 已提交
3927
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
3928
{
3929
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3930
	u32 flags = arg;
3931 3932

	switch (cmd) {
3933
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
3934
		func = _perf_event_enable;
3935
		break;
3936
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
3937
		func = _perf_event_disable;
3938
		break;
3939
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
3940
		func = _perf_event_reset;
3941
		break;
P
Peter Zijlstra 已提交
3942

3943
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
3944
		return _perf_event_refresh(event, arg);
3945

3946 3947
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3948

3949 3950 3951 3952 3953 3954 3955 3956 3957
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3958
	case PERF_EVENT_IOC_SET_OUTPUT:
3959 3960 3961
	{
		int ret;
		if (arg != -1) {
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3972 3973 3974
		}
		return ret;
	}
3975

L
Li Zefan 已提交
3976 3977 3978
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3979
	default:
P
Peter Zijlstra 已提交
3980
		return -ENOTTY;
3981
	}
P
Peter Zijlstra 已提交
3982 3983

	if (flags & PERF_IOC_FLAG_GROUP)
3984
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3985
	else
3986
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3987 3988

	return 0;
3989 3990
}

P
Peter Zijlstra 已提交
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4024
int perf_event_task_enable(void)
4025
{
P
Peter Zijlstra 已提交
4026
	struct perf_event_context *ctx;
4027
	struct perf_event *event;
4028

4029
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4030 4031 4032 4033 4034
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4035
	mutex_unlock(&current->perf_event_mutex);
4036 4037 4038 4039

	return 0;
}

4040
int perf_event_task_disable(void)
4041
{
P
Peter Zijlstra 已提交
4042
	struct perf_event_context *ctx;
4043
	struct perf_event *event;
4044

4045
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4046 4047 4048 4049 4050
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4051
	mutex_unlock(&current->perf_event_mutex);
4052 4053 4054 4055

	return 0;
}

4056
static int perf_event_index(struct perf_event *event)
4057
{
P
Peter Zijlstra 已提交
4058 4059 4060
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4061
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4062 4063
		return 0;

4064
	return event->pmu->event_idx(event);
4065 4066
}

4067
static void calc_timer_values(struct perf_event *event,
4068
				u64 *now,
4069 4070
				u64 *enabled,
				u64 *running)
4071
{
4072
	u64 ctx_time;
4073

4074 4075
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4076 4077 4078 4079
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

4100 4101
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4102 4103 4104
{
}

4105 4106 4107 4108 4109
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4110
void perf_event_update_userpage(struct perf_event *event)
4111
{
4112
	struct perf_event_mmap_page *userpg;
4113
	struct ring_buffer *rb;
4114
	u64 enabled, running, now;
4115 4116

	rcu_read_lock();
4117 4118 4119 4120
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4121 4122 4123 4124 4125 4126 4127 4128 4129
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4130
	calc_timer_values(event, &now, &enabled, &running);
4131

4132
	userpg = rb->user_page;
4133 4134 4135 4136 4137
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4138
	++userpg->lock;
4139
	barrier();
4140
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4141
	userpg->offset = perf_event_count(event);
4142
	if (userpg->index)
4143
		userpg->offset -= local64_read(&event->hw.prev_count);
4144

4145
	userpg->time_enabled = enabled +
4146
			atomic64_read(&event->child_total_time_enabled);
4147

4148
	userpg->time_running = running +
4149
			atomic64_read(&event->child_total_time_running);
4150

4151
	arch_perf_update_userpage(event, userpg, now);
4152

4153
	barrier();
4154
	++userpg->lock;
4155
	preempt_enable();
4156
unlock:
4157
	rcu_read_unlock();
4158 4159
}

4160 4161 4162
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4163
	struct ring_buffer *rb;
4164 4165 4166 4167 4168 4169 4170 4171 4172
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4173 4174
	rb = rcu_dereference(event->rb);
	if (!rb)
4175 4176 4177 4178 4179
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4180
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4195 4196 4197
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4198
	struct ring_buffer *old_rb = NULL;
4199 4200
	unsigned long flags;

4201 4202 4203 4204 4205 4206
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4207

4208 4209 4210
		old_rb = event->rb;
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4211

4212 4213 4214 4215
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
	}
4216

4217 4218 4219 4220
	if (event->rcu_pending && rb) {
		cond_synchronize_rcu(event->rcu_batches);
		event->rcu_pending = 0;
	}
4221

4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
	if (rb) {
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4239 4240 4241 4242 4243 4244 4245 4246
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4247 4248 4249 4250
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4251 4252 4253
	rcu_read_unlock();
}

4254
static void rb_free_rcu(struct rcu_head *rcu_head)
4255
{
4256
	struct ring_buffer *rb;
4257

4258 4259
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
4260 4261
}

4262
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4263
{
4264
	struct ring_buffer *rb;
4265

4266
	rcu_read_lock();
4267 4268 4269 4270
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4271 4272 4273
	}
	rcu_read_unlock();

4274
	return rb;
4275 4276
}

4277
static void ring_buffer_put(struct ring_buffer *rb)
4278
{
4279
	if (!atomic_dec_and_test(&rb->refcount))
4280
		return;
4281

4282
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4283

4284
	call_rcu(&rb->rcu_head, rb_free_rcu);
4285 4286 4287 4288
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4289
	struct perf_event *event = vma->vm_file->private_data;
4290

4291
	atomic_inc(&event->mmap_count);
4292
	atomic_inc(&event->rb->mmap_count);
4293 4294 4295

	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4296 4297
}

4298 4299 4300 4301 4302 4303 4304 4305
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4306 4307
static void perf_mmap_close(struct vm_area_struct *vma)
{
4308
	struct perf_event *event = vma->vm_file->private_data;
4309

4310
	struct ring_buffer *rb = ring_buffer_get(event);
4311 4312 4313
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4314

4315 4316 4317
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4318 4319 4320
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4321
		goto out_put;
4322

4323
	ring_buffer_attach(event, NULL);
4324 4325 4326
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4327 4328
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4329

4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4346

4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4358 4359 4360
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4361
		mutex_unlock(&event->mmap_mutex);
4362
		put_event(event);
4363

4364 4365 4366 4367 4368
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4369
	}
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4385
out_put:
4386
	ring_buffer_put(rb); /* could be last */
4387 4388
}

4389
static const struct vm_operations_struct perf_mmap_vmops = {
4390 4391 4392 4393
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4394 4395 4396 4397
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4398
	struct perf_event *event = file->private_data;
4399
	unsigned long user_locked, user_lock_limit;
4400
	struct user_struct *user = current_user();
4401
	unsigned long locked, lock_limit;
4402
	struct ring_buffer *rb;
4403 4404
	unsigned long vma_size;
	unsigned long nr_pages;
4405
	long user_extra, extra;
4406
	int ret = 0, flags = 0;
4407

4408 4409 4410
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4411
	 * same rb.
4412 4413 4414 4415
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4416
	if (!(vma->vm_flags & VM_SHARED))
4417
		return -EINVAL;
4418 4419 4420 4421

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4422
	/*
4423
	 * If we have rb pages ensure they're a power-of-two number, so we
4424 4425
	 * can do bitmasks instead of modulo.
	 */
4426
	if (!is_power_of_2(nr_pages))
4427 4428
		return -EINVAL;

4429
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4430 4431
		return -EINVAL;

4432 4433
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4434

4435
	WARN_ON_ONCE(event->ctx->parent_ctx);
4436
again:
4437
	mutex_lock(&event->mmap_mutex);
4438
	if (event->rb) {
4439
		if (event->rb->nr_pages != nr_pages) {
4440
			ret = -EINVAL;
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4454 4455 4456
		goto unlock;
	}

4457
	user_extra = nr_pages + 1;
4458
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4459 4460 4461 4462 4463 4464

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4465
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4466

4467 4468 4469
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4470

4471
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4472
	lock_limit >>= PAGE_SHIFT;
4473
	locked = vma->vm_mm->pinned_vm + extra;
4474

4475 4476
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4477 4478 4479
		ret = -EPERM;
		goto unlock;
	}
4480

4481
	WARN_ON(event->rb);
4482

4483
	if (vma->vm_flags & VM_WRITE)
4484
		flags |= RING_BUFFER_WRITABLE;
4485

4486 4487 4488 4489
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4490
	if (!rb) {
4491
		ret = -ENOMEM;
4492
		goto unlock;
4493
	}
P
Peter Zijlstra 已提交
4494

4495
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4496 4497
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4498

4499
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4500 4501
	vma->vm_mm->pinned_vm += extra;

4502
	ring_buffer_attach(event, rb);
4503

4504
	perf_event_init_userpage(event);
4505 4506
	perf_event_update_userpage(event);

4507
unlock:
4508 4509
	if (!ret)
		atomic_inc(&event->mmap_count);
4510
	mutex_unlock(&event->mmap_mutex);
4511

4512 4513 4514 4515
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4516
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4517
	vma->vm_ops = &perf_mmap_vmops;
4518

4519 4520 4521
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4522
	return ret;
4523 4524
}

P
Peter Zijlstra 已提交
4525 4526
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4527
	struct inode *inode = file_inode(filp);
4528
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4529 4530 4531
	int retval;

	mutex_lock(&inode->i_mutex);
4532
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4533 4534 4535 4536 4537 4538 4539 4540
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4541
static const struct file_operations perf_fops = {
4542
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4543 4544 4545
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4546
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4547
	.compat_ioctl		= perf_compat_ioctl,
4548
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4549
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4550 4551
};

4552
/*
4553
 * Perf event wakeup
4554 4555 4556 4557 4558
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4559
void perf_event_wakeup(struct perf_event *event)
4560
{
4561
	ring_buffer_wakeup(event);
4562

4563 4564 4565
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4566
	}
4567 4568
}

4569
static void perf_pending_event(struct irq_work *entry)
4570
{
4571 4572
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4573

4574 4575 4576
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4577 4578
	}

4579 4580 4581
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4582 4583 4584
	}
}

4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4621
static void perf_sample_regs_user(struct perf_regs *regs_user,
4622 4623
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4624
{
4625 4626
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4627
		regs_user->regs = regs;
4628 4629
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4630 4631 4632
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4633 4634 4635
	}
}

4636 4637 4638 4639 4640 4641 4642 4643
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4739 4740 4741
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4757
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4769 4770 4771
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4796 4797 4798

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4799 4800
}

4801 4802 4803
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4804 4805 4806 4807 4808
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4809
static void perf_output_read_one(struct perf_output_handle *handle,
4810 4811
				 struct perf_event *event,
				 u64 enabled, u64 running)
4812
{
4813
	u64 read_format = event->attr.read_format;
4814 4815 4816
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4817
	values[n++] = perf_event_count(event);
4818
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4819
		values[n++] = enabled +
4820
			atomic64_read(&event->child_total_time_enabled);
4821 4822
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4823
		values[n++] = running +
4824
			atomic64_read(&event->child_total_time_running);
4825 4826
	}
	if (read_format & PERF_FORMAT_ID)
4827
		values[n++] = primary_event_id(event);
4828

4829
	__output_copy(handle, values, n * sizeof(u64));
4830 4831 4832
}

/*
4833
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4834 4835
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4836 4837
			    struct perf_event *event,
			    u64 enabled, u64 running)
4838
{
4839 4840
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4841 4842 4843 4844 4845 4846
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4847
		values[n++] = enabled;
4848 4849

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4850
		values[n++] = running;
4851

4852
	if (leader != event)
4853 4854
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4855
	values[n++] = perf_event_count(leader);
4856
	if (read_format & PERF_FORMAT_ID)
4857
		values[n++] = primary_event_id(leader);
4858

4859
	__output_copy(handle, values, n * sizeof(u64));
4860

4861
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4862 4863
		n = 0;

4864 4865
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4866 4867
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4868
		values[n++] = perf_event_count(sub);
4869
		if (read_format & PERF_FORMAT_ID)
4870
			values[n++] = primary_event_id(sub);
4871

4872
		__output_copy(handle, values, n * sizeof(u64));
4873 4874 4875
	}
}

4876 4877 4878
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4879
static void perf_output_read(struct perf_output_handle *handle,
4880
			     struct perf_event *event)
4881
{
4882
	u64 enabled = 0, running = 0, now;
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4894
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4895
		calc_timer_values(event, &now, &enabled, &running);
4896

4897
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4898
		perf_output_read_group(handle, event, enabled, running);
4899
	else
4900
		perf_output_read_one(handle, event, enabled, running);
4901 4902
}

4903 4904 4905
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4906
			struct perf_event *event)
4907 4908 4909 4910 4911
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4912 4913 4914
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4940
		perf_output_read(handle, event);
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4951
			__output_copy(handle, data->callchain, size);
4952 4953 4954 4955 4956 4957 4958 4959 4960
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4961 4962
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4974

4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5009

5010
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5011 5012 5013
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5014
	}
A
Andi Kleen 已提交
5015 5016 5017

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5018 5019 5020

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5021

A
Andi Kleen 已提交
5022 5023 5024
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5055 5056 5057 5058
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5059
			 struct perf_event *event,
5060
			 struct pt_regs *regs)
5061
{
5062
	u64 sample_type = event->attr.sample_type;
5063

5064
	header->type = PERF_RECORD_SAMPLE;
5065
	header->size = sizeof(*header) + event->header_size;
5066 5067 5068

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5069

5070
	__perf_event_header__init_id(header, data, event);
5071

5072
	if (sample_type & PERF_SAMPLE_IP)
5073 5074
		data->ip = perf_instruction_pointer(regs);

5075
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5076
		int size = 1;
5077

5078
		data->callchain = perf_callchain(event, regs);
5079 5080 5081 5082 5083

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5084 5085
	}

5086
	if (sample_type & PERF_SAMPLE_RAW) {
5087 5088 5089 5090 5091 5092 5093 5094
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5095
		header->size += size;
5096
	}
5097 5098 5099 5100 5101 5102 5103 5104 5105

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5106

5107
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5108 5109
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5110

5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5134
						     data->regs_user.regs);
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5162
}
5163

5164
static void perf_event_output(struct perf_event *event,
5165 5166 5167 5168 5169
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5170

5171 5172 5173
	/* protect the callchain buffers */
	rcu_read_lock();

5174
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5175

5176
	if (perf_output_begin(&handle, event, header.size))
5177
		goto exit;
5178

5179
	perf_output_sample(&handle, &header, data, event);
5180

5181
	perf_output_end(&handle);
5182 5183 5184

exit:
	rcu_read_unlock();
5185 5186
}

5187
/*
5188
 * read event_id
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5199
perf_event_read_event(struct perf_event *event,
5200 5201 5202
			struct task_struct *task)
{
	struct perf_output_handle handle;
5203
	struct perf_sample_data sample;
5204
	struct perf_read_event read_event = {
5205
		.header = {
5206
			.type = PERF_RECORD_READ,
5207
			.misc = 0,
5208
			.size = sizeof(read_event) + event->read_size,
5209
		},
5210 5211
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5212
	};
5213
	int ret;
5214

5215
	perf_event_header__init_id(&read_event.header, &sample, event);
5216
	ret = perf_output_begin(&handle, event, read_event.header.size);
5217 5218 5219
	if (ret)
		return;

5220
	perf_output_put(&handle, read_event);
5221
	perf_output_read(&handle, event);
5222
	perf_event__output_id_sample(event, &handle, &sample);
5223

5224 5225 5226
	perf_output_end(&handle);
}

5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5241
		output(event, data);
5242 5243 5244 5245
	}
}

static void
5246
perf_event_aux(perf_event_aux_output_cb output, void *data,
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5259
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5260 5261 5262 5263 5264 5265 5266
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5267
			perf_event_aux_ctx(ctx, output, data);
5268 5269 5270 5271 5272 5273
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5274
		perf_event_aux_ctx(task_ctx, output, data);
5275 5276 5277 5278 5279
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5280
/*
P
Peter Zijlstra 已提交
5281 5282
 * task tracking -- fork/exit
 *
5283
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5284 5285
 */

P
Peter Zijlstra 已提交
5286
struct perf_task_event {
5287
	struct task_struct		*task;
5288
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5289 5290 5291 5292 5293 5294

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5295 5296
		u32				tid;
		u32				ptid;
5297
		u64				time;
5298
	} event_id;
P
Peter Zijlstra 已提交
5299 5300
};

5301 5302
static int perf_event_task_match(struct perf_event *event)
{
5303 5304 5305
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5306 5307
}

5308
static void perf_event_task_output(struct perf_event *event,
5309
				   void *data)
P
Peter Zijlstra 已提交
5310
{
5311
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5312
	struct perf_output_handle handle;
5313
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5314
	struct task_struct *task = task_event->task;
5315
	int ret, size = task_event->event_id.header.size;
5316

5317 5318 5319
	if (!perf_event_task_match(event))
		return;

5320
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5321

5322
	ret = perf_output_begin(&handle, event,
5323
				task_event->event_id.header.size);
5324
	if (ret)
5325
		goto out;
P
Peter Zijlstra 已提交
5326

5327 5328
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5329

5330 5331
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5332

5333
	perf_output_put(&handle, task_event->event_id);
5334

5335 5336
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5337
	perf_output_end(&handle);
5338 5339
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5340 5341
}

5342 5343
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5344
			      int new)
P
Peter Zijlstra 已提交
5345
{
P
Peter Zijlstra 已提交
5346
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5347

5348 5349 5350
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5351 5352
		return;

P
Peter Zijlstra 已提交
5353
	task_event = (struct perf_task_event){
5354 5355
		.task	  = task,
		.task_ctx = task_ctx,
5356
		.event_id    = {
P
Peter Zijlstra 已提交
5357
			.header = {
5358
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5359
				.misc = 0,
5360
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5361
			},
5362 5363
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5364 5365
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
5366
			.time = perf_clock(),
P
Peter Zijlstra 已提交
5367 5368 5369
		},
	};

5370
	perf_event_aux(perf_event_task_output,
5371 5372
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5373 5374
}

5375
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5376
{
5377
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5378 5379
}

5380 5381 5382 5383 5384
/*
 * comm tracking
 */

struct perf_comm_event {
5385 5386
	struct task_struct	*task;
	char			*comm;
5387 5388 5389 5390 5391 5392 5393
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5394
	} event_id;
5395 5396
};

5397 5398 5399 5400 5401
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5402
static void perf_event_comm_output(struct perf_event *event,
5403
				   void *data)
5404
{
5405
	struct perf_comm_event *comm_event = data;
5406
	struct perf_output_handle handle;
5407
	struct perf_sample_data sample;
5408
	int size = comm_event->event_id.header.size;
5409 5410
	int ret;

5411 5412 5413
	if (!perf_event_comm_match(event))
		return;

5414 5415
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5416
				comm_event->event_id.header.size);
5417 5418

	if (ret)
5419
		goto out;
5420

5421 5422
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5423

5424
	perf_output_put(&handle, comm_event->event_id);
5425
	__output_copy(&handle, comm_event->comm,
5426
				   comm_event->comm_size);
5427 5428 5429

	perf_event__output_id_sample(event, &handle, &sample);

5430
	perf_output_end(&handle);
5431 5432
out:
	comm_event->event_id.header.size = size;
5433 5434
}

5435
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5436
{
5437
	char comm[TASK_COMM_LEN];
5438 5439
	unsigned int size;

5440
	memset(comm, 0, sizeof(comm));
5441
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5442
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5443 5444 5445 5446

	comm_event->comm = comm;
	comm_event->comm_size = size;

5447
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5448

5449
	perf_event_aux(perf_event_comm_output,
5450 5451
		       comm_event,
		       NULL);
5452 5453
}

5454
void perf_event_comm(struct task_struct *task, bool exec)
5455
{
5456 5457
	struct perf_comm_event comm_event;

5458
	if (!atomic_read(&nr_comm_events))
5459
		return;
5460

5461
	comm_event = (struct perf_comm_event){
5462
		.task	= task,
5463 5464
		/* .comm      */
		/* .comm_size */
5465
		.event_id  = {
5466
			.header = {
5467
				.type = PERF_RECORD_COMM,
5468
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5469 5470 5471 5472
				/* .size */
			},
			/* .pid */
			/* .tid */
5473 5474 5475
		},
	};

5476
	perf_event_comm_event(&comm_event);
5477 5478
}

5479 5480 5481 5482 5483
/*
 * mmap tracking
 */

struct perf_mmap_event {
5484 5485 5486 5487
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5488 5489 5490
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5491
	u32			prot, flags;
5492 5493 5494 5495 5496 5497 5498 5499 5500

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5501
	} event_id;
5502 5503
};

5504 5505 5506 5507 5508 5509 5510 5511
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5512
	       (executable && (event->attr.mmap || event->attr.mmap2));
5513 5514
}

5515
static void perf_event_mmap_output(struct perf_event *event,
5516
				   void *data)
5517
{
5518
	struct perf_mmap_event *mmap_event = data;
5519
	struct perf_output_handle handle;
5520
	struct perf_sample_data sample;
5521
	int size = mmap_event->event_id.header.size;
5522
	int ret;
5523

5524 5525 5526
	if (!perf_event_mmap_match(event, data))
		return;

5527 5528 5529 5530 5531
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5532
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5533 5534
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5535 5536
	}

5537 5538
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5539
				mmap_event->event_id.header.size);
5540
	if (ret)
5541
		goto out;
5542

5543 5544
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5545

5546
	perf_output_put(&handle, mmap_event->event_id);
5547 5548 5549 5550 5551 5552

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5553 5554
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5555 5556
	}

5557
	__output_copy(&handle, mmap_event->file_name,
5558
				   mmap_event->file_size);
5559 5560 5561

	perf_event__output_id_sample(event, &handle, &sample);

5562
	perf_output_end(&handle);
5563 5564
out:
	mmap_event->event_id.header.size = size;
5565 5566
}

5567
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5568
{
5569 5570
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5571 5572
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5573
	u32 prot = 0, flags = 0;
5574 5575 5576
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5577
	char *name;
5578

5579
	if (file) {
5580 5581
		struct inode *inode;
		dev_t dev;
5582

5583
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5584
		if (!buf) {
5585 5586
			name = "//enomem";
			goto cpy_name;
5587
		}
5588
		/*
5589
		 * d_path() works from the end of the rb backwards, so we
5590 5591 5592
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5593
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5594
		if (IS_ERR(name)) {
5595 5596
			name = "//toolong";
			goto cpy_name;
5597
		}
5598 5599 5600 5601 5602 5603
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5626
		goto got_name;
5627
	} else {
5628 5629 5630 5631 5632 5633
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5634
		name = (char *)arch_vma_name(vma);
5635 5636
		if (name)
			goto cpy_name;
5637

5638
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5639
				vma->vm_end >= vma->vm_mm->brk) {
5640 5641
			name = "[heap]";
			goto cpy_name;
5642 5643
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5644
				vma->vm_end >= vma->vm_mm->start_stack) {
5645 5646
			name = "[stack]";
			goto cpy_name;
5647 5648
		}

5649 5650
		name = "//anon";
		goto cpy_name;
5651 5652
	}

5653 5654 5655
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5656
got_name:
5657 5658 5659 5660 5661 5662 5663 5664
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5665 5666 5667

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5668 5669 5670 5671
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5672 5673
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5674

5675 5676 5677
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5678
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5679

5680
	perf_event_aux(perf_event_mmap_output,
5681 5682
		       mmap_event,
		       NULL);
5683

5684 5685 5686
	kfree(buf);
}

5687
void perf_event_mmap(struct vm_area_struct *vma)
5688
{
5689 5690
	struct perf_mmap_event mmap_event;

5691
	if (!atomic_read(&nr_mmap_events))
5692 5693 5694
		return;

	mmap_event = (struct perf_mmap_event){
5695
		.vma	= vma,
5696 5697
		/* .file_name */
		/* .file_size */
5698
		.event_id  = {
5699
			.header = {
5700
				.type = PERF_RECORD_MMAP,
5701
				.misc = PERF_RECORD_MISC_USER,
5702 5703 5704 5705
				/* .size */
			},
			/* .pid */
			/* .tid */
5706 5707
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5708
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5709
		},
5710 5711 5712 5713
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5714 5715
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5716 5717
	};

5718
	perf_event_mmap_event(&mmap_event);
5719 5720
}

5721 5722 5723 5724
/*
 * IRQ throttle logging
 */

5725
static void perf_log_throttle(struct perf_event *event, int enable)
5726 5727
{
	struct perf_output_handle handle;
5728
	struct perf_sample_data sample;
5729 5730 5731 5732 5733
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5734
		u64				id;
5735
		u64				stream_id;
5736 5737
	} throttle_event = {
		.header = {
5738
			.type = PERF_RECORD_THROTTLE,
5739 5740 5741
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5742
		.time		= perf_clock(),
5743 5744
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5745 5746
	};

5747
	if (enable)
5748
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5749

5750 5751 5752
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5753
				throttle_event.header.size);
5754 5755 5756 5757
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5758
	perf_event__output_id_sample(event, &handle, &sample);
5759 5760 5761
	perf_output_end(&handle);
}

5762
/*
5763
 * Generic event overflow handling, sampling.
5764 5765
 */

5766
static int __perf_event_overflow(struct perf_event *event,
5767 5768
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5769
{
5770 5771
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5772
	u64 seq;
5773 5774
	int ret = 0;

5775 5776 5777 5778 5779 5780 5781
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5782 5783 5784 5785 5786 5787 5788 5789 5790
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5791 5792
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5793
			tick_nohz_full_kick();
5794 5795
			ret = 1;
		}
5796
	}
5797

5798
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5799
		u64 now = perf_clock();
5800
		s64 delta = now - hwc->freq_time_stamp;
5801

5802
		hwc->freq_time_stamp = now;
5803

5804
		if (delta > 0 && delta < 2*TICK_NSEC)
5805
			perf_adjust_period(event, delta, hwc->last_period, true);
5806 5807
	}

5808 5809
	/*
	 * XXX event_limit might not quite work as expected on inherited
5810
	 * events
5811 5812
	 */

5813 5814
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5815
		ret = 1;
5816
		event->pending_kill = POLL_HUP;
5817 5818
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5819 5820
	}

5821
	if (event->overflow_handler)
5822
		event->overflow_handler(event, data, regs);
5823
	else
5824
		perf_event_output(event, data, regs);
5825

P
Peter Zijlstra 已提交
5826
	if (event->fasync && event->pending_kill) {
5827 5828
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5829 5830
	}

5831
	return ret;
5832 5833
}

5834
int perf_event_overflow(struct perf_event *event,
5835 5836
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5837
{
5838
	return __perf_event_overflow(event, 1, data, regs);
5839 5840
}

5841
/*
5842
 * Generic software event infrastructure
5843 5844
 */

5845 5846 5847 5848 5849 5850 5851
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
5852 5853 5854

	/* Keeps track of cpu being initialized/exited */
	bool				online;
5855 5856 5857 5858
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5859
/*
5860 5861
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5862 5863 5864 5865
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5866
u64 perf_swevent_set_period(struct perf_event *event)
5867
{
5868
	struct hw_perf_event *hwc = &event->hw;
5869 5870 5871 5872 5873
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5874 5875

again:
5876
	old = val = local64_read(&hwc->period_left);
5877 5878
	if (val < 0)
		return 0;
5879

5880 5881 5882
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5883
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5884
		goto again;
5885

5886
	return nr;
5887 5888
}

5889
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5890
				    struct perf_sample_data *data,
5891
				    struct pt_regs *regs)
5892
{
5893
	struct hw_perf_event *hwc = &event->hw;
5894
	int throttle = 0;
5895

5896 5897
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5898

5899 5900
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5901

5902
	for (; overflow; overflow--) {
5903
		if (__perf_event_overflow(event, throttle,
5904
					    data, regs)) {
5905 5906 5907 5908 5909 5910
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5911
		throttle = 1;
5912
	}
5913 5914
}

P
Peter Zijlstra 已提交
5915
static void perf_swevent_event(struct perf_event *event, u64 nr,
5916
			       struct perf_sample_data *data,
5917
			       struct pt_regs *regs)
5918
{
5919
	struct hw_perf_event *hwc = &event->hw;
5920

5921
	local64_add(nr, &event->count);
5922

5923 5924 5925
	if (!regs)
		return;

5926
	if (!is_sampling_event(event))
5927
		return;
5928

5929 5930 5931 5932 5933 5934
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5935
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5936
		return perf_swevent_overflow(event, 1, data, regs);
5937

5938
	if (local64_add_negative(nr, &hwc->period_left))
5939
		return;
5940

5941
	perf_swevent_overflow(event, 0, data, regs);
5942 5943
}

5944 5945 5946
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5947
	if (event->hw.state & PERF_HES_STOPPED)
5948
		return 1;
P
Peter Zijlstra 已提交
5949

5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5961
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5962
				enum perf_type_id type,
L
Li Zefan 已提交
5963 5964 5965
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5966
{
5967
	if (event->attr.type != type)
5968
		return 0;
5969

5970
	if (event->attr.config != event_id)
5971 5972
		return 0;

5973 5974
	if (perf_exclude_event(event, regs))
		return 0;
5975 5976 5977 5978

	return 1;
}

5979 5980 5981 5982 5983 5984 5985
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5986 5987
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5988
{
5989 5990 5991 5992
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5993

5994 5995
/* For the read side: events when they trigger */
static inline struct hlist_head *
5996
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5997 5998
{
	struct swevent_hlist *hlist;
5999

6000
	hlist = rcu_dereference(swhash->swevent_hlist);
6001 6002 6003
	if (!hlist)
		return NULL;

6004 6005 6006 6007 6008
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6009
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6020
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6021 6022 6023 6024 6025
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6026 6027 6028
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6029
				    u64 nr,
6030 6031
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6032
{
6033
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6034
	struct perf_event *event;
6035
	struct hlist_head *head;
6036

6037
	rcu_read_lock();
6038
	head = find_swevent_head_rcu(swhash, type, event_id);
6039 6040 6041
	if (!head)
		goto end;

6042
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6043
		if (perf_swevent_match(event, type, event_id, data, regs))
6044
			perf_swevent_event(event, nr, data, regs);
6045
	}
6046 6047
end:
	rcu_read_unlock();
6048 6049
}

6050 6051
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6052
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6053
{
6054
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6055

6056
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6057
}
I
Ingo Molnar 已提交
6058
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6059

6060
inline void perf_swevent_put_recursion_context(int rctx)
6061
{
6062
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6063

6064
	put_recursion_context(swhash->recursion, rctx);
6065
}
6066

6067
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6068
{
6069
	struct perf_sample_data data;
6070

6071
	if (WARN_ON_ONCE(!regs))
6072
		return;
6073

6074
	perf_sample_data_init(&data, addr, 0);
6075
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6088 6089

	perf_swevent_put_recursion_context(rctx);
6090
fail:
6091
	preempt_enable_notrace();
6092 6093
}

6094
static void perf_swevent_read(struct perf_event *event)
6095 6096 6097
{
}

P
Peter Zijlstra 已提交
6098
static int perf_swevent_add(struct perf_event *event, int flags)
6099
{
6100
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6101
	struct hw_perf_event *hwc = &event->hw;
6102 6103
	struct hlist_head *head;

6104
	if (is_sampling_event(event)) {
6105
		hwc->last_period = hwc->sample_period;
6106
		perf_swevent_set_period(event);
6107
	}
6108

P
Peter Zijlstra 已提交
6109 6110
	hwc->state = !(flags & PERF_EF_START);

6111
	head = find_swevent_head(swhash, event);
6112 6113 6114 6115 6116 6117
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6118
		return -EINVAL;
6119
	}
6120 6121

	hlist_add_head_rcu(&event->hlist_entry, head);
6122
	perf_event_update_userpage(event);
6123

6124 6125 6126
	return 0;
}

P
Peter Zijlstra 已提交
6127
static void perf_swevent_del(struct perf_event *event, int flags)
6128
{
6129
	hlist_del_rcu(&event->hlist_entry);
6130 6131
}

P
Peter Zijlstra 已提交
6132
static void perf_swevent_start(struct perf_event *event, int flags)
6133
{
P
Peter Zijlstra 已提交
6134
	event->hw.state = 0;
6135
}
I
Ingo Molnar 已提交
6136

P
Peter Zijlstra 已提交
6137
static void perf_swevent_stop(struct perf_event *event, int flags)
6138
{
P
Peter Zijlstra 已提交
6139
	event->hw.state = PERF_HES_STOPPED;
6140 6141
}

6142 6143
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6144
swevent_hlist_deref(struct swevent_htable *swhash)
6145
{
6146 6147
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6148 6149
}

6150
static void swevent_hlist_release(struct swevent_htable *swhash)
6151
{
6152
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6153

6154
	if (!hlist)
6155 6156
		return;

6157
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6158
	kfree_rcu(hlist, rcu_head);
6159 6160 6161 6162
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6163
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6164

6165
	mutex_lock(&swhash->hlist_mutex);
6166

6167 6168
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6169

6170
	mutex_unlock(&swhash->hlist_mutex);
6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6183
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6184 6185
	int err = 0;

6186
	mutex_lock(&swhash->hlist_mutex);
6187

6188
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6189 6190 6191 6192 6193 6194 6195
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6196
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6197
	}
6198
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6199
exit:
6200
	mutex_unlock(&swhash->hlist_mutex);
6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6221
fail:
6222 6223 6224 6225 6226 6227 6228 6229 6230 6231
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6232
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6233

6234 6235 6236
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6237

6238 6239
	WARN_ON(event->parent);

6240
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6241 6242 6243 6244 6245
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6246
	u64 event_id = event->attr.config;
6247 6248 6249 6250

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6251 6252 6253 6254 6255 6256
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6257 6258 6259 6260 6261 6262 6263 6264 6265
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6266
	if (event_id >= PERF_COUNT_SW_MAX)
6267 6268 6269 6270 6271 6272 6273 6274 6275
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6276
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6277 6278 6279 6280 6281 6282 6283
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6284
	.task_ctx_nr	= perf_sw_context,
6285

6286
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6287 6288 6289 6290
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6291 6292 6293
	.read		= perf_swevent_read,
};

6294 6295
#ifdef CONFIG_EVENT_TRACING

6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6310 6311
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6312 6313 6314 6315
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6316 6317 6318 6319 6320 6321 6322 6323 6324
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6325 6326
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6327 6328
{
	struct perf_sample_data data;
6329 6330
	struct perf_event *event;

6331 6332 6333 6334 6335
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6336
	perf_sample_data_init(&data, addr, 0);
6337 6338
	data.raw = &raw;

6339
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6340
		if (perf_tp_event_match(event, &data, regs))
6341
			perf_swevent_event(event, count, &data, regs);
6342
	}
6343

6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6369
	perf_swevent_put_recursion_context(rctx);
6370 6371 6372
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6373
static void tp_perf_event_destroy(struct perf_event *event)
6374
{
6375
	perf_trace_destroy(event);
6376 6377
}

6378
static int perf_tp_event_init(struct perf_event *event)
6379
{
6380 6381
	int err;

6382 6383 6384
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6385 6386 6387 6388 6389 6390
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6391 6392
	err = perf_trace_init(event);
	if (err)
6393
		return err;
6394

6395
	event->destroy = tp_perf_event_destroy;
6396

6397 6398 6399 6400
	return 0;
}

static struct pmu perf_tracepoint = {
6401 6402
	.task_ctx_nr	= perf_sw_context,

6403
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6404 6405 6406 6407
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6408 6409 6410 6411 6412
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6413
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6414
}
L
Li Zefan 已提交
6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6439
#else
L
Li Zefan 已提交
6440

6441
static inline void perf_tp_register(void)
6442 6443
{
}
L
Li Zefan 已提交
6444 6445 6446 6447 6448 6449 6450 6451 6452 6453

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6454
#endif /* CONFIG_EVENT_TRACING */
6455

6456
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6457
void perf_bp_event(struct perf_event *bp, void *data)
6458
{
6459 6460 6461
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6462
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6463

P
Peter Zijlstra 已提交
6464
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6465
		perf_swevent_event(bp, 1, &sample, regs);
6466 6467 6468
}
#endif

6469 6470 6471
/*
 * hrtimer based swevent callback
 */
6472

6473
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6474
{
6475 6476 6477 6478 6479
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6480

6481
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6482 6483 6484 6485

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6486
	event->pmu->read(event);
6487

6488
	perf_sample_data_init(&data, 0, event->hw.last_period);
6489 6490 6491
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6492
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6493
			if (__perf_event_overflow(event, 1, &data, regs))
6494 6495
				ret = HRTIMER_NORESTART;
	}
6496

6497 6498
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6499

6500
	return ret;
6501 6502
}

6503
static void perf_swevent_start_hrtimer(struct perf_event *event)
6504
{
6505
	struct hw_perf_event *hwc = &event->hw;
6506 6507 6508 6509
	s64 period;

	if (!is_sampling_event(event))
		return;
6510

6511 6512 6513 6514
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6515

6516 6517 6518 6519 6520
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6521
				ns_to_ktime(period), 0,
6522
				HRTIMER_MODE_REL_PINNED, 0);
6523
}
6524 6525

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6526
{
6527 6528
	struct hw_perf_event *hwc = &event->hw;

6529
	if (is_sampling_event(event)) {
6530
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6531
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6532 6533 6534

		hrtimer_cancel(&hwc->hrtimer);
	}
6535 6536
}

P
Peter Zijlstra 已提交
6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6557
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6558 6559 6560 6561
		event->attr.freq = 0;
	}
}

6562 6563 6564 6565 6566
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6567
{
6568 6569 6570
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6571
	now = local_clock();
6572 6573
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6574 6575
}

P
Peter Zijlstra 已提交
6576
static void cpu_clock_event_start(struct perf_event *event, int flags)
6577
{
P
Peter Zijlstra 已提交
6578
	local64_set(&event->hw.prev_count, local_clock());
6579 6580 6581
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6582
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6583
{
6584 6585 6586
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6587

P
Peter Zijlstra 已提交
6588 6589 6590 6591
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
6592
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
6593 6594 6595 6596 6597 6598 6599 6600 6601

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6602 6603 6604 6605
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6606

6607 6608 6609 6610 6611 6612 6613 6614
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6615 6616 6617 6618 6619 6620
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6621 6622
	perf_swevent_init_hrtimer(event);

6623
	return 0;
6624 6625
}

6626
static struct pmu perf_cpu_clock = {
6627 6628
	.task_ctx_nr	= perf_sw_context,

6629
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6630 6631 6632 6633
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6634 6635 6636 6637 6638 6639 6640 6641
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6642
{
6643 6644
	u64 prev;
	s64 delta;
6645

6646 6647 6648 6649
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6650

P
Peter Zijlstra 已提交
6651
static void task_clock_event_start(struct perf_event *event, int flags)
6652
{
P
Peter Zijlstra 已提交
6653
	local64_set(&event->hw.prev_count, event->ctx->time);
6654 6655 6656
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6657
static void task_clock_event_stop(struct perf_event *event, int flags)
6658 6659 6660
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6661 6662 6663 6664 6665 6666
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6667
	perf_event_update_userpage(event);
6668

P
Peter Zijlstra 已提交
6669 6670 6671 6672 6673 6674
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6675 6676 6677 6678
}

static void task_clock_event_read(struct perf_event *event)
{
6679 6680 6681
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6682 6683 6684 6685 6686

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6687
{
6688 6689 6690 6691 6692 6693
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6694 6695 6696 6697 6698 6699
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6700 6701
	perf_swevent_init_hrtimer(event);

6702
	return 0;
L
Li Zefan 已提交
6703 6704
}

6705
static struct pmu perf_task_clock = {
6706 6707
	.task_ctx_nr	= perf_sw_context,

6708
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6709 6710 6711 6712
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6713 6714
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
6715

P
Peter Zijlstra 已提交
6716
static void perf_pmu_nop_void(struct pmu *pmu)
6717 6718
{
}
L
Li Zefan 已提交
6719

P
Peter Zijlstra 已提交
6720
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6721
{
P
Peter Zijlstra 已提交
6722
	return 0;
L
Li Zefan 已提交
6723 6724
}

P
Peter Zijlstra 已提交
6725
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6726
{
P
Peter Zijlstra 已提交
6727
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6728 6729
}

P
Peter Zijlstra 已提交
6730 6731 6732 6733 6734
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6735

P
Peter Zijlstra 已提交
6736
static void perf_pmu_cancel_txn(struct pmu *pmu)
6737
{
P
Peter Zijlstra 已提交
6738
	perf_pmu_enable(pmu);
6739 6740
}

6741 6742
static int perf_event_idx_default(struct perf_event *event)
{
6743
	return 0;
6744 6745
}

P
Peter Zijlstra 已提交
6746 6747 6748 6749
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6750
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6751
{
P
Peter Zijlstra 已提交
6752
	struct pmu *pmu;
6753

P
Peter Zijlstra 已提交
6754 6755
	if (ctxn < 0)
		return NULL;
6756

P
Peter Zijlstra 已提交
6757 6758 6759 6760
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6761

P
Peter Zijlstra 已提交
6762
	return NULL;
6763 6764
}

6765
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6766
{
6767 6768 6769 6770 6771 6772 6773
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6774 6775
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6776 6777 6778 6779 6780 6781
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6782

P
Peter Zijlstra 已提交
6783
	mutex_lock(&pmus_lock);
6784
	/*
P
Peter Zijlstra 已提交
6785
	 * Like a real lame refcount.
6786
	 */
6787 6788 6789
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6790
			goto out;
6791
		}
P
Peter Zijlstra 已提交
6792
	}
6793

6794
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6795 6796
out:
	mutex_unlock(&pmus_lock);
6797
}
P
Peter Zijlstra 已提交
6798
static struct idr pmu_idr;
6799

P
Peter Zijlstra 已提交
6800 6801 6802 6803 6804 6805 6806
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6807
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6808

6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6852
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6853

6854 6855 6856 6857
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6858
};
6859
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6860 6861 6862 6863

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6864
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6880
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6901
static struct lock_class_key cpuctx_mutex;
6902
static struct lock_class_key cpuctx_lock;
6903

6904
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6905
{
P
Peter Zijlstra 已提交
6906
	int cpu, ret;
6907

6908
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6909 6910 6911 6912
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6913

P
Peter Zijlstra 已提交
6914 6915 6916 6917 6918 6919
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6920 6921 6922
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6923 6924 6925 6926 6927
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6928 6929 6930 6931 6932 6933
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6934
skip_type:
P
Peter Zijlstra 已提交
6935 6936 6937
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6938

W
Wei Yongjun 已提交
6939
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6940 6941
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6942
		goto free_dev;
6943

P
Peter Zijlstra 已提交
6944 6945 6946 6947
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6948
		__perf_event_init_context(&cpuctx->ctx);
6949
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6950
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
6951
		cpuctx->ctx.pmu = pmu;
6952 6953 6954

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6955
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6956
	}
6957

P
Peter Zijlstra 已提交
6958
got_cpu_context:
P
Peter Zijlstra 已提交
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6973
		}
6974
	}
6975

P
Peter Zijlstra 已提交
6976 6977 6978 6979 6980
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6981 6982 6983
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6984
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6985 6986
	ret = 0;
unlock:
6987 6988
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6989
	return ret;
P
Peter Zijlstra 已提交
6990

P
Peter Zijlstra 已提交
6991 6992 6993 6994
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6995 6996 6997 6998
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6999 7000 7001
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7002
}
7003
EXPORT_SYMBOL_GPL(perf_pmu_register);
7004

7005
void perf_pmu_unregister(struct pmu *pmu)
7006
{
7007 7008 7009
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7010

7011
	/*
P
Peter Zijlstra 已提交
7012 7013
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7014
	 */
7015
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7016
	synchronize_rcu();
7017

P
Peter Zijlstra 已提交
7018
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7019 7020
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7021 7022
	device_del(pmu->dev);
	put_device(pmu->dev);
7023
	free_pmu_context(pmu);
7024
}
7025
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7026

7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
	event->pmu = pmu;
	ret = pmu->event_init(event);
	if (ret)
		module_put(pmu->module);

	return ret;
}

7041 7042 7043 7044
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
7045
	int ret;
7046 7047

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7048 7049 7050 7051

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7052
	if (pmu) {
7053
		ret = perf_try_init_event(pmu, event);
7054 7055
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7056
		goto unlock;
7057
	}
P
Peter Zijlstra 已提交
7058

7059
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7060
		ret = perf_try_init_event(pmu, event);
7061
		if (!ret)
P
Peter Zijlstra 已提交
7062
			goto unlock;
7063

7064 7065
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7066
			goto unlock;
7067
		}
7068
	}
P
Peter Zijlstra 已提交
7069 7070
	pmu = ERR_PTR(-ENOENT);
unlock:
7071
	srcu_read_unlock(&pmus_srcu, idx);
7072

7073
	return pmu;
7074 7075
}

7076 7077 7078 7079 7080 7081 7082 7083 7084
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7085 7086
static void account_event(struct perf_event *event)
{
7087 7088 7089
	if (event->parent)
		return;

7090 7091 7092 7093 7094 7095 7096 7097
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7098 7099 7100 7101
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7102
	if (has_branch_stack(event))
7103
		static_key_slow_inc(&perf_sched_events.key);
7104
	if (is_cgroup_event(event))
7105
		static_key_slow_inc(&perf_sched_events.key);
7106 7107

	account_event_cpu(event, event->cpu);
7108 7109
}

T
Thomas Gleixner 已提交
7110
/*
7111
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7112
 */
7113
static struct perf_event *
7114
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7115 7116 7117
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7118
		 perf_overflow_handler_t overflow_handler,
7119
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7120
{
P
Peter Zijlstra 已提交
7121
	struct pmu *pmu;
7122 7123
	struct perf_event *event;
	struct hw_perf_event *hwc;
7124
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7125

7126 7127 7128 7129 7130
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7131
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7132
	if (!event)
7133
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7134

7135
	/*
7136
	 * Single events are their own group leaders, with an
7137 7138 7139
	 * empty sibling list:
	 */
	if (!group_leader)
7140
		group_leader = event;
7141

7142 7143
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7144

7145 7146 7147
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7148
	INIT_LIST_HEAD(&event->rb_entry);
7149
	INIT_LIST_HEAD(&event->active_entry);
7150 7151
	INIT_HLIST_NODE(&event->hlist_entry);

7152

7153
	init_waitqueue_head(&event->waitq);
7154
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7155

7156
	mutex_init(&event->mmap_mutex);
7157

7158
	atomic_long_set(&event->refcount, 1);
7159 7160 7161 7162 7163
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7164

7165
	event->parent		= parent_event;
7166

7167
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7168
	event->id		= atomic64_inc_return(&perf_event_id);
7169

7170
	event->state		= PERF_EVENT_STATE_INACTIVE;
7171

7172 7173
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
7174 7175 7176

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
7177 7178 7179 7180
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
7181
		else if (attr->type == PERF_TYPE_BREAKPOINT)
7182 7183
			event->hw.bp_target = task;
#endif
7184 7185
		else if (attr->type == PERF_TYPE_INTEL_CQM)
			event->hw.cqm_target = task;
7186 7187
	}

7188
	if (!overflow_handler && parent_event) {
7189
		overflow_handler = parent_event->overflow_handler;
7190 7191
		context = parent_event->overflow_handler_context;
	}
7192

7193
	event->overflow_handler	= overflow_handler;
7194
	event->overflow_handler_context = context;
7195

J
Jiri Olsa 已提交
7196
	perf_event__state_init(event);
7197

7198
	pmu = NULL;
7199

7200
	hwc = &event->hw;
7201
	hwc->sample_period = attr->sample_period;
7202
	if (attr->freq && attr->sample_freq)
7203
		hwc->sample_period = 1;
7204
	hwc->last_period = hwc->sample_period;
7205

7206
	local64_set(&hwc->period_left, hwc->sample_period);
7207

7208
	/*
7209
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7210
	 */
7211
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7212
		goto err_ns;
7213 7214 7215

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7216

7217 7218 7219 7220 7221 7222
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7223
	pmu = perf_init_event(event);
7224
	if (!pmu)
7225 7226
		goto err_ns;
	else if (IS_ERR(pmu)) {
7227
		err = PTR_ERR(pmu);
7228
		goto err_ns;
I
Ingo Molnar 已提交
7229
	}
7230

7231
	if (!event->parent) {
7232 7233
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7234 7235
			if (err)
				goto err_pmu;
7236
		}
7237
	}
7238

7239
	return event;
7240 7241 7242 7243

err_pmu:
	if (event->destroy)
		event->destroy(event);
7244
	module_put(pmu->module);
7245
err_ns:
7246 7247
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7248 7249 7250 7251 7252
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7253 7254
}

7255 7256
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7257 7258
{
	u32 size;
7259
	int ret;
7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7284 7285 7286
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7287 7288
	 */
	if (size > sizeof(*attr)) {
7289 7290 7291
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7292

7293 7294
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7295

7296
		for (; addr < end; addr++) {
7297 7298 7299 7300 7301 7302
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7303
		size = sizeof(*attr);
7304 7305 7306 7307 7308 7309
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7310
	if (attr->__reserved_1)
7311 7312 7313 7314 7315 7316 7317 7318
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7347 7348
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7349 7350
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7351
	}
7352

7353
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7354
		ret = perf_reg_validate(attr->sample_regs_user);
7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7373

7374 7375
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
7376 7377 7378 7379 7380 7381 7382 7383 7384
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7385 7386
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7387
{
7388
	struct ring_buffer *rb = NULL;
7389 7390
	int ret = -EINVAL;

7391
	if (!output_event)
7392 7393
		goto set;

7394 7395
	/* don't allow circular references */
	if (event == output_event)
7396 7397
		goto out;

7398 7399 7400 7401 7402 7403 7404
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7405
	 * If its not a per-cpu rb, it must be the same task.
7406 7407 7408 7409
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7410
set:
7411
	mutex_lock(&event->mmap_mutex);
7412 7413 7414
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7415

7416
	if (output_event) {
7417 7418 7419
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7420
			goto unlock;
7421 7422
	}

7423
	ring_buffer_attach(event, rb);
7424

7425
	ret = 0;
7426 7427 7428
unlock:
	mutex_unlock(&event->mmap_mutex);

7429 7430 7431 7432
out:
	return ret;
}

P
Peter Zijlstra 已提交
7433 7434 7435 7436 7437 7438 7439 7440 7441
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

T
Thomas Gleixner 已提交
7442
/**
7443
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7444
 *
7445
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7446
 * @pid:		target pid
I
Ingo Molnar 已提交
7447
 * @cpu:		target cpu
7448
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7449
 */
7450 7451
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7452
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7453
{
7454 7455
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7456
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
7457
	struct perf_event_context *ctx, *uninitialized_var(gctx);
7458
	struct file *event_file = NULL;
7459
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7460
	struct task_struct *task = NULL;
7461
	struct pmu *pmu;
7462
	int event_fd;
7463
	int move_group = 0;
7464
	int err;
7465
	int f_flags = O_RDWR;
7466
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
7467

7468
	/* for future expandability... */
S
Stephane Eranian 已提交
7469
	if (flags & ~PERF_FLAG_ALL)
7470 7471
		return -EINVAL;

7472 7473 7474
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7475

7476 7477 7478 7479 7480
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7481
	if (attr.freq) {
7482
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7483
			return -EINVAL;
7484 7485 7486
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7487 7488
	}

S
Stephane Eranian 已提交
7489 7490 7491 7492 7493 7494 7495 7496 7497
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7498 7499 7500 7501
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7502 7503 7504
	if (event_fd < 0)
		return event_fd;

7505
	if (group_fd != -1) {
7506 7507
		err = perf_fget_light(group_fd, &group);
		if (err)
7508
			goto err_fd;
7509
		group_leader = group.file->private_data;
7510 7511 7512 7513 7514 7515
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7516
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7517 7518 7519 7520 7521 7522 7523
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7524 7525 7526 7527 7528 7529
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7530 7531
	get_online_cpus();

7532 7533 7534
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

7535
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7536
				 NULL, NULL, cgroup_fd);
7537 7538
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7539
		goto err_cpus;
7540 7541
	}

7542 7543 7544 7545 7546 7547 7548
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

7549 7550
	account_event(event);

7551 7552 7553 7554 7555
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7579 7580 7581 7582

	/*
	 * Get the target context (task or percpu):
	 */
7583
	ctx = find_get_context(pmu, task, event);
7584 7585
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7586
		goto err_alloc;
7587 7588
	}

7589 7590 7591 7592 7593
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7594
	/*
7595
	 * Look up the group leader (we will attach this event to it):
7596
	 */
7597
	if (group_leader) {
7598
		err = -EINVAL;
7599 7600

		/*
I
Ingo Molnar 已提交
7601 7602 7603 7604
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7605
			goto err_context;
I
Ingo Molnar 已提交
7606 7607 7608
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7609
		 */
7610
		if (move_group) {
7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
7624 7625 7626 7627 7628 7629
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7630 7631 7632
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7633
		if (attr.exclusive || attr.pinned)
7634
			goto err_context;
7635 7636 7637 7638 7639
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7640
			goto err_context;
7641
	}
T
Thomas Gleixner 已提交
7642

7643 7644
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7645 7646
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7647
		goto err_context;
7648
	}
7649

7650
	if (move_group) {
P
Peter Zijlstra 已提交
7651 7652 7653 7654 7655 7656 7657
		gctx = group_leader->ctx;

		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
7658

7659
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
7660

7661 7662
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7663
			perf_remove_from_context(sibling, false);
7664 7665
			put_ctx(gctx);
		}
P
Peter Zijlstra 已提交
7666 7667
	} else {
		mutex_lock(&ctx->mutex);
7668
	}
7669

7670
	WARN_ON_ONCE(ctx->parent_ctx);
7671 7672

	if (move_group) {
P
Peter Zijlstra 已提交
7673 7674 7675 7676
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
7677
		synchronize_rcu();
P
Peter Zijlstra 已提交
7678

7679 7680 7681 7682 7683 7684 7685 7686 7687 7688
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
7689 7690
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7691
			perf_event__state_init(sibling);
7692
			perf_install_in_context(ctx, sibling, sibling->cpu);
7693 7694
			get_ctx(ctx);
		}
7695 7696 7697 7698 7699 7700 7701 7702 7703

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
7704 7705
	}

7706
	perf_install_in_context(ctx, event, event->cpu);
7707
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
7708 7709 7710 7711 7712

	if (move_group) {
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
	}
7713
	mutex_unlock(&ctx->mutex);
7714

7715 7716
	put_online_cpus();

7717
	event->owner = current;
P
Peter Zijlstra 已提交
7718

7719 7720 7721
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7722

7723 7724 7725 7726
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7727
	perf_event__id_header_size(event);
7728

7729 7730 7731 7732 7733 7734
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7735
	fdput(group);
7736 7737
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7738

7739
err_context:
7740
	perf_unpin_context(ctx);
7741
	put_ctx(ctx);
7742
err_alloc:
7743
	free_event(event);
7744
err_cpus:
7745
	put_online_cpus();
7746
err_task:
P
Peter Zijlstra 已提交
7747 7748
	if (task)
		put_task_struct(task);
7749
err_group_fd:
7750
	fdput(group);
7751 7752
err_fd:
	put_unused_fd(event_fd);
7753
	return err;
T
Thomas Gleixner 已提交
7754 7755
}

7756 7757 7758 7759 7760
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7761
 * @task: task to profile (NULL for percpu)
7762 7763 7764
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7765
				 struct task_struct *task,
7766 7767
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7768 7769
{
	struct perf_event_context *ctx;
7770
	struct perf_event *event;
7771
	int err;
7772

7773 7774 7775
	/*
	 * Get the target context (task or percpu):
	 */
7776

7777
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7778
				 overflow_handler, context, -1);
7779 7780 7781 7782
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7783

7784 7785 7786
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

7787 7788
	account_event(event);

7789
	ctx = find_get_context(event->pmu, task, event);
7790 7791
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7792
		goto err_free;
7793
	}
7794 7795 7796 7797

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7798
	perf_unpin_context(ctx);
7799 7800 7801 7802
	mutex_unlock(&ctx->mutex);

	return event;

7803 7804 7805
err_free:
	free_event(event);
err:
7806
	return ERR_PTR(err);
7807
}
7808
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7809

7810 7811 7812 7813 7814 7815 7816 7817 7818 7819
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
7820 7821 7822 7823 7824
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
7825 7826
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
7827
		perf_remove_from_context(event, false);
7828
		unaccount_event_cpu(event, src_cpu);
7829
		put_ctx(src_ctx);
7830
		list_add(&event->migrate_entry, &events);
7831 7832
	}

7833 7834 7835
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
7836 7837
	synchronize_rcu();

7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
7862 7863
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7864 7865
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7866
		account_event_cpu(event, dst_cpu);
7867 7868 7869 7870
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
7871
	mutex_unlock(&src_ctx->mutex);
7872 7873 7874
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7875
static void sync_child_event(struct perf_event *child_event,
7876
			       struct task_struct *child)
7877
{
7878
	struct perf_event *parent_event = child_event->parent;
7879
	u64 child_val;
7880

7881 7882
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7883

P
Peter Zijlstra 已提交
7884
	child_val = perf_event_count(child_event);
7885 7886 7887 7888

	/*
	 * Add back the child's count to the parent's count:
	 */
7889
	atomic64_add(child_val, &parent_event->child_count);
7890 7891 7892 7893
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7894 7895

	/*
7896
	 * Remove this event from the parent's list
7897
	 */
7898 7899 7900 7901
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7902

7903 7904 7905 7906 7907 7908
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

7909
	/*
7910
	 * Release the parent event, if this was the last
7911 7912
	 * reference to it.
	 */
7913
	put_event(parent_event);
7914 7915
}

7916
static void
7917 7918
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7919
			 struct task_struct *child)
7920
{
7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
7934

7935
	/*
7936
	 * It can happen that the parent exits first, and has events
7937
	 * that are still around due to the child reference. These
7938
	 * events need to be zapped.
7939
	 */
7940
	if (child_event->parent) {
7941 7942
		sync_child_event(child_event, child);
		free_event(child_event);
7943 7944 7945
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
7946
	}
7947 7948
}

P
Peter Zijlstra 已提交
7949
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7950
{
7951
	struct perf_event *child_event, *next;
7952
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
7953
	unsigned long flags;
7954

P
Peter Zijlstra 已提交
7955
	if (likely(!child->perf_event_ctxp[ctxn])) {
7956
		perf_event_task(child, NULL, 0);
7957
		return;
P
Peter Zijlstra 已提交
7958
	}
7959

7960
	local_irq_save(flags);
7961 7962 7963 7964 7965 7966
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7967
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7968 7969 7970

	/*
	 * Take the context lock here so that if find_get_context is
7971
	 * reading child->perf_event_ctxp, we wait until it has
7972 7973
	 * incremented the context's refcount before we do put_ctx below.
	 */
7974
	raw_spin_lock(&child_ctx->lock);
7975
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7976
	child->perf_event_ctxp[ctxn] = NULL;
7977

7978 7979 7980
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7981
	 * the events from it.
7982
	 */
7983
	clone_ctx = unclone_ctx(child_ctx);
7984
	update_context_time(child_ctx);
7985
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7986

7987 7988
	if (clone_ctx)
		put_ctx(clone_ctx);
7989

P
Peter Zijlstra 已提交
7990
	/*
7991 7992 7993
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7994
	 */
7995
	perf_event_task(child, child_ctx, 0);
7996

7997 7998 7999
	/*
	 * We can recurse on the same lock type through:
	 *
8000 8001
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8002 8003
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8004 8005 8006
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8007
	mutex_lock(&child_ctx->mutex);
8008

8009
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8010
		__perf_event_exit_task(child_event, child_ctx, child);
8011

8012 8013 8014
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8015 8016
}

P
Peter Zijlstra 已提交
8017 8018 8019 8020 8021
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8022
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8023 8024
	int ctxn;

P
Peter Zijlstra 已提交
8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8040 8041 8042 8043
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8056
	put_event(parent);
8057

P
Peter Zijlstra 已提交
8058
	raw_spin_lock_irq(&ctx->lock);
8059
	perf_group_detach(event);
8060
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8061
	raw_spin_unlock_irq(&ctx->lock);
8062 8063 8064
	free_event(event);
}

8065
/*
P
Peter Zijlstra 已提交
8066
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8067
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8068 8069 8070
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8071
 */
8072
void perf_event_free_task(struct task_struct *task)
8073
{
P
Peter Zijlstra 已提交
8074
	struct perf_event_context *ctx;
8075
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8076
	int ctxn;
8077

P
Peter Zijlstra 已提交
8078 8079 8080 8081
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8082

P
Peter Zijlstra 已提交
8083
		mutex_lock(&ctx->mutex);
8084
again:
P
Peter Zijlstra 已提交
8085 8086 8087
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8088

P
Peter Zijlstra 已提交
8089 8090 8091
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8092

P
Peter Zijlstra 已提交
8093 8094 8095
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8096

P
Peter Zijlstra 已提交
8097
		mutex_unlock(&ctx->mutex);
8098

P
Peter Zijlstra 已提交
8099 8100
		put_ctx(ctx);
	}
8101 8102
}

8103 8104 8105 8106 8107 8108 8109 8110
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8122
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8123
	struct perf_event *child_event;
8124
	unsigned long flags;
P
Peter Zijlstra 已提交
8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8137
					   child,
P
Peter Zijlstra 已提交
8138
					   group_leader, parent_event,
8139
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8140 8141
	if (IS_ERR(child_event))
		return child_event;
8142

8143 8144
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8145 8146 8147 8148
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8149 8150 8151 8152 8153 8154 8155
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8156
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8173 8174
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8175

8176 8177 8178 8179
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8180
	perf_event__id_header_size(child_event);
8181

P
Peter Zijlstra 已提交
8182 8183 8184
	/*
	 * Link it up in the child's context:
	 */
8185
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8186
	add_event_to_ctx(child_event, child_ctx);
8187
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
8221 8222 8223 8224 8225
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
8226
		   struct task_struct *child, int ctxn,
8227 8228 8229
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
8230
	struct perf_event_context *child_ctx;
8231 8232 8233 8234

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
8235 8236
	}

8237
	child_ctx = child->perf_event_ctxp[ctxn];
8238 8239 8240 8241 8242 8243 8244
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
8245

8246
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8247 8248
		if (!child_ctx)
			return -ENOMEM;
8249

P
Peter Zijlstra 已提交
8250
		child->perf_event_ctxp[ctxn] = child_ctx;
8251 8252 8253 8254 8255 8256 8257 8258 8259
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
8260 8261
}

8262
/*
8263
 * Initialize the perf_event context in task_struct
8264
 */
8265
static int perf_event_init_context(struct task_struct *child, int ctxn)
8266
{
8267
	struct perf_event_context *child_ctx, *parent_ctx;
8268 8269
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
8270
	struct task_struct *parent = current;
8271
	int inherited_all = 1;
8272
	unsigned long flags;
8273
	int ret = 0;
8274

P
Peter Zijlstra 已提交
8275
	if (likely(!parent->perf_event_ctxp[ctxn]))
8276 8277
		return 0;

8278
	/*
8279 8280
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
8281
	 */
P
Peter Zijlstra 已提交
8282
	parent_ctx = perf_pin_task_context(parent, ctxn);
8283 8284
	if (!parent_ctx)
		return 0;
8285

8286 8287 8288 8289 8290 8291 8292
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

8293 8294 8295 8296
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
8297
	mutex_lock(&parent_ctx->mutex);
8298 8299 8300 8301 8302

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
8303
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
8304 8305
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8306 8307 8308
		if (ret)
			break;
	}
8309

8310 8311 8312 8313 8314 8315 8316 8317 8318
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

8319
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
8320 8321
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8322
		if (ret)
8323
			break;
8324 8325
	}

8326 8327 8328
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
8329
	child_ctx = child->perf_event_ctxp[ctxn];
8330

8331
	if (child_ctx && inherited_all) {
8332 8333 8334
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
8335 8336 8337
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
8338
		 */
P
Peter Zijlstra 已提交
8339
		cloned_ctx = parent_ctx->parent_ctx;
8340 8341
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
8342
			child_ctx->parent_gen = parent_ctx->parent_gen;
8343 8344 8345 8346 8347
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
8348 8349
	}

P
Peter Zijlstra 已提交
8350
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8351
	mutex_unlock(&parent_ctx->mutex);
8352

8353
	perf_unpin_context(parent_ctx);
8354
	put_ctx(parent_ctx);
8355

8356
	return ret;
8357 8358
}

P
Peter Zijlstra 已提交
8359 8360 8361 8362 8363 8364 8365
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

8366 8367 8368 8369
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
8370 8371
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
8372 8373
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
8374
			return ret;
P
Peter Zijlstra 已提交
8375
		}
P
Peter Zijlstra 已提交
8376 8377 8378 8379 8380
	}

	return 0;
}

8381 8382
static void __init perf_event_init_all_cpus(void)
{
8383
	struct swevent_htable *swhash;
8384 8385 8386
	int cpu;

	for_each_possible_cpu(cpu) {
8387 8388
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
8389
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8390 8391 8392
	}
}

8393
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
8394
{
P
Peter Zijlstra 已提交
8395
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
8396

8397
	mutex_lock(&swhash->hlist_mutex);
8398
	swhash->online = true;
8399
	if (swhash->hlist_refcount > 0) {
8400 8401
		struct swevent_hlist *hlist;

8402 8403 8404
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8405
	}
8406
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8407 8408
}

P
Peter Zijlstra 已提交
8409
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
P
Peter Zijlstra 已提交
8410
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
8411
{
8412
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
8413
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
8414

P
Peter Zijlstra 已提交
8415
	rcu_read_lock();
8416 8417
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
8418
	rcu_read_unlock();
T
Thomas Gleixner 已提交
8419
}
P
Peter Zijlstra 已提交
8420 8421 8422 8423 8424 8425 8426 8427 8428

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8429
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
8430 8431 8432 8433 8434 8435 8436 8437

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

8438
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
8439
{
8440
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8441

P
Peter Zijlstra 已提交
8442 8443
	perf_event_exit_cpu_context(cpu);

8444
	mutex_lock(&swhash->hlist_mutex);
8445
	swhash->online = false;
8446 8447
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8448 8449
}
#else
8450
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
8451 8452
#endif

P
Peter Zijlstra 已提交
8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

8473
static int
T
Thomas Gleixner 已提交
8474 8475 8476 8477
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

8478
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
8479 8480

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
8481
	case CPU_DOWN_FAILED:
8482
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
8483 8484
		break;

P
Peter Zijlstra 已提交
8485
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
8486
	case CPU_DOWN_PREPARE:
8487
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
8488 8489 8490 8491 8492 8493 8494 8495
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

8496
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
8497
{
8498 8499
	int ret;

P
Peter Zijlstra 已提交
8500 8501
	idr_init(&pmu_idr);

8502
	perf_event_init_all_cpus();
8503
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
8504 8505 8506
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
8507 8508
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
8509
	register_reboot_notifier(&perf_reboot_notifier);
8510 8511 8512

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8513 8514 8515

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
8516 8517 8518 8519 8520 8521 8522

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8523
}
P
Peter Zijlstra 已提交
8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8552 8553

#ifdef CONFIG_CGROUP_PERF
8554 8555
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8556 8557 8558
{
	struct perf_cgroup *jc;

8559
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8572
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8573
{
8574 8575
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8587 8588
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8589
{
8590 8591
	struct task_struct *task;

8592
	cgroup_taskset_for_each(task, tset)
8593
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8594 8595
}

8596 8597
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8598
			     struct task_struct *task)
S
Stephane Eranian 已提交
8599 8600 8601 8602 8603 8604 8605 8606 8607
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8608
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8609 8610
}

8611
struct cgroup_subsys perf_event_cgrp_subsys = {
8612 8613
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8614
	.exit		= perf_cgroup_exit,
8615
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8616 8617
};
#endif /* CONFIG_CGROUP_PERF */