core.c 220.6 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

151 152 153 154
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
155
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
156 157
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * This is because we need a ctx->lock serialized variable (ctx->is_active)
 * to reliably determine if a particular task/context is scheduled in. The
 * task_curr() use in task_function_call() is racy in that a remote context
 * switch is not a single atomic operation.
 *
 * As is, the situation is 'safe' because we set rq->curr before we do the
 * actual context switch. This means that task_curr() will fail early, but
 * we'll continue spinning on ctx->is_active until we've passed
 * perf_event_task_sched_out().
 *
 * Without this ctx->lock serialized variable we could have race where we find
 * the task (and hence the context) would not be active while in fact they are.
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206
	int ret = 0;
207 208 209

	WARN_ON_ONCE(!irqs_disabled());

210
	perf_ctx_lock(cpuctx, task_ctx);
211 212 213 214 215
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
216 217 218 219
		if (ctx->task != current) {
			ret = -EAGAIN;
			goto unlock;
		}
220 221 222 223 224 225 226 227 228 229 230 231 232

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
233 234 235
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236
	}
237

238
	efs->func(event, cpuctx, ctx, efs->data);
239
unlock:
240 241
	perf_ctx_unlock(cpuctx, task_ctx);

242
	return ret;
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
}

static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};

	int ret = event_function(&efs);
	WARN_ON_ONCE(ret);
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
258 259
{
	struct perf_event_context *ctx = event->ctx;
260
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261 262 263 264 265
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
266

P
Peter Zijlstra 已提交
267 268 269 270 271 272 273 274 275
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}

276
	if (!task) {
277
		cpu_function_call(event->cpu, event_function, &efs);
278 279 280 281
		return;
	}

again:
282 283 284
	if (task == TASK_TOMBSTONE)
		return;

285
	if (!task_function_call(task, event_function, &efs))
286 287 288
		return;

	raw_spin_lock_irq(&ctx->lock);
289 290 291 292 293 294 295 296 297 298 299
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
	if (task != TASK_TOMBSTONE) {
		if (ctx->is_active) {
			raw_spin_unlock_irq(&ctx->lock);
			goto again;
		}
		func(event, NULL, ctx, data);
300 301 302 303
	}
	raw_spin_unlock_irq(&ctx->lock);
}

S
Stephane Eranian 已提交
304 305
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
306 307
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
308

309 310 311 312 313 314 315
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

316 317 318 319 320 321
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
322 323 324 325
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
326
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
327
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
328
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
329

330 331 332
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
333
static atomic_t nr_freq_events __read_mostly;
334
static atomic_t nr_switch_events __read_mostly;
335

P
Peter Zijlstra 已提交
336 337 338 339
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

340
/*
341
 * perf event paranoia level:
342 343
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
344
 *   1 - disallow cpu events for unpriv
345
 *   2 - disallow kernel profiling for unpriv
346
 */
347
int sysctl_perf_event_paranoid __read_mostly = 1;
348

349 350
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
351 352

/*
353
 * max perf event sample rate
354
 */
355 356 357 358 359 360 361 362 363
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
364 365
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
366

367
static void update_perf_cpu_limits(void)
368 369 370 371
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
372
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
373
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
374
}
P
Peter Zijlstra 已提交
375

376 377
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
378 379 380 381
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
382
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
383 384 385 386 387

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
406 407 408

	return 0;
}
409

410 411 412 413 414 415 416
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
417
static DEFINE_PER_CPU(u64, running_sample_length);
418

419
static void perf_duration_warn(struct irq_work *w)
420
{
421
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
422
	u64 avg_local_sample_len;
423
	u64 local_samples_len;
424

425
	local_samples_len = __this_cpu_read(running_sample_length);
426 427 428 429 430
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
431
			avg_local_sample_len, allowed_ns >> 1,
432 433 434 435 436 437 438
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
439
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
440 441
	u64 avg_local_sample_len;
	u64 local_samples_len;
442

P
Peter Zijlstra 已提交
443
	if (allowed_ns == 0)
444 445 446
		return;

	/* decay the counter by 1 average sample */
447
	local_samples_len = __this_cpu_read(running_sample_length);
448 449
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
450
	__this_cpu_write(running_sample_length, local_samples_len);
451 452 453 454 455 456 457 458

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
459
	if (avg_local_sample_len <= allowed_ns)
460 461 462 463 464 465 466 467 468 469
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
470

471 472 473 474 475 476
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
477 478
}

479
static atomic64_t perf_event_id;
480

481 482 483 484
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
485 486 487 488 489
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
490

491
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
492

493
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
494
{
495
	return "pmu";
T
Thomas Gleixner 已提交
496 497
}

498 499 500 501 502
static inline u64 perf_clock(void)
{
	return local_clock();
}

503 504 505 506 507
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
508 509 510 511 512 513 514 515
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
532 533 534 535
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
536
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
575 576
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
577
	/*
578 579
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
580
	 */
581
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
582 583
		return;

584
	cgrp = perf_cgroup_from_task(current, event->ctx);
585 586 587 588 589
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
590 591 592
}

static inline void
593 594
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
595 596 597 598
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

599 600 601 602 603 604
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
605 606
		return;

607
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
608
	info = this_cpu_ptr(cgrp->info);
609
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
610 611 612 613 614 615 616 617 618 619 620
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
621
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
641 642
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
643 644 645 646 647 648 649 650 651

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
652 653
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
654 655 656 657 658 659 660 661 662 663 664

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
665
				WARN_ON_ONCE(cpuctx->cgrp);
666 667 668 669
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
670 671
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
672
				 */
673
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
674 675
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
676 677
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
678 679 680 681 682 683
		}
	}

	local_irq_restore(flags);
}

684 685
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
686
{
687 688 689
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

690
	rcu_read_lock();
691 692
	/*
	 * we come here when we know perf_cgroup_events > 0
693 694
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
695
	 */
696
	cgrp1 = perf_cgroup_from_task(task, NULL);
697
	cgrp2 = perf_cgroup_from_task(next, NULL);
698 699 700 701 702 703 704 705

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
706 707

	rcu_read_unlock();
S
Stephane Eranian 已提交
708 709
}

710 711
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
712
{
713 714 715
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

716
	rcu_read_lock();
717 718
	/*
	 * we come here when we know perf_cgroup_events > 0
719 720
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
721
	 */
722 723
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
724 725 726 727 728 729 730 731

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
732 733

	rcu_read_unlock();
S
Stephane Eranian 已提交
734 735 736 737 738 739 740 741
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
742 743
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
744

745
	if (!f.file)
S
Stephane Eranian 已提交
746 747
		return -EBADF;

A
Al Viro 已提交
748
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
749
					 &perf_event_cgrp_subsys);
750 751 752 753
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
767
out:
768
	fdput(f);
S
Stephane Eranian 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

842 843
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
844 845 846
{
}

847 848
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
849 850 851 852 853 854 855 856 857 858 859
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
860 861
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

892 893 894 895 896 897 898 899
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
900
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
901 902 903 904 905 906 907 908 909
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
910 911
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
912
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
913 914 915
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
916

P
Peter Zijlstra 已提交
917
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
918 919
}

920
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
921
{
922
	struct hrtimer *timer = &cpuctx->hrtimer;
923
	struct pmu *pmu = cpuctx->ctx.pmu;
924
	u64 interval;
925 926 927 928 929

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

930 931 932 933
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
934 935 936
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
937

938
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
939

P
Peter Zijlstra 已提交
940 941
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
942
	timer->function = perf_mux_hrtimer_handler;
943 944
}

945
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
946
{
947
	struct hrtimer *timer = &cpuctx->hrtimer;
948
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
949
	unsigned long flags;
950 951 952

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
953
		return 0;
954

P
Peter Zijlstra 已提交
955 956 957 958 959 960 961
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
962

963
	return 0;
964 965
}

P
Peter Zijlstra 已提交
966
void perf_pmu_disable(struct pmu *pmu)
967
{
P
Peter Zijlstra 已提交
968 969 970
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
971 972
}

P
Peter Zijlstra 已提交
973
void perf_pmu_enable(struct pmu *pmu)
974
{
P
Peter Zijlstra 已提交
975 976 977
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
978 979
}

980
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
981 982

/*
983 984 985 986
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
987
 */
988
static void perf_event_ctx_activate(struct perf_event_context *ctx)
989
{
990
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
991

992
	WARN_ON(!irqs_disabled());
993

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1006 1007
}

1008
static void get_ctx(struct perf_event_context *ctx)
1009
{
1010
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1011 1012
}

1013 1014 1015 1016 1017 1018 1019 1020 1021
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1022
static void put_ctx(struct perf_event_context *ctx)
1023
{
1024 1025 1026
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1027
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1028
			put_task_struct(ctx->task);
1029
		call_rcu(&ctx->rcu_head, free_ctx);
1030
	}
1031 1032
}

P
Peter Zijlstra 已提交
1033 1034 1035 1036 1037 1038 1039
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1090
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1091 1092 1093
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1094 1095
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1108
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1118 1119 1120 1121 1122 1123
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1124 1125 1126 1127 1128 1129 1130
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1131 1132 1133 1134 1135 1136 1137
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1138
{
1139 1140 1141 1142 1143
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1144
		ctx->parent_ctx = NULL;
1145
	ctx->generation++;
1146 1147

	return parent_ctx;
1148 1149
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1172
/*
1173
 * If we inherit events we want to return the parent event id
1174 1175
 * to userspace.
 */
1176
static u64 primary_event_id(struct perf_event *event)
1177
{
1178
	u64 id = event->id;
1179

1180 1181
	if (event->parent)
		id = event->parent->id;
1182 1183 1184 1185

	return id;
}

1186
/*
1187
 * Get the perf_event_context for a task and lock it.
1188
 *
1189 1190 1191
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1192
static struct perf_event_context *
P
Peter Zijlstra 已提交
1193
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1194
{
1195
	struct perf_event_context *ctx;
1196

P
Peter Zijlstra 已提交
1197
retry:
1198 1199 1200
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1201
	 * part of the read side critical section was irqs-enabled -- see
1202 1203 1204
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1205
	 * side critical section has interrupts disabled.
1206
	 */
1207
	local_irq_save(*flags);
1208
	rcu_read_lock();
P
Peter Zijlstra 已提交
1209
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1210 1211 1212 1213
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1214
		 * perf_event_task_sched_out, though the
1215 1216 1217 1218 1219 1220
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1221
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1222
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1223
			raw_spin_unlock(&ctx->lock);
1224
			rcu_read_unlock();
1225
			local_irq_restore(*flags);
1226 1227
			goto retry;
		}
1228

1229 1230
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1231
			raw_spin_unlock(&ctx->lock);
1232
			ctx = NULL;
P
Peter Zijlstra 已提交
1233 1234
		} else {
			WARN_ON_ONCE(ctx->task != task);
1235
		}
1236 1237
	}
	rcu_read_unlock();
1238 1239
	if (!ctx)
		local_irq_restore(*flags);
1240 1241 1242 1243 1244 1245 1246 1247
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1248 1249
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1250
{
1251
	struct perf_event_context *ctx;
1252 1253
	unsigned long flags;

P
Peter Zijlstra 已提交
1254
	ctx = perf_lock_task_context(task, ctxn, &flags);
1255 1256
	if (ctx) {
		++ctx->pin_count;
1257
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1258 1259 1260 1261
	}
	return ctx;
}

1262
static void perf_unpin_context(struct perf_event_context *ctx)
1263 1264 1265
{
	unsigned long flags;

1266
	raw_spin_lock_irqsave(&ctx->lock, flags);
1267
	--ctx->pin_count;
1268
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1269 1270
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1282 1283 1284
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1285 1286 1287 1288

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1289 1290 1291
	return ctx ? ctx->time : 0;
}

1292 1293
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1294
 * The caller of this function needs to hold the ctx->lock.
1295 1296 1297 1298 1299 1300 1301 1302 1303
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1315
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1316 1317
	else if (ctx->is_active)
		run_end = ctx->time;
1318 1319 1320 1321
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1322 1323 1324 1325

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1326
		run_end = perf_event_time(event);
1327 1328

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1329

1330 1331
}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1344 1345 1346 1347 1348 1349 1350 1351 1352
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1353
/*
1354
 * Add a event from the lists for its context.
1355 1356
 * Must be called with ctx->mutex and ctx->lock held.
 */
1357
static void
1358
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1359
{
P
Peter Zijlstra 已提交
1360 1361
	lockdep_assert_held(&ctx->lock);

1362 1363
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1364 1365

	/*
1366 1367 1368
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1369
	 */
1370
	if (event->group_leader == event) {
1371 1372
		struct list_head *list;

1373 1374 1375
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1376 1377
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1378
	}
P
Peter Zijlstra 已提交
1379

1380
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1381 1382
		ctx->nr_cgroups++;

1383 1384 1385
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1386
		ctx->nr_stat++;
1387 1388

	ctx->generation++;
1389 1390
}

J
Jiri Olsa 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1400
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1416
		nr += nr_siblings;
1417 1418 1419 1420 1421 1422 1423
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1424
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1425 1426 1427 1428 1429 1430 1431
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1432 1433 1434 1435 1436 1437
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1438 1439 1440
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1441 1442 1443
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1444 1445 1446
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1447 1448 1449
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1450 1451 1452
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1464 1465 1466 1467 1468 1469
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1470 1471 1472 1473 1474 1475
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1476 1477 1478
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1479 1480 1481 1482 1483 1484 1485 1486 1487
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1488
	event->id_header_size = size;
1489 1490
}

P
Peter Zijlstra 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1512 1513
static void perf_group_attach(struct perf_event *event)
{
1514
	struct perf_event *group_leader = event->group_leader, *pos;
1515

P
Peter Zijlstra 已提交
1516 1517 1518 1519 1520 1521
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1522 1523 1524 1525 1526
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1527 1528
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1529 1530 1531 1532 1533 1534
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1535 1536 1537 1538 1539

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1540 1541
}

1542
/*
1543
 * Remove a event from the lists for its context.
1544
 * Must be called with ctx->mutex and ctx->lock held.
1545
 */
1546
static void
1547
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1548
{
1549
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1550 1551 1552 1553

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1554 1555 1556 1557
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1558
		return;
1559 1560 1561

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1562
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1563
		ctx->nr_cgroups--;
1564 1565 1566 1567
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1568 1569
		cpuctx = __get_cpu_context(ctx);
		/*
1570 1571
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1572 1573 1574 1575
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1576

1577 1578
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1579
		ctx->nr_stat--;
1580

1581
	list_del_rcu(&event->event_entry);
1582

1583 1584
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1585

1586
	update_group_times(event);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1597 1598

	ctx->generation++;
1599 1600
}

1601
static void perf_group_detach(struct perf_event *event)
1602 1603
{
	struct perf_event *sibling, *tmp;
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1620
		goto out;
1621 1622 1623 1624
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1625

1626
	/*
1627 1628
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1629
	 * to whatever list we are on.
1630
	 */
1631
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1632 1633
		if (list)
			list_move_tail(&sibling->group_entry, list);
1634
		sibling->group_leader = sibling;
1635 1636 1637

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1638 1639

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1640
	}
1641 1642 1643 1644 1645 1646

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1647 1648
}

1649 1650 1651 1652 1653
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
1654
	return event && !is_kernel_event(event) && !READ_ONCE(event->owner);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1688 1689 1690 1691 1692 1693
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1694 1695 1696
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1697
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1698
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1699 1700
}

1701 1702
static void
event_sched_out(struct perf_event *event,
1703
		  struct perf_cpu_context *cpuctx,
1704
		  struct perf_event_context *ctx)
1705
{
1706
	u64 tstamp = perf_event_time(event);
1707
	u64 delta;
P
Peter Zijlstra 已提交
1708 1709 1710 1711

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1712 1713 1714 1715 1716 1717 1718 1719
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1720
		delta = tstamp - event->tstamp_stopped;
1721
		event->tstamp_running += delta;
1722
		event->tstamp_stopped = tstamp;
1723 1724
	}

1725
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1726
		return;
1727

1728 1729
	perf_pmu_disable(event->pmu);

1730 1731 1732 1733
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1734
	}
1735
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1736
	event->pmu->del(event, 0);
1737
	event->oncpu = -1;
1738

1739
	if (!is_software_event(event))
1740
		cpuctx->active_oncpu--;
1741 1742
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1743 1744
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1745
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1746
		cpuctx->exclusive = 0;
1747

1748 1749 1750
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1751
	perf_pmu_enable(event->pmu);
1752 1753
}

1754
static void
1755
group_sched_out(struct perf_event *group_event,
1756
		struct perf_cpu_context *cpuctx,
1757
		struct perf_event_context *ctx)
1758
{
1759
	struct perf_event *event;
1760
	int state = group_event->state;
1761

1762
	event_sched_out(group_event, cpuctx, ctx);
1763 1764 1765 1766

	/*
	 * Schedule out siblings (if any):
	 */
1767 1768
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1769

1770
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1771 1772 1773
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1774
/*
1775
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1776
 *
1777
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1778 1779
 * remove it from the context list.
 */
1780 1781 1782 1783 1784
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1785
{
1786
	bool detach_group = (unsigned long)info;
T
Thomas Gleixner 已提交
1787

1788
	event_sched_out(event, cpuctx, ctx);
1789
	if (detach_group)
1790
		perf_group_detach(event);
1791
	list_del_event(event, ctx);
1792 1793

	if (!ctx->nr_events && ctx->is_active) {
1794
		ctx->is_active = 0;
1795 1796 1797 1798
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1799
	}
T
Thomas Gleixner 已提交
1800 1801 1802
}

/*
1803
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1804
 *
1805 1806
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1807 1808
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1809
 * When called from perf_event_exit_task, it's OK because the
1810
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1811
 */
1812
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1813
{
1814
	lockdep_assert_held(&event->ctx->mutex);
1815

1816
	event_function_call(event, __perf_remove_from_context,
1817
			    (void *)(unsigned long)detach_group);
T
Thomas Gleixner 已提交
1818 1819
}

1820
/*
1821
 * Cross CPU call to disable a performance event
1822
 */
1823 1824 1825 1826
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1827
{
1828 1829
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1830

1831 1832 1833 1834 1835 1836 1837 1838
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1839 1840
}

1841
/*
1842
 * Disable a event.
1843
 *
1844 1845
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1846
 * remains valid.  This condition is satisifed when called through
1847 1848 1849 1850
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1851
 * is the current context on this CPU and preemption is disabled,
1852
 * hence we can't get into perf_event_task_sched_out for this context.
1853
 */
P
Peter Zijlstra 已提交
1854
static void _perf_event_disable(struct perf_event *event)
1855
{
1856
	struct perf_event_context *ctx = event->ctx;
1857

1858
	raw_spin_lock_irq(&ctx->lock);
1859
	if (event->state <= PERF_EVENT_STATE_OFF) {
1860
		raw_spin_unlock_irq(&ctx->lock);
1861
		return;
1862
	}
1863
	raw_spin_unlock_irq(&ctx->lock);
1864

1865 1866 1867 1868 1869 1870
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1871
}
P
Peter Zijlstra 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1885
EXPORT_SYMBOL_GPL(perf_event_disable);
1886

S
Stephane Eranian 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1922 1923 1924
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1925
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1926

1927
static int
1928
event_sched_in(struct perf_event *event,
1929
		 struct perf_cpu_context *cpuctx,
1930
		 struct perf_event_context *ctx)
1931
{
1932
	u64 tstamp = perf_event_time(event);
1933
	int ret = 0;
1934

1935 1936
	lockdep_assert_held(&ctx->lock);

1937
	if (event->state <= PERF_EVENT_STATE_OFF)
1938 1939
		return 0;

1940
	event->state = PERF_EVENT_STATE_ACTIVE;
1941
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1953 1954 1955 1956 1957
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1958 1959
	perf_pmu_disable(event->pmu);

1960 1961
	perf_set_shadow_time(event, ctx, tstamp);

1962 1963
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1964
	if (event->pmu->add(event, PERF_EF_START)) {
1965 1966
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1967 1968
		ret = -EAGAIN;
		goto out;
1969 1970
	}

1971 1972
	event->tstamp_running += tstamp - event->tstamp_stopped;

1973
	if (!is_software_event(event))
1974
		cpuctx->active_oncpu++;
1975 1976
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1977 1978
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1979

1980
	if (event->attr.exclusive)
1981 1982
		cpuctx->exclusive = 1;

1983 1984 1985
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1986 1987 1988 1989
out:
	perf_pmu_enable(event->pmu);

	return ret;
1990 1991
}

1992
static int
1993
group_sched_in(struct perf_event *group_event,
1994
	       struct perf_cpu_context *cpuctx,
1995
	       struct perf_event_context *ctx)
1996
{
1997
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1998
	struct pmu *pmu = ctx->pmu;
1999 2000
	u64 now = ctx->time;
	bool simulate = false;
2001

2002
	if (group_event->state == PERF_EVENT_STATE_OFF)
2003 2004
		return 0;

2005
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2006

2007
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2008
		pmu->cancel_txn(pmu);
2009
		perf_mux_hrtimer_restart(cpuctx);
2010
		return -EAGAIN;
2011
	}
2012 2013 2014 2015

	/*
	 * Schedule in siblings as one group (if any):
	 */
2016
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2017
		if (event_sched_in(event, cpuctx, ctx)) {
2018
			partial_group = event;
2019 2020 2021 2022
			goto group_error;
		}
	}

2023
	if (!pmu->commit_txn(pmu))
2024
		return 0;
2025

2026 2027 2028 2029
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2040
	 */
2041 2042
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2043 2044 2045 2046 2047 2048 2049 2050
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2051
	}
2052
	event_sched_out(group_event, cpuctx, ctx);
2053

P
Peter Zijlstra 已提交
2054
	pmu->cancel_txn(pmu);
2055

2056
	perf_mux_hrtimer_restart(cpuctx);
2057

2058 2059 2060
	return -EAGAIN;
}

2061
/*
2062
 * Work out whether we can put this event group on the CPU now.
2063
 */
2064
static int group_can_go_on(struct perf_event *event,
2065 2066 2067 2068
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2069
	 * Groups consisting entirely of software events can always go on.
2070
	 */
2071
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2072 2073 2074
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2075
	 * events can go on.
2076 2077 2078 2079 2080
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2081
	 * events on the CPU, it can't go on.
2082
	 */
2083
	if (event->attr.exclusive && cpuctx->active_oncpu)
2084 2085 2086 2087 2088 2089 2090 2091
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2092 2093
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2094
{
2095 2096
	u64 tstamp = perf_event_time(event);

2097
	list_add_event(event, ctx);
2098
	perf_group_attach(event);
2099 2100 2101
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2102 2103
}

2104 2105
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx);
2106 2107 2108 2109 2110
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2111

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
{
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
}

T
Thomas Gleixner 已提交
2135
/*
2136
 * Cross CPU call to install and enable a performance event
2137 2138
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2139
 */
2140
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2141
{
2142
	struct perf_event_context *ctx = info;
P
Peter Zijlstra 已提交
2143
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2144 2145
	struct perf_event_context *task_ctx = cpuctx->task_ctx;

2146
	raw_spin_lock(&cpuctx->ctx.lock);
2147
	if (ctx->task) {
2148
		raw_spin_lock(&ctx->lock);
2149 2150 2151 2152
		/*
		 * If we hit the 'wrong' task, we've since scheduled and
		 * everything should be sorted, nothing to do!
		 */
2153
		task_ctx = ctx;
2154
		if (ctx->task != current)
2155
			goto unlock;
2156

2157 2158 2159 2160
		/*
		 * If task_ctx is set, it had better be to us.
		 */
		WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
2161 2162
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2163 2164
	}

2165
	ctx_resched(cpuctx, task_ctx);
2166
unlock:
2167
	perf_ctx_unlock(cpuctx, task_ctx);
2168 2169

	return 0;
T
Thomas Gleixner 已提交
2170 2171 2172
}

/*
2173
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2174 2175
 */
static void
2176 2177
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2178 2179
			int cpu)
{
2180 2181
	struct task_struct *task = NULL;

2182 2183
	lockdep_assert_held(&ctx->mutex);

2184
	event->ctx = ctx;
2185 2186
	if (event->cpu != -1)
		event->cpu = cpu;
2187

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 *
	 * So what we do is we add the event to the list here, which will allow
	 * a future context switch to DTRT and then send a racy IPI. If the IPI
	 * fails to hit the right task, this means a context switch must have
	 * happened and that will have taken care of business.
	 */
	raw_spin_lock_irq(&ctx->lock);
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
	task = ctx->task;
	/*
	 * Worse, we cannot even rely on the ctx actually existing anymore. If
	 * between find_get_context() and perf_install_in_context() the task
	 * went through perf_event_exit_task() its dead and we should not be
	 * adding new events.
	 */
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	update_context_time(ctx);
	/*
	 * Update cgrp time only if current cgrp matches event->cgrp.
	 * Must be done before calling add_event_to_ctx().
	 */
	update_cgrp_time_from_event(event);
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);

	if (task)
		task_function_call(task, __perf_install_in_context, ctx);
	else
		cpu_function_call(cpu, __perf_install_in_context, ctx);
T
Thomas Gleixner 已提交
2222 2223
}

2224
/*
2225
 * Put a event into inactive state and update time fields.
2226 2227 2228 2229 2230 2231
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2232
static void __perf_event_mark_enabled(struct perf_event *event)
2233
{
2234
	struct perf_event *sub;
2235
	u64 tstamp = perf_event_time(event);
2236

2237
	event->state = PERF_EVENT_STATE_INACTIVE;
2238
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2239
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2240 2241
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2242
	}
2243 2244
}

2245
/*
2246
 * Cross CPU call to enable a performance event
2247
 */
2248 2249 2250 2251
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2252
{
2253
	struct perf_event *leader = event->group_leader;
2254
	struct perf_event_context *task_ctx;
2255

P
Peter Zijlstra 已提交
2256 2257
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2258
		return;
S
Stephane Eranian 已提交
2259

2260
	update_context_time(ctx);
2261
	__perf_event_mark_enabled(event);
2262

2263 2264 2265
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2266
	if (!event_filter_match(event)) {
2267 2268
		if (is_cgroup_event(event)) {
			perf_cgroup_set_timestamp(current, ctx); // XXX ?
S
Stephane Eranian 已提交
2269
			perf_cgroup_defer_enabled(event);
2270 2271
		}
		return;
S
Stephane Eranian 已提交
2272
	}
2273

2274
	/*
2275
	 * If the event is in a group and isn't the group leader,
2276
	 * then don't put it on unless the group is on.
2277
	 */
2278
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2279
		return;
2280

2281 2282 2283
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2284

2285
	ctx_resched(cpuctx, task_ctx);
2286 2287
}

2288
/*
2289
 * Enable a event.
2290
 *
2291 2292
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2293
 * remains valid.  This condition is satisfied when called through
2294 2295
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2296
 */
P
Peter Zijlstra 已提交
2297
static void _perf_event_enable(struct perf_event *event)
2298
{
2299
	struct perf_event_context *ctx = event->ctx;
2300

2301
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2302 2303
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2304
		raw_spin_unlock_irq(&ctx->lock);
2305 2306 2307 2308
		return;
	}

	/*
2309
	 * If the event is in error state, clear that first.
2310 2311 2312 2313
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2314
	 */
2315 2316
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2317
	raw_spin_unlock_irq(&ctx->lock);
2318

2319
	event_function_call(event, __perf_event_enable, NULL);
2320
}
P
Peter Zijlstra 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2333
EXPORT_SYMBOL_GPL(perf_event_enable);
2334

P
Peter Zijlstra 已提交
2335
static int _perf_event_refresh(struct perf_event *event, int refresh)
2336
{
2337
	/*
2338
	 * not supported on inherited events
2339
	 */
2340
	if (event->attr.inherit || !is_sampling_event(event))
2341 2342
		return -EINVAL;

2343
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2344
	_perf_event_enable(event);
2345 2346

	return 0;
2347
}
P
Peter Zijlstra 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2363
EXPORT_SYMBOL_GPL(perf_event_refresh);
2364

2365 2366 2367
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2368
{
2369
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2370 2371 2372
	struct perf_event *event;

	lockdep_assert_held(&ctx->lock);
2373

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
		return;
	}

2384
	ctx->is_active &= ~event_type;
2385 2386 2387 2388 2389 2390
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}

2391
	update_context_time(ctx);
S
Stephane Eranian 已提交
2392
	update_cgrp_time_from_cpuctx(cpuctx);
2393
	if (!ctx->nr_active)
2394
		return;
2395

P
Peter Zijlstra 已提交
2396
	perf_pmu_disable(ctx->pmu);
2397
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2398 2399
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2400
	}
2401

2402
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2403
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2404
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2405
	}
P
Peter Zijlstra 已提交
2406
	perf_pmu_enable(ctx->pmu);
2407 2408
}

2409
/*
2410 2411 2412 2413 2414 2415
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2416
 */
2417 2418
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2419
{
2420 2421 2422
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2445 2446
}

2447 2448
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2449 2450 2451
{
	u64 value;

2452
	if (!event->attr.inherit_stat)
2453 2454 2455
		return;

	/*
2456
	 * Update the event value, we cannot use perf_event_read()
2457 2458
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2459
	 * we know the event must be on the current CPU, therefore we
2460 2461
	 * don't need to use it.
	 */
2462 2463
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2464 2465
		event->pmu->read(event);
		/* fall-through */
2466

2467 2468
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2469 2470 2471 2472 2473 2474 2475
		break;

	default:
		break;
	}

	/*
2476
	 * In order to keep per-task stats reliable we need to flip the event
2477 2478
	 * values when we flip the contexts.
	 */
2479 2480 2481
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2482

2483 2484
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2485

2486
	/*
2487
	 * Since we swizzled the values, update the user visible data too.
2488
	 */
2489 2490
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2491 2492
}

2493 2494
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2495
{
2496
	struct perf_event *event, *next_event;
2497 2498 2499 2500

	if (!ctx->nr_stat)
		return;

2501 2502
	update_context_time(ctx);

2503 2504
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2505

2506 2507
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2508

2509 2510
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2511

2512
		__perf_event_sync_stat(event, next_event);
2513

2514 2515
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2516 2517 2518
	}
}

2519 2520
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2521
{
P
Peter Zijlstra 已提交
2522
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2523
	struct perf_event_context *next_ctx;
2524
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2525
	struct perf_cpu_context *cpuctx;
2526
	int do_switch = 1;
T
Thomas Gleixner 已提交
2527

P
Peter Zijlstra 已提交
2528 2529
	if (likely(!ctx))
		return;
2530

P
Peter Zijlstra 已提交
2531 2532
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2533 2534
		return;

2535
	rcu_read_lock();
P
Peter Zijlstra 已提交
2536
	next_ctx = next->perf_event_ctxp[ctxn];
2537 2538 2539 2540 2541 2542 2543
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2544
	if (!parent && !next_parent)
2545 2546 2547
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2548 2549 2550 2551 2552 2553 2554 2555 2556
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2557 2558
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2559
		if (context_equiv(ctx, next_ctx)) {
2560 2561
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2562 2563 2564

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2575
			do_switch = 0;
2576

2577
			perf_event_sync_stat(ctx, next_ctx);
2578
		}
2579 2580
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2581
	}
2582
unlock:
2583
	rcu_read_unlock();
2584

2585
	if (do_switch) {
2586
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2587
		task_ctx_sched_out(cpuctx, ctx);
2588
		raw_spin_unlock(&ctx->lock);
2589
	}
T
Thomas Gleixner 已提交
2590 2591
}

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2642 2643 2644
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2659 2660
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2661 2662 2663
{
	int ctxn;

2664 2665 2666
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2667 2668 2669
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2670 2671
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2672 2673 2674 2675 2676 2677

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2678
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2679
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2680 2681
}

2682 2683
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
2684
{
2685 2686
	if (!cpuctx->task_ctx)
		return;
2687 2688 2689 2690

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2691
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2692 2693
}

2694 2695 2696 2697 2698 2699 2700
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2701 2702
}

2703
static void
2704
ctx_pinned_sched_in(struct perf_event_context *ctx,
2705
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2706
{
2707
	struct perf_event *event;
T
Thomas Gleixner 已提交
2708

2709 2710
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2711
			continue;
2712
		if (!event_filter_match(event))
2713 2714
			continue;

S
Stephane Eranian 已提交
2715 2716 2717 2718
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2719
		if (group_can_go_on(event, cpuctx, 1))
2720
			group_sched_in(event, cpuctx, ctx);
2721 2722 2723 2724 2725

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2726 2727 2728
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2729
		}
2730
	}
2731 2732 2733 2734
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2735
		      struct perf_cpu_context *cpuctx)
2736 2737 2738
{
	struct perf_event *event;
	int can_add_hw = 1;
2739

2740 2741 2742
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2743
			continue;
2744 2745
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2746
		 * of events:
2747
		 */
2748
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2749 2750
			continue;

S
Stephane Eranian 已提交
2751 2752 2753 2754
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2755
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2756
			if (group_sched_in(event, cpuctx, ctx))
2757
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2758
		}
T
Thomas Gleixner 已提交
2759
	}
2760 2761 2762 2763 2764
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2765 2766
	     enum event_type_t event_type,
	     struct task_struct *task)
2767
{
2768
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2769 2770 2771
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2772

2773 2774 2775
	if (likely(!ctx->nr_events))
		return;

2776
	ctx->is_active |= event_type;
2777 2778 2779 2780 2781 2782 2783
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

S
Stephane Eranian 已提交
2784 2785
	now = perf_clock();
	ctx->timestamp = now;
2786
	perf_cgroup_set_timestamp(task, ctx);
2787 2788 2789 2790
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2791
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2792
		ctx_pinned_sched_in(ctx, cpuctx);
2793 2794

	/* Then walk through the lower prio flexible groups */
2795
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2796
		ctx_flexible_sched_in(ctx, cpuctx);
2797 2798
}

2799
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2800 2801
			     enum event_type_t event_type,
			     struct task_struct *task)
2802 2803 2804
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2805
	ctx_sched_in(ctx, cpuctx, event_type, task);
2806 2807
}

S
Stephane Eranian 已提交
2808 2809
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2810
{
P
Peter Zijlstra 已提交
2811
	struct perf_cpu_context *cpuctx;
2812

P
Peter Zijlstra 已提交
2813
	cpuctx = __get_cpu_context(ctx);
2814 2815 2816
	if (cpuctx->task_ctx == ctx)
		return;

2817
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2818
	perf_pmu_disable(ctx->pmu);
2819 2820 2821 2822 2823 2824
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2825
	perf_event_sched_in(cpuctx, ctx, task);
2826 2827
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2828 2829
}

P
Peter Zijlstra 已提交
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2841 2842
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2843 2844 2845 2846
{
	struct perf_event_context *ctx;
	int ctxn;

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2857 2858 2859 2860 2861
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2862
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2863
	}
2864

2865 2866 2867
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2868 2869
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2870 2871
}

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2899
#define REDUCE_FLS(a, b)		\
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2939 2940 2941
	if (!divisor)
		return dividend;

2942 2943 2944
	return div64_u64(dividend, divisor);
}

2945 2946 2947
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2948
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2949
{
2950
	struct hw_perf_event *hwc = &event->hw;
2951
	s64 period, sample_period;
2952 2953
	s64 delta;

2954
	period = perf_calculate_period(event, nsec, count);
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2965

2966
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2967 2968 2969
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2970
		local64_set(&hwc->period_left, 0);
2971 2972 2973

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2974
	}
2975 2976
}

2977 2978 2979 2980 2981 2982 2983
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2984
{
2985 2986
	struct perf_event *event;
	struct hw_perf_event *hwc;
2987
	u64 now, period = TICK_NSEC;
2988
	s64 delta;
2989

2990 2991 2992 2993 2994 2995
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2996 2997
		return;

2998
	raw_spin_lock(&ctx->lock);
2999
	perf_pmu_disable(ctx->pmu);
3000

3001
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3002
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3003 3004
			continue;

3005
		if (!event_filter_match(event))
3006 3007
			continue;

3008 3009
		perf_pmu_disable(event->pmu);

3010
		hwc = &event->hw;
3011

3012
		if (hwc->interrupts == MAX_INTERRUPTS) {
3013
			hwc->interrupts = 0;
3014
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3015
			event->pmu->start(event, 0);
3016 3017
		}

3018
		if (!event->attr.freq || !event->attr.sample_freq)
3019
			goto next;
3020

3021 3022 3023 3024 3025
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3026
		now = local64_read(&event->count);
3027 3028
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3029

3030 3031 3032
		/*
		 * restart the event
		 * reload only if value has changed
3033 3034 3035
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3036
		 */
3037
		if (delta > 0)
3038
			perf_adjust_period(event, period, delta, false);
3039 3040

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3041 3042
	next:
		perf_pmu_enable(event->pmu);
3043
	}
3044

3045
	perf_pmu_enable(ctx->pmu);
3046
	raw_spin_unlock(&ctx->lock);
3047 3048
}

3049
/*
3050
 * Round-robin a context's events:
3051
 */
3052
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3053
{
3054 3055 3056 3057 3058 3059
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3060 3061
}

3062
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3063
{
P
Peter Zijlstra 已提交
3064
	struct perf_event_context *ctx = NULL;
3065
	int rotate = 0;
3066

3067 3068 3069 3070
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3071

P
Peter Zijlstra 已提交
3072
	ctx = cpuctx->task_ctx;
3073 3074 3075 3076
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3077

3078
	if (!rotate)
3079 3080
		goto done;

3081
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3082
	perf_pmu_disable(cpuctx->ctx.pmu);
3083

3084 3085 3086
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3087

3088 3089 3090
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3091

3092
	perf_event_sched_in(cpuctx, ctx, current);
3093

3094 3095
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3096
done:
3097 3098

	return rotate;
3099 3100
}

3101 3102 3103
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3104
	if (atomic_read(&nr_freq_events) ||
3105
	    __this_cpu_read(perf_throttled_count))
3106
		return false;
3107 3108
	else
		return true;
3109 3110 3111
}
#endif

3112 3113
void perf_event_task_tick(void)
{
3114 3115
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3116
	int throttled;
3117

3118 3119
	WARN_ON(!irqs_disabled());

3120 3121 3122
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3123
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3124
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3125 3126
}

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3137
	__perf_event_mark_enabled(event);
3138 3139 3140 3141

	return 1;
}

3142
/*
3143
 * Enable all of a task's events that have been marked enable-on-exec.
3144 3145
 * This expects task == current.
 */
3146
static void perf_event_enable_on_exec(int ctxn)
3147
{
3148
	struct perf_event_context *ctx, *clone_ctx = NULL;
3149
	struct perf_cpu_context *cpuctx;
3150
	struct perf_event *event;
3151 3152 3153 3154
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3155
	ctx = current->perf_event_ctxp[ctxn];
3156
	if (!ctx || !ctx->nr_events)
3157 3158
		goto out;

3159 3160 3161 3162
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3163 3164

	/*
3165
	 * Unclone and reschedule this context if we enabled any event.
3166
	 */
3167
	if (enabled) {
3168
		clone_ctx = unclone_ctx(ctx);
3169 3170 3171
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3172

P
Peter Zijlstra 已提交
3173
out:
3174
	local_irq_restore(flags);
3175 3176 3177

	if (clone_ctx)
		put_ctx(clone_ctx);
3178 3179
}

3180 3181 3182 3183 3184
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3185 3186
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3187 3188 3189
	rcu_read_unlock();
}

3190 3191 3192
struct perf_read_data {
	struct perf_event *event;
	bool group;
3193
	int ret;
3194 3195
};

T
Thomas Gleixner 已提交
3196
/*
3197
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3198
 */
3199
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3200
{
3201 3202
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3203
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3204
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3205
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3206

3207 3208 3209 3210
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3211 3212
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3213 3214 3215 3216
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3217
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3218
	if (ctx->is_active) {
3219
		update_context_time(ctx);
S
Stephane Eranian 已提交
3220 3221
		update_cgrp_time_from_event(event);
	}
3222

3223
	update_event_times(event);
3224 3225
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3226

3227 3228 3229
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3230
		goto unlock;
3231 3232 3233 3234 3235
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3236 3237 3238

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3239 3240 3241 3242 3243
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3244
			sub->pmu->read(sub);
3245
		}
3246
	}
3247 3248

	data->ret = pmu->commit_txn(pmu);
3249 3250

unlock:
3251
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3252 3253
}

P
Peter Zijlstra 已提交
3254 3255
static inline u64 perf_event_count(struct perf_event *event)
{
3256 3257 3258 3259
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3260 3261
}

3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3315
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3316
{
3317 3318
	int ret = 0;

T
Thomas Gleixner 已提交
3319
	/*
3320 3321
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3322
	 */
3323
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3324 3325 3326
		struct perf_read_data data = {
			.event = event,
			.group = group,
3327
			.ret = 0,
3328
		};
3329
		smp_call_function_single(event->oncpu,
3330
					 __perf_event_read, &data, 1);
3331
		ret = data.ret;
3332
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3333 3334 3335
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3336
		raw_spin_lock_irqsave(&ctx->lock, flags);
3337 3338 3339 3340 3341
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3342
		if (ctx->is_active) {
3343
			update_context_time(ctx);
S
Stephane Eranian 已提交
3344 3345
			update_cgrp_time_from_event(event);
		}
3346 3347 3348 3349
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3350
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3351
	}
3352 3353

	return ret;
T
Thomas Gleixner 已提交
3354 3355
}

3356
/*
3357
 * Initialize the perf_event context in a task_struct:
3358
 */
3359
static void __perf_event_init_context(struct perf_event_context *ctx)
3360
{
3361
	raw_spin_lock_init(&ctx->lock);
3362
	mutex_init(&ctx->mutex);
3363
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3364 3365
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3366 3367
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3368
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3384
	}
3385 3386 3387
	ctx->pmu = pmu;

	return ctx;
3388 3389
}

3390 3391 3392 3393 3394
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3395 3396

	rcu_read_lock();
3397
	if (!vpid)
T
Thomas Gleixner 已提交
3398 3399
		task = current;
	else
3400
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3401 3402 3403 3404 3405 3406 3407 3408
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3409 3410 3411 3412
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3413 3414 3415 3416 3417 3418 3419
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3420 3421 3422
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3423
static struct perf_event_context *
3424 3425
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3426
{
3427
	struct perf_event_context *ctx, *clone_ctx = NULL;
3428
	struct perf_cpu_context *cpuctx;
3429
	void *task_ctx_data = NULL;
3430
	unsigned long flags;
P
Peter Zijlstra 已提交
3431
	int ctxn, err;
3432
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3433

3434
	if (!task) {
3435
		/* Must be root to operate on a CPU event: */
3436
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3437 3438 3439
			return ERR_PTR(-EACCES);

		/*
3440
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3441 3442 3443
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3444
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3445 3446
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3447
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3448
		ctx = &cpuctx->ctx;
3449
		get_ctx(ctx);
3450
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3451 3452 3453 3454

		return ctx;
	}

P
Peter Zijlstra 已提交
3455 3456 3457 3458 3459
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3460 3461 3462 3463 3464 3465 3466 3467
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3468
retry:
P
Peter Zijlstra 已提交
3469
	ctx = perf_lock_task_context(task, ctxn, &flags);
3470
	if (ctx) {
3471
		clone_ctx = unclone_ctx(ctx);
3472
		++ctx->pin_count;
3473 3474 3475 3476 3477

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3478
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3479 3480 3481

		if (clone_ctx)
			put_ctx(clone_ctx);
3482
	} else {
3483
		ctx = alloc_perf_context(pmu, task);
3484 3485 3486
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3487

3488 3489 3490 3491 3492
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3503
		else {
3504
			get_ctx(ctx);
3505
			++ctx->pin_count;
3506
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3507
		}
3508 3509 3510
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3511
			put_ctx(ctx);
3512 3513 3514 3515

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3516 3517 3518
		}
	}

3519
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3520
	return ctx;
3521

P
Peter Zijlstra 已提交
3522
errout:
3523
	kfree(task_ctx_data);
3524
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3525 3526
}

L
Li Zefan 已提交
3527
static void perf_event_free_filter(struct perf_event *event);
3528
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3529

3530
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3531
{
3532
	struct perf_event *event;
P
Peter Zijlstra 已提交
3533

3534 3535 3536
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3537
	perf_event_free_filter(event);
3538
	kfree(event);
P
Peter Zijlstra 已提交
3539 3540
}

3541 3542
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3543

3544
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3545
{
3546 3547 3548 3549 3550 3551
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3552

3553 3554
static void unaccount_event(struct perf_event *event)
{
3555 3556
	bool dec = false;

3557 3558 3559 3560
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3561
		dec = true;
3562 3563 3564 3565 3566 3567
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3568 3569
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3570
	if (event->attr.context_switch) {
3571
		dec = true;
3572 3573
		atomic_dec(&nr_switch_events);
	}
3574
	if (is_cgroup_event(event))
3575
		dec = true;
3576
	if (has_branch_stack(event))
3577 3578 3579
		dec = true;

	if (dec)
3580 3581 3582 3583
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3584

3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3595
 * _free_event()), the latter -- before the first perf_install_in_context().
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

P
Peter Zijlstra 已提交
3670
static void _free_event(struct perf_event *event)
3671
{
3672
	irq_work_sync(&event->pending);
3673

3674
	unaccount_event(event);
3675

3676
	if (event->rb) {
3677 3678 3679 3680 3681 3682 3683
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3684
		ring_buffer_attach(event, NULL);
3685
		mutex_unlock(&event->mmap_mutex);
3686 3687
	}

S
Stephane Eranian 已提交
3688 3689 3690
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	if (event->pmu) {
		exclusive_event_destroy(event);
		module_put(event->pmu->module);
	}

	call_rcu(&event->rcu_head, free_event_rcu);
3710 3711
}

P
Peter Zijlstra 已提交
3712 3713 3714 3715 3716
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3717
{
P
Peter Zijlstra 已提交
3718 3719 3720 3721 3722 3723
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3724

P
Peter Zijlstra 已提交
3725
	_free_event(event);
T
Thomas Gleixner 已提交
3726 3727
}

3728
/*
3729
 * Remove user event from the owner task.
3730
 */
3731
static void perf_remove_from_owner(struct perf_event *event)
3732
{
P
Peter Zijlstra 已提交
3733
	struct task_struct *owner;
3734

P
Peter Zijlstra 已提交
3735 3736
	rcu_read_lock();
	/*
3737 3738 3739
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
3740 3741
	 * owner->perf_event_mutex.
	 */
3742
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3764 3765 3766 3767 3768 3769
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
3770
		if (event->owner) {
P
Peter Zijlstra 已提交
3771
			list_del_init(&event->owner_entry);
3772 3773
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
3774 3775 3776
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3777 3778 3779 3780
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3781
	struct perf_event_context *ctx;
3782 3783 3784 3785 3786 3787

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3788

P
Peter Zijlstra 已提交
3789 3790 3791 3792 3793 3794 3795
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3796
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3797 3798 3799 3800
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3801 3802
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3803
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3804
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3805 3806

	_free_event(event);
3807 3808
}

P
Peter Zijlstra 已提交
3809 3810 3811 3812 3813 3814 3815
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3816 3817 3818
/*
 * Called when the last reference to the file is gone.
 */
3819 3820 3821 3822
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3823 3824
}

3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3861
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3862
{
3863
	struct perf_event *child;
3864 3865
	u64 total = 0;

3866 3867 3868
	*enabled = 0;
	*running = 0;

3869
	mutex_lock(&event->child_mutex);
3870

3871
	(void)perf_event_read(event, false);
3872 3873
	total += perf_event_count(event);

3874 3875 3876 3877 3878 3879
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3880
		(void)perf_event_read(child, false);
3881
		total += perf_event_count(child);
3882 3883 3884
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3885
	mutex_unlock(&event->child_mutex);
3886 3887 3888

	return total;
}
3889
EXPORT_SYMBOL_GPL(perf_event_read_value);
3890

3891
static int __perf_read_group_add(struct perf_event *leader,
3892
					u64 read_format, u64 *values)
3893
{
3894 3895
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3896
	int ret;
P
Peter Zijlstra 已提交
3897

3898 3899 3900
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3901

3902 3903 3904 3905 3906 3907 3908 3909 3910
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3911

3912 3913 3914 3915 3916 3917 3918 3919 3920
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3921 3922
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3923

3924 3925 3926 3927 3928
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3929 3930

	return 0;
3931
}
3932

3933 3934 3935 3936 3937
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3938
	int ret;
3939
	u64 *values;
3940

3941
	lockdep_assert_held(&ctx->mutex);
3942

3943 3944 3945
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3946

3947 3948 3949 3950 3951 3952 3953
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3954

3955 3956 3957 3958 3959 3960 3961 3962 3963
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3964

3965
	mutex_unlock(&leader->child_mutex);
3966

3967
	ret = event->read_size;
3968 3969
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3970
	goto out;
3971

3972 3973 3974
unlock:
	mutex_unlock(&leader->child_mutex);
out:
3975
	kfree(values);
3976
	return ret;
3977 3978
}

3979
static int perf_read_one(struct perf_event *event,
3980 3981
				 u64 read_format, char __user *buf)
{
3982
	u64 enabled, running;
3983 3984 3985
	u64 values[4];
	int n = 0;

3986 3987 3988 3989 3990
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3991
	if (read_format & PERF_FORMAT_ID)
3992
		values[n++] = primary_event_id(event);
3993 3994 3995 3996 3997 3998 3999

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4013
/*
4014
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4015 4016
 */
static ssize_t
4017
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4018
{
4019
	u64 read_format = event->attr.read_format;
4020
	int ret;
T
Thomas Gleixner 已提交
4021

4022
	/*
4023
	 * Return end-of-file for a read on a event that is in
4024 4025 4026
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4027
	if (event->state == PERF_EVENT_STATE_ERROR)
4028 4029
		return 0;

4030
	if (count < event->read_size)
4031 4032
		return -ENOSPC;

4033
	WARN_ON_ONCE(event->ctx->parent_ctx);
4034
	if (read_format & PERF_FORMAT_GROUP)
4035
		ret = perf_read_group(event, read_format, buf);
4036
	else
4037
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4038

4039
	return ret;
T
Thomas Gleixner 已提交
4040 4041 4042 4043 4044
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4045
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4046 4047
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4048

P
Peter Zijlstra 已提交
4049
	ctx = perf_event_ctx_lock(event);
4050
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4051 4052 4053
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4054 4055 4056 4057
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4058
	struct perf_event *event = file->private_data;
4059
	struct ring_buffer *rb;
4060
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4061

4062
	poll_wait(file, &event->waitq, wait);
4063

4064
	if (is_event_hup(event))
4065
		return events;
P
Peter Zijlstra 已提交
4066

4067
	/*
4068 4069
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4070 4071
	 */
	mutex_lock(&event->mmap_mutex);
4072 4073
	rb = event->rb;
	if (rb)
4074
		events = atomic_xchg(&rb->poll, 0);
4075
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4076 4077 4078
	return events;
}

P
Peter Zijlstra 已提交
4079
static void _perf_event_reset(struct perf_event *event)
4080
{
4081
	(void)perf_event_read(event, false);
4082
	local64_set(&event->count, 0);
4083
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4084 4085
}

4086
/*
4087 4088 4089 4090
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4091
 */
4092 4093
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4094
{
4095
	struct perf_event *child;
P
Peter Zijlstra 已提交
4096

4097
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4098

4099 4100 4101
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4102
		func(child);
4103
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4104 4105
}

4106 4107
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4108
{
4109 4110
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4111

P
Peter Zijlstra 已提交
4112 4113
	lockdep_assert_held(&ctx->mutex);

4114
	event = event->group_leader;
4115

4116 4117
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4118
		perf_event_for_each_child(sibling, func);
4119 4120
}

4121 4122 4123 4124
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4125
{
4126
	u64 value = *((u64 *)info);
4127
	bool active;
4128

4129 4130
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4131
	} else {
4132 4133
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4134
	}
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4166
	event_function_call(event, __perf_event_period, &value);
4167

4168
	return 0;
4169 4170
}

4171 4172
static const struct file_operations perf_fops;

4173
static inline int perf_fget_light(int fd, struct fd *p)
4174
{
4175 4176 4177
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4178

4179 4180 4181
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4182
	}
4183 4184
	*p = f;
	return 0;
4185 4186 4187 4188
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4189
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4190
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4191

P
Peter Zijlstra 已提交
4192
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4193
{
4194
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4195
	u32 flags = arg;
4196 4197

	switch (cmd) {
4198
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4199
		func = _perf_event_enable;
4200
		break;
4201
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4202
		func = _perf_event_disable;
4203
		break;
4204
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4205
		func = _perf_event_reset;
4206
		break;
P
Peter Zijlstra 已提交
4207

4208
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4209
		return _perf_event_refresh(event, arg);
4210

4211 4212
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4213

4214 4215 4216 4217 4218 4219 4220 4221 4222
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4223
	case PERF_EVENT_IOC_SET_OUTPUT:
4224 4225 4226
	{
		int ret;
		if (arg != -1) {
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4237 4238 4239
		}
		return ret;
	}
4240

L
Li Zefan 已提交
4241 4242 4243
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4244 4245 4246
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4247
	default:
P
Peter Zijlstra 已提交
4248
		return -ENOTTY;
4249
	}
P
Peter Zijlstra 已提交
4250 4251

	if (flags & PERF_IOC_FLAG_GROUP)
4252
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4253
	else
4254
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4255 4256

	return 0;
4257 4258
}

P
Peter Zijlstra 已提交
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4292
int perf_event_task_enable(void)
4293
{
P
Peter Zijlstra 已提交
4294
	struct perf_event_context *ctx;
4295
	struct perf_event *event;
4296

4297
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4298 4299 4300 4301 4302
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4303
	mutex_unlock(&current->perf_event_mutex);
4304 4305 4306 4307

	return 0;
}

4308
int perf_event_task_disable(void)
4309
{
P
Peter Zijlstra 已提交
4310
	struct perf_event_context *ctx;
4311
	struct perf_event *event;
4312

4313
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4314 4315 4316 4317 4318
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4319
	mutex_unlock(&current->perf_event_mutex);
4320 4321 4322 4323

	return 0;
}

4324
static int perf_event_index(struct perf_event *event)
4325
{
P
Peter Zijlstra 已提交
4326 4327 4328
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4329
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4330 4331
		return 0;

4332
	return event->pmu->event_idx(event);
4333 4334
}

4335
static void calc_timer_values(struct perf_event *event,
4336
				u64 *now,
4337 4338
				u64 *enabled,
				u64 *running)
4339
{
4340
	u64 ctx_time;
4341

4342 4343
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4344 4345 4346 4347
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4363 4364
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4365 4366 4367 4368 4369

unlock:
	rcu_read_unlock();
}

4370 4371
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4372 4373 4374
{
}

4375 4376 4377 4378 4379
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4380
void perf_event_update_userpage(struct perf_event *event)
4381
{
4382
	struct perf_event_mmap_page *userpg;
4383
	struct ring_buffer *rb;
4384
	u64 enabled, running, now;
4385 4386

	rcu_read_lock();
4387 4388 4389 4390
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4391 4392 4393 4394 4395 4396 4397 4398 4399
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4400
	calc_timer_values(event, &now, &enabled, &running);
4401

4402
	userpg = rb->user_page;
4403 4404 4405 4406 4407
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4408
	++userpg->lock;
4409
	barrier();
4410
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4411
	userpg->offset = perf_event_count(event);
4412
	if (userpg->index)
4413
		userpg->offset -= local64_read(&event->hw.prev_count);
4414

4415
	userpg->time_enabled = enabled +
4416
			atomic64_read(&event->child_total_time_enabled);
4417

4418
	userpg->time_running = running +
4419
			atomic64_read(&event->child_total_time_running);
4420

4421
	arch_perf_update_userpage(event, userpg, now);
4422

4423
	barrier();
4424
	++userpg->lock;
4425
	preempt_enable();
4426
unlock:
4427
	rcu_read_unlock();
4428 4429
}

4430 4431 4432
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4433
	struct ring_buffer *rb;
4434 4435 4436 4437 4438 4439 4440 4441 4442
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4443 4444
	rb = rcu_dereference(event->rb);
	if (!rb)
4445 4446 4447 4448 4449
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4450
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4465 4466 4467
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4468
	struct ring_buffer *old_rb = NULL;
4469 4470
	unsigned long flags;

4471 4472 4473 4474 4475 4476
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4477

4478 4479 4480 4481
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4482

4483 4484
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4485
	}
4486

4487
	if (rb) {
4488 4489 4490 4491 4492
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4509 4510 4511 4512 4513 4514 4515 4516
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4517 4518 4519 4520
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4521 4522 4523
	rcu_read_unlock();
}

4524
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4525
{
4526
	struct ring_buffer *rb;
4527

4528
	rcu_read_lock();
4529 4530 4531 4532
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4533 4534 4535
	}
	rcu_read_unlock();

4536
	return rb;
4537 4538
}

4539
void ring_buffer_put(struct ring_buffer *rb)
4540
{
4541
	if (!atomic_dec_and_test(&rb->refcount))
4542
		return;
4543

4544
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4545

4546
	call_rcu(&rb->rcu_head, rb_free_rcu);
4547 4548 4549 4550
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4551
	struct perf_event *event = vma->vm_file->private_data;
4552

4553
	atomic_inc(&event->mmap_count);
4554
	atomic_inc(&event->rb->mmap_count);
4555

4556 4557 4558
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4559 4560
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4561 4562
}

4563 4564 4565 4566 4567 4568 4569 4570
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4571 4572
static void perf_mmap_close(struct vm_area_struct *vma)
{
4573
	struct perf_event *event = vma->vm_file->private_data;
4574

4575
	struct ring_buffer *rb = ring_buffer_get(event);
4576 4577 4578
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4579

4580 4581 4582
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4597 4598 4599
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4600
		goto out_put;
4601

4602
	ring_buffer_attach(event, NULL);
4603 4604 4605
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4606 4607
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4608

4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4625

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4637 4638 4639
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4640
		mutex_unlock(&event->mmap_mutex);
4641
		put_event(event);
4642

4643 4644 4645 4646 4647
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4648
	}
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4664
out_put:
4665
	ring_buffer_put(rb); /* could be last */
4666 4667
}

4668
static const struct vm_operations_struct perf_mmap_vmops = {
4669
	.open		= perf_mmap_open,
4670
	.close		= perf_mmap_close, /* non mergable */
4671 4672
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4673 4674 4675 4676
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4677
	struct perf_event *event = file->private_data;
4678
	unsigned long user_locked, user_lock_limit;
4679
	struct user_struct *user = current_user();
4680
	unsigned long locked, lock_limit;
4681
	struct ring_buffer *rb = NULL;
4682 4683
	unsigned long vma_size;
	unsigned long nr_pages;
4684
	long user_extra = 0, extra = 0;
4685
	int ret = 0, flags = 0;
4686

4687 4688 4689
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4690
	 * same rb.
4691 4692 4693 4694
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4695
	if (!(vma->vm_flags & VM_SHARED))
4696
		return -EINVAL;
4697 4698

	vma_size = vma->vm_end - vma->vm_start;
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4759

4760
	/*
4761
	 * If we have rb pages ensure they're a power-of-two number, so we
4762 4763
	 * can do bitmasks instead of modulo.
	 */
4764
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4765 4766
		return -EINVAL;

4767
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4768 4769
		return -EINVAL;

4770
	WARN_ON_ONCE(event->ctx->parent_ctx);
4771
again:
4772
	mutex_lock(&event->mmap_mutex);
4773
	if (event->rb) {
4774
		if (event->rb->nr_pages != nr_pages) {
4775
			ret = -EINVAL;
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4789 4790 4791
		goto unlock;
	}

4792
	user_extra = nr_pages + 1;
4793 4794

accounting:
4795
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4796 4797 4798 4799 4800 4801

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4802
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4803

4804 4805
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4806

4807
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4808
	lock_limit >>= PAGE_SHIFT;
4809
	locked = vma->vm_mm->pinned_vm + extra;
4810

4811 4812
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4813 4814 4815
		ret = -EPERM;
		goto unlock;
	}
4816

4817
	WARN_ON(!rb && event->rb);
4818

4819
	if (vma->vm_flags & VM_WRITE)
4820
		flags |= RING_BUFFER_WRITABLE;
4821

4822
	if (!rb) {
4823 4824 4825
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4826

4827 4828 4829 4830
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4831

4832 4833 4834
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4835

4836
		ring_buffer_attach(event, rb);
4837

4838 4839 4840
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4841 4842
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4843 4844 4845
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4846

4847
unlock:
4848 4849 4850 4851
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4852
		atomic_inc(&event->mmap_count);
4853 4854 4855 4856
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4857
	mutex_unlock(&event->mmap_mutex);
4858

4859 4860 4861 4862
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4863
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4864
	vma->vm_ops = &perf_mmap_vmops;
4865

4866 4867 4868
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4869
	return ret;
4870 4871
}

P
Peter Zijlstra 已提交
4872 4873
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4874
	struct inode *inode = file_inode(filp);
4875
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4876 4877 4878
	int retval;

	mutex_lock(&inode->i_mutex);
4879
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4880 4881 4882 4883 4884 4885 4886 4887
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4888
static const struct file_operations perf_fops = {
4889
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4890 4891 4892
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4893
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4894
	.compat_ioctl		= perf_compat_ioctl,
4895
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4896
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4897 4898
};

4899
/*
4900
 * Perf event wakeup
4901 4902 4903 4904 4905
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4906 4907 4908 4909 4910 4911 4912 4913
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4914
void perf_event_wakeup(struct perf_event *event)
4915
{
4916
	ring_buffer_wakeup(event);
4917

4918
	if (event->pending_kill) {
4919
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4920
		event->pending_kill = 0;
4921
	}
4922 4923
}

4924
static void perf_pending_event(struct irq_work *entry)
4925
{
4926 4927
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4928 4929 4930 4931 4932 4933 4934
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4935

4936 4937
	if (event->pending_disable) {
		event->pending_disable = 0;
4938
		perf_event_disable_local(event);
4939 4940
	}

4941 4942 4943
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4944
	}
4945 4946 4947

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4948 4949
}

4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4986
static void perf_sample_regs_user(struct perf_regs *regs_user,
4987 4988
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4989
{
4990 4991
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4992
		regs_user->regs = regs;
4993 4994
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4995 4996 4997
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4998 4999 5000
	}
}

5001 5002 5003 5004 5005 5006 5007 5008
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5104 5105 5106
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5120
		data->time = perf_event_clock(event);
5121

5122
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5134 5135 5136
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5161 5162 5163

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5164 5165
}

5166 5167 5168
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5169 5170 5171 5172 5173
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5174
static void perf_output_read_one(struct perf_output_handle *handle,
5175 5176
				 struct perf_event *event,
				 u64 enabled, u64 running)
5177
{
5178
	u64 read_format = event->attr.read_format;
5179 5180 5181
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5182
	values[n++] = perf_event_count(event);
5183
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5184
		values[n++] = enabled +
5185
			atomic64_read(&event->child_total_time_enabled);
5186 5187
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5188
		values[n++] = running +
5189
			atomic64_read(&event->child_total_time_running);
5190 5191
	}
	if (read_format & PERF_FORMAT_ID)
5192
		values[n++] = primary_event_id(event);
5193

5194
	__output_copy(handle, values, n * sizeof(u64));
5195 5196 5197
}

/*
5198
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5199 5200
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5201 5202
			    struct perf_event *event,
			    u64 enabled, u64 running)
5203
{
5204 5205
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5206 5207 5208 5209 5210 5211
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5212
		values[n++] = enabled;
5213 5214

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5215
		values[n++] = running;
5216

5217
	if (leader != event)
5218 5219
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5220
	values[n++] = perf_event_count(leader);
5221
	if (read_format & PERF_FORMAT_ID)
5222
		values[n++] = primary_event_id(leader);
5223

5224
	__output_copy(handle, values, n * sizeof(u64));
5225

5226
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5227 5228
		n = 0;

5229 5230
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5231 5232
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5233
		values[n++] = perf_event_count(sub);
5234
		if (read_format & PERF_FORMAT_ID)
5235
			values[n++] = primary_event_id(sub);
5236

5237
		__output_copy(handle, values, n * sizeof(u64));
5238 5239 5240
	}
}

5241 5242 5243
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5244
static void perf_output_read(struct perf_output_handle *handle,
5245
			     struct perf_event *event)
5246
{
5247
	u64 enabled = 0, running = 0, now;
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5259
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5260
		calc_timer_values(event, &now, &enabled, &running);
5261

5262
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5263
		perf_output_read_group(handle, event, enabled, running);
5264
	else
5265
		perf_output_read_one(handle, event, enabled, running);
5266 5267
}

5268 5269 5270
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5271
			struct perf_event *event)
5272 5273 5274 5275 5276
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5277 5278 5279
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5305
		perf_output_read(handle, event);
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5316
			__output_copy(handle, data->callchain, size);
5317 5318 5319 5320 5321 5322 5323 5324
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5325 5326 5327 5328 5329 5330 5331 5332 5333
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5345

5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5380

5381
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5382 5383 5384
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5385
	}
A
Andi Kleen 已提交
5386 5387 5388

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5389 5390 5391

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5392

A
Andi Kleen 已提交
5393 5394 5395
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5426 5427 5428 5429
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5430
			 struct perf_event *event,
5431
			 struct pt_regs *regs)
5432
{
5433
	u64 sample_type = event->attr.sample_type;
5434

5435
	header->type = PERF_RECORD_SAMPLE;
5436
	header->size = sizeof(*header) + event->header_size;
5437 5438 5439

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5440

5441
	__perf_event_header__init_id(header, data, event);
5442

5443
	if (sample_type & PERF_SAMPLE_IP)
5444 5445
		data->ip = perf_instruction_pointer(regs);

5446
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5447
		int size = 1;
5448

5449
		data->callchain = perf_callchain(event, regs);
5450 5451 5452 5453 5454

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5455 5456
	}

5457
	if (sample_type & PERF_SAMPLE_RAW) {
5458 5459 5460 5461 5462 5463 5464
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5465
		header->size += round_up(size, sizeof(u64));
5466
	}
5467 5468 5469 5470 5471 5472 5473 5474 5475

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5476

5477
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5478 5479
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5480

5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5504
						     data->regs_user.regs);
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5532
}
5533

5534 5535 5536
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5537 5538 5539
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5540

5541 5542 5543
	/* protect the callchain buffers */
	rcu_read_lock();

5544
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5545

5546
	if (perf_output_begin(&handle, event, header.size))
5547
		goto exit;
5548

5549
	perf_output_sample(&handle, &header, data, event);
5550

5551
	perf_output_end(&handle);
5552 5553 5554

exit:
	rcu_read_unlock();
5555 5556
}

5557
/*
5558
 * read event_id
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5569
perf_event_read_event(struct perf_event *event,
5570 5571 5572
			struct task_struct *task)
{
	struct perf_output_handle handle;
5573
	struct perf_sample_data sample;
5574
	struct perf_read_event read_event = {
5575
		.header = {
5576
			.type = PERF_RECORD_READ,
5577
			.misc = 0,
5578
			.size = sizeof(read_event) + event->read_size,
5579
		},
5580 5581
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5582
	};
5583
	int ret;
5584

5585
	perf_event_header__init_id(&read_event.header, &sample, event);
5586
	ret = perf_output_begin(&handle, event, read_event.header.size);
5587 5588 5589
	if (ret)
		return;

5590
	perf_output_put(&handle, read_event);
5591
	perf_output_read(&handle, event);
5592
	perf_event__output_id_sample(event, &handle, &sample);
5593

5594 5595 5596
	perf_output_end(&handle);
}

5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5611
		output(event, data);
5612 5613 5614
	}
}

J
Jiri Olsa 已提交
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5626
static void
5627
perf_event_aux(perf_event_aux_output_cb output, void *data,
5628 5629 5630 5631 5632 5633 5634
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5646 5647 5648 5649 5650
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5651
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5652 5653 5654 5655 5656
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5657
			perf_event_aux_ctx(ctx, output, data);
5658 5659 5660 5661 5662 5663
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5664
/*
P
Peter Zijlstra 已提交
5665 5666
 * task tracking -- fork/exit
 *
5667
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5668 5669
 */

P
Peter Zijlstra 已提交
5670
struct perf_task_event {
5671
	struct task_struct		*task;
5672
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5673 5674 5675 5676 5677 5678

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5679 5680
		u32				tid;
		u32				ptid;
5681
		u64				time;
5682
	} event_id;
P
Peter Zijlstra 已提交
5683 5684
};

5685 5686
static int perf_event_task_match(struct perf_event *event)
{
5687 5688 5689
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5690 5691
}

5692
static void perf_event_task_output(struct perf_event *event,
5693
				   void *data)
P
Peter Zijlstra 已提交
5694
{
5695
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5696
	struct perf_output_handle handle;
5697
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5698
	struct task_struct *task = task_event->task;
5699
	int ret, size = task_event->event_id.header.size;
5700

5701 5702 5703
	if (!perf_event_task_match(event))
		return;

5704
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5705

5706
	ret = perf_output_begin(&handle, event,
5707
				task_event->event_id.header.size);
5708
	if (ret)
5709
		goto out;
P
Peter Zijlstra 已提交
5710

5711 5712
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5713

5714 5715
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5716

5717 5718
	task_event->event_id.time = perf_event_clock(event);

5719
	perf_output_put(&handle, task_event->event_id);
5720

5721 5722
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5723
	perf_output_end(&handle);
5724 5725
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5726 5727
}

5728 5729
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5730
			      int new)
P
Peter Zijlstra 已提交
5731
{
P
Peter Zijlstra 已提交
5732
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5733

5734 5735 5736
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5737 5738
		return;

P
Peter Zijlstra 已提交
5739
	task_event = (struct perf_task_event){
5740 5741
		.task	  = task,
		.task_ctx = task_ctx,
5742
		.event_id    = {
P
Peter Zijlstra 已提交
5743
			.header = {
5744
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5745
				.misc = 0,
5746
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5747
			},
5748 5749
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5750 5751
			/* .tid  */
			/* .ptid */
5752
			/* .time */
P
Peter Zijlstra 已提交
5753 5754 5755
		},
	};

5756
	perf_event_aux(perf_event_task_output,
5757 5758
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5759 5760
}

5761
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5762
{
5763
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5764 5765
}

5766 5767 5768 5769 5770
/*
 * comm tracking
 */

struct perf_comm_event {
5771 5772
	struct task_struct	*task;
	char			*comm;
5773 5774 5775 5776 5777 5778 5779
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5780
	} event_id;
5781 5782
};

5783 5784 5785 5786 5787
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5788
static void perf_event_comm_output(struct perf_event *event,
5789
				   void *data)
5790
{
5791
	struct perf_comm_event *comm_event = data;
5792
	struct perf_output_handle handle;
5793
	struct perf_sample_data sample;
5794
	int size = comm_event->event_id.header.size;
5795 5796
	int ret;

5797 5798 5799
	if (!perf_event_comm_match(event))
		return;

5800 5801
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5802
				comm_event->event_id.header.size);
5803 5804

	if (ret)
5805
		goto out;
5806

5807 5808
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5809

5810
	perf_output_put(&handle, comm_event->event_id);
5811
	__output_copy(&handle, comm_event->comm,
5812
				   comm_event->comm_size);
5813 5814 5815

	perf_event__output_id_sample(event, &handle, &sample);

5816
	perf_output_end(&handle);
5817 5818
out:
	comm_event->event_id.header.size = size;
5819 5820
}

5821
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5822
{
5823
	char comm[TASK_COMM_LEN];
5824 5825
	unsigned int size;

5826
	memset(comm, 0, sizeof(comm));
5827
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5828
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5829 5830 5831 5832

	comm_event->comm = comm;
	comm_event->comm_size = size;

5833
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5834

5835
	perf_event_aux(perf_event_comm_output,
5836 5837
		       comm_event,
		       NULL);
5838 5839
}

5840
void perf_event_comm(struct task_struct *task, bool exec)
5841
{
5842 5843
	struct perf_comm_event comm_event;

5844
	if (!atomic_read(&nr_comm_events))
5845
		return;
5846

5847
	comm_event = (struct perf_comm_event){
5848
		.task	= task,
5849 5850
		/* .comm      */
		/* .comm_size */
5851
		.event_id  = {
5852
			.header = {
5853
				.type = PERF_RECORD_COMM,
5854
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5855 5856 5857 5858
				/* .size */
			},
			/* .pid */
			/* .tid */
5859 5860 5861
		},
	};

5862
	perf_event_comm_event(&comm_event);
5863 5864
}

5865 5866 5867 5868 5869
/*
 * mmap tracking
 */

struct perf_mmap_event {
5870 5871 5872 5873
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5874 5875 5876
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5877
	u32			prot, flags;
5878 5879 5880 5881 5882 5883 5884 5885 5886

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5887
	} event_id;
5888 5889
};

5890 5891 5892 5893 5894 5895 5896 5897
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5898
	       (executable && (event->attr.mmap || event->attr.mmap2));
5899 5900
}

5901
static void perf_event_mmap_output(struct perf_event *event,
5902
				   void *data)
5903
{
5904
	struct perf_mmap_event *mmap_event = data;
5905
	struct perf_output_handle handle;
5906
	struct perf_sample_data sample;
5907
	int size = mmap_event->event_id.header.size;
5908
	int ret;
5909

5910 5911 5912
	if (!perf_event_mmap_match(event, data))
		return;

5913 5914 5915 5916 5917
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5918
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5919 5920
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5921 5922
	}

5923 5924
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5925
				mmap_event->event_id.header.size);
5926
	if (ret)
5927
		goto out;
5928

5929 5930
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5931

5932
	perf_output_put(&handle, mmap_event->event_id);
5933 5934 5935 5936 5937 5938

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5939 5940
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5941 5942
	}

5943
	__output_copy(&handle, mmap_event->file_name,
5944
				   mmap_event->file_size);
5945 5946 5947

	perf_event__output_id_sample(event, &handle, &sample);

5948
	perf_output_end(&handle);
5949 5950
out:
	mmap_event->event_id.header.size = size;
5951 5952
}

5953
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5954
{
5955 5956
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5957 5958
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5959
	u32 prot = 0, flags = 0;
5960 5961 5962
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5963
	char *name;
5964

5965
	if (file) {
5966 5967
		struct inode *inode;
		dev_t dev;
5968

5969
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5970
		if (!buf) {
5971 5972
			name = "//enomem";
			goto cpy_name;
5973
		}
5974
		/*
5975
		 * d_path() works from the end of the rb backwards, so we
5976 5977 5978
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5979
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5980
		if (IS_ERR(name)) {
5981 5982
			name = "//toolong";
			goto cpy_name;
5983
		}
5984 5985 5986 5987 5988 5989
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6012
		goto got_name;
6013
	} else {
6014 6015 6016 6017 6018 6019
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6020
		name = (char *)arch_vma_name(vma);
6021 6022
		if (name)
			goto cpy_name;
6023

6024
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6025
				vma->vm_end >= vma->vm_mm->brk) {
6026 6027
			name = "[heap]";
			goto cpy_name;
6028 6029
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6030
				vma->vm_end >= vma->vm_mm->start_stack) {
6031 6032
			name = "[stack]";
			goto cpy_name;
6033 6034
		}

6035 6036
		name = "//anon";
		goto cpy_name;
6037 6038
	}

6039 6040 6041
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6042
got_name:
6043 6044 6045 6046 6047 6048 6049 6050
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6051 6052 6053

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6054 6055 6056 6057
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6058 6059
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6060

6061 6062 6063
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6064
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6065

6066
	perf_event_aux(perf_event_mmap_output,
6067 6068
		       mmap_event,
		       NULL);
6069

6070 6071 6072
	kfree(buf);
}

6073
void perf_event_mmap(struct vm_area_struct *vma)
6074
{
6075 6076
	struct perf_mmap_event mmap_event;

6077
	if (!atomic_read(&nr_mmap_events))
6078 6079 6080
		return;

	mmap_event = (struct perf_mmap_event){
6081
		.vma	= vma,
6082 6083
		/* .file_name */
		/* .file_size */
6084
		.event_id  = {
6085
			.header = {
6086
				.type = PERF_RECORD_MMAP,
6087
				.misc = PERF_RECORD_MISC_USER,
6088 6089 6090 6091
				/* .size */
			},
			/* .pid */
			/* .tid */
6092 6093
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6094
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6095
		},
6096 6097 6098 6099
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6100 6101
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6102 6103
	};

6104
	perf_event_mmap_event(&mmap_event);
6105 6106
}

A
Alexander Shishkin 已提交
6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6259 6260 6261 6262
/*
 * IRQ throttle logging
 */

6263
static void perf_log_throttle(struct perf_event *event, int enable)
6264 6265
{
	struct perf_output_handle handle;
6266
	struct perf_sample_data sample;
6267 6268 6269 6270 6271
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6272
		u64				id;
6273
		u64				stream_id;
6274 6275
	} throttle_event = {
		.header = {
6276
			.type = PERF_RECORD_THROTTLE,
6277 6278 6279
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6280
		.time		= perf_event_clock(event),
6281 6282
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6283 6284
	};

6285
	if (enable)
6286
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6287

6288 6289 6290
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6291
				throttle_event.header.size);
6292 6293 6294 6295
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6296
	perf_event__output_id_sample(event, &handle, &sample);
6297 6298 6299
	perf_output_end(&handle);
}

6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6336
/*
6337
 * Generic event overflow handling, sampling.
6338 6339
 */

6340
static int __perf_event_overflow(struct perf_event *event,
6341 6342
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6343
{
6344 6345
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6346
	u64 seq;
6347 6348
	int ret = 0;

6349 6350 6351 6352 6353 6354 6355
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6356 6357 6358 6359 6360 6361 6362 6363 6364
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6365 6366
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6367
			tick_nohz_full_kick();
6368 6369
			ret = 1;
		}
6370
	}
6371

6372
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6373
		u64 now = perf_clock();
6374
		s64 delta = now - hwc->freq_time_stamp;
6375

6376
		hwc->freq_time_stamp = now;
6377

6378
		if (delta > 0 && delta < 2*TICK_NSEC)
6379
			perf_adjust_period(event, delta, hwc->last_period, true);
6380 6381
	}

6382 6383
	/*
	 * XXX event_limit might not quite work as expected on inherited
6384
	 * events
6385 6386
	 */

6387 6388
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6389
		ret = 1;
6390
		event->pending_kill = POLL_HUP;
6391 6392
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6393 6394
	}

6395
	if (event->overflow_handler)
6396
		event->overflow_handler(event, data, regs);
6397
	else
6398
		perf_event_output(event, data, regs);
6399

6400
	if (*perf_event_fasync(event) && event->pending_kill) {
6401 6402
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6403 6404
	}

6405
	return ret;
6406 6407
}

6408
int perf_event_overflow(struct perf_event *event,
6409 6410
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6411
{
6412
	return __perf_event_overflow(event, 1, data, regs);
6413 6414
}

6415
/*
6416
 * Generic software event infrastructure
6417 6418
 */

6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6430
/*
6431 6432
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6433 6434 6435 6436
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6437
u64 perf_swevent_set_period(struct perf_event *event)
6438
{
6439
	struct hw_perf_event *hwc = &event->hw;
6440 6441 6442 6443 6444
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6445 6446

again:
6447
	old = val = local64_read(&hwc->period_left);
6448 6449
	if (val < 0)
		return 0;
6450

6451 6452 6453
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6454
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6455
		goto again;
6456

6457
	return nr;
6458 6459
}

6460
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6461
				    struct perf_sample_data *data,
6462
				    struct pt_regs *regs)
6463
{
6464
	struct hw_perf_event *hwc = &event->hw;
6465
	int throttle = 0;
6466

6467 6468
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6469

6470 6471
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6472

6473
	for (; overflow; overflow--) {
6474
		if (__perf_event_overflow(event, throttle,
6475
					    data, regs)) {
6476 6477 6478 6479 6480 6481
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6482
		throttle = 1;
6483
	}
6484 6485
}

P
Peter Zijlstra 已提交
6486
static void perf_swevent_event(struct perf_event *event, u64 nr,
6487
			       struct perf_sample_data *data,
6488
			       struct pt_regs *regs)
6489
{
6490
	struct hw_perf_event *hwc = &event->hw;
6491

6492
	local64_add(nr, &event->count);
6493

6494 6495 6496
	if (!regs)
		return;

6497
	if (!is_sampling_event(event))
6498
		return;
6499

6500 6501 6502 6503 6504 6505
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6506
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6507
		return perf_swevent_overflow(event, 1, data, regs);
6508

6509
	if (local64_add_negative(nr, &hwc->period_left))
6510
		return;
6511

6512
	perf_swevent_overflow(event, 0, data, regs);
6513 6514
}

6515 6516 6517
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6518
	if (event->hw.state & PERF_HES_STOPPED)
6519
		return 1;
P
Peter Zijlstra 已提交
6520

6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6532
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6533
				enum perf_type_id type,
L
Li Zefan 已提交
6534 6535 6536
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6537
{
6538
	if (event->attr.type != type)
6539
		return 0;
6540

6541
	if (event->attr.config != event_id)
6542 6543
		return 0;

6544 6545
	if (perf_exclude_event(event, regs))
		return 0;
6546 6547 6548 6549

	return 1;
}

6550 6551 6552 6553 6554 6555 6556
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6557 6558
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6559
{
6560 6561 6562 6563
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6564

6565 6566
/* For the read side: events when they trigger */
static inline struct hlist_head *
6567
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6568 6569
{
	struct swevent_hlist *hlist;
6570

6571
	hlist = rcu_dereference(swhash->swevent_hlist);
6572 6573 6574
	if (!hlist)
		return NULL;

6575 6576 6577 6578 6579
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6580
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6591
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6592 6593 6594 6595 6596
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6597 6598 6599
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6600
				    u64 nr,
6601 6602
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6603
{
6604
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6605
	struct perf_event *event;
6606
	struct hlist_head *head;
6607

6608
	rcu_read_lock();
6609
	head = find_swevent_head_rcu(swhash, type, event_id);
6610 6611 6612
	if (!head)
		goto end;

6613
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6614
		if (perf_swevent_match(event, type, event_id, data, regs))
6615
			perf_swevent_event(event, nr, data, regs);
6616
	}
6617 6618
end:
	rcu_read_unlock();
6619 6620
}

6621 6622
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6623
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6624
{
6625
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6626

6627
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6628
}
I
Ingo Molnar 已提交
6629
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6630

6631
inline void perf_swevent_put_recursion_context(int rctx)
6632
{
6633
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6634

6635
	put_recursion_context(swhash->recursion, rctx);
6636
}
6637

6638
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6639
{
6640
	struct perf_sample_data data;
6641

6642
	if (WARN_ON_ONCE(!regs))
6643
		return;
6644

6645
	perf_sample_data_init(&data, addr, 0);
6646
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6659 6660

	perf_swevent_put_recursion_context(rctx);
6661
fail:
6662
	preempt_enable_notrace();
6663 6664
}

6665
static void perf_swevent_read(struct perf_event *event)
6666 6667 6668
{
}

P
Peter Zijlstra 已提交
6669
static int perf_swevent_add(struct perf_event *event, int flags)
6670
{
6671
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6672
	struct hw_perf_event *hwc = &event->hw;
6673 6674
	struct hlist_head *head;

6675
	if (is_sampling_event(event)) {
6676
		hwc->last_period = hwc->sample_period;
6677
		perf_swevent_set_period(event);
6678
	}
6679

P
Peter Zijlstra 已提交
6680 6681
	hwc->state = !(flags & PERF_EF_START);

6682
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6683
	if (WARN_ON_ONCE(!head))
6684 6685 6686
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6687
	perf_event_update_userpage(event);
6688

6689 6690 6691
	return 0;
}

P
Peter Zijlstra 已提交
6692
static void perf_swevent_del(struct perf_event *event, int flags)
6693
{
6694
	hlist_del_rcu(&event->hlist_entry);
6695 6696
}

P
Peter Zijlstra 已提交
6697
static void perf_swevent_start(struct perf_event *event, int flags)
6698
{
P
Peter Zijlstra 已提交
6699
	event->hw.state = 0;
6700
}
I
Ingo Molnar 已提交
6701

P
Peter Zijlstra 已提交
6702
static void perf_swevent_stop(struct perf_event *event, int flags)
6703
{
P
Peter Zijlstra 已提交
6704
	event->hw.state = PERF_HES_STOPPED;
6705 6706
}

6707 6708
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6709
swevent_hlist_deref(struct swevent_htable *swhash)
6710
{
6711 6712
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6713 6714
}

6715
static void swevent_hlist_release(struct swevent_htable *swhash)
6716
{
6717
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6718

6719
	if (!hlist)
6720 6721
		return;

6722
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6723
	kfree_rcu(hlist, rcu_head);
6724 6725 6726 6727
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6728
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6729

6730
	mutex_lock(&swhash->hlist_mutex);
6731

6732 6733
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6734

6735
	mutex_unlock(&swhash->hlist_mutex);
6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6748
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6749 6750
	int err = 0;

6751 6752
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6753 6754 6755 6756 6757 6758 6759
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6760
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6761
	}
6762
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6763
exit:
6764
	mutex_unlock(&swhash->hlist_mutex);
6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6785
fail:
6786 6787 6788 6789 6790 6791 6792 6793 6794 6795
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6796
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6797

6798 6799 6800
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6801

6802 6803
	WARN_ON(event->parent);

6804
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6805 6806 6807 6808 6809
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6810
	u64 event_id = event->attr.config;
6811 6812 6813 6814

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6815 6816 6817 6818 6819 6820
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6821 6822 6823 6824 6825 6826 6827 6828 6829
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6830
	if (event_id >= PERF_COUNT_SW_MAX)
6831 6832 6833 6834 6835 6836 6837 6838 6839
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6840
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6841 6842 6843 6844 6845 6846 6847
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6848
	.task_ctx_nr	= perf_sw_context,
6849

6850 6851
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6852
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6853 6854 6855 6856
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6857 6858 6859
	.read		= perf_swevent_read,
};

6860 6861
#ifdef CONFIG_EVENT_TRACING

6862 6863 6864 6865 6866
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6867 6868 6869 6870
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6871 6872 6873 6874 6875 6876 6877 6878 6879
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6880 6881
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6882 6883 6884 6885
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6886 6887 6888 6889 6890 6891 6892 6893 6894
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6895 6896
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6897 6898
{
	struct perf_sample_data data;
6899 6900
	struct perf_event *event;

6901 6902 6903 6904 6905
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6906
	perf_sample_data_init(&data, addr, 0);
6907 6908
	data.raw = &raw;

6909
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6910
		if (perf_tp_event_match(event, &data, regs))
6911
			perf_swevent_event(event, count, &data, regs);
6912
	}
6913

6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6939
	perf_swevent_put_recursion_context(rctx);
6940 6941 6942
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6943
static void tp_perf_event_destroy(struct perf_event *event)
6944
{
6945
	perf_trace_destroy(event);
6946 6947
}

6948
static int perf_tp_event_init(struct perf_event *event)
6949
{
6950 6951
	int err;

6952 6953 6954
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6955 6956 6957 6958 6959 6960
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6961 6962
	err = perf_trace_init(event);
	if (err)
6963
		return err;
6964

6965
	event->destroy = tp_perf_event_destroy;
6966

6967 6968 6969 6970
	return 0;
}

static struct pmu perf_tracepoint = {
6971 6972
	.task_ctx_nr	= perf_sw_context,

6973
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6974 6975 6976 6977
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6978 6979 6980 6981 6982
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6983
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6984
}
L
Li Zefan 已提交
6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7009 7010 7011 7012 7013 7014 7015 7016 7017 7018
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7019 7020
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7021 7022 7023 7024 7025 7026
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7027
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7052
#else
L
Li Zefan 已提交
7053

7054
static inline void perf_tp_register(void)
7055 7056
{
}
L
Li Zefan 已提交
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7067 7068 7069 7070 7071 7072 7073 7074
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7075
#endif /* CONFIG_EVENT_TRACING */
7076

7077
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7078
void perf_bp_event(struct perf_event *bp, void *data)
7079
{
7080 7081 7082
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7083
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7084

P
Peter Zijlstra 已提交
7085
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7086
		perf_swevent_event(bp, 1, &sample, regs);
7087 7088 7089
}
#endif

7090 7091 7092
/*
 * hrtimer based swevent callback
 */
7093

7094
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7095
{
7096 7097 7098 7099 7100
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7101

7102
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7103 7104 7105 7106

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7107
	event->pmu->read(event);
7108

7109
	perf_sample_data_init(&data, 0, event->hw.last_period);
7110 7111 7112
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7113
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7114
			if (__perf_event_overflow(event, 1, &data, regs))
7115 7116
				ret = HRTIMER_NORESTART;
	}
7117

7118 7119
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7120

7121
	return ret;
7122 7123
}

7124
static void perf_swevent_start_hrtimer(struct perf_event *event)
7125
{
7126
	struct hw_perf_event *hwc = &event->hw;
7127 7128 7129 7130
	s64 period;

	if (!is_sampling_event(event))
		return;
7131

7132 7133 7134 7135
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7136

7137 7138 7139 7140
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7141 7142
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7143
}
7144 7145

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7146
{
7147 7148
	struct hw_perf_event *hwc = &event->hw;

7149
	if (is_sampling_event(event)) {
7150
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7151
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7152 7153 7154

		hrtimer_cancel(&hwc->hrtimer);
	}
7155 7156
}

P
Peter Zijlstra 已提交
7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7177
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7178 7179 7180 7181
		event->attr.freq = 0;
	}
}

7182 7183 7184 7185 7186
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7187
{
7188 7189 7190
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7191
	now = local_clock();
7192 7193
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7194 7195
}

P
Peter Zijlstra 已提交
7196
static void cpu_clock_event_start(struct perf_event *event, int flags)
7197
{
P
Peter Zijlstra 已提交
7198
	local64_set(&event->hw.prev_count, local_clock());
7199 7200 7201
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7202
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7203
{
7204 7205 7206
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7207

P
Peter Zijlstra 已提交
7208 7209 7210 7211
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7212
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7213 7214 7215 7216 7217 7218 7219 7220 7221

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7222 7223 7224 7225
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7226

7227 7228 7229 7230 7231 7232 7233 7234
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7235 7236 7237 7238 7239 7240
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7241 7242
	perf_swevent_init_hrtimer(event);

7243
	return 0;
7244 7245
}

7246
static struct pmu perf_cpu_clock = {
7247 7248
	.task_ctx_nr	= perf_sw_context,

7249 7250
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7251
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7252 7253 7254 7255
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7256 7257 7258 7259 7260 7261 7262 7263
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7264
{
7265 7266
	u64 prev;
	s64 delta;
7267

7268 7269 7270 7271
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7272

P
Peter Zijlstra 已提交
7273
static void task_clock_event_start(struct perf_event *event, int flags)
7274
{
P
Peter Zijlstra 已提交
7275
	local64_set(&event->hw.prev_count, event->ctx->time);
7276 7277 7278
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7279
static void task_clock_event_stop(struct perf_event *event, int flags)
7280 7281 7282
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7283 7284 7285 7286 7287 7288
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7289
	perf_event_update_userpage(event);
7290

P
Peter Zijlstra 已提交
7291 7292 7293 7294 7295 7296
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7297 7298 7299 7300
}

static void task_clock_event_read(struct perf_event *event)
{
7301 7302 7303
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7304 7305 7306 7307 7308

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7309
{
7310 7311 7312 7313 7314 7315
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7316 7317 7318 7319 7320 7321
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7322 7323
	perf_swevent_init_hrtimer(event);

7324
	return 0;
L
Li Zefan 已提交
7325 7326
}

7327
static struct pmu perf_task_clock = {
7328 7329
	.task_ctx_nr	= perf_sw_context,

7330 7331
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7332
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7333 7334 7335 7336
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7337 7338
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7339

P
Peter Zijlstra 已提交
7340
static void perf_pmu_nop_void(struct pmu *pmu)
7341 7342
{
}
L
Li Zefan 已提交
7343

7344 7345 7346 7347
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7348
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7349
{
P
Peter Zijlstra 已提交
7350
	return 0;
L
Li Zefan 已提交
7351 7352
}

7353
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7354 7355

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7356
{
7357 7358 7359 7360 7361
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7362
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7363 7364
}

P
Peter Zijlstra 已提交
7365 7366
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7367 7368 7369 7370 7371 7372 7373
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7374 7375 7376
	perf_pmu_enable(pmu);
	return 0;
}
7377

P
Peter Zijlstra 已提交
7378
static void perf_pmu_cancel_txn(struct pmu *pmu)
7379
{
7380 7381 7382 7383 7384 7385 7386
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7387
	perf_pmu_enable(pmu);
7388 7389
}

7390 7391
static int perf_event_idx_default(struct perf_event *event)
{
7392
	return 0;
7393 7394
}

P
Peter Zijlstra 已提交
7395 7396 7397 7398
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7399
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7400
{
P
Peter Zijlstra 已提交
7401
	struct pmu *pmu;
7402

P
Peter Zijlstra 已提交
7403 7404
	if (ctxn < 0)
		return NULL;
7405

P
Peter Zijlstra 已提交
7406 7407 7408 7409
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7410

P
Peter Zijlstra 已提交
7411
	return NULL;
7412 7413
}

7414
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7415
{
7416 7417 7418 7419 7420 7421 7422
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7423 7424
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7425 7426 7427 7428 7429 7430
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7431

P
Peter Zijlstra 已提交
7432
	mutex_lock(&pmus_lock);
7433
	/*
P
Peter Zijlstra 已提交
7434
	 * Like a real lame refcount.
7435
	 */
7436 7437 7438
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7439
			goto out;
7440
		}
P
Peter Zijlstra 已提交
7441
	}
7442

7443
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7444 7445
out:
	mutex_unlock(&pmus_lock);
7446
}
P
Peter Zijlstra 已提交
7447
static struct idr pmu_idr;
7448

P
Peter Zijlstra 已提交
7449 7450 7451 7452 7453 7454 7455
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7456
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7457

7458 7459 7460 7461 7462 7463 7464 7465 7466 7467
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7468 7469
static DEFINE_MUTEX(mux_interval_mutex);

7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7489
	mutex_lock(&mux_interval_mutex);
7490 7491 7492
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7493 7494
	get_online_cpus();
	for_each_online_cpu(cpu) {
7495 7496 7497 7498
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7499 7500
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7501
	}
7502 7503
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7504 7505 7506

	return count;
}
7507
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7508

7509 7510 7511 7512
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7513
};
7514
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7515 7516 7517 7518

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7519
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7535
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7556
static struct lock_class_key cpuctx_mutex;
7557
static struct lock_class_key cpuctx_lock;
7558

7559
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7560
{
P
Peter Zijlstra 已提交
7561
	int cpu, ret;
7562

7563
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7564 7565 7566 7567
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7568

P
Peter Zijlstra 已提交
7569 7570 7571 7572 7573 7574
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7575 7576 7577
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7578 7579 7580 7581 7582
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7583 7584 7585 7586 7587 7588
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7589
skip_type:
P
Peter Zijlstra 已提交
7590 7591 7592
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7593

W
Wei Yongjun 已提交
7594
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7595 7596
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7597
		goto free_dev;
7598

P
Peter Zijlstra 已提交
7599 7600 7601 7602
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7603
		__perf_event_init_context(&cpuctx->ctx);
7604
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7605
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7606
		cpuctx->ctx.pmu = pmu;
7607

7608
		__perf_mux_hrtimer_init(cpuctx, cpu);
7609

7610
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7611
	}
7612

P
Peter Zijlstra 已提交
7613
got_cpu_context:
P
Peter Zijlstra 已提交
7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7625
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7626 7627
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7628
		}
7629
	}
7630

P
Peter Zijlstra 已提交
7631 7632 7633 7634 7635
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7636 7637 7638
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7639
	list_add_rcu(&pmu->entry, &pmus);
7640
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7641 7642
	ret = 0;
unlock:
7643 7644
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7645
	return ret;
P
Peter Zijlstra 已提交
7646

P
Peter Zijlstra 已提交
7647 7648 7649 7650
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7651 7652 7653 7654
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7655 7656 7657
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7658
}
7659
EXPORT_SYMBOL_GPL(perf_pmu_register);
7660

7661
void perf_pmu_unregister(struct pmu *pmu)
7662
{
7663 7664 7665
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7666

7667
	/*
P
Peter Zijlstra 已提交
7668 7669
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7670
	 */
7671
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7672
	synchronize_rcu();
7673

P
Peter Zijlstra 已提交
7674
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7675 7676
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7677 7678
	device_del(pmu->dev);
	put_device(pmu->dev);
7679
	free_pmu_context(pmu);
7680
}
7681
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7682

7683 7684
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7685
	struct perf_event_context *ctx = NULL;
7686 7687 7688 7689
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7690 7691

	if (event->group_leader != event) {
7692 7693 7694 7695 7696 7697
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7698 7699 7700
		BUG_ON(!ctx);
	}

7701 7702
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7703 7704 7705 7706

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7707 7708 7709 7710 7711 7712
	if (ret)
		module_put(pmu->module);

	return ret;
}

7713
static struct pmu *perf_init_event(struct perf_event *event)
7714 7715 7716
{
	struct pmu *pmu = NULL;
	int idx;
7717
	int ret;
7718 7719

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7720 7721 7722 7723

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7724
	if (pmu) {
7725
		ret = perf_try_init_event(pmu, event);
7726 7727
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7728
		goto unlock;
7729
	}
P
Peter Zijlstra 已提交
7730

7731
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7732
		ret = perf_try_init_event(pmu, event);
7733
		if (!ret)
P
Peter Zijlstra 已提交
7734
			goto unlock;
7735

7736 7737
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7738
			goto unlock;
7739
		}
7740
	}
P
Peter Zijlstra 已提交
7741 7742
	pmu = ERR_PTR(-ENOENT);
unlock:
7743
	srcu_read_unlock(&pmus_srcu, idx);
7744

7745
	return pmu;
7746 7747
}

7748 7749 7750 7751 7752 7753 7754 7755 7756
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7757 7758
static void account_event(struct perf_event *event)
{
7759 7760
	bool inc = false;

7761 7762 7763
	if (event->parent)
		return;

7764
	if (event->attach_state & PERF_ATTACH_TASK)
7765
		inc = true;
7766 7767 7768 7769 7770 7771
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7772 7773 7774 7775
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7776 7777
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
7778
		inc = true;
7779
	}
7780
	if (has_branch_stack(event))
7781
		inc = true;
7782
	if (is_cgroup_event(event))
7783 7784 7785
		inc = true;

	if (inc)
7786
		static_key_slow_inc(&perf_sched_events.key);
7787 7788

	account_event_cpu(event, event->cpu);
7789 7790
}

T
Thomas Gleixner 已提交
7791
/*
7792
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7793
 */
7794
static struct perf_event *
7795
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7796 7797 7798
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7799
		 perf_overflow_handler_t overflow_handler,
7800
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7801
{
P
Peter Zijlstra 已提交
7802
	struct pmu *pmu;
7803 7804
	struct perf_event *event;
	struct hw_perf_event *hwc;
7805
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7806

7807 7808 7809 7810 7811
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7812
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7813
	if (!event)
7814
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7815

7816
	/*
7817
	 * Single events are their own group leaders, with an
7818 7819 7820
	 * empty sibling list:
	 */
	if (!group_leader)
7821
		group_leader = event;
7822

7823 7824
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7825

7826 7827 7828
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7829
	INIT_LIST_HEAD(&event->rb_entry);
7830
	INIT_LIST_HEAD(&event->active_entry);
7831 7832
	INIT_HLIST_NODE(&event->hlist_entry);

7833

7834
	init_waitqueue_head(&event->waitq);
7835
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7836

7837
	mutex_init(&event->mmap_mutex);
7838

7839
	atomic_long_set(&event->refcount, 1);
7840 7841 7842 7843 7844
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7845

7846
	event->parent		= parent_event;
7847

7848
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7849
	event->id		= atomic64_inc_return(&perf_event_id);
7850

7851
	event->state		= PERF_EVENT_STATE_INACTIVE;
7852

7853 7854 7855
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7856 7857 7858
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7859
		 */
7860
		event->hw.target = task;
7861 7862
	}

7863 7864 7865 7866
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7867
	if (!overflow_handler && parent_event) {
7868
		overflow_handler = parent_event->overflow_handler;
7869 7870
		context = parent_event->overflow_handler_context;
	}
7871

7872
	event->overflow_handler	= overflow_handler;
7873
	event->overflow_handler_context = context;
7874

J
Jiri Olsa 已提交
7875
	perf_event__state_init(event);
7876

7877
	pmu = NULL;
7878

7879
	hwc = &event->hw;
7880
	hwc->sample_period = attr->sample_period;
7881
	if (attr->freq && attr->sample_freq)
7882
		hwc->sample_period = 1;
7883
	hwc->last_period = hwc->sample_period;
7884

7885
	local64_set(&hwc->period_left, hwc->sample_period);
7886

7887
	/*
7888
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7889
	 */
7890
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7891
		goto err_ns;
7892 7893 7894

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7895

7896 7897 7898 7899 7900 7901
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7902
	pmu = perf_init_event(event);
7903
	if (!pmu)
7904 7905
		goto err_ns;
	else if (IS_ERR(pmu)) {
7906
		err = PTR_ERR(pmu);
7907
		goto err_ns;
I
Ingo Molnar 已提交
7908
	}
7909

7910 7911 7912 7913
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7914
	if (!event->parent) {
7915 7916
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7917
			if (err)
7918
				goto err_per_task;
7919
		}
7920
	}
7921

7922
	return event;
7923

7924 7925 7926
err_per_task:
	exclusive_event_destroy(event);

7927 7928 7929
err_pmu:
	if (event->destroy)
		event->destroy(event);
7930
	module_put(pmu->module);
7931
err_ns:
7932 7933
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7934 7935 7936 7937 7938
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7939 7940
}

7941 7942
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7943 7944
{
	u32 size;
7945
	int ret;
7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7970 7971 7972
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7973 7974
	 */
	if (size > sizeof(*attr)) {
7975 7976 7977
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7978

7979 7980
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7981

7982
		for (; addr < end; addr++) {
7983 7984 7985 7986 7987 7988
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7989
		size = sizeof(*attr);
7990 7991 7992 7993 7994 7995
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7996
	if (attr->__reserved_1)
7997 7998 7999 8000 8001 8002 8003 8004
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8033 8034
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8035 8036
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8037
	}
8038

8039
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8040
		ret = perf_reg_validate(attr->sample_regs_user);
8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8059

8060 8061
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8062 8063 8064 8065 8066 8067 8068 8069 8070
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8071 8072
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8073
{
8074
	struct ring_buffer *rb = NULL;
8075 8076
	int ret = -EINVAL;

8077
	if (!output_event)
8078 8079
		goto set;

8080 8081
	/* don't allow circular references */
	if (event == output_event)
8082 8083
		goto out;

8084 8085 8086 8087 8088 8089 8090
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8091
	 * If its not a per-cpu rb, it must be the same task.
8092 8093 8094 8095
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8096 8097 8098 8099 8100 8101
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8102 8103 8104 8105 8106 8107 8108
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8109
set:
8110
	mutex_lock(&event->mmap_mutex);
8111 8112 8113
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8114

8115
	if (output_event) {
8116 8117 8118
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8119
			goto unlock;
8120 8121
	}

8122
	ring_buffer_attach(event, rb);
8123

8124
	ret = 0;
8125 8126 8127
unlock:
	mutex_unlock(&event->mmap_mutex);

8128 8129 8130 8131
out:
	return ret;
}

P
Peter Zijlstra 已提交
8132 8133 8134 8135 8136 8137 8138 8139 8140
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8178
/**
8179
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8180
 *
8181
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8182
 * @pid:		target pid
I
Ingo Molnar 已提交
8183
 * @cpu:		target cpu
8184
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8185
 */
8186 8187
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8188
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8189
{
8190 8191
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8192
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8193
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8194
	struct file *event_file = NULL;
8195
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8196
	struct task_struct *task = NULL;
8197
	struct pmu *pmu;
8198
	int event_fd;
8199
	int move_group = 0;
8200
	int err;
8201
	int f_flags = O_RDWR;
8202
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8203

8204
	/* for future expandability... */
S
Stephane Eranian 已提交
8205
	if (flags & ~PERF_FLAG_ALL)
8206 8207
		return -EINVAL;

8208 8209 8210
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8211

8212 8213 8214 8215 8216
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8217
	if (attr.freq) {
8218
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8219
			return -EINVAL;
8220 8221 8222
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8223 8224
	}

S
Stephane Eranian 已提交
8225 8226 8227 8228 8229 8230 8231 8232 8233
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8234 8235 8236 8237
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8238 8239 8240
	if (event_fd < 0)
		return event_fd;

8241
	if (group_fd != -1) {
8242 8243
		err = perf_fget_light(group_fd, &group);
		if (err)
8244
			goto err_fd;
8245
		group_leader = group.file->private_data;
8246 8247 8248 8249 8250 8251
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8252
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8253 8254 8255 8256 8257 8258 8259
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8260 8261 8262 8263 8264 8265
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8266 8267
	get_online_cpus();

8268 8269 8270
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8271
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8272
				 NULL, NULL, cgroup_fd);
8273 8274
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8275
		goto err_cpus;
8276 8277
	}

8278 8279 8280 8281 8282 8283 8284
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8285 8286
	account_event(event);

8287 8288 8289 8290 8291
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8292

8293 8294 8295 8296 8297 8298
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8321 8322 8323 8324

	/*
	 * Get the target context (task or percpu):
	 */
8325
	ctx = find_get_context(pmu, task, event);
8326 8327
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8328
		goto err_alloc;
8329 8330
	}

8331 8332 8333 8334 8335
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8336 8337 8338 8339 8340
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8341
	/*
8342
	 * Look up the group leader (we will attach this event to it):
8343
	 */
8344
	if (group_leader) {
8345
		err = -EINVAL;
8346 8347

		/*
I
Ingo Molnar 已提交
8348 8349 8350 8351
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8352
			goto err_context;
8353 8354 8355 8356 8357

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8358 8359 8360
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8361
		 */
8362
		if (move_group) {
8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8376 8377 8378 8379 8380 8381
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8382 8383 8384
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8385
		if (attr.exclusive || attr.pinned)
8386
			goto err_context;
8387 8388 8389 8390 8391
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8392
			goto err_context;
8393
	}
T
Thomas Gleixner 已提交
8394

8395 8396
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8397 8398
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8399
		goto err_context;
8400
	}
8401

8402
	if (move_group) {
P
Peter Zijlstra 已提交
8403
		gctx = group_leader->ctx;
8404 8405 8406 8407 8408
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8409 8410 8411 8412 8413
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8414 8415 8416 8417 8418 8419 8420
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8421

8422 8423 8424
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8425

8426 8427 8428
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8429 8430 8431 8432
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8433
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8434

8435 8436
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8437
			perf_remove_from_context(sibling, false);
8438 8439 8440
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8441 8442 8443 8444
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8445
		synchronize_rcu();
P
Peter Zijlstra 已提交
8446

8447 8448 8449 8450 8451 8452 8453 8454 8455 8456
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8457 8458
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8459
			perf_event__state_init(sibling);
8460
			perf_install_in_context(ctx, sibling, sibling->cpu);
8461 8462
			get_ctx(ctx);
		}
8463 8464 8465 8466 8467 8468 8469 8470 8471

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8472

8473 8474 8475 8476 8477 8478
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8479 8480
	}

8481 8482 8483 8484 8485 8486 8487 8488 8489
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
8490 8491
	event->owner = current;

8492
	perf_install_in_context(ctx, event, event->cpu);
8493
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8494

8495
	if (move_group)
P
Peter Zijlstra 已提交
8496
		mutex_unlock(&gctx->mutex);
8497
	mutex_unlock(&ctx->mutex);
8498

8499 8500
	put_online_cpus();

8501 8502 8503
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8504

8505 8506 8507 8508 8509 8510
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8511
	fdput(group);
8512 8513
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8514

8515 8516 8517 8518 8519 8520
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8521
err_context:
8522
	perf_unpin_context(ctx);
8523
	put_ctx(ctx);
8524
err_alloc:
8525
	free_event(event);
8526
err_cpus:
8527
	put_online_cpus();
8528
err_task:
P
Peter Zijlstra 已提交
8529 8530
	if (task)
		put_task_struct(task);
8531
err_group_fd:
8532
	fdput(group);
8533 8534
err_fd:
	put_unused_fd(event_fd);
8535
	return err;
T
Thomas Gleixner 已提交
8536 8537
}

8538 8539 8540 8541 8542
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8543
 * @task: task to profile (NULL for percpu)
8544 8545 8546
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8547
				 struct task_struct *task,
8548 8549
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8550 8551
{
	struct perf_event_context *ctx;
8552
	struct perf_event *event;
8553
	int err;
8554

8555 8556 8557
	/*
	 * Get the target context (task or percpu):
	 */
8558

8559
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8560
				 overflow_handler, context, -1);
8561 8562 8563 8564
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8565

8566
	/* Mark owner so we could distinguish it from user events. */
8567
	event->owner = TASK_TOMBSTONE;
8568

8569 8570
	account_event(event);

8571
	ctx = find_get_context(event->pmu, task, event);
8572 8573
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8574
		goto err_free;
8575
	}
8576 8577 8578

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8579 8580 8581 8582 8583 8584 8585 8586
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8587
	perf_install_in_context(ctx, event, cpu);
8588
	perf_unpin_context(ctx);
8589 8590 8591 8592
	mutex_unlock(&ctx->mutex);

	return event;

8593 8594 8595
err_free:
	free_event(event);
err:
8596
	return ERR_PTR(err);
8597
}
8598
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8599

8600 8601 8602 8603 8604 8605 8606 8607 8608 8609
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8610 8611 8612 8613 8614
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8615 8616
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8617
		perf_remove_from_context(event, false);
8618
		unaccount_event_cpu(event, src_cpu);
8619
		put_ctx(src_ctx);
8620
		list_add(&event->migrate_entry, &events);
8621 8622
	}

8623 8624 8625
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8626 8627
	synchronize_rcu();

8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8652 8653
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8654 8655
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8656
		account_event_cpu(event, dst_cpu);
8657 8658 8659 8660
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8661
	mutex_unlock(&src_ctx->mutex);
8662 8663 8664
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8665
static void sync_child_event(struct perf_event *child_event,
8666
			       struct task_struct *child)
8667
{
8668
	struct perf_event *parent_event = child_event->parent;
8669
	u64 child_val;
8670

8671 8672
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8673

P
Peter Zijlstra 已提交
8674
	child_val = perf_event_count(child_event);
8675 8676 8677 8678

	/*
	 * Add back the child's count to the parent's count:
	 */
8679
	atomic64_add(child_val, &parent_event->child_count);
8680 8681 8682 8683
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8684 8685

	/*
8686
	 * Remove this event from the parent's list
8687
	 */
8688 8689 8690 8691
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8692

8693 8694 8695 8696 8697 8698
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8699
	/*
8700
	 * Release the parent event, if this was the last
8701 8702
	 * reference to it.
	 */
8703
	put_event(parent_event);
8704 8705
}

8706
static void
8707 8708
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8709
			 struct task_struct *child)
8710
{
8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
8723 8724 8725 8726 8727 8728 8729
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

	if (!!child_event->parent)
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
	raw_spin_unlock_irq(&child_ctx->lock);
8730

8731
	/*
8732
	 * It can happen that the parent exits first, and has events
8733
	 * that are still around due to the child reference. These
8734
	 * events need to be zapped.
8735
	 */
8736
	if (child_event->parent) {
8737 8738
		sync_child_event(child_event, child);
		free_event(child_event);
8739 8740 8741
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8742
	}
8743 8744
}

P
Peter Zijlstra 已提交
8745
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8746
{
8747
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8748 8749 8750
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
8751

8752
	child_ctx = perf_pin_task_context(child, ctxn);
8753
	if (!child_ctx)
8754 8755
		return;

8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782
	/*
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
	 *
	 * We can recurse on the same lock type through:
	 *
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock(&child_ctx->mutex);

	/*
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
	 */
	raw_spin_lock_irq(&child_ctx->lock);
8783
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8784 8785

	/*
8786 8787
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
8788
	 */
8789 8790 8791 8792
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
8793

8794
	clone_ctx = unclone_ctx(child_ctx);
8795
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
8796

8797 8798
	if (clone_ctx)
		put_ctx(clone_ctx);
8799

P
Peter Zijlstra 已提交
8800
	/*
8801 8802 8803
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8804
	 */
8805
	perf_event_task(child, child_ctx, 0);
8806

8807
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8808
		__perf_event_exit_task(child_event, child_ctx, child);
8809

8810 8811 8812
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8813 8814
}

P
Peter Zijlstra 已提交
8815 8816 8817 8818 8819
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8820
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8821 8822
	int ctxn;

P
Peter Zijlstra 已提交
8823 8824 8825 8826 8827 8828 8829 8830 8831 8832
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
8833
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
8834 8835 8836
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8837 8838
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8839 8840 8841 8842 8843 8844 8845 8846

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8847 8848
}

8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8861
	put_event(parent);
8862

P
Peter Zijlstra 已提交
8863
	raw_spin_lock_irq(&ctx->lock);
8864
	perf_group_detach(event);
8865
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8866
	raw_spin_unlock_irq(&ctx->lock);
8867 8868 8869
	free_event(event);
}

8870
/*
P
Peter Zijlstra 已提交
8871
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8872
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8873 8874 8875
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8876
 */
8877
void perf_event_free_task(struct task_struct *task)
8878
{
P
Peter Zijlstra 已提交
8879
	struct perf_event_context *ctx;
8880
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8881
	int ctxn;
8882

P
Peter Zijlstra 已提交
8883 8884 8885 8886
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8887

P
Peter Zijlstra 已提交
8888
		mutex_lock(&ctx->mutex);
8889
again:
P
Peter Zijlstra 已提交
8890 8891 8892
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8893

P
Peter Zijlstra 已提交
8894 8895 8896
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8897

P
Peter Zijlstra 已提交
8898 8899 8900
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8901

P
Peter Zijlstra 已提交
8902
		mutex_unlock(&ctx->mutex);
8903

P
Peter Zijlstra 已提交
8904 8905
		put_ctx(ctx);
	}
8906 8907
}

8908 8909 8910 8911 8912 8913 8914 8915
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8916
struct file *perf_event_get(unsigned int fd)
8917
{
8918
	struct file *file;
8919

8920 8921 8922
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
8923

8924 8925 8926 8927
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
8928

8929
	return file;
8930 8931 8932 8933 8934 8935 8936 8937 8938 8939
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8951
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8952
	struct perf_event *child_event;
8953
	unsigned long flags;
P
Peter Zijlstra 已提交
8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8966
					   child,
P
Peter Zijlstra 已提交
8967
					   group_leader, parent_event,
8968
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8969 8970
	if (IS_ERR(child_event))
		return child_event;
8971

8972 8973
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8974 8975 8976 8977
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8978 8979 8980 8981 8982 8983 8984
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8985
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9002 9003
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9004

9005 9006 9007 9008
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9009
	perf_event__id_header_size(child_event);
9010

P
Peter Zijlstra 已提交
9011 9012 9013
	/*
	 * Link it up in the child's context:
	 */
9014
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9015
	add_event_to_ctx(child_event, child_ctx);
9016
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9050 9051 9052 9053 9054
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9055
		   struct task_struct *child, int ctxn,
9056 9057 9058
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9059
	struct perf_event_context *child_ctx;
9060 9061 9062 9063

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9064 9065
	}

9066
	child_ctx = child->perf_event_ctxp[ctxn];
9067 9068 9069 9070 9071 9072 9073
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9074

9075
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9076 9077
		if (!child_ctx)
			return -ENOMEM;
9078

P
Peter Zijlstra 已提交
9079
		child->perf_event_ctxp[ctxn] = child_ctx;
9080 9081 9082 9083 9084 9085 9086 9087 9088
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9089 9090
}

9091
/*
9092
 * Initialize the perf_event context in task_struct
9093
 */
9094
static int perf_event_init_context(struct task_struct *child, int ctxn)
9095
{
9096
	struct perf_event_context *child_ctx, *parent_ctx;
9097 9098
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9099
	struct task_struct *parent = current;
9100
	int inherited_all = 1;
9101
	unsigned long flags;
9102
	int ret = 0;
9103

P
Peter Zijlstra 已提交
9104
	if (likely(!parent->perf_event_ctxp[ctxn]))
9105 9106
		return 0;

9107
	/*
9108 9109
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9110
	 */
P
Peter Zijlstra 已提交
9111
	parent_ctx = perf_pin_task_context(parent, ctxn);
9112 9113
	if (!parent_ctx)
		return 0;
9114

9115 9116 9117 9118 9119 9120 9121
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9122 9123 9124 9125
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9126
	mutex_lock(&parent_ctx->mutex);
9127 9128 9129 9130 9131

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9132
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9133 9134
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9135 9136 9137
		if (ret)
			break;
	}
9138

9139 9140 9141 9142 9143 9144 9145 9146 9147
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9148
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9149 9150
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9151
		if (ret)
9152
			break;
9153 9154
	}

9155 9156 9157
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9158
	child_ctx = child->perf_event_ctxp[ctxn];
9159

9160
	if (child_ctx && inherited_all) {
9161 9162 9163
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9164 9165 9166
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9167
		 */
P
Peter Zijlstra 已提交
9168
		cloned_ctx = parent_ctx->parent_ctx;
9169 9170
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9171
			child_ctx->parent_gen = parent_ctx->parent_gen;
9172 9173 9174 9175 9176
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9177 9178
	}

P
Peter Zijlstra 已提交
9179
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9180
	mutex_unlock(&parent_ctx->mutex);
9181

9182
	perf_unpin_context(parent_ctx);
9183
	put_ctx(parent_ctx);
9184

9185
	return ret;
9186 9187
}

P
Peter Zijlstra 已提交
9188 9189 9190 9191 9192 9193 9194
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9195 9196 9197 9198
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9199 9200
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9201 9202
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9203
			return ret;
P
Peter Zijlstra 已提交
9204
		}
P
Peter Zijlstra 已提交
9205 9206 9207 9208 9209
	}

	return 0;
}

9210 9211
static void __init perf_event_init_all_cpus(void)
{
9212
	struct swevent_htable *swhash;
9213 9214 9215
	int cpu;

	for_each_possible_cpu(cpu) {
9216 9217
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9218
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9219 9220 9221
	}
}

9222
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9223
{
P
Peter Zijlstra 已提交
9224
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9225

9226
	mutex_lock(&swhash->hlist_mutex);
9227
	if (swhash->hlist_refcount > 0) {
9228 9229
		struct swevent_hlist *hlist;

9230 9231 9232
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9233
	}
9234
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9235 9236
}

9237
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9238
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9239
{
P
Peter Zijlstra 已提交
9240
	struct perf_event_context *ctx = __info;
9241 9242
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
9243

9244 9245 9246 9247
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
		__perf_remove_from_context(event, cpuctx, ctx, (void *)(unsigned long)true);
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
9248
}
P
Peter Zijlstra 已提交
9249 9250 9251 9252 9253 9254 9255 9256 9257

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9258
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9259 9260 9261 9262 9263 9264 9265 9266

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9267
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9268
{
P
Peter Zijlstra 已提交
9269
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9270 9271
}
#else
9272
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9273 9274
#endif

P
Peter Zijlstra 已提交
9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9295
static int
T
Thomas Gleixner 已提交
9296 9297 9298 9299
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9300
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9301 9302

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9303
	case CPU_DOWN_FAILED:
9304
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9305 9306
		break;

P
Peter Zijlstra 已提交
9307
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9308
	case CPU_DOWN_PREPARE:
9309
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9310 9311 9312 9313 9314 9315 9316 9317
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9318
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9319
{
9320 9321
	int ret;

P
Peter Zijlstra 已提交
9322 9323
	idr_init(&pmu_idr);

9324
	perf_event_init_all_cpus();
9325
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9326 9327 9328
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9329 9330
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9331
	register_reboot_notifier(&perf_reboot_notifier);
9332 9333 9334

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9335 9336 9337

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9338 9339 9340 9341 9342 9343 9344

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9345
}
P
Peter Zijlstra 已提交
9346

9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9386 9387

#ifdef CONFIG_CGROUP_PERF
9388 9389
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9390 9391 9392
{
	struct perf_cgroup *jc;

9393
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9406
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9407
{
9408 9409
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9410 9411 9412 9413 9414 9415 9416
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9417
	rcu_read_lock();
S
Stephane Eranian 已提交
9418
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9419
	rcu_read_unlock();
S
Stephane Eranian 已提交
9420 9421 9422
	return 0;
}

9423
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9424
{
9425
	struct task_struct *task;
9426
	struct cgroup_subsys_state *css;
9427

9428
	cgroup_taskset_for_each(task, css, tset)
9429
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9430 9431
}

9432
struct cgroup_subsys perf_event_cgrp_subsys = {
9433 9434
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9435
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9436 9437
};
#endif /* CONFIG_CGROUP_PERF */