core.c 219.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * This is because we need a ctx->lock serialized variable (ctx->is_active)
 * to reliably determine if a particular task/context is scheduled in. The
 * task_curr() use in task_function_call() is racy in that a remote context
 * switch is not a single atomic operation.
 *
 * As is, the situation is 'safe' because we set rq->curr before we do the
 * actual context switch. This means that task_curr() will fail early, but
 * we'll continue spinning on ctx->is_active until we've passed
 * perf_event_task_sched_out().
 *
 * Without this ctx->lock serialized variable we could have race where we find
 * the task (and hence the context) would not be active while in fact they are.
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
static void event_function_call(struct perf_event *event,
				int (*active)(void *),
				void (*inactive)(void *),
				void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		cpu_function_call(event->cpu, active, data);
		return;
	}

again:
	if (!task_function_call(task, active, data))
		return;

	raw_spin_lock_irq(&ctx->lock);
	if (ctx->is_active) {
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	inactive(data);
	raw_spin_unlock_irq(&ctx->lock);
}

192 193 194 195 196 197 198
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
199 200
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
201 202
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
203

204 205 206 207 208 209 210
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

211 212 213 214 215 216
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
217 218 219 220
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
221
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
222
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
223
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
224

225 226 227
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
228
static atomic_t nr_freq_events __read_mostly;
229
static atomic_t nr_switch_events __read_mostly;
230

P
Peter Zijlstra 已提交
231 232 233 234
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

235
/*
236
 * perf event paranoia level:
237 238
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
239
 *   1 - disallow cpu events for unpriv
240
 *   2 - disallow kernel profiling for unpriv
241
 */
242
int sysctl_perf_event_paranoid __read_mostly = 1;
243

244 245
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
246 247

/*
248
 * max perf event sample rate
249
 */
250 251 252 253 254 255 256 257 258
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
259 260
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
261

262
static void update_perf_cpu_limits(void)
263 264 265 266
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
267
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
268
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
269
}
P
Peter Zijlstra 已提交
270

271 272
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
273 274 275 276
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
277
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
278 279 280 281 282

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
301 302 303

	return 0;
}
304

305 306 307 308 309 310 311
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
312
static DEFINE_PER_CPU(u64, running_sample_length);
313

314
static void perf_duration_warn(struct irq_work *w)
315
{
316
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
317
	u64 avg_local_sample_len;
318
	u64 local_samples_len;
319

320
	local_samples_len = __this_cpu_read(running_sample_length);
321 322 323 324 325
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
326
			avg_local_sample_len, allowed_ns >> 1,
327 328 329 330 331 332 333
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
334
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
335 336
	u64 avg_local_sample_len;
	u64 local_samples_len;
337

P
Peter Zijlstra 已提交
338
	if (allowed_ns == 0)
339 340 341
		return;

	/* decay the counter by 1 average sample */
342
	local_samples_len = __this_cpu_read(running_sample_length);
343 344
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
345
	__this_cpu_write(running_sample_length, local_samples_len);
346 347 348 349 350 351 352 353

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
354
	if (avg_local_sample_len <= allowed_ns)
355 356 357 358 359 360 361 362 363 364
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
365

366 367 368 369 370 371
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
372 373
}

374
static atomic64_t perf_event_id;
375

376 377 378 379
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
380 381 382 383 384
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
385

386
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
387

388
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
389
{
390
	return "pmu";
T
Thomas Gleixner 已提交
391 392
}

393 394 395 396 397
static inline u64 perf_clock(void)
{
	return local_clock();
}

398 399 400 401 402
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
403 404 405 406 407 408
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
425 426 427 428 429 430 431 432
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
449 450 451 452
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
453
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
492 493
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
494
	/*
495 496
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
497
	 */
498
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
499 500
		return;

501
	cgrp = perf_cgroup_from_task(current, event->ctx);
502 503 504 505 506
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
507 508 509
}

static inline void
510 511
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
512 513 514 515
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

516 517 518 519 520 521
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
522 523
		return;

524
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
525
	info = this_cpu_ptr(cgrp->info);
526
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
527 528 529 530 531 532 533 534 535 536 537
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
538
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
558 559
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
560 561 562 563 564 565 566 567 568

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
569 570
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
571 572 573 574 575 576 577 578 579 580 581

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
582
				WARN_ON_ONCE(cpuctx->cgrp);
583 584 585 586
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
587 588
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
589
				 */
590
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
591 592
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
593 594
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
595 596 597 598 599 600
		}
	}

	local_irq_restore(flags);
}

601 602
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
603
{
604 605 606
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

607
	rcu_read_lock();
608 609
	/*
	 * we come here when we know perf_cgroup_events > 0
610 611
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
612
	 */
613
	cgrp1 = perf_cgroup_from_task(task, NULL);
614
	cgrp2 = perf_cgroup_from_task(next, NULL);
615 616 617 618 619 620 621 622

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
623 624

	rcu_read_unlock();
S
Stephane Eranian 已提交
625 626
}

627 628
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
629
{
630 631 632
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

633
	rcu_read_lock();
634 635
	/*
	 * we come here when we know perf_cgroup_events > 0
636 637
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
638
	 */
639 640
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
641 642 643 644 645 646 647 648

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
649 650

	rcu_read_unlock();
S
Stephane Eranian 已提交
651 652 653 654 655 656 657 658
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
659 660
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
661

662
	if (!f.file)
S
Stephane Eranian 已提交
663 664
		return -EBADF;

A
Al Viro 已提交
665
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
666
					 &perf_event_cgrp_subsys);
667 668 669 670
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
684
out:
685
	fdput(f);
S
Stephane Eranian 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

759 760
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
761 762 763
{
}

764 765
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
766 767 768 769 770 771 772 773 774 775 776
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
777 778
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

809 810 811 812 813 814 815 816
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
817
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
818 819 820 821 822 823 824 825 826
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
827 828
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
829
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
830 831 832
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
833

P
Peter Zijlstra 已提交
834
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
835 836
}

837
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
838
{
839
	struct hrtimer *timer = &cpuctx->hrtimer;
840
	struct pmu *pmu = cpuctx->ctx.pmu;
841
	u64 interval;
842 843 844 845 846

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

847 848 849 850
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
851 852 853
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
854

855
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
856

P
Peter Zijlstra 已提交
857 858
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
859
	timer->function = perf_mux_hrtimer_handler;
860 861
}

862
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
863
{
864
	struct hrtimer *timer = &cpuctx->hrtimer;
865
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
866
	unsigned long flags;
867 868 869

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
870
		return 0;
871

P
Peter Zijlstra 已提交
872 873 874 875 876 877 878
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
879

880
	return 0;
881 882
}

P
Peter Zijlstra 已提交
883
void perf_pmu_disable(struct pmu *pmu)
884
{
P
Peter Zijlstra 已提交
885 886 887
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
888 889
}

P
Peter Zijlstra 已提交
890
void perf_pmu_enable(struct pmu *pmu)
891
{
P
Peter Zijlstra 已提交
892 893 894
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
895 896
}

897
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
898 899

/*
900 901 902 903
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
904
 */
905
static void perf_event_ctx_activate(struct perf_event_context *ctx)
906
{
907
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
908

909
	WARN_ON(!irqs_disabled());
910

911 912 913 914 915 916 917 918 919 920 921 922
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
923 924
}

925
static void get_ctx(struct perf_event_context *ctx)
926
{
927
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
928 929
}

930 931 932 933 934 935 936 937 938
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

939
static void put_ctx(struct perf_event_context *ctx)
940
{
941 942 943
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
944 945
		if (ctx->task)
			put_task_struct(ctx->task);
946
		call_rcu(&ctx->rcu_head, free_ctx);
947
	}
948 949
}

P
Peter Zijlstra 已提交
950 951 952 953 954 955 956
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1011 1012
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1025
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1035 1036 1037 1038 1039 1040
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1041 1042 1043 1044 1045 1046 1047
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1048 1049 1050 1051 1052 1053 1054
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1055
{
1056 1057 1058 1059 1060
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1061
		ctx->parent_ctx = NULL;
1062
	ctx->generation++;
1063 1064

	return parent_ctx;
1065 1066
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1089
/*
1090
 * If we inherit events we want to return the parent event id
1091 1092
 * to userspace.
 */
1093
static u64 primary_event_id(struct perf_event *event)
1094
{
1095
	u64 id = event->id;
1096

1097 1098
	if (event->parent)
		id = event->parent->id;
1099 1100 1101 1102

	return id;
}

1103
/*
1104
 * Get the perf_event_context for a task and lock it.
1105 1106 1107
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1108
static struct perf_event_context *
P
Peter Zijlstra 已提交
1109
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1110
{
1111
	struct perf_event_context *ctx;
1112

P
Peter Zijlstra 已提交
1113
retry:
1114 1115 1116
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1117
	 * part of the read side critical section was irqs-enabled -- see
1118 1119 1120
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1121
	 * side critical section has interrupts disabled.
1122
	 */
1123
	local_irq_save(*flags);
1124
	rcu_read_lock();
P
Peter Zijlstra 已提交
1125
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1126 1127 1128 1129
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1130
		 * perf_event_task_sched_out, though the
1131 1132 1133 1134 1135 1136
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1137
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1138
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1139
			raw_spin_unlock(&ctx->lock);
1140
			rcu_read_unlock();
1141
			local_irq_restore(*flags);
1142 1143
			goto retry;
		}
1144 1145

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1146
			raw_spin_unlock(&ctx->lock);
1147 1148
			ctx = NULL;
		}
1149 1150
	}
	rcu_read_unlock();
1151 1152
	if (!ctx)
		local_irq_restore(*flags);
1153 1154 1155 1156 1157 1158 1159 1160
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1161 1162
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1163
{
1164
	struct perf_event_context *ctx;
1165 1166
	unsigned long flags;

P
Peter Zijlstra 已提交
1167
	ctx = perf_lock_task_context(task, ctxn, &flags);
1168 1169
	if (ctx) {
		++ctx->pin_count;
1170
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1171 1172 1173 1174
	}
	return ctx;
}

1175
static void perf_unpin_context(struct perf_event_context *ctx)
1176 1177 1178
{
	unsigned long flags;

1179
	raw_spin_lock_irqsave(&ctx->lock, flags);
1180
	--ctx->pin_count;
1181
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1182 1183
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1195 1196 1197
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1198 1199 1200 1201

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1202 1203 1204
	return ctx ? ctx->time : 0;
}

1205 1206
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1207
 * The caller of this function needs to hold the ctx->lock.
1208 1209 1210 1211 1212 1213 1214 1215 1216
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1228
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1229 1230
	else if (ctx->is_active)
		run_end = ctx->time;
1231 1232 1233 1234
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1235 1236 1237 1238

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1239
		run_end = perf_event_time(event);
1240 1241

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1242

1243 1244
}

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1257 1258 1259 1260 1261 1262 1263 1264 1265
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1266
/*
1267
 * Add a event from the lists for its context.
1268 1269
 * Must be called with ctx->mutex and ctx->lock held.
 */
1270
static void
1271
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1272
{
P
Peter Zijlstra 已提交
1273 1274
	lockdep_assert_held(&ctx->lock);

1275 1276
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1277 1278

	/*
1279 1280 1281
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1282
	 */
1283
	if (event->group_leader == event) {
1284 1285
		struct list_head *list;

1286 1287 1288
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1289 1290
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1291
	}
P
Peter Zijlstra 已提交
1292

1293
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1294 1295
		ctx->nr_cgroups++;

1296 1297 1298
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1299
		ctx->nr_stat++;
1300 1301

	ctx->generation++;
1302 1303
}

J
Jiri Olsa 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1313
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1329
		nr += nr_siblings;
1330 1331 1332 1333 1334 1335 1336
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1337
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1338 1339 1340 1341 1342 1343 1344
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1345 1346 1347 1348 1349 1350
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1351 1352 1353
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1354 1355 1356
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1357 1358 1359
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1360 1361 1362
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1363 1364 1365
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1377 1378 1379 1380 1381 1382
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1383 1384 1385 1386 1387 1388
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1389 1390 1391
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1392 1393 1394 1395 1396 1397 1398 1399 1400
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1401
	event->id_header_size = size;
1402 1403
}

P
Peter Zijlstra 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1425 1426
static void perf_group_attach(struct perf_event *event)
{
1427
	struct perf_event *group_leader = event->group_leader, *pos;
1428

P
Peter Zijlstra 已提交
1429 1430 1431 1432 1433 1434
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1435 1436 1437 1438 1439
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1440 1441
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1442 1443 1444 1445 1446 1447
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1448 1449 1450 1451 1452

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1453 1454
}

1455
/*
1456
 * Remove a event from the lists for its context.
1457
 * Must be called with ctx->mutex and ctx->lock held.
1458
 */
1459
static void
1460
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1461
{
1462
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1463 1464 1465 1466

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1467 1468 1469 1470
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1471
		return;
1472 1473 1474

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1475
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1476
		ctx->nr_cgroups--;
1477 1478 1479 1480
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1481 1482
		cpuctx = __get_cpu_context(ctx);
		/*
1483 1484
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1485 1486 1487 1488
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1489

1490 1491
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1492
		ctx->nr_stat--;
1493

1494
	list_del_rcu(&event->event_entry);
1495

1496 1497
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1498

1499
	update_group_times(event);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1510 1511

	ctx->generation++;
1512 1513
}

1514
static void perf_group_detach(struct perf_event *event)
1515 1516
{
	struct perf_event *sibling, *tmp;
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1533
		goto out;
1534 1535 1536 1537
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1538

1539
	/*
1540 1541
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1542
	 * to whatever list we are on.
1543
	 */
1544
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1545 1546
		if (list)
			list_move_tail(&sibling->group_entry, list);
1547
		sibling->group_leader = sibling;
1548 1549 1550

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1551 1552

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1553
	}
1554 1555 1556 1557 1558 1559

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1560 1561
}

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1601 1602 1603 1604 1605 1606
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1607 1608 1609
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1610
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1611
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1612 1613
}

1614 1615
static void
event_sched_out(struct perf_event *event,
1616
		  struct perf_cpu_context *cpuctx,
1617
		  struct perf_event_context *ctx)
1618
{
1619
	u64 tstamp = perf_event_time(event);
1620
	u64 delta;
P
Peter Zijlstra 已提交
1621 1622 1623 1624

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1625 1626 1627 1628 1629 1630 1631 1632
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1633
		delta = tstamp - event->tstamp_stopped;
1634
		event->tstamp_running += delta;
1635
		event->tstamp_stopped = tstamp;
1636 1637
	}

1638
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1639
		return;
1640

1641 1642
	perf_pmu_disable(event->pmu);

1643 1644 1645 1646
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1647
	}
1648
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1649
	event->pmu->del(event, 0);
1650
	event->oncpu = -1;
1651

1652
	if (!is_software_event(event))
1653
		cpuctx->active_oncpu--;
1654 1655
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1656 1657
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1658
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1659
		cpuctx->exclusive = 0;
1660

1661 1662 1663
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1664
	perf_pmu_enable(event->pmu);
1665 1666
}

1667
static void
1668
group_sched_out(struct perf_event *group_event,
1669
		struct perf_cpu_context *cpuctx,
1670
		struct perf_event_context *ctx)
1671
{
1672
	struct perf_event *event;
1673
	int state = group_event->state;
1674

1675
	event_sched_out(group_event, cpuctx, ctx);
1676 1677 1678 1679

	/*
	 * Schedule out siblings (if any):
	 */
1680 1681
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1682

1683
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1684 1685 1686
		cpuctx->exclusive = 0;
}

1687 1688 1689 1690 1691
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
static void ___perf_remove_from_context(void *info)
{
	struct remove_event *re = info;
	struct perf_event *event = re->event;
	struct perf_event_context *ctx = event->ctx;

	if (re->detach_group)
		perf_group_detach(event);
	list_del_event(event, ctx);
}

T
Thomas Gleixner 已提交
1703
/*
1704
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1705
 *
1706
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1707 1708
 * remove it from the context list.
 */
1709
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1710
{
1711 1712
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1713
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1714
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1715

1716
	raw_spin_lock(&ctx->lock);
1717
	event_sched_out(event, cpuctx, ctx);
1718 1719
	if (re->detach_group)
		perf_group_detach(event);
1720
	list_del_event(event, ctx);
1721 1722

	if (!ctx->nr_events && ctx->is_active) {
1723
		ctx->is_active = 0;
1724 1725 1726 1727
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1728
	}
1729
	raw_spin_unlock(&ctx->lock);
1730 1731

	return 0;
T
Thomas Gleixner 已提交
1732 1733 1734
}

/*
1735
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1736
 *
1737
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1738
 * call when the task is on a CPU.
1739
 *
1740 1741
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1742 1743
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1744
 * When called from perf_event_exit_task, it's OK because the
1745
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1746
 */
1747
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1748
{
1749
	struct perf_event_context *ctx = event->ctx;
1750 1751 1752 1753
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1754

1755 1756
	lockdep_assert_held(&ctx->mutex);

1757 1758
	event_function_call(event, __perf_remove_from_context,
			    ___perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1759 1760
}

1761
/*
1762
 * Cross CPU call to disable a performance event
1763
 */
1764
int __perf_event_disable(void *info)
1765
{
1766 1767
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1768
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1769 1770

	/*
1771 1772
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1773 1774 1775
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1776
	 */
1777
	if (ctx->task && cpuctx->task_ctx != ctx)
1778
		return -EINVAL;
1779

1780
	raw_spin_lock(&ctx->lock);
1781 1782

	/*
1783
	 * If the event is on, turn it off.
1784 1785
	 * If it is in error state, leave it in error state.
	 */
1786
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1787
		update_context_time(ctx);
S
Stephane Eranian 已提交
1788
		update_cgrp_time_from_event(event);
1789 1790 1791
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1792
		else
1793 1794
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1795 1796
	}

1797
	raw_spin_unlock(&ctx->lock);
1798 1799

	return 0;
1800 1801
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
void ___perf_event_disable(void *info)
{
	struct perf_event *event = info;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
	}
}

1816
/*
1817
 * Disable a event.
1818
 *
1819 1820
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1821
 * remains valid.  This condition is satisifed when called through
1822 1823 1824 1825
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1826
 * is the current context on this CPU and preemption is disabled,
1827
 * hence we can't get into perf_event_task_sched_out for this context.
1828
 */
P
Peter Zijlstra 已提交
1829
static void _perf_event_disable(struct perf_event *event)
1830
{
1831
	struct perf_event_context *ctx = event->ctx;
1832

1833
	raw_spin_lock_irq(&ctx->lock);
1834
	if (event->state <= PERF_EVENT_STATE_OFF) {
1835
		raw_spin_unlock_irq(&ctx->lock);
1836
		return;
1837
	}
1838
	raw_spin_unlock_irq(&ctx->lock);
1839 1840 1841

	event_function_call(event, __perf_event_disable,
			    ___perf_event_disable, event);
1842
}
P
Peter Zijlstra 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1856
EXPORT_SYMBOL_GPL(perf_event_disable);
1857

S
Stephane Eranian 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1893 1894 1895
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1896
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1897

1898
static int
1899
event_sched_in(struct perf_event *event,
1900
		 struct perf_cpu_context *cpuctx,
1901
		 struct perf_event_context *ctx)
1902
{
1903
	u64 tstamp = perf_event_time(event);
1904
	int ret = 0;
1905

1906 1907
	lockdep_assert_held(&ctx->lock);

1908
	if (event->state <= PERF_EVENT_STATE_OFF)
1909 1910
		return 0;

1911
	event->state = PERF_EVENT_STATE_ACTIVE;
1912
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1924 1925 1926 1927 1928
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1929 1930
	perf_pmu_disable(event->pmu);

1931 1932
	perf_set_shadow_time(event, ctx, tstamp);

1933 1934
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1935
	if (event->pmu->add(event, PERF_EF_START)) {
1936 1937
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1938 1939
		ret = -EAGAIN;
		goto out;
1940 1941
	}

1942 1943
	event->tstamp_running += tstamp - event->tstamp_stopped;

1944
	if (!is_software_event(event))
1945
		cpuctx->active_oncpu++;
1946 1947
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1948 1949
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1950

1951
	if (event->attr.exclusive)
1952 1953
		cpuctx->exclusive = 1;

1954 1955 1956
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1957 1958 1959 1960
out:
	perf_pmu_enable(event->pmu);

	return ret;
1961 1962
}

1963
static int
1964
group_sched_in(struct perf_event *group_event,
1965
	       struct perf_cpu_context *cpuctx,
1966
	       struct perf_event_context *ctx)
1967
{
1968
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1969
	struct pmu *pmu = ctx->pmu;
1970 1971
	u64 now = ctx->time;
	bool simulate = false;
1972

1973
	if (group_event->state == PERF_EVENT_STATE_OFF)
1974 1975
		return 0;

1976
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1977

1978
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1979
		pmu->cancel_txn(pmu);
1980
		perf_mux_hrtimer_restart(cpuctx);
1981
		return -EAGAIN;
1982
	}
1983 1984 1985 1986

	/*
	 * Schedule in siblings as one group (if any):
	 */
1987
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1988
		if (event_sched_in(event, cpuctx, ctx)) {
1989
			partial_group = event;
1990 1991 1992 1993
			goto group_error;
		}
	}

1994
	if (!pmu->commit_txn(pmu))
1995
		return 0;
1996

1997 1998 1999 2000
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2011
	 */
2012 2013
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2014 2015 2016 2017 2018 2019 2020 2021
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2022
	}
2023
	event_sched_out(group_event, cpuctx, ctx);
2024

P
Peter Zijlstra 已提交
2025
	pmu->cancel_txn(pmu);
2026

2027
	perf_mux_hrtimer_restart(cpuctx);
2028

2029 2030 2031
	return -EAGAIN;
}

2032
/*
2033
 * Work out whether we can put this event group on the CPU now.
2034
 */
2035
static int group_can_go_on(struct perf_event *event,
2036 2037 2038 2039
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2040
	 * Groups consisting entirely of software events can always go on.
2041
	 */
2042
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2043 2044 2045
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2046
	 * events can go on.
2047 2048 2049 2050 2051
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2052
	 * events on the CPU, it can't go on.
2053
	 */
2054
	if (event->attr.exclusive && cpuctx->active_oncpu)
2055 2056 2057 2058 2059 2060 2061 2062
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2063 2064
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2065
{
2066 2067
	u64 tstamp = perf_event_time(event);

2068
	list_add_event(event, ctx);
2069
	perf_group_attach(event);
2070 2071 2072
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2073 2074
}

2075 2076
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx);
2077 2078 2079 2080 2081
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2082

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
{
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
}

T
Thomas Gleixner 已提交
2106
/*
2107
 * Cross CPU call to install and enable a performance event
2108 2109
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2110
 */
2111
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2112
{
2113
	struct perf_event_context *ctx = info;
P
Peter Zijlstra 已提交
2114
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2115 2116
	struct perf_event_context *task_ctx = cpuctx->task_ctx;

2117 2118 2119 2120 2121 2122 2123
	if (ctx->task) {
		/*
		 * If we hit the 'wrong' task, we've since scheduled and
		 * everything should be sorted, nothing to do!
		 */
		if (ctx->task != current)
			return 0;
2124

2125 2126 2127 2128
		/*
		 * If task_ctx is set, it had better be to us.
		 */
		WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
2129 2130 2131
		task_ctx = ctx;
	}

2132 2133
	perf_ctx_lock(cpuctx, task_ctx);
	ctx_resched(cpuctx, task_ctx);
2134
	perf_ctx_unlock(cpuctx, task_ctx);
2135 2136

	return 0;
T
Thomas Gleixner 已提交
2137 2138 2139
}

/*
2140
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2141 2142
 */
static void
2143 2144
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2145 2146
			int cpu)
{
2147 2148
	struct task_struct *task = NULL;

2149 2150
	lockdep_assert_held(&ctx->mutex);

2151
	event->ctx = ctx;
2152 2153
	if (event->cpu != -1)
		event->cpu = cpu;
2154

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 *
	 * So what we do is we add the event to the list here, which will allow
	 * a future context switch to DTRT and then send a racy IPI. If the IPI
	 * fails to hit the right task, this means a context switch must have
	 * happened and that will have taken care of business.
	 */
	raw_spin_lock_irq(&ctx->lock);
	update_context_time(ctx);
	/*
	 * Update cgrp time only if current cgrp matches event->cgrp.
	 * Must be done before calling add_event_to_ctx().
	 */
	update_cgrp_time_from_event(event);
	add_event_to_ctx(event, ctx);
	task = ctx->task;
	raw_spin_unlock_irq(&ctx->lock);

	if (task)
		task_function_call(task, __perf_install_in_context, ctx);
	else
		cpu_function_call(cpu, __perf_install_in_context, ctx);
T
Thomas Gleixner 已提交
2179 2180
}

2181
/*
2182
 * Put a event into inactive state and update time fields.
2183 2184 2185 2186 2187 2188
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2189
static void __perf_event_mark_enabled(struct perf_event *event)
2190
{
2191
	struct perf_event *sub;
2192
	u64 tstamp = perf_event_time(event);
2193

2194
	event->state = PERF_EVENT_STATE_INACTIVE;
2195
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2196
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2197 2198
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2199
	}
2200 2201
}

2202
/*
2203
 * Cross CPU call to enable a performance event
2204
 */
2205
static int __perf_event_enable(void *info)
2206
{
2207 2208 2209
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2210
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2211
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2212

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2223
		return -EINVAL;
2224

2225 2226
	perf_ctx_lock(cpuctx, task_ctx);
	WARN_ON_ONCE(&cpuctx->ctx != ctx && task_ctx != ctx);
2227
	update_context_time(ctx);
2228

2229
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2230
		goto unlock;
S
Stephane Eranian 已提交
2231 2232 2233 2234

	/*
	 * set current task's cgroup time reference point
	 */
2235
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2236

2237
	__perf_event_mark_enabled(event);
2238

S
Stephane Eranian 已提交
2239 2240 2241
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2242
		goto unlock;
S
Stephane Eranian 已提交
2243
	}
2244

2245
	/*
2246
	 * If the event is in a group and isn't the group leader,
2247
	 * then don't put it on unless the group is on.
2248
	 */
2249
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2250
		goto unlock;
2251

2252
	ctx_resched(cpuctx, task_ctx);
2253

P
Peter Zijlstra 已提交
2254
unlock:
2255
	perf_ctx_unlock(cpuctx, task_ctx);
2256 2257

	return 0;
2258 2259
}

2260 2261 2262 2263 2264
void ___perf_event_enable(void *info)
{
	__perf_event_mark_enabled((struct perf_event *)info);
}

2265
/*
2266
 * Enable a event.
2267
 *
2268 2269
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2270
 * remains valid.  This condition is satisfied when called through
2271 2272
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2273
 */
P
Peter Zijlstra 已提交
2274
static void _perf_event_enable(struct perf_event *event)
2275
{
2276
	struct perf_event_context *ctx = event->ctx;
2277

2278 2279 2280
	raw_spin_lock_irq(&ctx->lock);
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
		raw_spin_unlock_irq(&ctx->lock);
2281 2282 2283 2284
		return;
	}

	/*
2285
	 * If the event is in error state, clear that first.
2286 2287 2288 2289
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2290
	 */
2291 2292
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2293
	raw_spin_unlock_irq(&ctx->lock);
2294

2295 2296
	event_function_call(event, __perf_event_enable,
			    ___perf_event_enable, event);
2297
}
P
Peter Zijlstra 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2310
EXPORT_SYMBOL_GPL(perf_event_enable);
2311

P
Peter Zijlstra 已提交
2312
static int _perf_event_refresh(struct perf_event *event, int refresh)
2313
{
2314
	/*
2315
	 * not supported on inherited events
2316
	 */
2317
	if (event->attr.inherit || !is_sampling_event(event))
2318 2319
		return -EINVAL;

2320
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2321
	_perf_event_enable(event);
2322 2323

	return 0;
2324
}
P
Peter Zijlstra 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2340
EXPORT_SYMBOL_GPL(perf_event_refresh);
2341

2342 2343 2344
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2345
{
2346
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2347 2348 2349
	struct perf_event *event;

	lockdep_assert_held(&ctx->lock);
2350

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
		return;
	}

2361
	ctx->is_active &= ~event_type;
2362 2363 2364 2365 2366 2367
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}

2368
	update_context_time(ctx);
S
Stephane Eranian 已提交
2369
	update_cgrp_time_from_cpuctx(cpuctx);
2370
	if (!ctx->nr_active)
2371
		return;
2372

P
Peter Zijlstra 已提交
2373
	perf_pmu_disable(ctx->pmu);
2374
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2375 2376
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2377
	}
2378

2379
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2380
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2381
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2382
	}
P
Peter Zijlstra 已提交
2383
	perf_pmu_enable(ctx->pmu);
2384 2385
}

2386
/*
2387 2388 2389 2390 2391 2392
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2393
 */
2394 2395
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2396
{
2397 2398 2399
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2422 2423
}

2424 2425
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2426 2427 2428
{
	u64 value;

2429
	if (!event->attr.inherit_stat)
2430 2431 2432
		return;

	/*
2433
	 * Update the event value, we cannot use perf_event_read()
2434 2435
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2436
	 * we know the event must be on the current CPU, therefore we
2437 2438
	 * don't need to use it.
	 */
2439 2440
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2441 2442
		event->pmu->read(event);
		/* fall-through */
2443

2444 2445
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2446 2447 2448 2449 2450 2451 2452
		break;

	default:
		break;
	}

	/*
2453
	 * In order to keep per-task stats reliable we need to flip the event
2454 2455
	 * values when we flip the contexts.
	 */
2456 2457 2458
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2459

2460 2461
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2462

2463
	/*
2464
	 * Since we swizzled the values, update the user visible data too.
2465
	 */
2466 2467
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2468 2469
}

2470 2471
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2472
{
2473
	struct perf_event *event, *next_event;
2474 2475 2476 2477

	if (!ctx->nr_stat)
		return;

2478 2479
	update_context_time(ctx);

2480 2481
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2482

2483 2484
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2485

2486 2487
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2488

2489
		__perf_event_sync_stat(event, next_event);
2490

2491 2492
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2493 2494 2495
	}
}

2496 2497
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2498
{
P
Peter Zijlstra 已提交
2499
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2500
	struct perf_event_context *next_ctx;
2501
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2502
	struct perf_cpu_context *cpuctx;
2503
	int do_switch = 1;
T
Thomas Gleixner 已提交
2504

P
Peter Zijlstra 已提交
2505 2506
	if (likely(!ctx))
		return;
2507

P
Peter Zijlstra 已提交
2508 2509
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2510 2511
		return;

2512
	rcu_read_lock();
P
Peter Zijlstra 已提交
2513
	next_ctx = next->perf_event_ctxp[ctxn];
2514 2515 2516 2517 2518 2519 2520
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2521
	if (!parent && !next_parent)
2522 2523 2524
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2525 2526 2527 2528 2529 2530 2531 2532 2533
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2534 2535
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2536
		if (context_equiv(ctx, next_ctx)) {
2537 2538
			/*
			 * XXX do we need a memory barrier of sorts
2539
			 * wrt to rcu_dereference() of perf_event_ctxp
2540
			 */
P
Peter Zijlstra 已提交
2541 2542
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2543 2544
			ctx->task = next;
			next_ctx->task = task;
2545 2546 2547

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2548
			do_switch = 0;
2549

2550
			perf_event_sync_stat(ctx, next_ctx);
2551
		}
2552 2553
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2554
	}
2555
unlock:
2556
	rcu_read_unlock();
2557

2558
	if (do_switch) {
2559
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2560
		task_ctx_sched_out(cpuctx, ctx);
2561
		raw_spin_unlock(&ctx->lock);
2562
	}
T
Thomas Gleixner 已提交
2563 2564
}

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2615 2616 2617
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2632 2633
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2634 2635 2636
{
	int ctxn;

2637 2638 2639
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2640 2641 2642
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2643 2644
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2645 2646 2647 2648 2649 2650

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2651
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2652
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2653 2654
}

2655 2656
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
2657
{
2658 2659
	if (!cpuctx->task_ctx)
		return;
2660 2661 2662 2663

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2664
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2665 2666
}

2667 2668 2669 2670 2671 2672 2673
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2674 2675
}

2676
static void
2677
ctx_pinned_sched_in(struct perf_event_context *ctx,
2678
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2679
{
2680
	struct perf_event *event;
T
Thomas Gleixner 已提交
2681

2682 2683
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2684
			continue;
2685
		if (!event_filter_match(event))
2686 2687
			continue;

S
Stephane Eranian 已提交
2688 2689 2690 2691
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2692
		if (group_can_go_on(event, cpuctx, 1))
2693
			group_sched_in(event, cpuctx, ctx);
2694 2695 2696 2697 2698

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2699 2700 2701
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2702
		}
2703
	}
2704 2705 2706 2707
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2708
		      struct perf_cpu_context *cpuctx)
2709 2710 2711
{
	struct perf_event *event;
	int can_add_hw = 1;
2712

2713 2714 2715
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2716
			continue;
2717 2718
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2719
		 * of events:
2720
		 */
2721
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2722 2723
			continue;

S
Stephane Eranian 已提交
2724 2725 2726 2727
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2728
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2729
			if (group_sched_in(event, cpuctx, ctx))
2730
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2731
		}
T
Thomas Gleixner 已提交
2732
	}
2733 2734 2735 2736 2737
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2738 2739
	     enum event_type_t event_type,
	     struct task_struct *task)
2740
{
2741
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2742 2743 2744
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2745

2746 2747 2748
	if (likely(!ctx->nr_events))
		return;

2749
	ctx->is_active |= event_type;
2750 2751 2752 2753 2754 2755 2756
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

S
Stephane Eranian 已提交
2757 2758
	now = perf_clock();
	ctx->timestamp = now;
2759
	perf_cgroup_set_timestamp(task, ctx);
2760 2761 2762 2763
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2764
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2765
		ctx_pinned_sched_in(ctx, cpuctx);
2766 2767

	/* Then walk through the lower prio flexible groups */
2768
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2769
		ctx_flexible_sched_in(ctx, cpuctx);
2770 2771
}

2772
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2773 2774
			     enum event_type_t event_type,
			     struct task_struct *task)
2775 2776 2777
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2778
	ctx_sched_in(ctx, cpuctx, event_type, task);
2779 2780
}

S
Stephane Eranian 已提交
2781 2782
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2783
{
P
Peter Zijlstra 已提交
2784
	struct perf_cpu_context *cpuctx;
2785

P
Peter Zijlstra 已提交
2786
	cpuctx = __get_cpu_context(ctx);
2787 2788 2789
	if (cpuctx->task_ctx == ctx)
		return;

2790
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2791
	perf_pmu_disable(ctx->pmu);
2792 2793 2794 2795 2796 2797
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2798
	perf_event_sched_in(cpuctx, ctx, task);
2799 2800
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2801 2802
}

P
Peter Zijlstra 已提交
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2814 2815
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2816 2817 2818 2819
{
	struct perf_event_context *ctx;
	int ctxn;

2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2830 2831 2832 2833 2834
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2835
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2836
	}
2837

2838 2839 2840
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2841 2842
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2843 2844
}

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2872
#define REDUCE_FLS(a, b)		\
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2912 2913 2914
	if (!divisor)
		return dividend;

2915 2916 2917
	return div64_u64(dividend, divisor);
}

2918 2919 2920
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2921
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2922
{
2923
	struct hw_perf_event *hwc = &event->hw;
2924
	s64 period, sample_period;
2925 2926
	s64 delta;

2927
	period = perf_calculate_period(event, nsec, count);
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2938

2939
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2940 2941 2942
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2943
		local64_set(&hwc->period_left, 0);
2944 2945 2946

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2947
	}
2948 2949
}

2950 2951 2952 2953 2954 2955 2956
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2957
{
2958 2959
	struct perf_event *event;
	struct hw_perf_event *hwc;
2960
	u64 now, period = TICK_NSEC;
2961
	s64 delta;
2962

2963 2964 2965 2966 2967 2968
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2969 2970
		return;

2971
	raw_spin_lock(&ctx->lock);
2972
	perf_pmu_disable(ctx->pmu);
2973

2974
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2975
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2976 2977
			continue;

2978
		if (!event_filter_match(event))
2979 2980
			continue;

2981 2982
		perf_pmu_disable(event->pmu);

2983
		hwc = &event->hw;
2984

2985
		if (hwc->interrupts == MAX_INTERRUPTS) {
2986
			hwc->interrupts = 0;
2987
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2988
			event->pmu->start(event, 0);
2989 2990
		}

2991
		if (!event->attr.freq || !event->attr.sample_freq)
2992
			goto next;
2993

2994 2995 2996 2997 2998
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2999
		now = local64_read(&event->count);
3000 3001
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3002

3003 3004 3005
		/*
		 * restart the event
		 * reload only if value has changed
3006 3007 3008
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3009
		 */
3010
		if (delta > 0)
3011
			perf_adjust_period(event, period, delta, false);
3012 3013

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3014 3015
	next:
		perf_pmu_enable(event->pmu);
3016
	}
3017

3018
	perf_pmu_enable(ctx->pmu);
3019
	raw_spin_unlock(&ctx->lock);
3020 3021
}

3022
/*
3023
 * Round-robin a context's events:
3024
 */
3025
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3026
{
3027 3028 3029 3030 3031 3032
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3033 3034
}

3035
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3036
{
P
Peter Zijlstra 已提交
3037
	struct perf_event_context *ctx = NULL;
3038
	int rotate = 0;
3039

3040 3041 3042 3043
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3044

P
Peter Zijlstra 已提交
3045
	ctx = cpuctx->task_ctx;
3046 3047 3048 3049
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3050

3051
	if (!rotate)
3052 3053
		goto done;

3054
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3055
	perf_pmu_disable(cpuctx->ctx.pmu);
3056

3057 3058 3059
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3060

3061 3062 3063
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3064

3065
	perf_event_sched_in(cpuctx, ctx, current);
3066

3067 3068
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3069
done:
3070 3071

	return rotate;
3072 3073
}

3074 3075 3076
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3077
	if (atomic_read(&nr_freq_events) ||
3078
	    __this_cpu_read(perf_throttled_count))
3079
		return false;
3080 3081
	else
		return true;
3082 3083 3084
}
#endif

3085 3086
void perf_event_task_tick(void)
{
3087 3088
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3089
	int throttled;
3090

3091 3092
	WARN_ON(!irqs_disabled());

3093 3094 3095
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3096
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3097
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3098 3099
}

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3110
	__perf_event_mark_enabled(event);
3111 3112 3113 3114

	return 1;
}

3115
/*
3116
 * Enable all of a task's events that have been marked enable-on-exec.
3117 3118
 * This expects task == current.
 */
3119
static void perf_event_enable_on_exec(int ctxn)
3120
{
3121
	struct perf_event_context *ctx, *clone_ctx = NULL;
3122
	struct perf_cpu_context *cpuctx;
3123
	struct perf_event *event;
3124 3125 3126 3127
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3128
	ctx = current->perf_event_ctxp[ctxn];
3129
	if (!ctx || !ctx->nr_events)
3130 3131
		goto out;

3132 3133 3134 3135
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3136 3137

	/*
3138
	 * Unclone and reschedule this context if we enabled any event.
3139
	 */
3140
	if (enabled) {
3141
		clone_ctx = unclone_ctx(ctx);
3142 3143 3144
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3145

P
Peter Zijlstra 已提交
3146
out:
3147
	local_irq_restore(flags);
3148 3149 3150

	if (clone_ctx)
		put_ctx(clone_ctx);
3151 3152
}

3153 3154 3155 3156 3157
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3158 3159
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3160 3161 3162
	rcu_read_unlock();
}

3163 3164 3165
struct perf_read_data {
	struct perf_event *event;
	bool group;
3166
	int ret;
3167 3168
};

T
Thomas Gleixner 已提交
3169
/*
3170
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3171
 */
3172
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3173
{
3174 3175
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3176
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3177
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3178
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3179

3180 3181 3182 3183
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3184 3185
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3186 3187 3188 3189
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3190
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3191
	if (ctx->is_active) {
3192
		update_context_time(ctx);
S
Stephane Eranian 已提交
3193 3194
		update_cgrp_time_from_event(event);
	}
3195

3196
	update_event_times(event);
3197 3198
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3199

3200 3201 3202
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3203
		goto unlock;
3204 3205 3206 3207 3208
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3209 3210 3211

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3212 3213 3214 3215 3216
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3217
			sub->pmu->read(sub);
3218
		}
3219
	}
3220 3221

	data->ret = pmu->commit_txn(pmu);
3222 3223

unlock:
3224
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3225 3226
}

P
Peter Zijlstra 已提交
3227 3228
static inline u64 perf_event_count(struct perf_event *event)
{
3229 3230 3231 3232
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3233 3234
}

3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3288
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3289
{
3290 3291
	int ret = 0;

T
Thomas Gleixner 已提交
3292
	/*
3293 3294
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3295
	 */
3296
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3297 3298 3299
		struct perf_read_data data = {
			.event = event,
			.group = group,
3300
			.ret = 0,
3301
		};
3302
		smp_call_function_single(event->oncpu,
3303
					 __perf_event_read, &data, 1);
3304
		ret = data.ret;
3305
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3306 3307 3308
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3309
		raw_spin_lock_irqsave(&ctx->lock, flags);
3310 3311 3312 3313 3314
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3315
		if (ctx->is_active) {
3316
			update_context_time(ctx);
S
Stephane Eranian 已提交
3317 3318
			update_cgrp_time_from_event(event);
		}
3319 3320 3321 3322
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3323
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3324
	}
3325 3326

	return ret;
T
Thomas Gleixner 已提交
3327 3328
}

3329
/*
3330
 * Initialize the perf_event context in a task_struct:
3331
 */
3332
static void __perf_event_init_context(struct perf_event_context *ctx)
3333
{
3334
	raw_spin_lock_init(&ctx->lock);
3335
	mutex_init(&ctx->mutex);
3336
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3337 3338
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3339 3340
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3341
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3357
	}
3358 3359 3360
	ctx->pmu = pmu;

	return ctx;
3361 3362
}

3363 3364 3365 3366 3367
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3368 3369

	rcu_read_lock();
3370
	if (!vpid)
T
Thomas Gleixner 已提交
3371 3372
		task = current;
	else
3373
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3374 3375 3376 3377 3378 3379 3380 3381
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3382 3383 3384 3385
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3386 3387 3388 3389 3390 3391 3392
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3393 3394 3395
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3396
static struct perf_event_context *
3397 3398
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3399
{
3400
	struct perf_event_context *ctx, *clone_ctx = NULL;
3401
	struct perf_cpu_context *cpuctx;
3402
	void *task_ctx_data = NULL;
3403
	unsigned long flags;
P
Peter Zijlstra 已提交
3404
	int ctxn, err;
3405
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3406

3407
	if (!task) {
3408
		/* Must be root to operate on a CPU event: */
3409
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3410 3411 3412
			return ERR_PTR(-EACCES);

		/*
3413
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3414 3415 3416
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3417
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3418 3419
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3420
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3421
		ctx = &cpuctx->ctx;
3422
		get_ctx(ctx);
3423
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3424 3425 3426 3427

		return ctx;
	}

P
Peter Zijlstra 已提交
3428 3429 3430 3431 3432
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3433 3434 3435 3436 3437 3438 3439 3440
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3441
retry:
P
Peter Zijlstra 已提交
3442
	ctx = perf_lock_task_context(task, ctxn, &flags);
3443
	if (ctx) {
3444
		clone_ctx = unclone_ctx(ctx);
3445
		++ctx->pin_count;
3446 3447 3448 3449 3450

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3451
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3452 3453 3454

		if (clone_ctx)
			put_ctx(clone_ctx);
3455
	} else {
3456
		ctx = alloc_perf_context(pmu, task);
3457 3458 3459
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3460

3461 3462 3463 3464 3465
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3476
		else {
3477
			get_ctx(ctx);
3478
			++ctx->pin_count;
3479
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3480
		}
3481 3482 3483
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3484
			put_ctx(ctx);
3485 3486 3487 3488

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3489 3490 3491
		}
	}

3492
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3493
	return ctx;
3494

P
Peter Zijlstra 已提交
3495
errout:
3496
	kfree(task_ctx_data);
3497
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3498 3499
}

L
Li Zefan 已提交
3500
static void perf_event_free_filter(struct perf_event *event);
3501
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3502

3503
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3504
{
3505
	struct perf_event *event;
P
Peter Zijlstra 已提交
3506

3507 3508 3509
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3510
	perf_event_free_filter(event);
3511
	kfree(event);
P
Peter Zijlstra 已提交
3512 3513
}

3514 3515
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3516

3517
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3518
{
3519 3520 3521 3522 3523 3524
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3525

3526 3527
static void unaccount_event(struct perf_event *event)
{
3528 3529
	bool dec = false;

3530 3531 3532 3533
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3534
		dec = true;
3535 3536 3537 3538 3539 3540
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3541 3542
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3543
	if (event->attr.context_switch) {
3544
		dec = true;
3545 3546
		atomic_dec(&nr_switch_events);
	}
3547
	if (is_cgroup_event(event))
3548
		dec = true;
3549
	if (has_branch_stack(event))
3550 3551 3552
		dec = true;

	if (dec)
3553 3554 3555 3556
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3557

3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3643 3644
static void __free_event(struct perf_event *event)
{
3645
	if (!event->parent) {
3646 3647
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3648
	}
3649

3650 3651
	perf_event_free_bpf_prog(event);

3652 3653 3654 3655 3656 3657
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3658 3659
	if (event->pmu) {
		exclusive_event_destroy(event);
3660
		module_put(event->pmu->module);
3661
	}
3662

3663 3664
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3665 3666

static void _free_event(struct perf_event *event)
3667
{
3668
	irq_work_sync(&event->pending);
3669

3670
	unaccount_event(event);
3671

3672
	if (event->rb) {
3673 3674 3675 3676 3677 3678 3679
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3680
		ring_buffer_attach(event, NULL);
3681
		mutex_unlock(&event->mmap_mutex);
3682 3683
	}

S
Stephane Eranian 已提交
3684 3685 3686
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3687
	__free_event(event);
3688 3689
}

P
Peter Zijlstra 已提交
3690 3691 3692 3693 3694
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3695
{
P
Peter Zijlstra 已提交
3696 3697 3698 3699 3700 3701
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3702

P
Peter Zijlstra 已提交
3703
	_free_event(event);
T
Thomas Gleixner 已提交
3704 3705
}

3706
/*
3707
 * Remove user event from the owner task.
3708
 */
3709
static void perf_remove_from_owner(struct perf_event *event)
3710
{
P
Peter Zijlstra 已提交
3711
	struct task_struct *owner;
3712

P
Peter Zijlstra 已提交
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3754 3755 3756 3757
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3758
	struct perf_event_context *ctx;
3759 3760 3761 3762 3763 3764

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3765

P
Peter Zijlstra 已提交
3766 3767 3768 3769 3770 3771 3772
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3773
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3774 3775 3776 3777
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3778 3779
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3780
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3781
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3782 3783

	_free_event(event);
3784 3785
}

P
Peter Zijlstra 已提交
3786 3787 3788 3789 3790 3791 3792
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3793 3794 3795
/*
 * Called when the last reference to the file is gone.
 */
3796 3797 3798 3799
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3800 3801
}

3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3838
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3839
{
3840
	struct perf_event *child;
3841 3842
	u64 total = 0;

3843 3844 3845
	*enabled = 0;
	*running = 0;

3846
	mutex_lock(&event->child_mutex);
3847

3848
	(void)perf_event_read(event, false);
3849 3850
	total += perf_event_count(event);

3851 3852 3853 3854 3855 3856
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3857
		(void)perf_event_read(child, false);
3858
		total += perf_event_count(child);
3859 3860 3861
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3862
	mutex_unlock(&event->child_mutex);
3863 3864 3865

	return total;
}
3866
EXPORT_SYMBOL_GPL(perf_event_read_value);
3867

3868
static int __perf_read_group_add(struct perf_event *leader,
3869
					u64 read_format, u64 *values)
3870
{
3871 3872
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3873
	int ret;
P
Peter Zijlstra 已提交
3874

3875 3876 3877
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3878

3879 3880 3881 3882 3883 3884 3885 3886 3887
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3888

3889 3890 3891 3892 3893 3894 3895 3896 3897
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3898 3899
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3900

3901 3902 3903 3904 3905
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3906 3907

	return 0;
3908
}
3909

3910 3911 3912 3913 3914
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3915
	int ret;
3916
	u64 *values;
3917

3918
	lockdep_assert_held(&ctx->mutex);
3919

3920 3921 3922
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3923

3924 3925 3926 3927 3928 3929 3930
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3931

3932 3933 3934 3935 3936 3937 3938 3939 3940
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3941

3942
	mutex_unlock(&leader->child_mutex);
3943

3944
	ret = event->read_size;
3945 3946
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3947
	goto out;
3948

3949 3950 3951
unlock:
	mutex_unlock(&leader->child_mutex);
out:
3952
	kfree(values);
3953
	return ret;
3954 3955
}

3956
static int perf_read_one(struct perf_event *event,
3957 3958
				 u64 read_format, char __user *buf)
{
3959
	u64 enabled, running;
3960 3961 3962
	u64 values[4];
	int n = 0;

3963 3964 3965 3966 3967
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3968
	if (read_format & PERF_FORMAT_ID)
3969
		values[n++] = primary_event_id(event);
3970 3971 3972 3973 3974 3975 3976

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3990
/*
3991
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3992 3993
 */
static ssize_t
3994
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3995
{
3996
	u64 read_format = event->attr.read_format;
3997
	int ret;
T
Thomas Gleixner 已提交
3998

3999
	/*
4000
	 * Return end-of-file for a read on a event that is in
4001 4002 4003
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4004
	if (event->state == PERF_EVENT_STATE_ERROR)
4005 4006
		return 0;

4007
	if (count < event->read_size)
4008 4009
		return -ENOSPC;

4010
	WARN_ON_ONCE(event->ctx->parent_ctx);
4011
	if (read_format & PERF_FORMAT_GROUP)
4012
		ret = perf_read_group(event, read_format, buf);
4013
	else
4014
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4015

4016
	return ret;
T
Thomas Gleixner 已提交
4017 4018 4019 4020 4021
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4022
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4023 4024
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4025

P
Peter Zijlstra 已提交
4026
	ctx = perf_event_ctx_lock(event);
4027
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4028 4029 4030
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4031 4032 4033 4034
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4035
	struct perf_event *event = file->private_data;
4036
	struct ring_buffer *rb;
4037
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4038

4039
	poll_wait(file, &event->waitq, wait);
4040

4041
	if (is_event_hup(event))
4042
		return events;
P
Peter Zijlstra 已提交
4043

4044
	/*
4045 4046
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4047 4048
	 */
	mutex_lock(&event->mmap_mutex);
4049 4050
	rb = event->rb;
	if (rb)
4051
		events = atomic_xchg(&rb->poll, 0);
4052
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4053 4054 4055
	return events;
}

P
Peter Zijlstra 已提交
4056
static void _perf_event_reset(struct perf_event *event)
4057
{
4058
	(void)perf_event_read(event, false);
4059
	local64_set(&event->count, 0);
4060
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4061 4062
}

4063
/*
4064 4065 4066 4067
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4068
 */
4069 4070
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4071
{
4072
	struct perf_event *child;
P
Peter Zijlstra 已提交
4073

4074
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4075

4076 4077 4078
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4079
		func(child);
4080
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4081 4082
}

4083 4084
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4085
{
4086 4087
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4088

P
Peter Zijlstra 已提交
4089 4090
	lockdep_assert_held(&ctx->mutex);

4091
	event = event->group_leader;
4092

4093 4094
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4095
		perf_event_for_each_child(sibling, func);
4096 4097
}

4098 4099
struct period_event {
	struct perf_event *event;
4100
	u64 value;
4101
};
4102

4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
static void ___perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	u64 value = pe->value;

	if (event->attr.freq) {
		event->attr.sample_freq = value;
	} else {
		event->attr.sample_period = value;
		event->hw.sample_period = value;
	}

	local64_set(&event->hw.period_left, 0);
}

4119 4120 4121 4122 4123 4124 4125
static int __perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	struct perf_event_context *ctx = event->ctx;
	u64 value = pe->value;
	bool active;
4126

4127
	raw_spin_lock(&ctx->lock);
4128 4129
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4130
	} else {
4131 4132
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4133
	}
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4147
	raw_spin_unlock(&ctx->lock);
4148

4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
	return 0;
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	struct period_event pe = { .event = event, };
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

	pe.value = value;

4171 4172
	event_function_call(event, __perf_event_period,
			    ___perf_event_period, &pe);
4173

4174
	return 0;
4175 4176
}

4177 4178
static const struct file_operations perf_fops;

4179
static inline int perf_fget_light(int fd, struct fd *p)
4180
{
4181 4182 4183
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4184

4185 4186 4187
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4188
	}
4189 4190
	*p = f;
	return 0;
4191 4192 4193 4194
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4195
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4196
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4197

P
Peter Zijlstra 已提交
4198
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4199
{
4200
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4201
	u32 flags = arg;
4202 4203

	switch (cmd) {
4204
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4205
		func = _perf_event_enable;
4206
		break;
4207
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4208
		func = _perf_event_disable;
4209
		break;
4210
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4211
		func = _perf_event_reset;
4212
		break;
P
Peter Zijlstra 已提交
4213

4214
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4215
		return _perf_event_refresh(event, arg);
4216

4217 4218
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4219

4220 4221 4222 4223 4224 4225 4226 4227 4228
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4229
	case PERF_EVENT_IOC_SET_OUTPUT:
4230 4231 4232
	{
		int ret;
		if (arg != -1) {
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4243 4244 4245
		}
		return ret;
	}
4246

L
Li Zefan 已提交
4247 4248 4249
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4250 4251 4252
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4253
	default:
P
Peter Zijlstra 已提交
4254
		return -ENOTTY;
4255
	}
P
Peter Zijlstra 已提交
4256 4257

	if (flags & PERF_IOC_FLAG_GROUP)
4258
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4259
	else
4260
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4261 4262

	return 0;
4263 4264
}

P
Peter Zijlstra 已提交
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4298
int perf_event_task_enable(void)
4299
{
P
Peter Zijlstra 已提交
4300
	struct perf_event_context *ctx;
4301
	struct perf_event *event;
4302

4303
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4304 4305 4306 4307 4308
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4309
	mutex_unlock(&current->perf_event_mutex);
4310 4311 4312 4313

	return 0;
}

4314
int perf_event_task_disable(void)
4315
{
P
Peter Zijlstra 已提交
4316
	struct perf_event_context *ctx;
4317
	struct perf_event *event;
4318

4319
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4320 4321 4322 4323 4324
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4325
	mutex_unlock(&current->perf_event_mutex);
4326 4327 4328 4329

	return 0;
}

4330
static int perf_event_index(struct perf_event *event)
4331
{
P
Peter Zijlstra 已提交
4332 4333 4334
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4335
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4336 4337
		return 0;

4338
	return event->pmu->event_idx(event);
4339 4340
}

4341
static void calc_timer_values(struct perf_event *event,
4342
				u64 *now,
4343 4344
				u64 *enabled,
				u64 *running)
4345
{
4346
	u64 ctx_time;
4347

4348 4349
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4350 4351 4352 4353
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4369 4370
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4371 4372 4373 4374 4375

unlock:
	rcu_read_unlock();
}

4376 4377
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4378 4379 4380
{
}

4381 4382 4383 4384 4385
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4386
void perf_event_update_userpage(struct perf_event *event)
4387
{
4388
	struct perf_event_mmap_page *userpg;
4389
	struct ring_buffer *rb;
4390
	u64 enabled, running, now;
4391 4392

	rcu_read_lock();
4393 4394 4395 4396
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4397 4398 4399 4400 4401 4402 4403 4404 4405
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4406
	calc_timer_values(event, &now, &enabled, &running);
4407

4408
	userpg = rb->user_page;
4409 4410 4411 4412 4413
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4414
	++userpg->lock;
4415
	barrier();
4416
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4417
	userpg->offset = perf_event_count(event);
4418
	if (userpg->index)
4419
		userpg->offset -= local64_read(&event->hw.prev_count);
4420

4421
	userpg->time_enabled = enabled +
4422
			atomic64_read(&event->child_total_time_enabled);
4423

4424
	userpg->time_running = running +
4425
			atomic64_read(&event->child_total_time_running);
4426

4427
	arch_perf_update_userpage(event, userpg, now);
4428

4429
	barrier();
4430
	++userpg->lock;
4431
	preempt_enable();
4432
unlock:
4433
	rcu_read_unlock();
4434 4435
}

4436 4437 4438
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4439
	struct ring_buffer *rb;
4440 4441 4442 4443 4444 4445 4446 4447 4448
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4449 4450
	rb = rcu_dereference(event->rb);
	if (!rb)
4451 4452 4453 4454 4455
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4456
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4471 4472 4473
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4474
	struct ring_buffer *old_rb = NULL;
4475 4476
	unsigned long flags;

4477 4478 4479 4480 4481 4482
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4483

4484 4485 4486 4487
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4488

4489 4490
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4491
	}
4492

4493
	if (rb) {
4494 4495 4496 4497 4498
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4515 4516 4517 4518 4519 4520 4521 4522
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4523 4524 4525 4526
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4527 4528 4529
	rcu_read_unlock();
}

4530
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4531
{
4532
	struct ring_buffer *rb;
4533

4534
	rcu_read_lock();
4535 4536 4537 4538
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4539 4540 4541
	}
	rcu_read_unlock();

4542
	return rb;
4543 4544
}

4545
void ring_buffer_put(struct ring_buffer *rb)
4546
{
4547
	if (!atomic_dec_and_test(&rb->refcount))
4548
		return;
4549

4550
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4551

4552
	call_rcu(&rb->rcu_head, rb_free_rcu);
4553 4554 4555 4556
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4557
	struct perf_event *event = vma->vm_file->private_data;
4558

4559
	atomic_inc(&event->mmap_count);
4560
	atomic_inc(&event->rb->mmap_count);
4561

4562 4563 4564
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4565 4566
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4567 4568
}

4569 4570 4571 4572 4573 4574 4575 4576
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4577 4578
static void perf_mmap_close(struct vm_area_struct *vma)
{
4579
	struct perf_event *event = vma->vm_file->private_data;
4580

4581
	struct ring_buffer *rb = ring_buffer_get(event);
4582 4583 4584
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4585

4586 4587 4588
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4603 4604 4605
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4606
		goto out_put;
4607

4608
	ring_buffer_attach(event, NULL);
4609 4610 4611
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4612 4613
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4614

4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4631

4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4643 4644 4645
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4646
		mutex_unlock(&event->mmap_mutex);
4647
		put_event(event);
4648

4649 4650 4651 4652 4653
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4654
	}
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4670
out_put:
4671
	ring_buffer_put(rb); /* could be last */
4672 4673
}

4674
static const struct vm_operations_struct perf_mmap_vmops = {
4675
	.open		= perf_mmap_open,
4676
	.close		= perf_mmap_close, /* non mergable */
4677 4678
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4679 4680 4681 4682
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4683
	struct perf_event *event = file->private_data;
4684
	unsigned long user_locked, user_lock_limit;
4685
	struct user_struct *user = current_user();
4686
	unsigned long locked, lock_limit;
4687
	struct ring_buffer *rb = NULL;
4688 4689
	unsigned long vma_size;
	unsigned long nr_pages;
4690
	long user_extra = 0, extra = 0;
4691
	int ret = 0, flags = 0;
4692

4693 4694 4695
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4696
	 * same rb.
4697 4698 4699 4700
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4701
	if (!(vma->vm_flags & VM_SHARED))
4702
		return -EINVAL;
4703 4704

	vma_size = vma->vm_end - vma->vm_start;
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4765

4766
	/*
4767
	 * If we have rb pages ensure they're a power-of-two number, so we
4768 4769
	 * can do bitmasks instead of modulo.
	 */
4770
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4771 4772
		return -EINVAL;

4773
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4774 4775
		return -EINVAL;

4776
	WARN_ON_ONCE(event->ctx->parent_ctx);
4777
again:
4778
	mutex_lock(&event->mmap_mutex);
4779
	if (event->rb) {
4780
		if (event->rb->nr_pages != nr_pages) {
4781
			ret = -EINVAL;
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4795 4796 4797
		goto unlock;
	}

4798
	user_extra = nr_pages + 1;
4799 4800

accounting:
4801
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4802 4803 4804 4805 4806 4807

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4808
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4809

4810 4811
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4812

4813
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4814
	lock_limit >>= PAGE_SHIFT;
4815
	locked = vma->vm_mm->pinned_vm + extra;
4816

4817 4818
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4819 4820 4821
		ret = -EPERM;
		goto unlock;
	}
4822

4823
	WARN_ON(!rb && event->rb);
4824

4825
	if (vma->vm_flags & VM_WRITE)
4826
		flags |= RING_BUFFER_WRITABLE;
4827

4828
	if (!rb) {
4829 4830 4831
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4832

4833 4834 4835 4836
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4837

4838 4839 4840
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4841

4842
		ring_buffer_attach(event, rb);
4843

4844 4845 4846
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4847 4848
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4849 4850 4851
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4852

4853
unlock:
4854 4855 4856 4857
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4858
		atomic_inc(&event->mmap_count);
4859 4860 4861 4862
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4863
	mutex_unlock(&event->mmap_mutex);
4864

4865 4866 4867 4868
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4869
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4870
	vma->vm_ops = &perf_mmap_vmops;
4871

4872 4873 4874
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4875
	return ret;
4876 4877
}

P
Peter Zijlstra 已提交
4878 4879
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4880
	struct inode *inode = file_inode(filp);
4881
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4882 4883 4884
	int retval;

	mutex_lock(&inode->i_mutex);
4885
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4886 4887 4888 4889 4890 4891 4892 4893
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4894
static const struct file_operations perf_fops = {
4895
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4896 4897 4898
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4899
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4900
	.compat_ioctl		= perf_compat_ioctl,
4901
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4902
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4903 4904
};

4905
/*
4906
 * Perf event wakeup
4907 4908 4909 4910 4911
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4912 4913 4914 4915 4916 4917 4918 4919
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4920
void perf_event_wakeup(struct perf_event *event)
4921
{
4922
	ring_buffer_wakeup(event);
4923

4924
	if (event->pending_kill) {
4925
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4926
		event->pending_kill = 0;
4927
	}
4928 4929
}

4930
static void perf_pending_event(struct irq_work *entry)
4931
{
4932 4933
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4934 4935 4936 4937 4938 4939 4940
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4941

4942 4943 4944
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4945 4946
	}

4947 4948 4949
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4950
	}
4951 4952 4953

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4954 4955
}

4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4992
static void perf_sample_regs_user(struct perf_regs *regs_user,
4993 4994
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4995
{
4996 4997
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4998
		regs_user->regs = regs;
4999 5000
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5001 5002 5003
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5004 5005 5006
	}
}

5007 5008 5009 5010 5011 5012 5013 5014
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5110 5111 5112
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5126
		data->time = perf_event_clock(event);
5127

5128
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5140 5141 5142
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5167 5168 5169

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5170 5171
}

5172 5173 5174
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5175 5176 5177 5178 5179
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5180
static void perf_output_read_one(struct perf_output_handle *handle,
5181 5182
				 struct perf_event *event,
				 u64 enabled, u64 running)
5183
{
5184
	u64 read_format = event->attr.read_format;
5185 5186 5187
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5188
	values[n++] = perf_event_count(event);
5189
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5190
		values[n++] = enabled +
5191
			atomic64_read(&event->child_total_time_enabled);
5192 5193
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5194
		values[n++] = running +
5195
			atomic64_read(&event->child_total_time_running);
5196 5197
	}
	if (read_format & PERF_FORMAT_ID)
5198
		values[n++] = primary_event_id(event);
5199

5200
	__output_copy(handle, values, n * sizeof(u64));
5201 5202 5203
}

/*
5204
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5205 5206
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5207 5208
			    struct perf_event *event,
			    u64 enabled, u64 running)
5209
{
5210 5211
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5212 5213 5214 5215 5216 5217
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5218
		values[n++] = enabled;
5219 5220

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5221
		values[n++] = running;
5222

5223
	if (leader != event)
5224 5225
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5226
	values[n++] = perf_event_count(leader);
5227
	if (read_format & PERF_FORMAT_ID)
5228
		values[n++] = primary_event_id(leader);
5229

5230
	__output_copy(handle, values, n * sizeof(u64));
5231

5232
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5233 5234
		n = 0;

5235 5236
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5237 5238
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5239
		values[n++] = perf_event_count(sub);
5240
		if (read_format & PERF_FORMAT_ID)
5241
			values[n++] = primary_event_id(sub);
5242

5243
		__output_copy(handle, values, n * sizeof(u64));
5244 5245 5246
	}
}

5247 5248 5249
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5250
static void perf_output_read(struct perf_output_handle *handle,
5251
			     struct perf_event *event)
5252
{
5253
	u64 enabled = 0, running = 0, now;
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5265
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5266
		calc_timer_values(event, &now, &enabled, &running);
5267

5268
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5269
		perf_output_read_group(handle, event, enabled, running);
5270
	else
5271
		perf_output_read_one(handle, event, enabled, running);
5272 5273
}

5274 5275 5276
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5277
			struct perf_event *event)
5278 5279 5280 5281 5282
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5283 5284 5285
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5311
		perf_output_read(handle, event);
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5322
			__output_copy(handle, data->callchain, size);
5323 5324 5325 5326 5327 5328 5329 5330
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5331 5332 5333 5334 5335 5336 5337 5338 5339
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5351

5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5386

5387
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5388 5389 5390
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5391
	}
A
Andi Kleen 已提交
5392 5393 5394

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5395 5396 5397

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5398

A
Andi Kleen 已提交
5399 5400 5401
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5432 5433 5434 5435
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5436
			 struct perf_event *event,
5437
			 struct pt_regs *regs)
5438
{
5439
	u64 sample_type = event->attr.sample_type;
5440

5441
	header->type = PERF_RECORD_SAMPLE;
5442
	header->size = sizeof(*header) + event->header_size;
5443 5444 5445

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5446

5447
	__perf_event_header__init_id(header, data, event);
5448

5449
	if (sample_type & PERF_SAMPLE_IP)
5450 5451
		data->ip = perf_instruction_pointer(regs);

5452
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5453
		int size = 1;
5454

5455
		data->callchain = perf_callchain(event, regs);
5456 5457 5458 5459 5460

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5461 5462
	}

5463
	if (sample_type & PERF_SAMPLE_RAW) {
5464 5465 5466 5467 5468 5469 5470
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5471
		header->size += round_up(size, sizeof(u64));
5472
	}
5473 5474 5475 5476 5477 5478 5479 5480 5481

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5482

5483
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5484 5485
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5486

5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5510
						     data->regs_user.regs);
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5538
}
5539

5540 5541 5542
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5543 5544 5545
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5546

5547 5548 5549
	/* protect the callchain buffers */
	rcu_read_lock();

5550
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5551

5552
	if (perf_output_begin(&handle, event, header.size))
5553
		goto exit;
5554

5555
	perf_output_sample(&handle, &header, data, event);
5556

5557
	perf_output_end(&handle);
5558 5559 5560

exit:
	rcu_read_unlock();
5561 5562
}

5563
/*
5564
 * read event_id
5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5575
perf_event_read_event(struct perf_event *event,
5576 5577 5578
			struct task_struct *task)
{
	struct perf_output_handle handle;
5579
	struct perf_sample_data sample;
5580
	struct perf_read_event read_event = {
5581
		.header = {
5582
			.type = PERF_RECORD_READ,
5583
			.misc = 0,
5584
			.size = sizeof(read_event) + event->read_size,
5585
		},
5586 5587
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5588
	};
5589
	int ret;
5590

5591
	perf_event_header__init_id(&read_event.header, &sample, event);
5592
	ret = perf_output_begin(&handle, event, read_event.header.size);
5593 5594 5595
	if (ret)
		return;

5596
	perf_output_put(&handle, read_event);
5597
	perf_output_read(&handle, event);
5598
	perf_event__output_id_sample(event, &handle, &sample);
5599

5600 5601 5602
	perf_output_end(&handle);
}

5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5617
		output(event, data);
5618 5619 5620
	}
}

J
Jiri Olsa 已提交
5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5632
static void
5633
perf_event_aux(perf_event_aux_output_cb output, void *data,
5634 5635 5636 5637 5638 5639 5640
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5652 5653 5654 5655 5656
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5657
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5658 5659 5660 5661 5662
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5663
			perf_event_aux_ctx(ctx, output, data);
5664 5665 5666 5667 5668 5669
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5670
/*
P
Peter Zijlstra 已提交
5671 5672
 * task tracking -- fork/exit
 *
5673
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5674 5675
 */

P
Peter Zijlstra 已提交
5676
struct perf_task_event {
5677
	struct task_struct		*task;
5678
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5679 5680 5681 5682 5683 5684

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5685 5686
		u32				tid;
		u32				ptid;
5687
		u64				time;
5688
	} event_id;
P
Peter Zijlstra 已提交
5689 5690
};

5691 5692
static int perf_event_task_match(struct perf_event *event)
{
5693 5694 5695
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5696 5697
}

5698
static void perf_event_task_output(struct perf_event *event,
5699
				   void *data)
P
Peter Zijlstra 已提交
5700
{
5701
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5702
	struct perf_output_handle handle;
5703
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5704
	struct task_struct *task = task_event->task;
5705
	int ret, size = task_event->event_id.header.size;
5706

5707 5708 5709
	if (!perf_event_task_match(event))
		return;

5710
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5711

5712
	ret = perf_output_begin(&handle, event,
5713
				task_event->event_id.header.size);
5714
	if (ret)
5715
		goto out;
P
Peter Zijlstra 已提交
5716

5717 5718
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5719

5720 5721
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5722

5723 5724
	task_event->event_id.time = perf_event_clock(event);

5725
	perf_output_put(&handle, task_event->event_id);
5726

5727 5728
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5729
	perf_output_end(&handle);
5730 5731
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5732 5733
}

5734 5735
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5736
			      int new)
P
Peter Zijlstra 已提交
5737
{
P
Peter Zijlstra 已提交
5738
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5739

5740 5741 5742
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5743 5744
		return;

P
Peter Zijlstra 已提交
5745
	task_event = (struct perf_task_event){
5746 5747
		.task	  = task,
		.task_ctx = task_ctx,
5748
		.event_id    = {
P
Peter Zijlstra 已提交
5749
			.header = {
5750
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5751
				.misc = 0,
5752
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5753
			},
5754 5755
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5756 5757
			/* .tid  */
			/* .ptid */
5758
			/* .time */
P
Peter Zijlstra 已提交
5759 5760 5761
		},
	};

5762
	perf_event_aux(perf_event_task_output,
5763 5764
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5765 5766
}

5767
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5768
{
5769
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5770 5771
}

5772 5773 5774 5775 5776
/*
 * comm tracking
 */

struct perf_comm_event {
5777 5778
	struct task_struct	*task;
	char			*comm;
5779 5780 5781 5782 5783 5784 5785
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5786
	} event_id;
5787 5788
};

5789 5790 5791 5792 5793
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5794
static void perf_event_comm_output(struct perf_event *event,
5795
				   void *data)
5796
{
5797
	struct perf_comm_event *comm_event = data;
5798
	struct perf_output_handle handle;
5799
	struct perf_sample_data sample;
5800
	int size = comm_event->event_id.header.size;
5801 5802
	int ret;

5803 5804 5805
	if (!perf_event_comm_match(event))
		return;

5806 5807
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5808
				comm_event->event_id.header.size);
5809 5810

	if (ret)
5811
		goto out;
5812

5813 5814
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5815

5816
	perf_output_put(&handle, comm_event->event_id);
5817
	__output_copy(&handle, comm_event->comm,
5818
				   comm_event->comm_size);
5819 5820 5821

	perf_event__output_id_sample(event, &handle, &sample);

5822
	perf_output_end(&handle);
5823 5824
out:
	comm_event->event_id.header.size = size;
5825 5826
}

5827
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5828
{
5829
	char comm[TASK_COMM_LEN];
5830 5831
	unsigned int size;

5832
	memset(comm, 0, sizeof(comm));
5833
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5834
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5835 5836 5837 5838

	comm_event->comm = comm;
	comm_event->comm_size = size;

5839
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5840

5841
	perf_event_aux(perf_event_comm_output,
5842 5843
		       comm_event,
		       NULL);
5844 5845
}

5846
void perf_event_comm(struct task_struct *task, bool exec)
5847
{
5848 5849
	struct perf_comm_event comm_event;

5850
	if (!atomic_read(&nr_comm_events))
5851
		return;
5852

5853
	comm_event = (struct perf_comm_event){
5854
		.task	= task,
5855 5856
		/* .comm      */
		/* .comm_size */
5857
		.event_id  = {
5858
			.header = {
5859
				.type = PERF_RECORD_COMM,
5860
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5861 5862 5863 5864
				/* .size */
			},
			/* .pid */
			/* .tid */
5865 5866 5867
		},
	};

5868
	perf_event_comm_event(&comm_event);
5869 5870
}

5871 5872 5873 5874 5875
/*
 * mmap tracking
 */

struct perf_mmap_event {
5876 5877 5878 5879
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5880 5881 5882
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5883
	u32			prot, flags;
5884 5885 5886 5887 5888 5889 5890 5891 5892

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5893
	} event_id;
5894 5895
};

5896 5897 5898 5899 5900 5901 5902 5903
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5904
	       (executable && (event->attr.mmap || event->attr.mmap2));
5905 5906
}

5907
static void perf_event_mmap_output(struct perf_event *event,
5908
				   void *data)
5909
{
5910
	struct perf_mmap_event *mmap_event = data;
5911
	struct perf_output_handle handle;
5912
	struct perf_sample_data sample;
5913
	int size = mmap_event->event_id.header.size;
5914
	int ret;
5915

5916 5917 5918
	if (!perf_event_mmap_match(event, data))
		return;

5919 5920 5921 5922 5923
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5924
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5925 5926
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5927 5928
	}

5929 5930
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5931
				mmap_event->event_id.header.size);
5932
	if (ret)
5933
		goto out;
5934

5935 5936
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5937

5938
	perf_output_put(&handle, mmap_event->event_id);
5939 5940 5941 5942 5943 5944

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5945 5946
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5947 5948
	}

5949
	__output_copy(&handle, mmap_event->file_name,
5950
				   mmap_event->file_size);
5951 5952 5953

	perf_event__output_id_sample(event, &handle, &sample);

5954
	perf_output_end(&handle);
5955 5956
out:
	mmap_event->event_id.header.size = size;
5957 5958
}

5959
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5960
{
5961 5962
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5963 5964
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5965
	u32 prot = 0, flags = 0;
5966 5967 5968
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5969
	char *name;
5970

5971
	if (file) {
5972 5973
		struct inode *inode;
		dev_t dev;
5974

5975
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5976
		if (!buf) {
5977 5978
			name = "//enomem";
			goto cpy_name;
5979
		}
5980
		/*
5981
		 * d_path() works from the end of the rb backwards, so we
5982 5983 5984
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5985
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5986
		if (IS_ERR(name)) {
5987 5988
			name = "//toolong";
			goto cpy_name;
5989
		}
5990 5991 5992 5993 5994 5995
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6018
		goto got_name;
6019
	} else {
6020 6021 6022 6023 6024 6025
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6026
		name = (char *)arch_vma_name(vma);
6027 6028
		if (name)
			goto cpy_name;
6029

6030
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6031
				vma->vm_end >= vma->vm_mm->brk) {
6032 6033
			name = "[heap]";
			goto cpy_name;
6034 6035
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6036
				vma->vm_end >= vma->vm_mm->start_stack) {
6037 6038
			name = "[stack]";
			goto cpy_name;
6039 6040
		}

6041 6042
		name = "//anon";
		goto cpy_name;
6043 6044
	}

6045 6046 6047
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6048
got_name:
6049 6050 6051 6052 6053 6054 6055 6056
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6057 6058 6059

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6060 6061 6062 6063
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6064 6065
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6066

6067 6068 6069
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6070
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6071

6072
	perf_event_aux(perf_event_mmap_output,
6073 6074
		       mmap_event,
		       NULL);
6075

6076 6077 6078
	kfree(buf);
}

6079
void perf_event_mmap(struct vm_area_struct *vma)
6080
{
6081 6082
	struct perf_mmap_event mmap_event;

6083
	if (!atomic_read(&nr_mmap_events))
6084 6085 6086
		return;

	mmap_event = (struct perf_mmap_event){
6087
		.vma	= vma,
6088 6089
		/* .file_name */
		/* .file_size */
6090
		.event_id  = {
6091
			.header = {
6092
				.type = PERF_RECORD_MMAP,
6093
				.misc = PERF_RECORD_MISC_USER,
6094 6095 6096 6097
				/* .size */
			},
			/* .pid */
			/* .tid */
6098 6099
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6100
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6101
		},
6102 6103 6104 6105
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6106 6107
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6108 6109
	};

6110
	perf_event_mmap_event(&mmap_event);
6111 6112
}

A
Alexander Shishkin 已提交
6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6265 6266 6267 6268
/*
 * IRQ throttle logging
 */

6269
static void perf_log_throttle(struct perf_event *event, int enable)
6270 6271
{
	struct perf_output_handle handle;
6272
	struct perf_sample_data sample;
6273 6274 6275 6276 6277
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6278
		u64				id;
6279
		u64				stream_id;
6280 6281
	} throttle_event = {
		.header = {
6282
			.type = PERF_RECORD_THROTTLE,
6283 6284 6285
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6286
		.time		= perf_event_clock(event),
6287 6288
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6289 6290
	};

6291
	if (enable)
6292
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6293

6294 6295 6296
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6297
				throttle_event.header.size);
6298 6299 6300 6301
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6302
	perf_event__output_id_sample(event, &handle, &sample);
6303 6304 6305
	perf_output_end(&handle);
}

6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6342
/*
6343
 * Generic event overflow handling, sampling.
6344 6345
 */

6346
static int __perf_event_overflow(struct perf_event *event,
6347 6348
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6349
{
6350 6351
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6352
	u64 seq;
6353 6354
	int ret = 0;

6355 6356 6357 6358 6359 6360 6361
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6362 6363 6364 6365 6366 6367 6368 6369 6370
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6371 6372
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6373
			tick_nohz_full_kick();
6374 6375
			ret = 1;
		}
6376
	}
6377

6378
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6379
		u64 now = perf_clock();
6380
		s64 delta = now - hwc->freq_time_stamp;
6381

6382
		hwc->freq_time_stamp = now;
6383

6384
		if (delta > 0 && delta < 2*TICK_NSEC)
6385
			perf_adjust_period(event, delta, hwc->last_period, true);
6386 6387
	}

6388 6389
	/*
	 * XXX event_limit might not quite work as expected on inherited
6390
	 * events
6391 6392
	 */

6393 6394
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6395
		ret = 1;
6396
		event->pending_kill = POLL_HUP;
6397 6398
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6399 6400
	}

6401
	if (event->overflow_handler)
6402
		event->overflow_handler(event, data, regs);
6403
	else
6404
		perf_event_output(event, data, regs);
6405

6406
	if (*perf_event_fasync(event) && event->pending_kill) {
6407 6408
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6409 6410
	}

6411
	return ret;
6412 6413
}

6414
int perf_event_overflow(struct perf_event *event,
6415 6416
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6417
{
6418
	return __perf_event_overflow(event, 1, data, regs);
6419 6420
}

6421
/*
6422
 * Generic software event infrastructure
6423 6424
 */

6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6436
/*
6437 6438
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6439 6440 6441 6442
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6443
u64 perf_swevent_set_period(struct perf_event *event)
6444
{
6445
	struct hw_perf_event *hwc = &event->hw;
6446 6447 6448 6449 6450
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6451 6452

again:
6453
	old = val = local64_read(&hwc->period_left);
6454 6455
	if (val < 0)
		return 0;
6456

6457 6458 6459
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6460
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6461
		goto again;
6462

6463
	return nr;
6464 6465
}

6466
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6467
				    struct perf_sample_data *data,
6468
				    struct pt_regs *regs)
6469
{
6470
	struct hw_perf_event *hwc = &event->hw;
6471
	int throttle = 0;
6472

6473 6474
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6475

6476 6477
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6478

6479
	for (; overflow; overflow--) {
6480
		if (__perf_event_overflow(event, throttle,
6481
					    data, regs)) {
6482 6483 6484 6485 6486 6487
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6488
		throttle = 1;
6489
	}
6490 6491
}

P
Peter Zijlstra 已提交
6492
static void perf_swevent_event(struct perf_event *event, u64 nr,
6493
			       struct perf_sample_data *data,
6494
			       struct pt_regs *regs)
6495
{
6496
	struct hw_perf_event *hwc = &event->hw;
6497

6498
	local64_add(nr, &event->count);
6499

6500 6501 6502
	if (!regs)
		return;

6503
	if (!is_sampling_event(event))
6504
		return;
6505

6506 6507 6508 6509 6510 6511
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6512
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6513
		return perf_swevent_overflow(event, 1, data, regs);
6514

6515
	if (local64_add_negative(nr, &hwc->period_left))
6516
		return;
6517

6518
	perf_swevent_overflow(event, 0, data, regs);
6519 6520
}

6521 6522 6523
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6524
	if (event->hw.state & PERF_HES_STOPPED)
6525
		return 1;
P
Peter Zijlstra 已提交
6526

6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6538
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6539
				enum perf_type_id type,
L
Li Zefan 已提交
6540 6541 6542
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6543
{
6544
	if (event->attr.type != type)
6545
		return 0;
6546

6547
	if (event->attr.config != event_id)
6548 6549
		return 0;

6550 6551
	if (perf_exclude_event(event, regs))
		return 0;
6552 6553 6554 6555

	return 1;
}

6556 6557 6558 6559 6560 6561 6562
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6563 6564
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6565
{
6566 6567 6568 6569
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6570

6571 6572
/* For the read side: events when they trigger */
static inline struct hlist_head *
6573
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6574 6575
{
	struct swevent_hlist *hlist;
6576

6577
	hlist = rcu_dereference(swhash->swevent_hlist);
6578 6579 6580
	if (!hlist)
		return NULL;

6581 6582 6583 6584 6585
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6586
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6597
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6598 6599 6600 6601 6602
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6603 6604 6605
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6606
				    u64 nr,
6607 6608
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6609
{
6610
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6611
	struct perf_event *event;
6612
	struct hlist_head *head;
6613

6614
	rcu_read_lock();
6615
	head = find_swevent_head_rcu(swhash, type, event_id);
6616 6617 6618
	if (!head)
		goto end;

6619
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6620
		if (perf_swevent_match(event, type, event_id, data, regs))
6621
			perf_swevent_event(event, nr, data, regs);
6622
	}
6623 6624
end:
	rcu_read_unlock();
6625 6626
}

6627 6628
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6629
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6630
{
6631
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6632

6633
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6634
}
I
Ingo Molnar 已提交
6635
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6636

6637
inline void perf_swevent_put_recursion_context(int rctx)
6638
{
6639
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6640

6641
	put_recursion_context(swhash->recursion, rctx);
6642
}
6643

6644
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6645
{
6646
	struct perf_sample_data data;
6647

6648
	if (WARN_ON_ONCE(!regs))
6649
		return;
6650

6651
	perf_sample_data_init(&data, addr, 0);
6652
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6665 6666

	perf_swevent_put_recursion_context(rctx);
6667
fail:
6668
	preempt_enable_notrace();
6669 6670
}

6671
static void perf_swevent_read(struct perf_event *event)
6672 6673 6674
{
}

P
Peter Zijlstra 已提交
6675
static int perf_swevent_add(struct perf_event *event, int flags)
6676
{
6677
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6678
	struct hw_perf_event *hwc = &event->hw;
6679 6680
	struct hlist_head *head;

6681
	if (is_sampling_event(event)) {
6682
		hwc->last_period = hwc->sample_period;
6683
		perf_swevent_set_period(event);
6684
	}
6685

P
Peter Zijlstra 已提交
6686 6687
	hwc->state = !(flags & PERF_EF_START);

6688
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6689
	if (WARN_ON_ONCE(!head))
6690 6691 6692
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6693
	perf_event_update_userpage(event);
6694

6695 6696 6697
	return 0;
}

P
Peter Zijlstra 已提交
6698
static void perf_swevent_del(struct perf_event *event, int flags)
6699
{
6700
	hlist_del_rcu(&event->hlist_entry);
6701 6702
}

P
Peter Zijlstra 已提交
6703
static void perf_swevent_start(struct perf_event *event, int flags)
6704
{
P
Peter Zijlstra 已提交
6705
	event->hw.state = 0;
6706
}
I
Ingo Molnar 已提交
6707

P
Peter Zijlstra 已提交
6708
static void perf_swevent_stop(struct perf_event *event, int flags)
6709
{
P
Peter Zijlstra 已提交
6710
	event->hw.state = PERF_HES_STOPPED;
6711 6712
}

6713 6714
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6715
swevent_hlist_deref(struct swevent_htable *swhash)
6716
{
6717 6718
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6719 6720
}

6721
static void swevent_hlist_release(struct swevent_htable *swhash)
6722
{
6723
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6724

6725
	if (!hlist)
6726 6727
		return;

6728
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6729
	kfree_rcu(hlist, rcu_head);
6730 6731 6732 6733
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6734
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6735

6736
	mutex_lock(&swhash->hlist_mutex);
6737

6738 6739
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6740

6741
	mutex_unlock(&swhash->hlist_mutex);
6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6754
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6755 6756
	int err = 0;

6757 6758
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6759 6760 6761 6762 6763 6764 6765
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6766
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6767
	}
6768
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6769
exit:
6770
	mutex_unlock(&swhash->hlist_mutex);
6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6791
fail:
6792 6793 6794 6795 6796 6797 6798 6799 6800 6801
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6802
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6803

6804 6805 6806
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6807

6808 6809
	WARN_ON(event->parent);

6810
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6811 6812 6813 6814 6815
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6816
	u64 event_id = event->attr.config;
6817 6818 6819 6820

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6821 6822 6823 6824 6825 6826
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6827 6828 6829 6830 6831 6832 6833 6834 6835
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6836
	if (event_id >= PERF_COUNT_SW_MAX)
6837 6838 6839 6840 6841 6842 6843 6844 6845
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6846
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6847 6848 6849 6850 6851 6852 6853
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6854
	.task_ctx_nr	= perf_sw_context,
6855

6856 6857
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6858
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6859 6860 6861 6862
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6863 6864 6865
	.read		= perf_swevent_read,
};

6866 6867
#ifdef CONFIG_EVENT_TRACING

6868 6869 6870 6871 6872
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6873 6874 6875 6876
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6877 6878 6879 6880 6881 6882 6883 6884 6885
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6886 6887
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6888 6889 6890 6891
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6892 6893 6894 6895 6896 6897 6898 6899 6900
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6901 6902
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6903 6904
{
	struct perf_sample_data data;
6905 6906
	struct perf_event *event;

6907 6908 6909 6910 6911
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6912
	perf_sample_data_init(&data, addr, 0);
6913 6914
	data.raw = &raw;

6915
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6916
		if (perf_tp_event_match(event, &data, regs))
6917
			perf_swevent_event(event, count, &data, regs);
6918
	}
6919

6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6945
	perf_swevent_put_recursion_context(rctx);
6946 6947 6948
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6949
static void tp_perf_event_destroy(struct perf_event *event)
6950
{
6951
	perf_trace_destroy(event);
6952 6953
}

6954
static int perf_tp_event_init(struct perf_event *event)
6955
{
6956 6957
	int err;

6958 6959 6960
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6961 6962 6963 6964 6965 6966
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6967 6968
	err = perf_trace_init(event);
	if (err)
6969
		return err;
6970

6971
	event->destroy = tp_perf_event_destroy;
6972

6973 6974 6975 6976
	return 0;
}

static struct pmu perf_tracepoint = {
6977 6978
	.task_ctx_nr	= perf_sw_context,

6979
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6980 6981 6982 6983
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6984 6985 6986 6987 6988
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6989
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6990
}
L
Li Zefan 已提交
6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7015 7016 7017 7018 7019 7020 7021 7022 7023 7024
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7025 7026
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7027 7028 7029 7030 7031 7032
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7033
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7058
#else
L
Li Zefan 已提交
7059

7060
static inline void perf_tp_register(void)
7061 7062
{
}
L
Li Zefan 已提交
7063 7064 7065 7066 7067 7068 7069 7070 7071 7072

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7073 7074 7075 7076 7077 7078 7079 7080
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7081
#endif /* CONFIG_EVENT_TRACING */
7082

7083
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7084
void perf_bp_event(struct perf_event *bp, void *data)
7085
{
7086 7087 7088
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7089
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7090

P
Peter Zijlstra 已提交
7091
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7092
		perf_swevent_event(bp, 1, &sample, regs);
7093 7094 7095
}
#endif

7096 7097 7098
/*
 * hrtimer based swevent callback
 */
7099

7100
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7101
{
7102 7103 7104 7105 7106
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7107

7108
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7109 7110 7111 7112

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7113
	event->pmu->read(event);
7114

7115
	perf_sample_data_init(&data, 0, event->hw.last_period);
7116 7117 7118
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7119
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7120
			if (__perf_event_overflow(event, 1, &data, regs))
7121 7122
				ret = HRTIMER_NORESTART;
	}
7123

7124 7125
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7126

7127
	return ret;
7128 7129
}

7130
static void perf_swevent_start_hrtimer(struct perf_event *event)
7131
{
7132
	struct hw_perf_event *hwc = &event->hw;
7133 7134 7135 7136
	s64 period;

	if (!is_sampling_event(event))
		return;
7137

7138 7139 7140 7141
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7142

7143 7144 7145 7146
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7147 7148
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7149
}
7150 7151

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7152
{
7153 7154
	struct hw_perf_event *hwc = &event->hw;

7155
	if (is_sampling_event(event)) {
7156
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7157
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7158 7159 7160

		hrtimer_cancel(&hwc->hrtimer);
	}
7161 7162
}

P
Peter Zijlstra 已提交
7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7183
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7184 7185 7186 7187
		event->attr.freq = 0;
	}
}

7188 7189 7190 7191 7192
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7193
{
7194 7195 7196
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7197
	now = local_clock();
7198 7199
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7200 7201
}

P
Peter Zijlstra 已提交
7202
static void cpu_clock_event_start(struct perf_event *event, int flags)
7203
{
P
Peter Zijlstra 已提交
7204
	local64_set(&event->hw.prev_count, local_clock());
7205 7206 7207
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7208
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7209
{
7210 7211 7212
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7213

P
Peter Zijlstra 已提交
7214 7215 7216 7217
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7218
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7219 7220 7221 7222 7223 7224 7225 7226 7227

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7228 7229 7230 7231
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7232

7233 7234 7235 7236 7237 7238 7239 7240
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7241 7242 7243 7244 7245 7246
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7247 7248
	perf_swevent_init_hrtimer(event);

7249
	return 0;
7250 7251
}

7252
static struct pmu perf_cpu_clock = {
7253 7254
	.task_ctx_nr	= perf_sw_context,

7255 7256
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7257
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7258 7259 7260 7261
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7262 7263 7264 7265 7266 7267 7268 7269
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7270
{
7271 7272
	u64 prev;
	s64 delta;
7273

7274 7275 7276 7277
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7278

P
Peter Zijlstra 已提交
7279
static void task_clock_event_start(struct perf_event *event, int flags)
7280
{
P
Peter Zijlstra 已提交
7281
	local64_set(&event->hw.prev_count, event->ctx->time);
7282 7283 7284
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7285
static void task_clock_event_stop(struct perf_event *event, int flags)
7286 7287 7288
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7289 7290 7291 7292 7293 7294
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7295
	perf_event_update_userpage(event);
7296

P
Peter Zijlstra 已提交
7297 7298 7299 7300 7301 7302
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7303 7304 7305 7306
}

static void task_clock_event_read(struct perf_event *event)
{
7307 7308 7309
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7310 7311 7312 7313 7314

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7315
{
7316 7317 7318 7319 7320 7321
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7322 7323 7324 7325 7326 7327
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7328 7329
	perf_swevent_init_hrtimer(event);

7330
	return 0;
L
Li Zefan 已提交
7331 7332
}

7333
static struct pmu perf_task_clock = {
7334 7335
	.task_ctx_nr	= perf_sw_context,

7336 7337
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7338
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7339 7340 7341 7342
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7343 7344
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7345

P
Peter Zijlstra 已提交
7346
static void perf_pmu_nop_void(struct pmu *pmu)
7347 7348
{
}
L
Li Zefan 已提交
7349

7350 7351 7352 7353
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7354
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7355
{
P
Peter Zijlstra 已提交
7356
	return 0;
L
Li Zefan 已提交
7357 7358
}

7359
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7360 7361

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7362
{
7363 7364 7365 7366 7367
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7368
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7369 7370
}

P
Peter Zijlstra 已提交
7371 7372
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7373 7374 7375 7376 7377 7378 7379
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7380 7381 7382
	perf_pmu_enable(pmu);
	return 0;
}
7383

P
Peter Zijlstra 已提交
7384
static void perf_pmu_cancel_txn(struct pmu *pmu)
7385
{
7386 7387 7388 7389 7390 7391 7392
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7393
	perf_pmu_enable(pmu);
7394 7395
}

7396 7397
static int perf_event_idx_default(struct perf_event *event)
{
7398
	return 0;
7399 7400
}

P
Peter Zijlstra 已提交
7401 7402 7403 7404
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7405
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7406
{
P
Peter Zijlstra 已提交
7407
	struct pmu *pmu;
7408

P
Peter Zijlstra 已提交
7409 7410
	if (ctxn < 0)
		return NULL;
7411

P
Peter Zijlstra 已提交
7412 7413 7414 7415
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7416

P
Peter Zijlstra 已提交
7417
	return NULL;
7418 7419
}

7420
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7421
{
7422 7423 7424 7425 7426 7427 7428
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7429 7430
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7431 7432 7433 7434 7435 7436
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7437

P
Peter Zijlstra 已提交
7438
	mutex_lock(&pmus_lock);
7439
	/*
P
Peter Zijlstra 已提交
7440
	 * Like a real lame refcount.
7441
	 */
7442 7443 7444
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7445
			goto out;
7446
		}
P
Peter Zijlstra 已提交
7447
	}
7448

7449
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7450 7451
out:
	mutex_unlock(&pmus_lock);
7452
}
P
Peter Zijlstra 已提交
7453
static struct idr pmu_idr;
7454

P
Peter Zijlstra 已提交
7455 7456 7457 7458 7459 7460 7461
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7462
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7463

7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7474 7475
static DEFINE_MUTEX(mux_interval_mutex);

7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7495
	mutex_lock(&mux_interval_mutex);
7496 7497 7498
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7499 7500
	get_online_cpus();
	for_each_online_cpu(cpu) {
7501 7502 7503 7504
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7505 7506
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7507
	}
7508 7509
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7510 7511 7512

	return count;
}
7513
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7514

7515 7516 7517 7518
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7519
};
7520
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7521 7522 7523 7524

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7525
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7541
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7562
static struct lock_class_key cpuctx_mutex;
7563
static struct lock_class_key cpuctx_lock;
7564

7565
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7566
{
P
Peter Zijlstra 已提交
7567
	int cpu, ret;
7568

7569
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7570 7571 7572 7573
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7574

P
Peter Zijlstra 已提交
7575 7576 7577 7578 7579 7580
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7581 7582 7583
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7584 7585 7586 7587 7588
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7589 7590 7591 7592 7593 7594
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7595
skip_type:
P
Peter Zijlstra 已提交
7596 7597 7598
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7599

W
Wei Yongjun 已提交
7600
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7601 7602
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7603
		goto free_dev;
7604

P
Peter Zijlstra 已提交
7605 7606 7607 7608
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7609
		__perf_event_init_context(&cpuctx->ctx);
7610
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7611
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7612
		cpuctx->ctx.pmu = pmu;
7613

7614
		__perf_mux_hrtimer_init(cpuctx, cpu);
7615

7616
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7617
	}
7618

P
Peter Zijlstra 已提交
7619
got_cpu_context:
P
Peter Zijlstra 已提交
7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7631
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7632 7633
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7634
		}
7635
	}
7636

P
Peter Zijlstra 已提交
7637 7638 7639 7640 7641
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7642 7643 7644
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7645
	list_add_rcu(&pmu->entry, &pmus);
7646
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7647 7648
	ret = 0;
unlock:
7649 7650
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7651
	return ret;
P
Peter Zijlstra 已提交
7652

P
Peter Zijlstra 已提交
7653 7654 7655 7656
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7657 7658 7659 7660
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7661 7662 7663
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7664
}
7665
EXPORT_SYMBOL_GPL(perf_pmu_register);
7666

7667
void perf_pmu_unregister(struct pmu *pmu)
7668
{
7669 7670 7671
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7672

7673
	/*
P
Peter Zijlstra 已提交
7674 7675
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7676
	 */
7677
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7678
	synchronize_rcu();
7679

P
Peter Zijlstra 已提交
7680
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7681 7682
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7683 7684
	device_del(pmu->dev);
	put_device(pmu->dev);
7685
	free_pmu_context(pmu);
7686
}
7687
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7688

7689 7690
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7691
	struct perf_event_context *ctx = NULL;
7692 7693 7694 7695
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7696 7697

	if (event->group_leader != event) {
7698 7699 7700 7701 7702 7703
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7704 7705 7706
		BUG_ON(!ctx);
	}

7707 7708
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7709 7710 7711 7712

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7713 7714 7715 7716 7717 7718
	if (ret)
		module_put(pmu->module);

	return ret;
}

7719
static struct pmu *perf_init_event(struct perf_event *event)
7720 7721 7722
{
	struct pmu *pmu = NULL;
	int idx;
7723
	int ret;
7724 7725

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7726 7727 7728 7729

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7730
	if (pmu) {
7731
		ret = perf_try_init_event(pmu, event);
7732 7733
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7734
		goto unlock;
7735
	}
P
Peter Zijlstra 已提交
7736

7737
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7738
		ret = perf_try_init_event(pmu, event);
7739
		if (!ret)
P
Peter Zijlstra 已提交
7740
			goto unlock;
7741

7742 7743
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7744
			goto unlock;
7745
		}
7746
	}
P
Peter Zijlstra 已提交
7747 7748
	pmu = ERR_PTR(-ENOENT);
unlock:
7749
	srcu_read_unlock(&pmus_srcu, idx);
7750

7751
	return pmu;
7752 7753
}

7754 7755 7756 7757 7758 7759 7760 7761 7762
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7763 7764
static void account_event(struct perf_event *event)
{
7765 7766
	bool inc = false;

7767 7768 7769
	if (event->parent)
		return;

7770
	if (event->attach_state & PERF_ATTACH_TASK)
7771
		inc = true;
7772 7773 7774 7775 7776 7777
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7778 7779 7780 7781
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7782 7783
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
7784
		inc = true;
7785
	}
7786
	if (has_branch_stack(event))
7787
		inc = true;
7788
	if (is_cgroup_event(event))
7789 7790 7791
		inc = true;

	if (inc)
7792
		static_key_slow_inc(&perf_sched_events.key);
7793 7794

	account_event_cpu(event, event->cpu);
7795 7796
}

T
Thomas Gleixner 已提交
7797
/*
7798
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7799
 */
7800
static struct perf_event *
7801
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7802 7803 7804
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7805
		 perf_overflow_handler_t overflow_handler,
7806
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7807
{
P
Peter Zijlstra 已提交
7808
	struct pmu *pmu;
7809 7810
	struct perf_event *event;
	struct hw_perf_event *hwc;
7811
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7812

7813 7814 7815 7816 7817
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7818
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7819
	if (!event)
7820
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7821

7822
	/*
7823
	 * Single events are their own group leaders, with an
7824 7825 7826
	 * empty sibling list:
	 */
	if (!group_leader)
7827
		group_leader = event;
7828

7829 7830
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7831

7832 7833 7834
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7835
	INIT_LIST_HEAD(&event->rb_entry);
7836
	INIT_LIST_HEAD(&event->active_entry);
7837 7838
	INIT_HLIST_NODE(&event->hlist_entry);

7839

7840
	init_waitqueue_head(&event->waitq);
7841
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7842

7843
	mutex_init(&event->mmap_mutex);
7844

7845
	atomic_long_set(&event->refcount, 1);
7846 7847 7848 7849 7850
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7851

7852
	event->parent		= parent_event;
7853

7854
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7855
	event->id		= atomic64_inc_return(&perf_event_id);
7856

7857
	event->state		= PERF_EVENT_STATE_INACTIVE;
7858

7859 7860 7861
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7862 7863 7864
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7865
		 */
7866
		event->hw.target = task;
7867 7868
	}

7869 7870 7871 7872
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7873
	if (!overflow_handler && parent_event) {
7874
		overflow_handler = parent_event->overflow_handler;
7875 7876
		context = parent_event->overflow_handler_context;
	}
7877

7878
	event->overflow_handler	= overflow_handler;
7879
	event->overflow_handler_context = context;
7880

J
Jiri Olsa 已提交
7881
	perf_event__state_init(event);
7882

7883
	pmu = NULL;
7884

7885
	hwc = &event->hw;
7886
	hwc->sample_period = attr->sample_period;
7887
	if (attr->freq && attr->sample_freq)
7888
		hwc->sample_period = 1;
7889
	hwc->last_period = hwc->sample_period;
7890

7891
	local64_set(&hwc->period_left, hwc->sample_period);
7892

7893
	/*
7894
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7895
	 */
7896
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7897
		goto err_ns;
7898 7899 7900

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7901

7902 7903 7904 7905 7906 7907
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7908
	pmu = perf_init_event(event);
7909
	if (!pmu)
7910 7911
		goto err_ns;
	else if (IS_ERR(pmu)) {
7912
		err = PTR_ERR(pmu);
7913
		goto err_ns;
I
Ingo Molnar 已提交
7914
	}
7915

7916 7917 7918 7919
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7920
	if (!event->parent) {
7921 7922
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7923
			if (err)
7924
				goto err_per_task;
7925
		}
7926
	}
7927

7928
	return event;
7929

7930 7931 7932
err_per_task:
	exclusive_event_destroy(event);

7933 7934 7935
err_pmu:
	if (event->destroy)
		event->destroy(event);
7936
	module_put(pmu->module);
7937
err_ns:
7938 7939
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7940 7941 7942 7943 7944
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7945 7946
}

7947 7948
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7949 7950
{
	u32 size;
7951
	int ret;
7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7976 7977 7978
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7979 7980
	 */
	if (size > sizeof(*attr)) {
7981 7982 7983
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7984

7985 7986
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7987

7988
		for (; addr < end; addr++) {
7989 7990 7991 7992 7993 7994
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7995
		size = sizeof(*attr);
7996 7997 7998 7999 8000 8001
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

8002
	if (attr->__reserved_1)
8003 8004 8005 8006 8007 8008 8009 8010
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8039 8040
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8041 8042
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8043
	}
8044

8045
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8046
		ret = perf_reg_validate(attr->sample_regs_user);
8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8065

8066 8067
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8068 8069 8070 8071 8072 8073 8074 8075 8076
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8077 8078
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8079
{
8080
	struct ring_buffer *rb = NULL;
8081 8082
	int ret = -EINVAL;

8083
	if (!output_event)
8084 8085
		goto set;

8086 8087
	/* don't allow circular references */
	if (event == output_event)
8088 8089
		goto out;

8090 8091 8092 8093 8094 8095 8096
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8097
	 * If its not a per-cpu rb, it must be the same task.
8098 8099 8100 8101
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8102 8103 8104 8105 8106 8107
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8108 8109 8110 8111 8112 8113 8114
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8115
set:
8116
	mutex_lock(&event->mmap_mutex);
8117 8118 8119
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8120

8121
	if (output_event) {
8122 8123 8124
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8125
			goto unlock;
8126 8127
	}

8128
	ring_buffer_attach(event, rb);
8129

8130
	ret = 0;
8131 8132 8133
unlock:
	mutex_unlock(&event->mmap_mutex);

8134 8135 8136 8137
out:
	return ret;
}

P
Peter Zijlstra 已提交
8138 8139 8140 8141 8142 8143 8144 8145 8146
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8184
/**
8185
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8186
 *
8187
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8188
 * @pid:		target pid
I
Ingo Molnar 已提交
8189
 * @cpu:		target cpu
8190
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8191
 */
8192 8193
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8194
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8195
{
8196 8197
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8198
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8199
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8200
	struct file *event_file = NULL;
8201
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8202
	struct task_struct *task = NULL;
8203
	struct pmu *pmu;
8204
	int event_fd;
8205
	int move_group = 0;
8206
	int err;
8207
	int f_flags = O_RDWR;
8208
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8209

8210
	/* for future expandability... */
S
Stephane Eranian 已提交
8211
	if (flags & ~PERF_FLAG_ALL)
8212 8213
		return -EINVAL;

8214 8215 8216
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8217

8218 8219 8220 8221 8222
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8223
	if (attr.freq) {
8224
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8225
			return -EINVAL;
8226 8227 8228
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8229 8230
	}

S
Stephane Eranian 已提交
8231 8232 8233 8234 8235 8236 8237 8238 8239
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8240 8241 8242 8243
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8244 8245 8246
	if (event_fd < 0)
		return event_fd;

8247
	if (group_fd != -1) {
8248 8249
		err = perf_fget_light(group_fd, &group);
		if (err)
8250
			goto err_fd;
8251
		group_leader = group.file->private_data;
8252 8253 8254 8255 8256 8257
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8258
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8259 8260 8261 8262 8263 8264 8265
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8266 8267 8268 8269 8270 8271
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8272 8273
	get_online_cpus();

8274 8275 8276
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8277
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8278
				 NULL, NULL, cgroup_fd);
8279 8280
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8281
		goto err_cpus;
8282 8283
	}

8284 8285 8286 8287 8288 8289 8290
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8291 8292
	account_event(event);

8293 8294 8295 8296 8297
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8298

8299 8300 8301 8302 8303 8304
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8327 8328 8329 8330

	/*
	 * Get the target context (task or percpu):
	 */
8331
	ctx = find_get_context(pmu, task, event);
8332 8333
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8334
		goto err_alloc;
8335 8336
	}

8337 8338 8339 8340 8341
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8342 8343 8344 8345 8346
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8347
	/*
8348
	 * Look up the group leader (we will attach this event to it):
8349
	 */
8350
	if (group_leader) {
8351
		err = -EINVAL;
8352 8353

		/*
I
Ingo Molnar 已提交
8354 8355 8356 8357
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8358
			goto err_context;
8359 8360 8361 8362 8363

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8364 8365 8366
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8367
		 */
8368
		if (move_group) {
8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8382 8383 8384 8385 8386 8387
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8388 8389 8390
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8391
		if (attr.exclusive || attr.pinned)
8392
			goto err_context;
8393 8394 8395 8396 8397
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8398
			goto err_context;
8399
	}
T
Thomas Gleixner 已提交
8400

8401 8402
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8403 8404
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8405
		goto err_context;
8406
	}
8407

8408
	if (move_group) {
P
Peter Zijlstra 已提交
8409
		gctx = group_leader->ctx;
8410 8411 8412 8413 8414
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8415 8416 8417 8418 8419
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8420 8421 8422 8423 8424 8425 8426
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8427

8428 8429 8430
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8431

8432 8433 8434
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8435 8436 8437 8438
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8439
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8440

8441 8442
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8443
			perf_remove_from_context(sibling, false);
8444 8445 8446
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8447 8448 8449 8450
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8451
		synchronize_rcu();
P
Peter Zijlstra 已提交
8452

8453 8454 8455 8456 8457 8458 8459 8460 8461 8462
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8463 8464
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8465
			perf_event__state_init(sibling);
8466
			perf_install_in_context(ctx, sibling, sibling->cpu);
8467 8468
			get_ctx(ctx);
		}
8469 8470 8471 8472 8473 8474 8475 8476 8477

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8478

8479 8480 8481 8482 8483 8484
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8485 8486
	}

8487 8488 8489 8490 8491 8492 8493 8494 8495
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

8496
	perf_install_in_context(ctx, event, event->cpu);
8497
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8498

8499
	if (move_group)
P
Peter Zijlstra 已提交
8500
		mutex_unlock(&gctx->mutex);
8501
	mutex_unlock(&ctx->mutex);
8502

8503 8504
	put_online_cpus();

8505
	event->owner = current;
P
Peter Zijlstra 已提交
8506

8507 8508 8509
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8510

8511 8512 8513 8514 8515 8516
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8517
	fdput(group);
8518 8519
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8520

8521 8522 8523 8524 8525 8526
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8527
err_context:
8528
	perf_unpin_context(ctx);
8529
	put_ctx(ctx);
8530
err_alloc:
8531
	free_event(event);
8532
err_cpus:
8533
	put_online_cpus();
8534
err_task:
P
Peter Zijlstra 已提交
8535 8536
	if (task)
		put_task_struct(task);
8537
err_group_fd:
8538
	fdput(group);
8539 8540
err_fd:
	put_unused_fd(event_fd);
8541
	return err;
T
Thomas Gleixner 已提交
8542 8543
}

8544 8545 8546 8547 8548
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8549
 * @task: task to profile (NULL for percpu)
8550 8551 8552
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8553
				 struct task_struct *task,
8554 8555
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8556 8557
{
	struct perf_event_context *ctx;
8558
	struct perf_event *event;
8559
	int err;
8560

8561 8562 8563
	/*
	 * Get the target context (task or percpu):
	 */
8564

8565
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8566
				 overflow_handler, context, -1);
8567 8568 8569 8570
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8571

8572 8573 8574
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8575 8576
	account_event(event);

8577
	ctx = find_get_context(event->pmu, task, event);
8578 8579
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8580
		goto err_free;
8581
	}
8582 8583 8584

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8585 8586 8587 8588 8589 8590 8591 8592
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8593
	perf_install_in_context(ctx, event, cpu);
8594
	perf_unpin_context(ctx);
8595 8596 8597 8598
	mutex_unlock(&ctx->mutex);

	return event;

8599 8600 8601
err_free:
	free_event(event);
err:
8602
	return ERR_PTR(err);
8603
}
8604
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8605

8606 8607 8608 8609 8610 8611 8612 8613 8614 8615
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8616 8617 8618 8619 8620
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8621 8622
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8623
		perf_remove_from_context(event, false);
8624
		unaccount_event_cpu(event, src_cpu);
8625
		put_ctx(src_ctx);
8626
		list_add(&event->migrate_entry, &events);
8627 8628
	}

8629 8630 8631
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8632 8633
	synchronize_rcu();

8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8658 8659
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8660 8661
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8662
		account_event_cpu(event, dst_cpu);
8663 8664 8665 8666
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8667
	mutex_unlock(&src_ctx->mutex);
8668 8669 8670
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8671
static void sync_child_event(struct perf_event *child_event,
8672
			       struct task_struct *child)
8673
{
8674
	struct perf_event *parent_event = child_event->parent;
8675
	u64 child_val;
8676

8677 8678
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8679

P
Peter Zijlstra 已提交
8680
	child_val = perf_event_count(child_event);
8681 8682 8683 8684

	/*
	 * Add back the child's count to the parent's count:
	 */
8685
	atomic64_add(child_val, &parent_event->child_count);
8686 8687 8688 8689
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8690 8691

	/*
8692
	 * Remove this event from the parent's list
8693
	 */
8694 8695 8696 8697
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8698

8699 8700 8701 8702 8703 8704
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8705
	/*
8706
	 * Release the parent event, if this was the last
8707 8708
	 * reference to it.
	 */
8709
	put_event(parent_event);
8710 8711
}

8712
static void
8713 8714
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8715
			 struct task_struct *child)
8716
{
8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8730

8731
	/*
8732
	 * It can happen that the parent exits first, and has events
8733
	 * that are still around due to the child reference. These
8734
	 * events need to be zapped.
8735
	 */
8736
	if (child_event->parent) {
8737 8738
		sync_child_event(child_event, child);
		free_event(child_event);
8739 8740 8741
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8742
	}
8743 8744
}

P
Peter Zijlstra 已提交
8745
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8746
{
8747
	struct perf_event *child_event, *next;
8748
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8749
	unsigned long flags;
8750

J
Jiri Olsa 已提交
8751
	if (likely(!child->perf_event_ctxp[ctxn]))
8752 8753
		return;

8754
	local_irq_save(flags);
8755 8756 8757 8758 8759 8760
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8761
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8762 8763 8764

	/*
	 * Take the context lock here so that if find_get_context is
8765
	 * reading child->perf_event_ctxp, we wait until it has
8766 8767
	 * incremented the context's refcount before we do put_ctx below.
	 */
8768
	raw_spin_lock(&child_ctx->lock);
8769
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
P
Peter Zijlstra 已提交
8770
	child->perf_event_ctxp[ctxn] = NULL;
8771

8772 8773 8774
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8775
	 * the events from it.
8776
	 */
8777
	clone_ctx = unclone_ctx(child_ctx);
8778
	update_context_time(child_ctx);
8779
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8780

8781 8782
	if (clone_ctx)
		put_ctx(clone_ctx);
8783

P
Peter Zijlstra 已提交
8784
	/*
8785 8786 8787
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8788
	 */
8789
	perf_event_task(child, child_ctx, 0);
8790

8791 8792 8793
	/*
	 * We can recurse on the same lock type through:
	 *
8794 8795
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8796 8797
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8798 8799 8800
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8801
	mutex_lock(&child_ctx->mutex);
8802

8803
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8804
		__perf_event_exit_task(child_event, child_ctx, child);
8805

8806 8807 8808
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8809 8810
}

P
Peter Zijlstra 已提交
8811 8812 8813 8814 8815
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8816
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8817 8818
	int ctxn;

P
Peter Zijlstra 已提交
8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8834 8835
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8836 8837 8838 8839 8840 8841 8842 8843

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8844 8845
}

8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8858
	put_event(parent);
8859

P
Peter Zijlstra 已提交
8860
	raw_spin_lock_irq(&ctx->lock);
8861
	perf_group_detach(event);
8862
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8863
	raw_spin_unlock_irq(&ctx->lock);
8864 8865 8866
	free_event(event);
}

8867
/*
P
Peter Zijlstra 已提交
8868
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8869
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8870 8871 8872
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8873
 */
8874
void perf_event_free_task(struct task_struct *task)
8875
{
P
Peter Zijlstra 已提交
8876
	struct perf_event_context *ctx;
8877
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8878
	int ctxn;
8879

P
Peter Zijlstra 已提交
8880 8881 8882 8883
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8884

P
Peter Zijlstra 已提交
8885
		mutex_lock(&ctx->mutex);
8886
again:
P
Peter Zijlstra 已提交
8887 8888 8889
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8890

P
Peter Zijlstra 已提交
8891 8892 8893
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8894

P
Peter Zijlstra 已提交
8895 8896 8897
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8898

P
Peter Zijlstra 已提交
8899
		mutex_unlock(&ctx->mutex);
8900

P
Peter Zijlstra 已提交
8901 8902
		put_ctx(ctx);
	}
8903 8904
}

8905 8906 8907 8908 8909 8910 8911 8912
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937
struct perf_event *perf_event_get(unsigned int fd)
{
	int err;
	struct fd f;
	struct perf_event *event;

	err = perf_fget_light(fd, &f);
	if (err)
		return ERR_PTR(err);

	event = f.file->private_data;
	atomic_long_inc(&event->refcount);
	fdput(f);

	return event;
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8949
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8950
	struct perf_event *child_event;
8951
	unsigned long flags;
P
Peter Zijlstra 已提交
8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8964
					   child,
P
Peter Zijlstra 已提交
8965
					   group_leader, parent_event,
8966
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8967 8968
	if (IS_ERR(child_event))
		return child_event;
8969

8970 8971
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8972 8973 8974 8975
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8976 8977 8978 8979 8980 8981 8982
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8983
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9000 9001
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9002

9003 9004 9005 9006
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9007
	perf_event__id_header_size(child_event);
9008

P
Peter Zijlstra 已提交
9009 9010 9011
	/*
	 * Link it up in the child's context:
	 */
9012
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9013
	add_event_to_ctx(child_event, child_ctx);
9014
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9048 9049 9050 9051 9052
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9053
		   struct task_struct *child, int ctxn,
9054 9055 9056
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9057
	struct perf_event_context *child_ctx;
9058 9059 9060 9061

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9062 9063
	}

9064
	child_ctx = child->perf_event_ctxp[ctxn];
9065 9066 9067 9068 9069 9070 9071
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9072

9073
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9074 9075
		if (!child_ctx)
			return -ENOMEM;
9076

P
Peter Zijlstra 已提交
9077
		child->perf_event_ctxp[ctxn] = child_ctx;
9078 9079 9080 9081 9082 9083 9084 9085 9086
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9087 9088
}

9089
/*
9090
 * Initialize the perf_event context in task_struct
9091
 */
9092
static int perf_event_init_context(struct task_struct *child, int ctxn)
9093
{
9094
	struct perf_event_context *child_ctx, *parent_ctx;
9095 9096
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9097
	struct task_struct *parent = current;
9098
	int inherited_all = 1;
9099
	unsigned long flags;
9100
	int ret = 0;
9101

P
Peter Zijlstra 已提交
9102
	if (likely(!parent->perf_event_ctxp[ctxn]))
9103 9104
		return 0;

9105
	/*
9106 9107
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9108
	 */
P
Peter Zijlstra 已提交
9109
	parent_ctx = perf_pin_task_context(parent, ctxn);
9110 9111
	if (!parent_ctx)
		return 0;
9112

9113 9114 9115 9116 9117 9118 9119
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9120 9121 9122 9123
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9124
	mutex_lock(&parent_ctx->mutex);
9125 9126 9127 9128 9129

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9130
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9131 9132
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9133 9134 9135
		if (ret)
			break;
	}
9136

9137 9138 9139 9140 9141 9142 9143 9144 9145
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9146
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9147 9148
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9149
		if (ret)
9150
			break;
9151 9152
	}

9153 9154 9155
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9156
	child_ctx = child->perf_event_ctxp[ctxn];
9157

9158
	if (child_ctx && inherited_all) {
9159 9160 9161
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9162 9163 9164
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9165
		 */
P
Peter Zijlstra 已提交
9166
		cloned_ctx = parent_ctx->parent_ctx;
9167 9168
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9169
			child_ctx->parent_gen = parent_ctx->parent_gen;
9170 9171 9172 9173 9174
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9175 9176
	}

P
Peter Zijlstra 已提交
9177
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9178
	mutex_unlock(&parent_ctx->mutex);
9179

9180
	perf_unpin_context(parent_ctx);
9181
	put_ctx(parent_ctx);
9182

9183
	return ret;
9184 9185
}

P
Peter Zijlstra 已提交
9186 9187 9188 9189 9190 9191 9192
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9193 9194 9195 9196
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9197 9198
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9199 9200
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9201
			return ret;
P
Peter Zijlstra 已提交
9202
		}
P
Peter Zijlstra 已提交
9203 9204 9205 9206 9207
	}

	return 0;
}

9208 9209
static void __init perf_event_init_all_cpus(void)
{
9210
	struct swevent_htable *swhash;
9211 9212 9213
	int cpu;

	for_each_possible_cpu(cpu) {
9214 9215
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9216
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9217 9218 9219
	}
}

9220
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9221
{
P
Peter Zijlstra 已提交
9222
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9223

9224
	mutex_lock(&swhash->hlist_mutex);
9225
	if (swhash->hlist_refcount > 0) {
9226 9227
		struct swevent_hlist *hlist;

9228 9229 9230
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9231
	}
9232
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9233 9234
}

9235
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9236
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9237
{
9238
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
9239
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
9240

P
Peter Zijlstra 已提交
9241
	rcu_read_lock();
9242 9243
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
9244
	rcu_read_unlock();
T
Thomas Gleixner 已提交
9245
}
P
Peter Zijlstra 已提交
9246 9247 9248 9249 9250 9251 9252 9253 9254

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9255
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9256 9257 9258 9259 9260 9261 9262 9263

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9264
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9265
{
P
Peter Zijlstra 已提交
9266
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9267 9268
}
#else
9269
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9270 9271
#endif

P
Peter Zijlstra 已提交
9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9292
static int
T
Thomas Gleixner 已提交
9293 9294 9295 9296
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9297
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9298 9299

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9300
	case CPU_DOWN_FAILED:
9301
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9302 9303
		break;

P
Peter Zijlstra 已提交
9304
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9305
	case CPU_DOWN_PREPARE:
9306
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9307 9308 9309 9310 9311 9312 9313 9314
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9315
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9316
{
9317 9318
	int ret;

P
Peter Zijlstra 已提交
9319 9320
	idr_init(&pmu_idr);

9321
	perf_event_init_all_cpus();
9322
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9323 9324 9325
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9326 9327
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9328
	register_reboot_notifier(&perf_reboot_notifier);
9329 9330 9331

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9332 9333 9334

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9335 9336 9337 9338 9339 9340 9341

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9342
}
P
Peter Zijlstra 已提交
9343

9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9383 9384

#ifdef CONFIG_CGROUP_PERF
9385 9386
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9387 9388 9389
{
	struct perf_cgroup *jc;

9390
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9403
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9404
{
9405 9406
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9407 9408 9409 9410 9411 9412 9413
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9414
	rcu_read_lock();
S
Stephane Eranian 已提交
9415
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9416
	rcu_read_unlock();
S
Stephane Eranian 已提交
9417 9418 9419
	return 0;
}

9420
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9421
{
9422
	struct task_struct *task;
9423
	struct cgroup_subsys_state *css;
9424

9425
	cgroup_taskset_for_each(task, css, tset)
9426
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9427 9428
}

9429
struct cgroup_subsys perf_event_cgrp_subsys = {
9430 9431
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9432
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9433 9434
};
#endif /* CONFIG_CGROUP_PERF */