core.c 186.7 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
122 123
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
124

125 126 127 128 129 130 131
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

132 133 134 135 136 137
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
138 139 140 141
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
142
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
143
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
144
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
145

146 147 148
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
149
static atomic_t nr_freq_events __read_mostly;
150

P
Peter Zijlstra 已提交
151 152 153 154
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

155
/*
156
 * perf event paranoia level:
157 158
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
159
 *   1 - disallow cpu events for unpriv
160
 *   2 - disallow kernel profiling for unpriv
161
 */
162
int sysctl_perf_event_paranoid __read_mostly = 1;
163

164 165
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
166 167

/*
168
 * max perf event sample rate
169
 */
170 171 172 173 174 175 176 177 178
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
179 180
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
181 182 183 184 185 186

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
187
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
188
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
189
}
P
Peter Zijlstra 已提交
190

191 192
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
193 194 195 196
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
197
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
198 199 200 201 202

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
221 222 223

	return 0;
}
224

225 226 227 228 229 230 231
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
232
static DEFINE_PER_CPU(u64, running_sample_length);
233

234
static void perf_duration_warn(struct irq_work *w)
235
{
236
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
237
	u64 avg_local_sample_len;
238
	u64 local_samples_len;
239 240 241 242 243 244 245

	local_samples_len = __get_cpu_var(running_sample_length);
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
246
			avg_local_sample_len, allowed_ns >> 1,
247 248 249 250 251 252 253
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
254
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
255 256
	u64 avg_local_sample_len;
	u64 local_samples_len;
257

P
Peter Zijlstra 已提交
258
	if (allowed_ns == 0)
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
274
	if (avg_local_sample_len <= allowed_ns)
275 276 277 278 279 280 281 282 283 284
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
285

286 287 288 289 290 291
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
292 293
}

294
static atomic64_t perf_event_id;
295

296 297 298 299
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
300 301 302 303 304
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
305

306
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
307

308
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
309
{
310
	return "pmu";
T
Thomas Gleixner 已提交
311 312
}

313 314 315 316 317
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
318 319 320 321 322 323
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
340 341
#ifdef CONFIG_CGROUP_PERF

342 343 344 345 346 347 348 349 350 351 352
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
353
	struct perf_cgroup_info	__percpu *info;
354 355
};

356 357 358 359 360
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
361 362 363
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
364
	return container_of(task_css(task, perf_event_cgrp_id),
365
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
366 367 368 369 370 371 372 373
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
438 439
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
440
	/*
441 442
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
443
	 */
444
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
445 446
		return;

447 448 449 450 451 452
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
453 454 455
}

static inline void
456 457
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
458 459 460 461
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

462 463 464 465 466 467
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
468 469 470 471
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
472
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
505 506
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
507 508 509 510 511 512 513 514 515

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
516 517
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
518 519 520 521 522 523 524 525 526 527 528

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
529
				WARN_ON_ONCE(cpuctx->cgrp);
530 531 532 533
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
534 535 536 537
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
538 539
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
540 541 542 543 544 545 546 547
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

548 549
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
550
{
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
573 574
}

575 576
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
577
{
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
596 597 598 599 600 601 602 603
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
604 605
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
606

607
	if (!f.file)
S
Stephane Eranian 已提交
608 609
		return -EBADF;

610
	css = css_tryget_from_dir(f.file->f_dentry, &perf_event_cgrp_subsys);
611 612 613 614
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
628
out:
629
	fdput(f);
S
Stephane Eranian 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

703 704
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
705 706 707
{
}

708 709
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
710 711 712 713 714 715 716 717 718 719 720
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
721 722
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
816
	int timer;
817 818 819 820 821

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

822 823 824 825 826 827 828 829 830
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
853
void perf_pmu_disable(struct pmu *pmu)
854
{
P
Peter Zijlstra 已提交
855 856 857
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
858 859
}

P
Peter Zijlstra 已提交
860
void perf_pmu_enable(struct pmu *pmu)
861
{
P
Peter Zijlstra 已提交
862 863 864
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
865 866
}

867 868 869 870 871 872 873
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
874
static void perf_pmu_rotate_start(struct pmu *pmu)
875
{
P
Peter Zijlstra 已提交
876
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
877
	struct list_head *head = &__get_cpu_var(rotation_list);
878

879
	WARN_ON(!irqs_disabled());
880

881
	if (list_empty(&cpuctx->rotation_list))
882
		list_add(&cpuctx->rotation_list, head);
883 884
}

885
static void get_ctx(struct perf_event_context *ctx)
886
{
887
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
888 889
}

890
static void put_ctx(struct perf_event_context *ctx)
891
{
892 893 894
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
895 896
		if (ctx->task)
			put_task_struct(ctx->task);
897
		kfree_rcu(ctx, rcu_head);
898
	}
899 900
}

901
static void unclone_ctx(struct perf_event_context *ctx)
902 903 904 905 906
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
907
	ctx->generation++;
908 909
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

932
/*
933
 * If we inherit events we want to return the parent event id
934 935
 * to userspace.
 */
936
static u64 primary_event_id(struct perf_event *event)
937
{
938
	u64 id = event->id;
939

940 941
	if (event->parent)
		id = event->parent->id;
942 943 944 945

	return id;
}

946
/*
947
 * Get the perf_event_context for a task and lock it.
948 949 950
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
951
static struct perf_event_context *
P
Peter Zijlstra 已提交
952
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
953
{
954
	struct perf_event_context *ctx;
955

P
Peter Zijlstra 已提交
956
retry:
957 958 959 960 961 962 963 964 965 966 967
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
968
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
969 970 971 972
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
973
		 * perf_event_task_sched_out, though the
974 975 976 977 978 979
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
980
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
981
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
982
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
983 984
			rcu_read_unlock();
			preempt_enable();
985 986
			goto retry;
		}
987 988

		if (!atomic_inc_not_zero(&ctx->refcount)) {
989
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
990 991
			ctx = NULL;
		}
992 993
	}
	rcu_read_unlock();
994
	preempt_enable();
995 996 997 998 999 1000 1001 1002
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1003 1004
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1005
{
1006
	struct perf_event_context *ctx;
1007 1008
	unsigned long flags;

P
Peter Zijlstra 已提交
1009
	ctx = perf_lock_task_context(task, ctxn, &flags);
1010 1011
	if (ctx) {
		++ctx->pin_count;
1012
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1013 1014 1015 1016
	}
	return ctx;
}

1017
static void perf_unpin_context(struct perf_event_context *ctx)
1018 1019 1020
{
	unsigned long flags;

1021
	raw_spin_lock_irqsave(&ctx->lock, flags);
1022
	--ctx->pin_count;
1023
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1024 1025
}

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1037 1038 1039
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1040 1041 1042 1043

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1044 1045 1046
	return ctx ? ctx->time : 0;
}

1047 1048
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1049
 * The caller of this function needs to hold the ctx->lock.
1050 1051 1052 1053 1054 1055 1056 1057 1058
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1070
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1071 1072
	else if (ctx->is_active)
		run_end = ctx->time;
1073 1074 1075 1076
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1077 1078 1079 1080

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1081
		run_end = perf_event_time(event);
1082 1083

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1084

1085 1086
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1099 1100 1101 1102 1103 1104 1105 1106 1107
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1108
/*
1109
 * Add a event from the lists for its context.
1110 1111
 * Must be called with ctx->mutex and ctx->lock held.
 */
1112
static void
1113
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1114
{
1115 1116
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1117 1118

	/*
1119 1120 1121
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1122
	 */
1123
	if (event->group_leader == event) {
1124 1125
		struct list_head *list;

1126 1127 1128
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1129 1130
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1131
	}
P
Peter Zijlstra 已提交
1132

1133
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1134 1135
		ctx->nr_cgroups++;

1136 1137 1138
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1139
	list_add_rcu(&event->event_entry, &ctx->event_list);
1140
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1141
		perf_pmu_rotate_start(ctx->pmu);
1142 1143
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1144
		ctx->nr_stat++;
1145 1146

	ctx->generation++;
1147 1148
}

J
Jiri Olsa 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1197 1198 1199 1200 1201 1202
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1203 1204 1205
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1206 1207 1208
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1209 1210 1211
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1212 1213 1214
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1215 1216 1217 1218 1219 1220 1221 1222 1223
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1224 1225 1226 1227 1228 1229
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1230 1231 1232
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1233 1234 1235 1236 1237 1238 1239 1240 1241
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1242
	event->id_header_size = size;
1243 1244
}

1245 1246
static void perf_group_attach(struct perf_event *event)
{
1247
	struct perf_event *group_leader = event->group_leader, *pos;
1248

P
Peter Zijlstra 已提交
1249 1250 1251 1252 1253 1254
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1266 1267 1268 1269 1270

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1271 1272
}

1273
/*
1274
 * Remove a event from the lists for its context.
1275
 * Must be called with ctx->mutex and ctx->lock held.
1276
 */
1277
static void
1278
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1279
{
1280
	struct perf_cpu_context *cpuctx;
1281 1282 1283 1284
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1285
		return;
1286 1287 1288

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1289
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1290
		ctx->nr_cgroups--;
1291 1292 1293 1294 1295 1296 1297 1298 1299
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1300

1301 1302 1303
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1304 1305
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1306
		ctx->nr_stat--;
1307

1308
	list_del_rcu(&event->event_entry);
1309

1310 1311
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1312

1313
	update_group_times(event);
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1324 1325

	ctx->generation++;
1326 1327
}

1328
static void perf_group_detach(struct perf_event *event)
1329 1330
{
	struct perf_event *sibling, *tmp;
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1347
		goto out;
1348 1349 1350 1351
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1352

1353
	/*
1354 1355
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1356
	 * to whatever list we are on.
1357
	 */
1358
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1359 1360
		if (list)
			list_move_tail(&sibling->group_entry, list);
1361
		sibling->group_leader = sibling;
1362 1363 1364

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1365
	}
1366 1367 1368 1369 1370 1371

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1372 1373
}

1374 1375 1376
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1377 1378
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1379 1380
}

1381 1382
static void
event_sched_out(struct perf_event *event,
1383
		  struct perf_cpu_context *cpuctx,
1384
		  struct perf_event_context *ctx)
1385
{
1386
	u64 tstamp = perf_event_time(event);
1387 1388 1389 1390 1391 1392 1393 1394 1395
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1396
		delta = tstamp - event->tstamp_stopped;
1397
		event->tstamp_running += delta;
1398
		event->tstamp_stopped = tstamp;
1399 1400
	}

1401
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1402
		return;
1403

1404 1405
	perf_pmu_disable(event->pmu);

1406 1407 1408 1409
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1410
	}
1411
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1412
	event->pmu->del(event, 0);
1413
	event->oncpu = -1;
1414

1415
	if (!is_software_event(event))
1416 1417
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1418 1419
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1420
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1421
		cpuctx->exclusive = 0;
1422 1423

	perf_pmu_enable(event->pmu);
1424 1425
}

1426
static void
1427
group_sched_out(struct perf_event *group_event,
1428
		struct perf_cpu_context *cpuctx,
1429
		struct perf_event_context *ctx)
1430
{
1431
	struct perf_event *event;
1432
	int state = group_event->state;
1433

1434
	event_sched_out(group_event, cpuctx, ctx);
1435 1436 1437 1438

	/*
	 * Schedule out siblings (if any):
	 */
1439 1440
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1441

1442
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1443 1444 1445
		cpuctx->exclusive = 0;
}

1446 1447 1448 1449 1450
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1451
/*
1452
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1453
 *
1454
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1455 1456
 * remove it from the context list.
 */
1457
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1458
{
1459 1460
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1461
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1462
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1463

1464
	raw_spin_lock(&ctx->lock);
1465
	event_sched_out(event, cpuctx, ctx);
1466 1467
	if (re->detach_group)
		perf_group_detach(event);
1468
	list_del_event(event, ctx);
1469 1470 1471 1472
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1473
	raw_spin_unlock(&ctx->lock);
1474 1475

	return 0;
T
Thomas Gleixner 已提交
1476 1477 1478 1479
}


/*
1480
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1481
 *
1482
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1483
 * call when the task is on a CPU.
1484
 *
1485 1486
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1487 1488
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1489
 * When called from perf_event_exit_task, it's OK because the
1490
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1491
 */
1492
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1493
{
1494
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1495
	struct task_struct *task = ctx->task;
1496 1497 1498 1499
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1500

1501 1502
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1503 1504
	if (!task) {
		/*
1505
		 * Per cpu events are removed via an smp call and
1506
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1507
		 */
1508
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1509 1510 1511 1512
		return;
	}

retry:
1513
	if (!task_function_call(task, __perf_remove_from_context, &re))
1514
		return;
T
Thomas Gleixner 已提交
1515

1516
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1517
	/*
1518 1519
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1520
	 */
1521
	if (ctx->is_active) {
1522
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1523 1524 1525 1526
		goto retry;
	}

	/*
1527 1528
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1529
	 */
1530 1531
	if (detach_group)
		perf_group_detach(event);
1532
	list_del_event(event, ctx);
1533
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1534 1535
}

1536
/*
1537
 * Cross CPU call to disable a performance event
1538
 */
1539
int __perf_event_disable(void *info)
1540
{
1541 1542
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1543
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1544 1545

	/*
1546 1547
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1548 1549 1550
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1551
	 */
1552
	if (ctx->task && cpuctx->task_ctx != ctx)
1553
		return -EINVAL;
1554

1555
	raw_spin_lock(&ctx->lock);
1556 1557

	/*
1558
	 * If the event is on, turn it off.
1559 1560
	 * If it is in error state, leave it in error state.
	 */
1561
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1562
		update_context_time(ctx);
S
Stephane Eranian 已提交
1563
		update_cgrp_time_from_event(event);
1564 1565 1566
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1567
		else
1568 1569
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1570 1571
	}

1572
	raw_spin_unlock(&ctx->lock);
1573 1574

	return 0;
1575 1576 1577
}

/*
1578
 * Disable a event.
1579
 *
1580 1581
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1582
 * remains valid.  This condition is satisifed when called through
1583 1584 1585 1586
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1587
 * is the current context on this CPU and preemption is disabled,
1588
 * hence we can't get into perf_event_task_sched_out for this context.
1589
 */
1590
void perf_event_disable(struct perf_event *event)
1591
{
1592
	struct perf_event_context *ctx = event->ctx;
1593 1594 1595 1596
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1597
		 * Disable the event on the cpu that it's on
1598
		 */
1599
		cpu_function_call(event->cpu, __perf_event_disable, event);
1600 1601 1602
		return;
	}

P
Peter Zijlstra 已提交
1603
retry:
1604 1605
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1606

1607
	raw_spin_lock_irq(&ctx->lock);
1608
	/*
1609
	 * If the event is still active, we need to retry the cross-call.
1610
	 */
1611
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1612
		raw_spin_unlock_irq(&ctx->lock);
1613 1614 1615 1616 1617
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1618 1619 1620 1621 1622 1623 1624
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1625 1626 1627
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1628
	}
1629
	raw_spin_unlock_irq(&ctx->lock);
1630
}
1631
EXPORT_SYMBOL_GPL(perf_event_disable);
1632

S
Stephane Eranian 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1668 1669 1670 1671
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1672
static int
1673
event_sched_in(struct perf_event *event,
1674
		 struct perf_cpu_context *cpuctx,
1675
		 struct perf_event_context *ctx)
1676
{
1677
	u64 tstamp = perf_event_time(event);
1678
	int ret = 0;
1679

1680
	if (event->state <= PERF_EVENT_STATE_OFF)
1681 1682
		return 0;

1683
	event->state = PERF_EVENT_STATE_ACTIVE;
1684
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1696 1697 1698 1699 1700
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1701 1702
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1703
	if (event->pmu->add(event, PERF_EF_START)) {
1704 1705
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1706 1707
		ret = -EAGAIN;
		goto out;
1708 1709
	}

1710
	event->tstamp_running += tstamp - event->tstamp_stopped;
1711

S
Stephane Eranian 已提交
1712
	perf_set_shadow_time(event, ctx, tstamp);
1713

1714
	if (!is_software_event(event))
1715
		cpuctx->active_oncpu++;
1716
	ctx->nr_active++;
1717 1718
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1719

1720
	if (event->attr.exclusive)
1721 1722
		cpuctx->exclusive = 1;

1723 1724 1725 1726
out:
	perf_pmu_enable(event->pmu);

	return ret;
1727 1728
}

1729
static int
1730
group_sched_in(struct perf_event *group_event,
1731
	       struct perf_cpu_context *cpuctx,
1732
	       struct perf_event_context *ctx)
1733
{
1734
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1735
	struct pmu *pmu = ctx->pmu;
1736 1737
	u64 now = ctx->time;
	bool simulate = false;
1738

1739
	if (group_event->state == PERF_EVENT_STATE_OFF)
1740 1741
		return 0;

P
Peter Zijlstra 已提交
1742
	pmu->start_txn(pmu);
1743

1744
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1745
		pmu->cancel_txn(pmu);
1746
		perf_cpu_hrtimer_restart(cpuctx);
1747
		return -EAGAIN;
1748
	}
1749 1750 1751 1752

	/*
	 * Schedule in siblings as one group (if any):
	 */
1753
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1754
		if (event_sched_in(event, cpuctx, ctx)) {
1755
			partial_group = event;
1756 1757 1758 1759
			goto group_error;
		}
	}

1760
	if (!pmu->commit_txn(pmu))
1761
		return 0;
1762

1763 1764 1765 1766
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1777
	 */
1778 1779
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1780 1781 1782 1783 1784 1785 1786 1787
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1788
	}
1789
	event_sched_out(group_event, cpuctx, ctx);
1790

P
Peter Zijlstra 已提交
1791
	pmu->cancel_txn(pmu);
1792

1793 1794
	perf_cpu_hrtimer_restart(cpuctx);

1795 1796 1797
	return -EAGAIN;
}

1798
/*
1799
 * Work out whether we can put this event group on the CPU now.
1800
 */
1801
static int group_can_go_on(struct perf_event *event,
1802 1803 1804 1805
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1806
	 * Groups consisting entirely of software events can always go on.
1807
	 */
1808
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1809 1810 1811
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1812
	 * events can go on.
1813 1814 1815 1816 1817
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1818
	 * events on the CPU, it can't go on.
1819
	 */
1820
	if (event->attr.exclusive && cpuctx->active_oncpu)
1821 1822 1823 1824 1825 1826 1827 1828
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1829 1830
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1831
{
1832 1833
	u64 tstamp = perf_event_time(event);

1834
	list_add_event(event, ctx);
1835
	perf_group_attach(event);
1836 1837 1838
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1839 1840
}

1841 1842 1843 1844 1845 1846
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1847

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1860
/*
1861
 * Cross CPU call to install and enable a performance event
1862 1863
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1864
 */
1865
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1866
{
1867 1868
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1869
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1870 1871 1872
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1873
	perf_ctx_lock(cpuctx, task_ctx);
1874
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1875 1876

	/*
1877
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1878
	 */
1879
	if (task_ctx)
1880
		task_ctx_sched_out(task_ctx);
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1895 1896
		task = task_ctx->task;
	}
1897

1898
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1899

1900
	update_context_time(ctx);
S
Stephane Eranian 已提交
1901 1902 1903 1904 1905 1906
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1907

1908
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1909

1910
	/*
1911
	 * Schedule everything back in
1912
	 */
1913
	perf_event_sched_in(cpuctx, task_ctx, task);
1914 1915 1916

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1917 1918

	return 0;
T
Thomas Gleixner 已提交
1919 1920 1921
}

/*
1922
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1923
 *
1924 1925
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1926
 *
1927
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1928 1929 1930 1931
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1932 1933
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1934 1935 1936 1937
			int cpu)
{
	struct task_struct *task = ctx->task;

1938 1939
	lockdep_assert_held(&ctx->mutex);

1940
	event->ctx = ctx;
1941 1942
	if (event->cpu != -1)
		event->cpu = cpu;
1943

T
Thomas Gleixner 已提交
1944 1945
	if (!task) {
		/*
1946
		 * Per cpu events are installed via an smp call and
1947
		 * the install is always successful.
T
Thomas Gleixner 已提交
1948
		 */
1949
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1950 1951 1952 1953
		return;
	}

retry:
1954 1955
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1956

1957
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1958
	/*
1959 1960
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1961
	 */
1962
	if (ctx->is_active) {
1963
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1964 1965 1966 1967
		goto retry;
	}

	/*
1968 1969
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1970
	 */
1971
	add_event_to_ctx(event, ctx);
1972
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1973 1974
}

1975
/*
1976
 * Put a event into inactive state and update time fields.
1977 1978 1979 1980 1981 1982
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1983
static void __perf_event_mark_enabled(struct perf_event *event)
1984
{
1985
	struct perf_event *sub;
1986
	u64 tstamp = perf_event_time(event);
1987

1988
	event->state = PERF_EVENT_STATE_INACTIVE;
1989
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1990
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1991 1992
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1993
	}
1994 1995
}

1996
/*
1997
 * Cross CPU call to enable a performance event
1998
 */
1999
static int __perf_event_enable(void *info)
2000
{
2001 2002 2003
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2004
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2005
	int err;
2006

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2017
		return -EINVAL;
2018

2019
	raw_spin_lock(&ctx->lock);
2020
	update_context_time(ctx);
2021

2022
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2023
		goto unlock;
S
Stephane Eranian 已提交
2024 2025 2026 2027

	/*
	 * set current task's cgroup time reference point
	 */
2028
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2029

2030
	__perf_event_mark_enabled(event);
2031

S
Stephane Eranian 已提交
2032 2033 2034
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2035
		goto unlock;
S
Stephane Eranian 已提交
2036
	}
2037

2038
	/*
2039
	 * If the event is in a group and isn't the group leader,
2040
	 * then don't put it on unless the group is on.
2041
	 */
2042
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2043
		goto unlock;
2044

2045
	if (!group_can_go_on(event, cpuctx, 1)) {
2046
		err = -EEXIST;
2047
	} else {
2048
		if (event == leader)
2049
			err = group_sched_in(event, cpuctx, ctx);
2050
		else
2051
			err = event_sched_in(event, cpuctx, ctx);
2052
	}
2053 2054 2055

	if (err) {
		/*
2056
		 * If this event can't go on and it's part of a
2057 2058
		 * group, then the whole group has to come off.
		 */
2059
		if (leader != event) {
2060
			group_sched_out(leader, cpuctx, ctx);
2061 2062
			perf_cpu_hrtimer_restart(cpuctx);
		}
2063
		if (leader->attr.pinned) {
2064
			update_group_times(leader);
2065
			leader->state = PERF_EVENT_STATE_ERROR;
2066
		}
2067 2068
	}

P
Peter Zijlstra 已提交
2069
unlock:
2070
	raw_spin_unlock(&ctx->lock);
2071 2072

	return 0;
2073 2074 2075
}

/*
2076
 * Enable a event.
2077
 *
2078 2079
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2080
 * remains valid.  This condition is satisfied when called through
2081 2082
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2083
 */
2084
void perf_event_enable(struct perf_event *event)
2085
{
2086
	struct perf_event_context *ctx = event->ctx;
2087 2088 2089 2090
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2091
		 * Enable the event on the cpu that it's on
2092
		 */
2093
		cpu_function_call(event->cpu, __perf_event_enable, event);
2094 2095 2096
		return;
	}

2097
	raw_spin_lock_irq(&ctx->lock);
2098
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2099 2100 2101
		goto out;

	/*
2102 2103
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2104 2105 2106 2107
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2108 2109
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2110

P
Peter Zijlstra 已提交
2111
retry:
2112
	if (!ctx->is_active) {
2113
		__perf_event_mark_enabled(event);
2114 2115 2116
		goto out;
	}

2117
	raw_spin_unlock_irq(&ctx->lock);
2118 2119 2120

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2121

2122
	raw_spin_lock_irq(&ctx->lock);
2123 2124

	/*
2125
	 * If the context is active and the event is still off,
2126 2127
	 * we need to retry the cross-call.
	 */
2128 2129 2130 2131 2132 2133
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2134
		goto retry;
2135
	}
2136

P
Peter Zijlstra 已提交
2137
out:
2138
	raw_spin_unlock_irq(&ctx->lock);
2139
}
2140
EXPORT_SYMBOL_GPL(perf_event_enable);
2141

2142
int perf_event_refresh(struct perf_event *event, int refresh)
2143
{
2144
	/*
2145
	 * not supported on inherited events
2146
	 */
2147
	if (event->attr.inherit || !is_sampling_event(event))
2148 2149
		return -EINVAL;

2150 2151
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2152 2153

	return 0;
2154
}
2155
EXPORT_SYMBOL_GPL(perf_event_refresh);
2156

2157 2158 2159
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2160
{
2161
	struct perf_event *event;
2162
	int is_active = ctx->is_active;
2163

2164
	ctx->is_active &= ~event_type;
2165
	if (likely(!ctx->nr_events))
2166 2167
		return;

2168
	update_context_time(ctx);
S
Stephane Eranian 已提交
2169
	update_cgrp_time_from_cpuctx(cpuctx);
2170
	if (!ctx->nr_active)
2171
		return;
2172

P
Peter Zijlstra 已提交
2173
	perf_pmu_disable(ctx->pmu);
2174
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2175 2176
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2177
	}
2178

2179
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2180
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2181
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2182
	}
P
Peter Zijlstra 已提交
2183
	perf_pmu_enable(ctx->pmu);
2184 2185
}

2186
/*
2187 2188 2189 2190 2191 2192
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2193
 */
2194 2195
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2196
{
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2219 2220
}

2221 2222
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2223 2224 2225
{
	u64 value;

2226
	if (!event->attr.inherit_stat)
2227 2228 2229
		return;

	/*
2230
	 * Update the event value, we cannot use perf_event_read()
2231 2232
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2233
	 * we know the event must be on the current CPU, therefore we
2234 2235
	 * don't need to use it.
	 */
2236 2237
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2238 2239
		event->pmu->read(event);
		/* fall-through */
2240

2241 2242
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2243 2244 2245 2246 2247 2248 2249
		break;

	default:
		break;
	}

	/*
2250
	 * In order to keep per-task stats reliable we need to flip the event
2251 2252
	 * values when we flip the contexts.
	 */
2253 2254 2255
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2256

2257 2258
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2259

2260
	/*
2261
	 * Since we swizzled the values, update the user visible data too.
2262
	 */
2263 2264
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2265 2266
}

2267 2268
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2269
{
2270
	struct perf_event *event, *next_event;
2271 2272 2273 2274

	if (!ctx->nr_stat)
		return;

2275 2276
	update_context_time(ctx);

2277 2278
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2279

2280 2281
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2282

2283 2284
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2285

2286
		__perf_event_sync_stat(event, next_event);
2287

2288 2289
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2290 2291 2292
	}
}

2293 2294
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2295
{
P
Peter Zijlstra 已提交
2296
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2297
	struct perf_event_context *next_ctx;
2298
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2299
	struct perf_cpu_context *cpuctx;
2300
	int do_switch = 1;
T
Thomas Gleixner 已提交
2301

P
Peter Zijlstra 已提交
2302 2303
	if (likely(!ctx))
		return;
2304

P
Peter Zijlstra 已提交
2305 2306
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2307 2308
		return;

2309
	rcu_read_lock();
P
Peter Zijlstra 已提交
2310
	next_ctx = next->perf_event_ctxp[ctxn];
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
	if (!parent && !next_parent)
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2322 2323 2324 2325 2326 2327 2328 2329 2330
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2331 2332
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2333
		if (context_equiv(ctx, next_ctx)) {
2334 2335
			/*
			 * XXX do we need a memory barrier of sorts
2336
			 * wrt to rcu_dereference() of perf_event_ctxp
2337
			 */
P
Peter Zijlstra 已提交
2338 2339
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2340 2341 2342
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2343

2344
			perf_event_sync_stat(ctx, next_ctx);
2345
		}
2346 2347
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2348
	}
2349
unlock:
2350
	rcu_read_unlock();
2351

2352
	if (do_switch) {
2353
		raw_spin_lock(&ctx->lock);
2354
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2355
		cpuctx->task_ctx = NULL;
2356
		raw_spin_unlock(&ctx->lock);
2357
	}
T
Thomas Gleixner 已提交
2358 2359
}

P
Peter Zijlstra 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2374 2375
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2376 2377 2378 2379 2380
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2381 2382 2383 2384 2385 2386 2387

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2388
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2389 2390
}

2391
static void task_ctx_sched_out(struct perf_event_context *ctx)
2392
{
P
Peter Zijlstra 已提交
2393
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2394

2395 2396
	if (!cpuctx->task_ctx)
		return;
2397 2398 2399 2400

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2401
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2402 2403 2404
	cpuctx->task_ctx = NULL;
}

2405 2406 2407 2408 2409 2410 2411
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2412 2413
}

2414
static void
2415
ctx_pinned_sched_in(struct perf_event_context *ctx,
2416
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2417
{
2418
	struct perf_event *event;
T
Thomas Gleixner 已提交
2419

2420 2421
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2422
			continue;
2423
		if (!event_filter_match(event))
2424 2425
			continue;

S
Stephane Eranian 已提交
2426 2427 2428 2429
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2430
		if (group_can_go_on(event, cpuctx, 1))
2431
			group_sched_in(event, cpuctx, ctx);
2432 2433 2434 2435 2436

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2437 2438 2439
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2440
		}
2441
	}
2442 2443 2444 2445
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2446
		      struct perf_cpu_context *cpuctx)
2447 2448 2449
{
	struct perf_event *event;
	int can_add_hw = 1;
2450

2451 2452 2453
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2454
			continue;
2455 2456
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2457
		 * of events:
2458
		 */
2459
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2460 2461
			continue;

S
Stephane Eranian 已提交
2462 2463 2464 2465
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2466
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2467
			if (group_sched_in(event, cpuctx, ctx))
2468
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2469
		}
T
Thomas Gleixner 已提交
2470
	}
2471 2472 2473 2474 2475
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2476 2477
	     enum event_type_t event_type,
	     struct task_struct *task)
2478
{
S
Stephane Eranian 已提交
2479
	u64 now;
2480
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2481

2482
	ctx->is_active |= event_type;
2483
	if (likely(!ctx->nr_events))
2484
		return;
2485

S
Stephane Eranian 已提交
2486 2487
	now = perf_clock();
	ctx->timestamp = now;
2488
	perf_cgroup_set_timestamp(task, ctx);
2489 2490 2491 2492
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2493
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2494
		ctx_pinned_sched_in(ctx, cpuctx);
2495 2496

	/* Then walk through the lower prio flexible groups */
2497
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2498
		ctx_flexible_sched_in(ctx, cpuctx);
2499 2500
}

2501
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2502 2503
			     enum event_type_t event_type,
			     struct task_struct *task)
2504 2505 2506
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2507
	ctx_sched_in(ctx, cpuctx, event_type, task);
2508 2509
}

S
Stephane Eranian 已提交
2510 2511
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2512
{
P
Peter Zijlstra 已提交
2513
	struct perf_cpu_context *cpuctx;
2514

P
Peter Zijlstra 已提交
2515
	cpuctx = __get_cpu_context(ctx);
2516 2517 2518
	if (cpuctx->task_ctx == ctx)
		return;

2519
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2520
	perf_pmu_disable(ctx->pmu);
2521 2522 2523 2524 2525 2526 2527
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2528 2529
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2530

2531 2532
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2533 2534 2535
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2536 2537 2538 2539
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2540
	perf_pmu_rotate_start(ctx->pmu);
2541 2542
}

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2612 2613
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2614 2615 2616 2617 2618 2619 2620 2621 2622
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2623
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2624
	}
S
Stephane Eranian 已提交
2625 2626 2627 2628 2629 2630
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2631
		perf_cgroup_sched_in(prev, task);
2632 2633 2634 2635

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2636 2637
}

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2665
#define REDUCE_FLS(a, b)		\
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2705 2706 2707
	if (!divisor)
		return dividend;

2708 2709 2710
	return div64_u64(dividend, divisor);
}

2711 2712 2713
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2714
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2715
{
2716
	struct hw_perf_event *hwc = &event->hw;
2717
	s64 period, sample_period;
2718 2719
	s64 delta;

2720
	period = perf_calculate_period(event, nsec, count);
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2731

2732
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2733 2734 2735
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2736
		local64_set(&hwc->period_left, 0);
2737 2738 2739

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2740
	}
2741 2742
}

2743 2744 2745 2746 2747 2748 2749
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2750
{
2751 2752
	struct perf_event *event;
	struct hw_perf_event *hwc;
2753
	u64 now, period = TICK_NSEC;
2754
	s64 delta;
2755

2756 2757 2758 2759 2760 2761
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2762 2763
		return;

2764
	raw_spin_lock(&ctx->lock);
2765
	perf_pmu_disable(ctx->pmu);
2766

2767
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2768
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2769 2770
			continue;

2771
		if (!event_filter_match(event))
2772 2773
			continue;

2774 2775
		perf_pmu_disable(event->pmu);

2776
		hwc = &event->hw;
2777

2778
		if (hwc->interrupts == MAX_INTERRUPTS) {
2779
			hwc->interrupts = 0;
2780
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2781
			event->pmu->start(event, 0);
2782 2783
		}

2784
		if (!event->attr.freq || !event->attr.sample_freq)
2785
			goto next;
2786

2787 2788 2789 2790 2791
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2792
		now = local64_read(&event->count);
2793 2794
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2795

2796 2797 2798
		/*
		 * restart the event
		 * reload only if value has changed
2799 2800 2801
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2802
		 */
2803
		if (delta > 0)
2804
			perf_adjust_period(event, period, delta, false);
2805 2806

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2807 2808
	next:
		perf_pmu_enable(event->pmu);
2809
	}
2810

2811
	perf_pmu_enable(ctx->pmu);
2812
	raw_spin_unlock(&ctx->lock);
2813 2814
}

2815
/*
2816
 * Round-robin a context's events:
2817
 */
2818
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2819
{
2820 2821 2822 2823 2824 2825
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2826 2827
}

2828
/*
2829 2830 2831
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2832
 */
2833
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2834
{
P
Peter Zijlstra 已提交
2835
	struct perf_event_context *ctx = NULL;
2836
	int rotate = 0, remove = 1;
2837

2838
	if (cpuctx->ctx.nr_events) {
2839
		remove = 0;
2840 2841 2842
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2843

P
Peter Zijlstra 已提交
2844
	ctx = cpuctx->task_ctx;
2845
	if (ctx && ctx->nr_events) {
2846
		remove = 0;
2847 2848 2849
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2850

2851
	if (!rotate)
2852 2853
		goto done;

2854
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2855
	perf_pmu_disable(cpuctx->ctx.pmu);
2856

2857 2858 2859
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2860

2861 2862 2863
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2864

2865
	perf_event_sched_in(cpuctx, ctx, current);
2866

2867 2868
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2869
done:
2870 2871
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2872 2873

	return rotate;
2874 2875
}

2876 2877 2878
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2879
	if (atomic_read(&nr_freq_events) ||
2880
	    __this_cpu_read(perf_throttled_count))
2881
		return false;
2882 2883
	else
		return true;
2884 2885 2886
}
#endif

2887 2888 2889 2890
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2891 2892
	struct perf_event_context *ctx;
	int throttled;
2893

2894 2895
	WARN_ON(!irqs_disabled());

2896 2897 2898
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2899
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2900 2901 2902 2903 2904 2905
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2906
	}
T
Thomas Gleixner 已提交
2907 2908
}

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2919
	__perf_event_mark_enabled(event);
2920 2921 2922 2923

	return 1;
}

2924
/*
2925
 * Enable all of a task's events that have been marked enable-on-exec.
2926 2927
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2928
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2929
{
2930
	struct perf_event *event;
2931 2932
	unsigned long flags;
	int enabled = 0;
2933
	int ret;
2934 2935

	local_irq_save(flags);
2936
	if (!ctx || !ctx->nr_events)
2937 2938
		goto out;

2939 2940 2941 2942 2943 2944 2945
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2946
	perf_cgroup_sched_out(current, NULL);
2947

2948
	raw_spin_lock(&ctx->lock);
2949
	task_ctx_sched_out(ctx);
2950

2951
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2952 2953 2954
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2955 2956 2957
	}

	/*
2958
	 * Unclone this context if we enabled any event.
2959
	 */
2960 2961
	if (enabled)
		unclone_ctx(ctx);
2962

2963
	raw_spin_unlock(&ctx->lock);
2964

2965 2966 2967
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2968
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2969
out:
2970 2971 2972
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2973
/*
2974
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2975
 */
2976
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2977
{
2978 2979
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2980
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2981

2982 2983 2984 2985
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2986 2987
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2988 2989 2990 2991
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2992
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2993
	if (ctx->is_active) {
2994
		update_context_time(ctx);
S
Stephane Eranian 已提交
2995 2996
		update_cgrp_time_from_event(event);
	}
2997
	update_event_times(event);
2998 2999
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3000
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3001 3002
}

P
Peter Zijlstra 已提交
3003 3004
static inline u64 perf_event_count(struct perf_event *event)
{
3005
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3006 3007
}

3008
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3009 3010
{
	/*
3011 3012
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3013
	 */
3014 3015 3016 3017
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3018 3019 3020
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3021
		raw_spin_lock_irqsave(&ctx->lock, flags);
3022 3023 3024 3025 3026
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3027
		if (ctx->is_active) {
3028
			update_context_time(ctx);
S
Stephane Eranian 已提交
3029 3030
			update_cgrp_time_from_event(event);
		}
3031
		update_event_times(event);
3032
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3033 3034
	}

P
Peter Zijlstra 已提交
3035
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3036 3037
}

3038
/*
3039
 * Initialize the perf_event context in a task_struct:
3040
 */
3041
static void __perf_event_init_context(struct perf_event_context *ctx)
3042
{
3043
	raw_spin_lock_init(&ctx->lock);
3044
	mutex_init(&ctx->mutex);
3045 3046
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3047 3048
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3064
	}
3065 3066 3067
	ctx->pmu = pmu;

	return ctx;
3068 3069
}

3070 3071 3072 3073 3074
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3075 3076

	rcu_read_lock();
3077
	if (!vpid)
T
Thomas Gleixner 已提交
3078 3079
		task = current;
	else
3080
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3081 3082 3083 3084 3085 3086 3087 3088
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3089 3090 3091 3092
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3093 3094 3095 3096 3097 3098 3099
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3100 3101 3102
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3103
static struct perf_event_context *
M
Matt Helsley 已提交
3104
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3105
{
3106
	struct perf_event_context *ctx;
3107
	struct perf_cpu_context *cpuctx;
3108
	unsigned long flags;
P
Peter Zijlstra 已提交
3109
	int ctxn, err;
T
Thomas Gleixner 已提交
3110

3111
	if (!task) {
3112
		/* Must be root to operate on a CPU event: */
3113
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3114 3115 3116
			return ERR_PTR(-EACCES);

		/*
3117
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3118 3119 3120
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3121
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3122 3123
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3124
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3125
		ctx = &cpuctx->ctx;
3126
		get_ctx(ctx);
3127
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3128 3129 3130 3131

		return ctx;
	}

P
Peter Zijlstra 已提交
3132 3133 3134 3135 3136
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3137
retry:
P
Peter Zijlstra 已提交
3138
	ctx = perf_lock_task_context(task, ctxn, &flags);
3139
	if (ctx) {
3140
		unclone_ctx(ctx);
3141
		++ctx->pin_count;
3142
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3143
	} else {
3144
		ctx = alloc_perf_context(pmu, task);
3145 3146 3147
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3148

3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3159
		else {
3160
			get_ctx(ctx);
3161
			++ctx->pin_count;
3162
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3163
		}
3164 3165 3166
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3167
			put_ctx(ctx);
3168 3169 3170 3171

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3172 3173 3174
		}
	}

T
Thomas Gleixner 已提交
3175
	return ctx;
3176

P
Peter Zijlstra 已提交
3177
errout:
3178
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3179 3180
}

L
Li Zefan 已提交
3181 3182
static void perf_event_free_filter(struct perf_event *event);

3183
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3184
{
3185
	struct perf_event *event;
P
Peter Zijlstra 已提交
3186

3187 3188 3189
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3190
	perf_event_free_filter(event);
3191
	kfree(event);
P
Peter Zijlstra 已提交
3192 3193
}

3194
static void ring_buffer_put(struct ring_buffer *rb);
3195
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3196

3197
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3198
{
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3209

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3223 3224
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3225 3226 3227 3228 3229 3230 3231
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3232

3233 3234
static void __free_event(struct perf_event *event)
{
3235
	if (!event->parent) {
3236 3237
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3238
	}
3239

3240 3241 3242 3243 3244 3245 3246 3247
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	call_rcu(&event->rcu_head, free_event_rcu);
}
3248
static void free_event(struct perf_event *event)
3249
{
3250
	irq_work_sync(&event->pending);
3251

3252
	unaccount_event(event);
3253

3254
	if (event->rb) {
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3271 3272
	}

S
Stephane Eranian 已提交
3273 3274 3275
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3276

3277
	__free_event(event);
3278 3279
}

3280
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3281
{
3282
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3283

3284
	WARN_ON_ONCE(ctx->parent_ctx);
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3298
	perf_remove_from_context(event, true);
3299
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3300

3301
	free_event(event);
T
Thomas Gleixner 已提交
3302 3303 3304

	return 0;
}
3305
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3306

3307 3308 3309
/*
 * Called when the last reference to the file is gone.
 */
3310
static void put_event(struct perf_event *event)
3311
{
P
Peter Zijlstra 已提交
3312
	struct task_struct *owner;
3313

3314 3315
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3316

P
Peter Zijlstra 已提交
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3350 3351 3352 3353 3354 3355 3356
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3357 3358
}

3359
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3360
{
3361
	struct perf_event *child;
3362 3363
	u64 total = 0;

3364 3365 3366
	*enabled = 0;
	*running = 0;

3367
	mutex_lock(&event->child_mutex);
3368
	total += perf_event_read(event);
3369 3370 3371 3372 3373 3374
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3375
		total += perf_event_read(child);
3376 3377 3378
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3379
	mutex_unlock(&event->child_mutex);
3380 3381 3382

	return total;
}
3383
EXPORT_SYMBOL_GPL(perf_event_read_value);
3384

3385
static int perf_event_read_group(struct perf_event *event,
3386 3387
				   u64 read_format, char __user *buf)
{
3388
	struct perf_event *leader = event->group_leader, *sub;
3389 3390
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3391
	u64 values[5];
3392
	u64 count, enabled, running;
3393

3394
	mutex_lock(&ctx->mutex);
3395
	count = perf_event_read_value(leader, &enabled, &running);
3396 3397

	values[n++] = 1 + leader->nr_siblings;
3398 3399 3400 3401
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3402 3403 3404
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3405 3406 3407 3408

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3409
		goto unlock;
3410

3411
	ret = size;
3412

3413
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3414
		n = 0;
3415

3416
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3417 3418 3419 3420 3421
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3422
		if (copy_to_user(buf + ret, values, size)) {
3423 3424 3425
			ret = -EFAULT;
			goto unlock;
		}
3426 3427

		ret += size;
3428
	}
3429 3430
unlock:
	mutex_unlock(&ctx->mutex);
3431

3432
	return ret;
3433 3434
}

3435
static int perf_event_read_one(struct perf_event *event,
3436 3437
				 u64 read_format, char __user *buf)
{
3438
	u64 enabled, running;
3439 3440 3441
	u64 values[4];
	int n = 0;

3442 3443 3444 3445 3446
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3447
	if (read_format & PERF_FORMAT_ID)
3448
		values[n++] = primary_event_id(event);
3449 3450 3451 3452 3453 3454 3455

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3456
/*
3457
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3458 3459
 */
static ssize_t
3460
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3461
{
3462
	u64 read_format = event->attr.read_format;
3463
	int ret;
T
Thomas Gleixner 已提交
3464

3465
	/*
3466
	 * Return end-of-file for a read on a event that is in
3467 3468 3469
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3470
	if (event->state == PERF_EVENT_STATE_ERROR)
3471 3472
		return 0;

3473
	if (count < event->read_size)
3474 3475
		return -ENOSPC;

3476
	WARN_ON_ONCE(event->ctx->parent_ctx);
3477
	if (read_format & PERF_FORMAT_GROUP)
3478
		ret = perf_event_read_group(event, read_format, buf);
3479
	else
3480
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3481

3482
	return ret;
T
Thomas Gleixner 已提交
3483 3484 3485 3486 3487
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3488
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3489

3490
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3491 3492 3493 3494
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3495
	struct perf_event *event = file->private_data;
3496
	struct ring_buffer *rb;
3497
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3498

3499
	/*
3500 3501
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3502 3503
	 */
	mutex_lock(&event->mmap_mutex);
3504 3505
	rb = event->rb;
	if (rb)
3506
		events = atomic_xchg(&rb->poll, 0);
3507 3508
	mutex_unlock(&event->mmap_mutex);

3509
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3510 3511 3512 3513

	return events;
}

3514
static void perf_event_reset(struct perf_event *event)
3515
{
3516
	(void)perf_event_read(event);
3517
	local64_set(&event->count, 0);
3518
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3519 3520
}

3521
/*
3522 3523 3524 3525
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3526
 */
3527 3528
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3529
{
3530
	struct perf_event *child;
P
Peter Zijlstra 已提交
3531

3532 3533 3534 3535
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3536
		func(child);
3537
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3538 3539
}

3540 3541
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3542
{
3543 3544
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3545

3546 3547
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3548
	event = event->group_leader;
3549

3550 3551
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3552
		perf_event_for_each_child(sibling, func);
3553
	mutex_unlock(&ctx->mutex);
3554 3555
}

3556
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3557
{
3558
	struct perf_event_context *ctx = event->ctx;
3559
	int ret = 0, active;
3560 3561
	u64 value;

3562
	if (!is_sampling_event(event))
3563 3564
		return -EINVAL;

3565
	if (copy_from_user(&value, arg, sizeof(value)))
3566 3567 3568 3569 3570
		return -EFAULT;

	if (!value)
		return -EINVAL;

3571
	raw_spin_lock_irq(&ctx->lock);
3572 3573
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3574 3575 3576 3577
			ret = -EINVAL;
			goto unlock;
		}

3578
		event->attr.sample_freq = value;
3579
	} else {
3580 3581
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3582
	}
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3597
unlock:
3598
	raw_spin_unlock_irq(&ctx->lock);
3599 3600 3601 3602

	return ret;
}

3603 3604
static const struct file_operations perf_fops;

3605
static inline int perf_fget_light(int fd, struct fd *p)
3606
{
3607 3608 3609
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3610

3611 3612 3613
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3614
	}
3615 3616
	*p = f;
	return 0;
3617 3618 3619 3620
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3621
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3622

3623 3624
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3625 3626
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3627
	u32 flags = arg;
3628 3629

	switch (cmd) {
3630 3631
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3632
		break;
3633 3634
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3635
		break;
3636 3637
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3638
		break;
P
Peter Zijlstra 已提交
3639

3640 3641
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3642

3643 3644
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3645

3646 3647 3648 3649 3650 3651 3652 3653 3654
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3655
	case PERF_EVENT_IOC_SET_OUTPUT:
3656 3657 3658
	{
		int ret;
		if (arg != -1) {
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3669 3670 3671
		}
		return ret;
	}
3672

L
Li Zefan 已提交
3673 3674 3675
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3676
	default:
P
Peter Zijlstra 已提交
3677
		return -ENOTTY;
3678
	}
P
Peter Zijlstra 已提交
3679 3680

	if (flags & PERF_IOC_FLAG_GROUP)
3681
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3682
	else
3683
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3684 3685

	return 0;
3686 3687
}

3688
int perf_event_task_enable(void)
3689
{
3690
	struct perf_event *event;
3691

3692 3693 3694 3695
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3696 3697 3698 3699

	return 0;
}

3700
int perf_event_task_disable(void)
3701
{
3702
	struct perf_event *event;
3703

3704 3705 3706 3707
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3708 3709 3710 3711

	return 0;
}

3712
static int perf_event_index(struct perf_event *event)
3713
{
P
Peter Zijlstra 已提交
3714 3715 3716
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3717
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3718 3719
		return 0;

3720
	return event->pmu->event_idx(event);
3721 3722
}

3723
static void calc_timer_values(struct perf_event *event,
3724
				u64 *now,
3725 3726
				u64 *enabled,
				u64 *running)
3727
{
3728
	u64 ctx_time;
3729

3730 3731
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3732 3733 3734 3735
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

3756
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3757 3758 3759
{
}

3760 3761 3762 3763 3764
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3765
void perf_event_update_userpage(struct perf_event *event)
3766
{
3767
	struct perf_event_mmap_page *userpg;
3768
	struct ring_buffer *rb;
3769
	u64 enabled, running, now;
3770 3771

	rcu_read_lock();
3772 3773 3774 3775
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3776 3777 3778 3779 3780 3781 3782 3783 3784
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3785
	calc_timer_values(event, &now, &enabled, &running);
3786

3787
	userpg = rb->user_page;
3788 3789 3790 3791 3792
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3793
	++userpg->lock;
3794
	barrier();
3795
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3796
	userpg->offset = perf_event_count(event);
3797
	if (userpg->index)
3798
		userpg->offset -= local64_read(&event->hw.prev_count);
3799

3800
	userpg->time_enabled = enabled +
3801
			atomic64_read(&event->child_total_time_enabled);
3802

3803
	userpg->time_running = running +
3804
			atomic64_read(&event->child_total_time_running);
3805

3806
	arch_perf_update_userpage(userpg, now);
3807

3808
	barrier();
3809
	++userpg->lock;
3810
	preempt_enable();
3811
unlock:
3812
	rcu_read_unlock();
3813 3814
}

3815 3816 3817
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3818
	struct ring_buffer *rb;
3819 3820 3821 3822 3823 3824 3825 3826 3827
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3828 3829
	rb = rcu_dereference(event->rb);
	if (!rb)
3830 3831 3832 3833 3834
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3835
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3850 3851 3852 3853 3854 3855 3856 3857 3858
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3859 3860
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3861 3862 3863
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3864
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3883 3884 3885 3886
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3887 3888 3889
	rcu_read_unlock();
}

3890
static void rb_free_rcu(struct rcu_head *rcu_head)
3891
{
3892
	struct ring_buffer *rb;
3893

3894 3895
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3896 3897
}

3898
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3899
{
3900
	struct ring_buffer *rb;
3901

3902
	rcu_read_lock();
3903 3904 3905 3906
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3907 3908 3909
	}
	rcu_read_unlock();

3910
	return rb;
3911 3912
}

3913
static void ring_buffer_put(struct ring_buffer *rb)
3914
{
3915
	if (!atomic_dec_and_test(&rb->refcount))
3916
		return;
3917

3918
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3919

3920
	call_rcu(&rb->rcu_head, rb_free_rcu);
3921 3922 3923 3924
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3925
	struct perf_event *event = vma->vm_file->private_data;
3926

3927
	atomic_inc(&event->mmap_count);
3928
	atomic_inc(&event->rb->mmap_count);
3929 3930
}

3931 3932 3933 3934 3935 3936 3937 3938
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3939 3940
static void perf_mmap_close(struct vm_area_struct *vma)
{
3941
	struct perf_event *event = vma->vm_file->private_data;
3942

3943 3944 3945 3946
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3947

3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3963

3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3980

3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
3996
		}
3997
		mutex_unlock(&event->mmap_mutex);
3998
		put_event(event);
3999

4000 4001 4002 4003 4004
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4005
	}
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
4022 4023
}

4024
static const struct vm_operations_struct perf_mmap_vmops = {
4025 4026 4027 4028
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4029 4030 4031 4032
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4033
	struct perf_event *event = file->private_data;
4034
	unsigned long user_locked, user_lock_limit;
4035
	struct user_struct *user = current_user();
4036
	unsigned long locked, lock_limit;
4037
	struct ring_buffer *rb;
4038 4039
	unsigned long vma_size;
	unsigned long nr_pages;
4040
	long user_extra, extra;
4041
	int ret = 0, flags = 0;
4042

4043 4044 4045
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4046
	 * same rb.
4047 4048 4049 4050
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4051
	if (!(vma->vm_flags & VM_SHARED))
4052
		return -EINVAL;
4053 4054 4055 4056

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4057
	/*
4058
	 * If we have rb pages ensure they're a power-of-two number, so we
4059 4060 4061
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4062 4063
		return -EINVAL;

4064
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4065 4066
		return -EINVAL;

4067 4068
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4069

4070
	WARN_ON_ONCE(event->ctx->parent_ctx);
4071
again:
4072
	mutex_lock(&event->mmap_mutex);
4073
	if (event->rb) {
4074
		if (event->rb->nr_pages != nr_pages) {
4075
			ret = -EINVAL;
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4089 4090 4091
		goto unlock;
	}

4092
	user_extra = nr_pages + 1;
4093
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4094 4095 4096 4097 4098 4099

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4100
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4101

4102 4103 4104
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4105

4106
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4107
	lock_limit >>= PAGE_SHIFT;
4108
	locked = vma->vm_mm->pinned_vm + extra;
4109

4110 4111
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4112 4113 4114
		ret = -EPERM;
		goto unlock;
	}
4115

4116
	WARN_ON(event->rb);
4117

4118
	if (vma->vm_flags & VM_WRITE)
4119
		flags |= RING_BUFFER_WRITABLE;
4120

4121 4122 4123 4124
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4125
	if (!rb) {
4126
		ret = -ENOMEM;
4127
		goto unlock;
4128
	}
P
Peter Zijlstra 已提交
4129

4130
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4131 4132
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4133

4134
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4135 4136
	vma->vm_mm->pinned_vm += extra;

4137
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
4138
	rcu_assign_pointer(event->rb, rb);
4139

4140
	perf_event_init_userpage(event);
4141 4142
	perf_event_update_userpage(event);

4143
unlock:
4144 4145
	if (!ret)
		atomic_inc(&event->mmap_count);
4146
	mutex_unlock(&event->mmap_mutex);
4147

4148 4149 4150 4151
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4152
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4153
	vma->vm_ops = &perf_mmap_vmops;
4154 4155

	return ret;
4156 4157
}

P
Peter Zijlstra 已提交
4158 4159
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4160
	struct inode *inode = file_inode(filp);
4161
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4162 4163 4164
	int retval;

	mutex_lock(&inode->i_mutex);
4165
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4166 4167 4168 4169 4170 4171 4172 4173
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4174
static const struct file_operations perf_fops = {
4175
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4176 4177 4178
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4179 4180
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4181
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4182
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4183 4184
};

4185
/*
4186
 * Perf event wakeup
4187 4188 4189 4190 4191
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4192
void perf_event_wakeup(struct perf_event *event)
4193
{
4194
	ring_buffer_wakeup(event);
4195

4196 4197 4198
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4199
	}
4200 4201
}

4202
static void perf_pending_event(struct irq_work *entry)
4203
{
4204 4205
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4206

4207 4208 4209
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4210 4211
	}

4212 4213 4214
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4215 4216 4217
	}
}

4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4365 4366 4367
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4383
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4395 4396 4397
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4422 4423 4424

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4425 4426
}

4427 4428 4429
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4430 4431 4432 4433 4434
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4435
static void perf_output_read_one(struct perf_output_handle *handle,
4436 4437
				 struct perf_event *event,
				 u64 enabled, u64 running)
4438
{
4439
	u64 read_format = event->attr.read_format;
4440 4441 4442
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4443
	values[n++] = perf_event_count(event);
4444
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4445
		values[n++] = enabled +
4446
			atomic64_read(&event->child_total_time_enabled);
4447 4448
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4449
		values[n++] = running +
4450
			atomic64_read(&event->child_total_time_running);
4451 4452
	}
	if (read_format & PERF_FORMAT_ID)
4453
		values[n++] = primary_event_id(event);
4454

4455
	__output_copy(handle, values, n * sizeof(u64));
4456 4457 4458
}

/*
4459
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4460 4461
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4462 4463
			    struct perf_event *event,
			    u64 enabled, u64 running)
4464
{
4465 4466
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4467 4468 4469 4470 4471 4472
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4473
		values[n++] = enabled;
4474 4475

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4476
		values[n++] = running;
4477

4478
	if (leader != event)
4479 4480
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4481
	values[n++] = perf_event_count(leader);
4482
	if (read_format & PERF_FORMAT_ID)
4483
		values[n++] = primary_event_id(leader);
4484

4485
	__output_copy(handle, values, n * sizeof(u64));
4486

4487
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4488 4489
		n = 0;

4490 4491
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4492 4493
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4494
		values[n++] = perf_event_count(sub);
4495
		if (read_format & PERF_FORMAT_ID)
4496
			values[n++] = primary_event_id(sub);
4497

4498
		__output_copy(handle, values, n * sizeof(u64));
4499 4500 4501
	}
}

4502 4503 4504
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4505
static void perf_output_read(struct perf_output_handle *handle,
4506
			     struct perf_event *event)
4507
{
4508
	u64 enabled = 0, running = 0, now;
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4520
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4521
		calc_timer_values(event, &now, &enabled, &running);
4522

4523
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4524
		perf_output_read_group(handle, event, enabled, running);
4525
	else
4526
		perf_output_read_one(handle, event, enabled, running);
4527 4528
}

4529 4530 4531
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4532
			struct perf_event *event)
4533 4534 4535 4536 4537
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4538 4539 4540
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4566
		perf_output_read(handle, event);
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4577
			__output_copy(handle, data->callchain, size);
4578 4579 4580 4581 4582 4583 4584 4585 4586
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4587 4588
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4600

4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4635

4636
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4637 4638 4639
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4640
	}
A
Andi Kleen 已提交
4641 4642 4643

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4644 4645 4646

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4647

A
Andi Kleen 已提交
4648 4649 4650
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4664 4665 4666 4667
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4668
			 struct perf_event *event,
4669
			 struct pt_regs *regs)
4670
{
4671
	u64 sample_type = event->attr.sample_type;
4672

4673
	header->type = PERF_RECORD_SAMPLE;
4674
	header->size = sizeof(*header) + event->header_size;
4675 4676 4677

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4678

4679
	__perf_event_header__init_id(header, data, event);
4680

4681
	if (sample_type & PERF_SAMPLE_IP)
4682 4683
		data->ip = perf_instruction_pointer(regs);

4684
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4685
		int size = 1;
4686

4687
		data->callchain = perf_callchain(event, regs);
4688 4689 4690 4691 4692

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4693 4694
	}

4695
	if (sample_type & PERF_SAMPLE_RAW) {
4696 4697 4698 4699 4700 4701 4702 4703
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4704
		header->size += size;
4705
	}
4706 4707 4708 4709 4710 4711 4712 4713 4714

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4758
}
4759

4760
static void perf_event_output(struct perf_event *event,
4761 4762 4763 4764 4765
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4766

4767 4768 4769
	/* protect the callchain buffers */
	rcu_read_lock();

4770
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4771

4772
	if (perf_output_begin(&handle, event, header.size))
4773
		goto exit;
4774

4775
	perf_output_sample(&handle, &header, data, event);
4776

4777
	perf_output_end(&handle);
4778 4779 4780

exit:
	rcu_read_unlock();
4781 4782
}

4783
/*
4784
 * read event_id
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4795
perf_event_read_event(struct perf_event *event,
4796 4797 4798
			struct task_struct *task)
{
	struct perf_output_handle handle;
4799
	struct perf_sample_data sample;
4800
	struct perf_read_event read_event = {
4801
		.header = {
4802
			.type = PERF_RECORD_READ,
4803
			.misc = 0,
4804
			.size = sizeof(read_event) + event->read_size,
4805
		},
4806 4807
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4808
	};
4809
	int ret;
4810

4811
	perf_event_header__init_id(&read_event.header, &sample, event);
4812
	ret = perf_output_begin(&handle, event, read_event.header.size);
4813 4814 4815
	if (ret)
		return;

4816
	perf_output_put(&handle, read_event);
4817
	perf_output_read(&handle, event);
4818
	perf_event__output_id_sample(event, &handle, &sample);
4819

4820 4821 4822
	perf_output_end(&handle);
}

4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4837
		output(event, data);
4838 4839 4840 4841
	}
}

static void
4842
perf_event_aux(perf_event_aux_output_cb output, void *data,
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4855
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4856 4857 4858 4859 4860 4861 4862
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4863
			perf_event_aux_ctx(ctx, output, data);
4864 4865 4866 4867 4868 4869
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4870
		perf_event_aux_ctx(task_ctx, output, data);
4871 4872 4873 4874 4875
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4876
/*
P
Peter Zijlstra 已提交
4877 4878
 * task tracking -- fork/exit
 *
4879
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4880 4881
 */

P
Peter Zijlstra 已提交
4882
struct perf_task_event {
4883
	struct task_struct		*task;
4884
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4885 4886 4887 4888 4889 4890

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4891 4892
		u32				tid;
		u32				ptid;
4893
		u64				time;
4894
	} event_id;
P
Peter Zijlstra 已提交
4895 4896
};

4897 4898
static int perf_event_task_match(struct perf_event *event)
{
4899 4900 4901
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
4902 4903
}

4904
static void perf_event_task_output(struct perf_event *event,
4905
				   void *data)
P
Peter Zijlstra 已提交
4906
{
4907
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4908
	struct perf_output_handle handle;
4909
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4910
	struct task_struct *task = task_event->task;
4911
	int ret, size = task_event->event_id.header.size;
4912

4913 4914 4915
	if (!perf_event_task_match(event))
		return;

4916
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4917

4918
	ret = perf_output_begin(&handle, event,
4919
				task_event->event_id.header.size);
4920
	if (ret)
4921
		goto out;
P
Peter Zijlstra 已提交
4922

4923 4924
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4925

4926 4927
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4928

4929
	perf_output_put(&handle, task_event->event_id);
4930

4931 4932
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4933
	perf_output_end(&handle);
4934 4935
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4936 4937
}

4938 4939
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4940
			      int new)
P
Peter Zijlstra 已提交
4941
{
P
Peter Zijlstra 已提交
4942
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4943

4944 4945 4946
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4947 4948
		return;

P
Peter Zijlstra 已提交
4949
	task_event = (struct perf_task_event){
4950 4951
		.task	  = task,
		.task_ctx = task_ctx,
4952
		.event_id    = {
P
Peter Zijlstra 已提交
4953
			.header = {
4954
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4955
				.misc = 0,
4956
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4957
			},
4958 4959
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4960 4961
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4962
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4963 4964 4965
		},
	};

4966
	perf_event_aux(perf_event_task_output,
4967 4968
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4969 4970
}

4971
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4972
{
4973
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4974 4975
}

4976 4977 4978 4979 4980
/*
 * comm tracking
 */

struct perf_comm_event {
4981 4982
	struct task_struct	*task;
	char			*comm;
4983 4984 4985 4986 4987 4988 4989
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4990
	} event_id;
4991 4992
};

4993 4994 4995 4996 4997
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

4998
static void perf_event_comm_output(struct perf_event *event,
4999
				   void *data)
5000
{
5001
	struct perf_comm_event *comm_event = data;
5002
	struct perf_output_handle handle;
5003
	struct perf_sample_data sample;
5004
	int size = comm_event->event_id.header.size;
5005 5006
	int ret;

5007 5008 5009
	if (!perf_event_comm_match(event))
		return;

5010 5011
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5012
				comm_event->event_id.header.size);
5013 5014

	if (ret)
5015
		goto out;
5016

5017 5018
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5019

5020
	perf_output_put(&handle, comm_event->event_id);
5021
	__output_copy(&handle, comm_event->comm,
5022
				   comm_event->comm_size);
5023 5024 5025

	perf_event__output_id_sample(event, &handle, &sample);

5026
	perf_output_end(&handle);
5027 5028
out:
	comm_event->event_id.header.size = size;
5029 5030
}

5031
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5032
{
5033
	char comm[TASK_COMM_LEN];
5034 5035
	unsigned int size;

5036
	memset(comm, 0, sizeof(comm));
5037
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5038
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5039 5040 5041 5042

	comm_event->comm = comm;
	comm_event->comm_size = size;

5043
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5044

5045
	perf_event_aux(perf_event_comm_output,
5046 5047
		       comm_event,
		       NULL);
5048 5049
}

5050
void perf_event_comm(struct task_struct *task)
5051
{
5052
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
5053 5054
	struct perf_event_context *ctx;
	int ctxn;
5055

5056
	rcu_read_lock();
P
Peter Zijlstra 已提交
5057 5058 5059 5060
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5061

P
Peter Zijlstra 已提交
5062 5063
		perf_event_enable_on_exec(ctx);
	}
5064
	rcu_read_unlock();
5065

5066
	if (!atomic_read(&nr_comm_events))
5067
		return;
5068

5069
	comm_event = (struct perf_comm_event){
5070
		.task	= task,
5071 5072
		/* .comm      */
		/* .comm_size */
5073
		.event_id  = {
5074
			.header = {
5075
				.type = PERF_RECORD_COMM,
5076 5077 5078 5079 5080
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
5081 5082 5083
		},
	};

5084
	perf_event_comm_event(&comm_event);
5085 5086
}

5087 5088 5089 5090 5091
/*
 * mmap tracking
 */

struct perf_mmap_event {
5092 5093 5094 5095
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5096 5097 5098
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5099 5100 5101 5102 5103 5104 5105 5106 5107

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5108
	} event_id;
5109 5110
};

5111 5112 5113 5114 5115 5116 5117 5118
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5119
	       (executable && (event->attr.mmap || event->attr.mmap2));
5120 5121
}

5122
static void perf_event_mmap_output(struct perf_event *event,
5123
				   void *data)
5124
{
5125
	struct perf_mmap_event *mmap_event = data;
5126
	struct perf_output_handle handle;
5127
	struct perf_sample_data sample;
5128
	int size = mmap_event->event_id.header.size;
5129
	int ret;
5130

5131 5132 5133
	if (!perf_event_mmap_match(event, data))
		return;

5134 5135 5136 5137 5138
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5139
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5140 5141
	}

5142 5143
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5144
				mmap_event->event_id.header.size);
5145
	if (ret)
5146
		goto out;
5147

5148 5149
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5150

5151
	perf_output_put(&handle, mmap_event->event_id);
5152 5153 5154 5155 5156 5157 5158 5159

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
	}

5160
	__output_copy(&handle, mmap_event->file_name,
5161
				   mmap_event->file_size);
5162 5163 5164

	perf_event__output_id_sample(event, &handle, &sample);

5165
	perf_output_end(&handle);
5166 5167
out:
	mmap_event->event_id.header.size = size;
5168 5169
}

5170
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5171
{
5172 5173
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5174 5175
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5176 5177 5178
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5179
	char *name;
5180

5181
	if (file) {
5182 5183
		struct inode *inode;
		dev_t dev;
5184

5185
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5186
		if (!buf) {
5187 5188
			name = "//enomem";
			goto cpy_name;
5189
		}
5190
		/*
5191
		 * d_path() works from the end of the rb backwards, so we
5192 5193 5194
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5195
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5196
		if (IS_ERR(name)) {
5197 5198
			name = "//toolong";
			goto cpy_name;
5199
		}
5200 5201 5202 5203 5204 5205
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5206
		goto got_name;
5207
	} else {
5208
		name = (char *)arch_vma_name(vma);
5209 5210
		if (name)
			goto cpy_name;
5211

5212
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5213
				vma->vm_end >= vma->vm_mm->brk) {
5214 5215
			name = "[heap]";
			goto cpy_name;
5216 5217
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5218
				vma->vm_end >= vma->vm_mm->start_stack) {
5219 5220
			name = "[stack]";
			goto cpy_name;
5221 5222
		}

5223 5224
		name = "//anon";
		goto cpy_name;
5225 5226
	}

5227 5228 5229
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5230
got_name:
5231 5232 5233 5234 5235 5236 5237 5238
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5239 5240 5241

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5242 5243 5244 5245
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5246

5247 5248 5249
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5250
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5251

5252
	perf_event_aux(perf_event_mmap_output,
5253 5254
		       mmap_event,
		       NULL);
5255

5256 5257 5258
	kfree(buf);
}

5259
void perf_event_mmap(struct vm_area_struct *vma)
5260
{
5261 5262
	struct perf_mmap_event mmap_event;

5263
	if (!atomic_read(&nr_mmap_events))
5264 5265 5266
		return;

	mmap_event = (struct perf_mmap_event){
5267
		.vma	= vma,
5268 5269
		/* .file_name */
		/* .file_size */
5270
		.event_id  = {
5271
			.header = {
5272
				.type = PERF_RECORD_MMAP,
5273
				.misc = PERF_RECORD_MISC_USER,
5274 5275 5276 5277
				/* .size */
			},
			/* .pid */
			/* .tid */
5278 5279
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5280
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5281
		},
5282 5283 5284 5285
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5286 5287
	};

5288
	perf_event_mmap_event(&mmap_event);
5289 5290
}

5291 5292 5293 5294
/*
 * IRQ throttle logging
 */

5295
static void perf_log_throttle(struct perf_event *event, int enable)
5296 5297
{
	struct perf_output_handle handle;
5298
	struct perf_sample_data sample;
5299 5300 5301 5302 5303
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5304
		u64				id;
5305
		u64				stream_id;
5306 5307
	} throttle_event = {
		.header = {
5308
			.type = PERF_RECORD_THROTTLE,
5309 5310 5311
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5312
		.time		= perf_clock(),
5313 5314
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5315 5316
	};

5317
	if (enable)
5318
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5319

5320 5321 5322
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5323
				throttle_event.header.size);
5324 5325 5326 5327
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5328
	perf_event__output_id_sample(event, &handle, &sample);
5329 5330 5331
	perf_output_end(&handle);
}

5332
/*
5333
 * Generic event overflow handling, sampling.
5334 5335
 */

5336
static int __perf_event_overflow(struct perf_event *event,
5337 5338
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5339
{
5340 5341
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5342
	u64 seq;
5343 5344
	int ret = 0;

5345 5346 5347 5348 5349 5350 5351
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5352 5353 5354 5355 5356 5357 5358 5359 5360
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5361 5362
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5363
			tick_nohz_full_kick();
5364 5365
			ret = 1;
		}
5366
	}
5367

5368
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5369
		u64 now = perf_clock();
5370
		s64 delta = now - hwc->freq_time_stamp;
5371

5372
		hwc->freq_time_stamp = now;
5373

5374
		if (delta > 0 && delta < 2*TICK_NSEC)
5375
			perf_adjust_period(event, delta, hwc->last_period, true);
5376 5377
	}

5378 5379
	/*
	 * XXX event_limit might not quite work as expected on inherited
5380
	 * events
5381 5382
	 */

5383 5384
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5385
		ret = 1;
5386
		event->pending_kill = POLL_HUP;
5387 5388
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5389 5390
	}

5391
	if (event->overflow_handler)
5392
		event->overflow_handler(event, data, regs);
5393
	else
5394
		perf_event_output(event, data, regs);
5395

P
Peter Zijlstra 已提交
5396
	if (event->fasync && event->pending_kill) {
5397 5398
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5399 5400
	}

5401
	return ret;
5402 5403
}

5404
int perf_event_overflow(struct perf_event *event,
5405 5406
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5407
{
5408
	return __perf_event_overflow(event, 1, data, regs);
5409 5410
}

5411
/*
5412
 * Generic software event infrastructure
5413 5414
 */

5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5426
/*
5427 5428
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5429 5430 5431 5432
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5433
u64 perf_swevent_set_period(struct perf_event *event)
5434
{
5435
	struct hw_perf_event *hwc = &event->hw;
5436 5437 5438 5439 5440
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5441 5442

again:
5443
	old = val = local64_read(&hwc->period_left);
5444 5445
	if (val < 0)
		return 0;
5446

5447 5448 5449
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5450
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5451
		goto again;
5452

5453
	return nr;
5454 5455
}

5456
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5457
				    struct perf_sample_data *data,
5458
				    struct pt_regs *regs)
5459
{
5460
	struct hw_perf_event *hwc = &event->hw;
5461
	int throttle = 0;
5462

5463 5464
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5465

5466 5467
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5468

5469
	for (; overflow; overflow--) {
5470
		if (__perf_event_overflow(event, throttle,
5471
					    data, regs)) {
5472 5473 5474 5475 5476 5477
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5478
		throttle = 1;
5479
	}
5480 5481
}

P
Peter Zijlstra 已提交
5482
static void perf_swevent_event(struct perf_event *event, u64 nr,
5483
			       struct perf_sample_data *data,
5484
			       struct pt_regs *regs)
5485
{
5486
	struct hw_perf_event *hwc = &event->hw;
5487

5488
	local64_add(nr, &event->count);
5489

5490 5491 5492
	if (!regs)
		return;

5493
	if (!is_sampling_event(event))
5494
		return;
5495

5496 5497 5498 5499 5500 5501
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5502
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5503
		return perf_swevent_overflow(event, 1, data, regs);
5504

5505
	if (local64_add_negative(nr, &hwc->period_left))
5506
		return;
5507

5508
	perf_swevent_overflow(event, 0, data, regs);
5509 5510
}

5511 5512 5513
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5514
	if (event->hw.state & PERF_HES_STOPPED)
5515
		return 1;
P
Peter Zijlstra 已提交
5516

5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5528
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5529
				enum perf_type_id type,
L
Li Zefan 已提交
5530 5531 5532
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5533
{
5534
	if (event->attr.type != type)
5535
		return 0;
5536

5537
	if (event->attr.config != event_id)
5538 5539
		return 0;

5540 5541
	if (perf_exclude_event(event, regs))
		return 0;
5542 5543 5544 5545

	return 1;
}

5546 5547 5548 5549 5550 5551 5552
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5553 5554
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5555
{
5556 5557 5558 5559
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5560

5561 5562
/* For the read side: events when they trigger */
static inline struct hlist_head *
5563
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5564 5565
{
	struct swevent_hlist *hlist;
5566

5567
	hlist = rcu_dereference(swhash->swevent_hlist);
5568 5569 5570
	if (!hlist)
		return NULL;

5571 5572 5573 5574 5575
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5576
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5587
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5588 5589 5590 5591 5592
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5593 5594 5595
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5596
				    u64 nr,
5597 5598
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5599
{
5600
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5601
	struct perf_event *event;
5602
	struct hlist_head *head;
5603

5604
	rcu_read_lock();
5605
	head = find_swevent_head_rcu(swhash, type, event_id);
5606 5607 5608
	if (!head)
		goto end;

5609
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5610
		if (perf_swevent_match(event, type, event_id, data, regs))
5611
			perf_swevent_event(event, nr, data, regs);
5612
	}
5613 5614
end:
	rcu_read_unlock();
5615 5616
}

5617
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5618
{
5619
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5620

5621
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5622
}
I
Ingo Molnar 已提交
5623
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5624

5625
inline void perf_swevent_put_recursion_context(int rctx)
5626
{
5627
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5628

5629
	put_recursion_context(swhash->recursion, rctx);
5630
}
5631

5632
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5633
{
5634
	struct perf_sample_data data;
5635 5636
	int rctx;

5637
	preempt_disable_notrace();
5638 5639 5640
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5641

5642
	perf_sample_data_init(&data, addr, 0);
5643

5644
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5645 5646

	perf_swevent_put_recursion_context(rctx);
5647
	preempt_enable_notrace();
5648 5649
}

5650
static void perf_swevent_read(struct perf_event *event)
5651 5652 5653
{
}

P
Peter Zijlstra 已提交
5654
static int perf_swevent_add(struct perf_event *event, int flags)
5655
{
5656
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5657
	struct hw_perf_event *hwc = &event->hw;
5658 5659
	struct hlist_head *head;

5660
	if (is_sampling_event(event)) {
5661
		hwc->last_period = hwc->sample_period;
5662
		perf_swevent_set_period(event);
5663
	}
5664

P
Peter Zijlstra 已提交
5665 5666
	hwc->state = !(flags & PERF_EF_START);

5667
	head = find_swevent_head(swhash, event);
5668 5669 5670 5671 5672
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5673 5674 5675
	return 0;
}

P
Peter Zijlstra 已提交
5676
static void perf_swevent_del(struct perf_event *event, int flags)
5677
{
5678
	hlist_del_rcu(&event->hlist_entry);
5679 5680
}

P
Peter Zijlstra 已提交
5681
static void perf_swevent_start(struct perf_event *event, int flags)
5682
{
P
Peter Zijlstra 已提交
5683
	event->hw.state = 0;
5684
}
I
Ingo Molnar 已提交
5685

P
Peter Zijlstra 已提交
5686
static void perf_swevent_stop(struct perf_event *event, int flags)
5687
{
P
Peter Zijlstra 已提交
5688
	event->hw.state = PERF_HES_STOPPED;
5689 5690
}

5691 5692
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5693
swevent_hlist_deref(struct swevent_htable *swhash)
5694
{
5695 5696
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5697 5698
}

5699
static void swevent_hlist_release(struct swevent_htable *swhash)
5700
{
5701
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5702

5703
	if (!hlist)
5704 5705
		return;

5706
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5707
	kfree_rcu(hlist, rcu_head);
5708 5709 5710 5711
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5712
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5713

5714
	mutex_lock(&swhash->hlist_mutex);
5715

5716 5717
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5718

5719
	mutex_unlock(&swhash->hlist_mutex);
5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5732
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5733 5734
	int err = 0;

5735
	mutex_lock(&swhash->hlist_mutex);
5736

5737
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5738 5739 5740 5741 5742 5743 5744
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5745
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5746
	}
5747
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5748
exit:
5749
	mutex_unlock(&swhash->hlist_mutex);
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5770
fail:
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5781
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5782

5783 5784 5785
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5786

5787 5788
	WARN_ON(event->parent);

5789
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5790 5791 5792 5793 5794
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5795
	u64 event_id = event->attr.config;
5796 5797 5798 5799

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5800 5801 5802 5803 5804 5805
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5806 5807 5808 5809 5810 5811 5812 5813 5814
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5815
	if (event_id >= PERF_COUNT_SW_MAX)
5816 5817 5818 5819 5820 5821 5822 5823 5824
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5825
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5826 5827 5828 5829 5830 5831
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5832 5833 5834 5835 5836
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5837
static struct pmu perf_swevent = {
5838
	.task_ctx_nr	= perf_sw_context,
5839

5840
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5841 5842 5843 5844
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5845
	.read		= perf_swevent_read,
5846 5847

	.event_idx	= perf_swevent_event_idx,
5848 5849
};

5850 5851
#ifdef CONFIG_EVENT_TRACING

5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5866 5867
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5868 5869 5870 5871
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5872 5873 5874 5875 5876 5877 5878 5879 5880
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5881 5882
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5883 5884
{
	struct perf_sample_data data;
5885 5886
	struct perf_event *event;

5887 5888 5889 5890 5891
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5892
	perf_sample_data_init(&data, addr, 0);
5893 5894
	data.raw = &raw;

5895
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5896
		if (perf_tp_event_match(event, &data, regs))
5897
			perf_swevent_event(event, count, &data, regs);
5898
	}
5899

5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5925
	perf_swevent_put_recursion_context(rctx);
5926 5927 5928
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5929
static void tp_perf_event_destroy(struct perf_event *event)
5930
{
5931
	perf_trace_destroy(event);
5932 5933
}

5934
static int perf_tp_event_init(struct perf_event *event)
5935
{
5936 5937
	int err;

5938 5939 5940
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5941 5942 5943 5944 5945 5946
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5947 5948
	err = perf_trace_init(event);
	if (err)
5949
		return err;
5950

5951
	event->destroy = tp_perf_event_destroy;
5952

5953 5954 5955 5956
	return 0;
}

static struct pmu perf_tracepoint = {
5957 5958
	.task_ctx_nr	= perf_sw_context,

5959
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5960 5961 5962 5963
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5964
	.read		= perf_swevent_read,
5965 5966

	.event_idx	= perf_swevent_event_idx,
5967 5968 5969 5970
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5971
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5972
}
L
Li Zefan 已提交
5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5997
#else
L
Li Zefan 已提交
5998

5999
static inline void perf_tp_register(void)
6000 6001
{
}
L
Li Zefan 已提交
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6012
#endif /* CONFIG_EVENT_TRACING */
6013

6014
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6015
void perf_bp_event(struct perf_event *bp, void *data)
6016
{
6017 6018 6019
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6020
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6021

P
Peter Zijlstra 已提交
6022
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6023
		perf_swevent_event(bp, 1, &sample, regs);
6024 6025 6026
}
#endif

6027 6028 6029
/*
 * hrtimer based swevent callback
 */
6030

6031
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6032
{
6033 6034 6035 6036 6037
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6038

6039
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6040 6041 6042 6043

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6044
	event->pmu->read(event);
6045

6046
	perf_sample_data_init(&data, 0, event->hw.last_period);
6047 6048 6049
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6050
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6051
			if (__perf_event_overflow(event, 1, &data, regs))
6052 6053
				ret = HRTIMER_NORESTART;
	}
6054

6055 6056
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6057

6058
	return ret;
6059 6060
}

6061
static void perf_swevent_start_hrtimer(struct perf_event *event)
6062
{
6063
	struct hw_perf_event *hwc = &event->hw;
6064 6065 6066 6067
	s64 period;

	if (!is_sampling_event(event))
		return;
6068

6069 6070 6071 6072
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6073

6074 6075 6076 6077 6078
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6079
				ns_to_ktime(period), 0,
6080
				HRTIMER_MODE_REL_PINNED, 0);
6081
}
6082 6083

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6084
{
6085 6086
	struct hw_perf_event *hwc = &event->hw;

6087
	if (is_sampling_event(event)) {
6088
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6089
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6090 6091 6092

		hrtimer_cancel(&hwc->hrtimer);
	}
6093 6094
}

P
Peter Zijlstra 已提交
6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6115
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6116 6117 6118 6119
		event->attr.freq = 0;
	}
}

6120 6121 6122 6123 6124
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6125
{
6126 6127 6128
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6129
	now = local_clock();
6130 6131
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6132 6133
}

P
Peter Zijlstra 已提交
6134
static void cpu_clock_event_start(struct perf_event *event, int flags)
6135
{
P
Peter Zijlstra 已提交
6136
	local64_set(&event->hw.prev_count, local_clock());
6137 6138 6139
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6140
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6141
{
6142 6143 6144
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6145

P
Peter Zijlstra 已提交
6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6159 6160 6161 6162
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6163

6164 6165 6166 6167 6168 6169 6170 6171
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6172 6173 6174 6175 6176 6177
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6178 6179
	perf_swevent_init_hrtimer(event);

6180
	return 0;
6181 6182
}

6183
static struct pmu perf_cpu_clock = {
6184 6185
	.task_ctx_nr	= perf_sw_context,

6186
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6187 6188 6189 6190
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6191
	.read		= cpu_clock_event_read,
6192 6193

	.event_idx	= perf_swevent_event_idx,
6194 6195 6196 6197 6198 6199 6200
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6201
{
6202 6203
	u64 prev;
	s64 delta;
6204

6205 6206 6207 6208
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6209

P
Peter Zijlstra 已提交
6210
static void task_clock_event_start(struct perf_event *event, int flags)
6211
{
P
Peter Zijlstra 已提交
6212
	local64_set(&event->hw.prev_count, event->ctx->time);
6213 6214 6215
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6216
static void task_clock_event_stop(struct perf_event *event, int flags)
6217 6218 6219
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6220 6221 6222 6223 6224 6225
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6226

P
Peter Zijlstra 已提交
6227 6228 6229 6230 6231 6232
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6233 6234 6235 6236
}

static void task_clock_event_read(struct perf_event *event)
{
6237 6238 6239
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6240 6241 6242 6243 6244

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6245
{
6246 6247 6248 6249 6250 6251
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6252 6253 6254 6255 6256 6257
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6258 6259
	perf_swevent_init_hrtimer(event);

6260
	return 0;
L
Li Zefan 已提交
6261 6262
}

6263
static struct pmu perf_task_clock = {
6264 6265
	.task_ctx_nr	= perf_sw_context,

6266
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6267 6268 6269 6270
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6271
	.read		= task_clock_event_read,
6272 6273

	.event_idx	= perf_swevent_event_idx,
6274
};
L
Li Zefan 已提交
6275

P
Peter Zijlstra 已提交
6276
static void perf_pmu_nop_void(struct pmu *pmu)
6277 6278
{
}
L
Li Zefan 已提交
6279

P
Peter Zijlstra 已提交
6280
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6281
{
P
Peter Zijlstra 已提交
6282
	return 0;
L
Li Zefan 已提交
6283 6284
}

P
Peter Zijlstra 已提交
6285
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6286
{
P
Peter Zijlstra 已提交
6287
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6288 6289
}

P
Peter Zijlstra 已提交
6290 6291 6292 6293 6294
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6295

P
Peter Zijlstra 已提交
6296
static void perf_pmu_cancel_txn(struct pmu *pmu)
6297
{
P
Peter Zijlstra 已提交
6298
	perf_pmu_enable(pmu);
6299 6300
}

6301 6302 6303 6304 6305
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6306 6307 6308 6309
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6310
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6311
{
P
Peter Zijlstra 已提交
6312
	struct pmu *pmu;
6313

P
Peter Zijlstra 已提交
6314 6315
	if (ctxn < 0)
		return NULL;
6316

P
Peter Zijlstra 已提交
6317 6318 6319 6320
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6321

P
Peter Zijlstra 已提交
6322
	return NULL;
6323 6324
}

6325
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6326
{
6327 6328 6329 6330 6331 6332 6333
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6334 6335
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6336 6337 6338 6339 6340 6341
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6342

P
Peter Zijlstra 已提交
6343
	mutex_lock(&pmus_lock);
6344
	/*
P
Peter Zijlstra 已提交
6345
	 * Like a real lame refcount.
6346
	 */
6347 6348 6349
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6350
			goto out;
6351
		}
P
Peter Zijlstra 已提交
6352
	}
6353

6354
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6355 6356
out:
	mutex_unlock(&pmus_lock);
6357
}
P
Peter Zijlstra 已提交
6358
static struct idr pmu_idr;
6359

P
Peter Zijlstra 已提交
6360 6361 6362 6363 6364 6365 6366
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6367
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6368

6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6412
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6413

6414 6415 6416 6417
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6418
};
6419
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6420 6421 6422 6423

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6424
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6440
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6461
static struct lock_class_key cpuctx_mutex;
6462
static struct lock_class_key cpuctx_lock;
6463

6464
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6465
{
P
Peter Zijlstra 已提交
6466
	int cpu, ret;
6467

6468
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6469 6470 6471 6472
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6473

P
Peter Zijlstra 已提交
6474 6475 6476 6477 6478 6479
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6480 6481 6482
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6483 6484 6485 6486 6487
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6488 6489 6490 6491 6492 6493
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6494
skip_type:
P
Peter Zijlstra 已提交
6495 6496 6497
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6498

W
Wei Yongjun 已提交
6499
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6500 6501
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6502
		goto free_dev;
6503

P
Peter Zijlstra 已提交
6504 6505 6506 6507
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6508
		__perf_event_init_context(&cpuctx->ctx);
6509
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6510
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6511
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6512
		cpuctx->ctx.pmu = pmu;
6513 6514 6515

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6516
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6517
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6518
	}
6519

P
Peter Zijlstra 已提交
6520
got_cpu_context:
P
Peter Zijlstra 已提交
6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6535
		}
6536
	}
6537

P
Peter Zijlstra 已提交
6538 6539 6540 6541 6542
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6543 6544 6545
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6546
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6547 6548
	ret = 0;
unlock:
6549 6550
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6551
	return ret;
P
Peter Zijlstra 已提交
6552

P
Peter Zijlstra 已提交
6553 6554 6555 6556
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6557 6558 6559 6560
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6561 6562 6563
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6564 6565
}

6566
void perf_pmu_unregister(struct pmu *pmu)
6567
{
6568 6569 6570
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6571

6572
	/*
P
Peter Zijlstra 已提交
6573 6574
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6575
	 */
6576
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6577
	synchronize_rcu();
6578

P
Peter Zijlstra 已提交
6579
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6580 6581
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6582 6583
	device_del(pmu->dev);
	put_device(pmu->dev);
6584
	free_pmu_context(pmu);
6585
}
6586

6587 6588 6589 6590
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6591
	int ret;
6592 6593

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6594 6595 6596 6597

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6598
	if (pmu) {
6599
		event->pmu = pmu;
6600 6601 6602
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6603
		goto unlock;
6604
	}
P
Peter Zijlstra 已提交
6605

6606
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6607
		event->pmu = pmu;
6608
		ret = pmu->event_init(event);
6609
		if (!ret)
P
Peter Zijlstra 已提交
6610
			goto unlock;
6611

6612 6613
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6614
			goto unlock;
6615
		}
6616
	}
P
Peter Zijlstra 已提交
6617 6618
	pmu = ERR_PTR(-ENOENT);
unlock:
6619
	srcu_read_unlock(&pmus_srcu, idx);
6620

6621
	return pmu;
6622 6623
}

6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6637 6638
static void account_event(struct perf_event *event)
{
6639 6640 6641
	if (event->parent)
		return;

6642 6643 6644 6645 6646 6647 6648 6649
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6650 6651 6652 6653
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6654
	if (has_branch_stack(event))
6655
		static_key_slow_inc(&perf_sched_events.key);
6656
	if (is_cgroup_event(event))
6657
		static_key_slow_inc(&perf_sched_events.key);
6658 6659

	account_event_cpu(event, event->cpu);
6660 6661
}

T
Thomas Gleixner 已提交
6662
/*
6663
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6664
 */
6665
static struct perf_event *
6666
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6667 6668 6669
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6670 6671
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6672
{
P
Peter Zijlstra 已提交
6673
	struct pmu *pmu;
6674 6675
	struct perf_event *event;
	struct hw_perf_event *hwc;
6676
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6677

6678 6679 6680 6681 6682
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6683
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6684
	if (!event)
6685
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6686

6687
	/*
6688
	 * Single events are their own group leaders, with an
6689 6690 6691
	 * empty sibling list:
	 */
	if (!group_leader)
6692
		group_leader = event;
6693

6694 6695
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6696

6697 6698 6699
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6700
	INIT_LIST_HEAD(&event->rb_entry);
6701
	INIT_LIST_HEAD(&event->active_entry);
6702 6703
	INIT_HLIST_NODE(&event->hlist_entry);

6704

6705
	init_waitqueue_head(&event->waitq);
6706
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6707

6708
	mutex_init(&event->mmap_mutex);
6709

6710
	atomic_long_set(&event->refcount, 1);
6711 6712 6713 6714 6715
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6716

6717
	event->parent		= parent_event;
6718

6719
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6720
	event->id		= atomic64_inc_return(&perf_event_id);
6721

6722
	event->state		= PERF_EVENT_STATE_INACTIVE;
6723

6724 6725
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6726 6727 6728

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6729 6730 6731 6732
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6733
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6734 6735 6736 6737
			event->hw.bp_target = task;
#endif
	}

6738
	if (!overflow_handler && parent_event) {
6739
		overflow_handler = parent_event->overflow_handler;
6740 6741
		context = parent_event->overflow_handler_context;
	}
6742

6743
	event->overflow_handler	= overflow_handler;
6744
	event->overflow_handler_context = context;
6745

J
Jiri Olsa 已提交
6746
	perf_event__state_init(event);
6747

6748
	pmu = NULL;
6749

6750
	hwc = &event->hw;
6751
	hwc->sample_period = attr->sample_period;
6752
	if (attr->freq && attr->sample_freq)
6753
		hwc->sample_period = 1;
6754
	hwc->last_period = hwc->sample_period;
6755

6756
	local64_set(&hwc->period_left, hwc->sample_period);
6757

6758
	/*
6759
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6760
	 */
6761
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6762
		goto err_ns;
6763

6764
	pmu = perf_init_event(event);
6765
	if (!pmu)
6766 6767
		goto err_ns;
	else if (IS_ERR(pmu)) {
6768
		err = PTR_ERR(pmu);
6769
		goto err_ns;
I
Ingo Molnar 已提交
6770
	}
6771

6772
	if (!event->parent) {
6773 6774
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
6775 6776
			if (err)
				goto err_pmu;
6777
		}
6778
	}
6779

6780
	return event;
6781 6782 6783 6784 6785 6786 6787 6788 6789 6790

err_pmu:
	if (event->destroy)
		event->destroy(event);
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6791 6792
}

6793 6794
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6795 6796
{
	u32 size;
6797
	int ret;
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6822 6823 6824
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6825 6826
	 */
	if (size > sizeof(*attr)) {
6827 6828 6829
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6830

6831 6832
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6833

6834
		for (; addr < end; addr++) {
6835 6836 6837 6838 6839 6840
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6841
		size = sizeof(*attr);
6842 6843 6844 6845 6846 6847
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6848 6849 6850 6851
	/* disabled for now */
	if (attr->mmap2)
		return -EINVAL;

6852
	if (attr->__reserved_1)
6853 6854 6855 6856 6857 6858 6859 6860
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6889 6890
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6891 6892
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6893
	}
6894

6895
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6896
		ret = perf_reg_validate(attr->sample_regs_user);
6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6915

6916 6917 6918 6919 6920 6921 6922 6923 6924
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6925 6926
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6927
{
6928
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6929 6930
	int ret = -EINVAL;

6931
	if (!output_event)
6932 6933
		goto set;

6934 6935
	/* don't allow circular references */
	if (event == output_event)
6936 6937
		goto out;

6938 6939 6940 6941 6942 6943 6944
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6945
	 * If its not a per-cpu rb, it must be the same task.
6946 6947 6948 6949
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6950
set:
6951
	mutex_lock(&event->mmap_mutex);
6952 6953 6954
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6955

6956 6957
	old_rb = event->rb;

6958
	if (output_event) {
6959 6960 6961
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6962
			goto unlock;
6963 6964
	}

6965 6966
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

6983
	ret = 0;
6984 6985 6986
unlock:
	mutex_unlock(&event->mmap_mutex);

6987 6988 6989 6990
out:
	return ret;
}

T
Thomas Gleixner 已提交
6991
/**
6992
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6993
 *
6994
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6995
 * @pid:		target pid
I
Ingo Molnar 已提交
6996
 * @cpu:		target cpu
6997
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6998
 */
6999 7000
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7001
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7002
{
7003 7004
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7005 7006 7007
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
7008
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7009
	struct task_struct *task = NULL;
7010
	struct pmu *pmu;
7011
	int event_fd;
7012
	int move_group = 0;
7013
	int err;
7014
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7015

7016
	/* for future expandability... */
S
Stephane Eranian 已提交
7017
	if (flags & ~PERF_FLAG_ALL)
7018 7019
		return -EINVAL;

7020 7021 7022
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7023

7024 7025 7026 7027 7028
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7029
	if (attr.freq) {
7030
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7031 7032 7033
			return -EINVAL;
	}

S
Stephane Eranian 已提交
7034 7035 7036 7037 7038 7039 7040 7041 7042
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7043 7044 7045 7046
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7047 7048 7049
	if (event_fd < 0)
		return event_fd;

7050
	if (group_fd != -1) {
7051 7052
		err = perf_fget_light(group_fd, &group);
		if (err)
7053
			goto err_fd;
7054
		group_leader = group.file->private_data;
7055 7056 7057 7058 7059 7060
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7061
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7062 7063 7064 7065 7066 7067 7068
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7069 7070
	get_online_cpus();

7071 7072
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7073 7074
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7075
		goto err_task;
7076 7077
	}

S
Stephane Eranian 已提交
7078 7079
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7080 7081 7082 7083
		if (err) {
			__free_event(event);
			goto err_task;
		}
S
Stephane Eranian 已提交
7084 7085
	}

7086 7087
	account_event(event);

7088 7089 7090 7091 7092
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7116 7117 7118 7119

	/*
	 * Get the target context (task or percpu):
	 */
7120
	ctx = find_get_context(pmu, task, event->cpu);
7121 7122
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7123
		goto err_alloc;
7124 7125
	}

7126 7127 7128 7129 7130
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7131
	/*
7132
	 * Look up the group leader (we will attach this event to it):
7133
	 */
7134
	if (group_leader) {
7135
		err = -EINVAL;
7136 7137

		/*
I
Ingo Molnar 已提交
7138 7139 7140 7141
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7142
			goto err_context;
I
Ingo Molnar 已提交
7143 7144 7145
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7146
		 */
7147 7148 7149 7150 7151 7152 7153 7154
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7155 7156 7157
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7158
		if (attr.exclusive || attr.pinned)
7159
			goto err_context;
7160 7161 7162 7163 7164
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7165
			goto err_context;
7166
	}
T
Thomas Gleixner 已提交
7167

7168 7169
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7170 7171
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7172
		goto err_context;
7173
	}
7174

7175 7176 7177 7178
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7179
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
7180 7181 7182 7183 7184 7185 7186

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7187 7188
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7189
			perf_remove_from_context(sibling, false);
J
Jiri Olsa 已提交
7190
			perf_event__state_init(sibling);
7191 7192 7193 7194
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7195
	}
7196

7197
	WARN_ON_ONCE(ctx->parent_ctx);
7198
	mutex_lock(&ctx->mutex);
7199 7200

	if (move_group) {
7201
		synchronize_rcu();
7202
		perf_install_in_context(ctx, group_leader, event->cpu);
7203 7204 7205
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7206
			perf_install_in_context(ctx, sibling, event->cpu);
7207 7208 7209 7210
			get_ctx(ctx);
		}
	}

7211
	perf_install_in_context(ctx, event, event->cpu);
7212
	perf_unpin_context(ctx);
7213
	mutex_unlock(&ctx->mutex);
7214

7215 7216
	put_online_cpus();

7217
	event->owner = current;
P
Peter Zijlstra 已提交
7218

7219 7220 7221
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7222

7223 7224 7225 7226
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7227
	perf_event__id_header_size(event);
7228

7229 7230 7231 7232 7233 7234
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7235
	fdput(group);
7236 7237
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7238

7239
err_context:
7240
	perf_unpin_context(ctx);
7241
	put_ctx(ctx);
7242
err_alloc:
7243
	free_event(event);
P
Peter Zijlstra 已提交
7244
err_task:
7245
	put_online_cpus();
P
Peter Zijlstra 已提交
7246 7247
	if (task)
		put_task_struct(task);
7248
err_group_fd:
7249
	fdput(group);
7250 7251
err_fd:
	put_unused_fd(event_fd);
7252
	return err;
T
Thomas Gleixner 已提交
7253 7254
}

7255 7256 7257 7258 7259
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7260
 * @task: task to profile (NULL for percpu)
7261 7262 7263
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7264
				 struct task_struct *task,
7265 7266
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7267 7268
{
	struct perf_event_context *ctx;
7269
	struct perf_event *event;
7270
	int err;
7271

7272 7273 7274
	/*
	 * Get the target context (task or percpu):
	 */
7275

7276 7277
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7278 7279 7280 7281
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7282

7283 7284
	account_event(event);

M
Matt Helsley 已提交
7285
	ctx = find_get_context(event->pmu, task, cpu);
7286 7287
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7288
		goto err_free;
7289
	}
7290 7291 7292 7293

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7294
	perf_unpin_context(ctx);
7295 7296 7297 7298
	mutex_unlock(&ctx->mutex);

	return event;

7299 7300 7301
err_free:
	free_event(event);
err:
7302
	return ERR_PTR(err);
7303
}
7304
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7305

7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
7319
		perf_remove_from_context(event, false);
7320
		unaccount_event_cpu(event, src_cpu);
7321
		put_ctx(src_ctx);
7322
		list_add(&event->migrate_entry, &events);
7323 7324 7325 7326 7327 7328
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
7329 7330
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7331 7332
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7333
		account_event_cpu(event, dst_cpu);
7334 7335 7336 7337 7338 7339 7340
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7341
static void sync_child_event(struct perf_event *child_event,
7342
			       struct task_struct *child)
7343
{
7344
	struct perf_event *parent_event = child_event->parent;
7345
	u64 child_val;
7346

7347 7348
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7349

P
Peter Zijlstra 已提交
7350
	child_val = perf_event_count(child_event);
7351 7352 7353 7354

	/*
	 * Add back the child's count to the parent's count:
	 */
7355
	atomic64_add(child_val, &parent_event->child_count);
7356 7357 7358 7359
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7360 7361

	/*
7362
	 * Remove this event from the parent's list
7363
	 */
7364 7365 7366 7367
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7368 7369

	/*
7370
	 * Release the parent event, if this was the last
7371 7372
	 * reference to it.
	 */
7373
	put_event(parent_event);
7374 7375
}

7376
static void
7377 7378
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7379
			 struct task_struct *child)
7380
{
7381
	perf_remove_from_context(child_event, !!child_event->parent);
7382

7383
	/*
7384
	 * It can happen that the parent exits first, and has events
7385
	 * that are still around due to the child reference. These
7386
	 * events need to be zapped.
7387
	 */
7388
	if (child_event->parent) {
7389 7390
		sync_child_event(child_event, child);
		free_event(child_event);
7391
	}
7392 7393
}

P
Peter Zijlstra 已提交
7394
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7395
{
7396 7397
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7398
	unsigned long flags;
7399

P
Peter Zijlstra 已提交
7400
	if (likely(!child->perf_event_ctxp[ctxn])) {
7401
		perf_event_task(child, NULL, 0);
7402
		return;
P
Peter Zijlstra 已提交
7403
	}
7404

7405
	local_irq_save(flags);
7406 7407 7408 7409 7410 7411
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7412
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7413 7414 7415

	/*
	 * Take the context lock here so that if find_get_context is
7416
	 * reading child->perf_event_ctxp, we wait until it has
7417 7418
	 * incremented the context's refcount before we do put_ctx below.
	 */
7419
	raw_spin_lock(&child_ctx->lock);
7420
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7421
	child->perf_event_ctxp[ctxn] = NULL;
7422 7423 7424
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7425
	 * the events from it.
7426 7427
	 */
	unclone_ctx(child_ctx);
7428
	update_context_time(child_ctx);
7429
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7430 7431

	/*
7432 7433 7434
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7435
	 */
7436
	perf_event_task(child, child_ctx, 0);
7437

7438 7439 7440
	/*
	 * We can recurse on the same lock type through:
	 *
7441 7442
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7443 7444
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7445 7446 7447
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7448
	mutex_lock(&child_ctx->mutex);
7449

7450
again:
7451 7452 7453 7454 7455
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7456
				 group_entry)
7457
		__perf_event_exit_task(child_event, child_ctx, child);
7458 7459

	/*
7460
	 * If the last event was a group event, it will have appended all
7461 7462 7463
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7464 7465
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7466
		goto again;
7467 7468 7469 7470

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7471 7472
}

P
Peter Zijlstra 已提交
7473 7474 7475 7476 7477
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7478
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7479 7480
	int ctxn;

P
Peter Zijlstra 已提交
7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7496 7497 7498 7499
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7512
	put_event(parent);
7513

7514
	perf_group_detach(event);
7515 7516 7517 7518
	list_del_event(event, ctx);
	free_event(event);
}

7519 7520
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7521
 * perf_event_init_task below, used by fork() in case of fail.
7522
 */
7523
void perf_event_free_task(struct task_struct *task)
7524
{
P
Peter Zijlstra 已提交
7525
	struct perf_event_context *ctx;
7526
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7527
	int ctxn;
7528

P
Peter Zijlstra 已提交
7529 7530 7531 7532
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7533

P
Peter Zijlstra 已提交
7534
		mutex_lock(&ctx->mutex);
7535
again:
P
Peter Zijlstra 已提交
7536 7537 7538
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7539

P
Peter Zijlstra 已提交
7540 7541 7542
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7543

P
Peter Zijlstra 已提交
7544 7545 7546
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7547

P
Peter Zijlstra 已提交
7548
		mutex_unlock(&ctx->mutex);
7549

P
Peter Zijlstra 已提交
7550 7551
		put_ctx(ctx);
	}
7552 7553
}

7554 7555 7556 7557 7558 7559 7560 7561
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7574
	unsigned long flags;
P
Peter Zijlstra 已提交
7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7587
					   child,
P
Peter Zijlstra 已提交
7588
					   group_leader, parent_event,
7589
				           NULL, NULL);
P
Peter Zijlstra 已提交
7590 7591
	if (IS_ERR(child_event))
		return child_event;
7592 7593 7594 7595 7596 7597

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7622 7623
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7624

7625 7626 7627 7628
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7629
	perf_event__id_header_size(child_event);
7630

P
Peter Zijlstra 已提交
7631 7632 7633
	/*
	 * Link it up in the child's context:
	 */
7634
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7635
	add_event_to_ctx(child_event, child_ctx);
7636
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7670 7671 7672 7673 7674
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7675
		   struct task_struct *child, int ctxn,
7676 7677 7678
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7679
	struct perf_event_context *child_ctx;
7680 7681 7682 7683

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7684 7685
	}

7686
	child_ctx = child->perf_event_ctxp[ctxn];
7687 7688 7689 7690 7691 7692 7693
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7694

7695
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7696 7697
		if (!child_ctx)
			return -ENOMEM;
7698

P
Peter Zijlstra 已提交
7699
		child->perf_event_ctxp[ctxn] = child_ctx;
7700 7701 7702 7703 7704 7705 7706 7707 7708
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7709 7710
}

7711
/*
7712
 * Initialize the perf_event context in task_struct
7713
 */
P
Peter Zijlstra 已提交
7714
int perf_event_init_context(struct task_struct *child, int ctxn)
7715
{
7716
	struct perf_event_context *child_ctx, *parent_ctx;
7717 7718
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7719
	struct task_struct *parent = current;
7720
	int inherited_all = 1;
7721
	unsigned long flags;
7722
	int ret = 0;
7723

P
Peter Zijlstra 已提交
7724
	if (likely(!parent->perf_event_ctxp[ctxn]))
7725 7726
		return 0;

7727
	/*
7728 7729
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7730
	 */
P
Peter Zijlstra 已提交
7731
	parent_ctx = perf_pin_task_context(parent, ctxn);
7732 7733
	if (!parent_ctx)
		return 0;
7734

7735 7736 7737 7738 7739 7740 7741
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7742 7743 7744 7745
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7746
	mutex_lock(&parent_ctx->mutex);
7747 7748 7749 7750 7751

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7752
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7753 7754
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7755 7756 7757
		if (ret)
			break;
	}
7758

7759 7760 7761 7762 7763 7764 7765 7766 7767
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7768
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7769 7770
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7771
		if (ret)
7772
			break;
7773 7774
	}

7775 7776 7777
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7778
	child_ctx = child->perf_event_ctxp[ctxn];
7779

7780
	if (child_ctx && inherited_all) {
7781 7782 7783
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7784 7785 7786
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7787
		 */
P
Peter Zijlstra 已提交
7788
		cloned_ctx = parent_ctx->parent_ctx;
7789 7790
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7791
			child_ctx->parent_gen = parent_ctx->parent_gen;
7792 7793 7794 7795 7796
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7797 7798
	}

P
Peter Zijlstra 已提交
7799
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7800
	mutex_unlock(&parent_ctx->mutex);
7801

7802
	perf_unpin_context(parent_ctx);
7803
	put_ctx(parent_ctx);
7804

7805
	return ret;
7806 7807
}

P
Peter Zijlstra 已提交
7808 7809 7810 7811 7812 7813 7814
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7815 7816 7817 7818
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7819 7820 7821 7822 7823 7824 7825 7826 7827
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7828 7829
static void __init perf_event_init_all_cpus(void)
{
7830
	struct swevent_htable *swhash;
7831 7832 7833
	int cpu;

	for_each_possible_cpu(cpu) {
7834 7835
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7836
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7837 7838 7839
	}
}

7840
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7841
{
P
Peter Zijlstra 已提交
7842
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7843

7844
	mutex_lock(&swhash->hlist_mutex);
7845
	if (swhash->hlist_refcount > 0) {
7846 7847
		struct swevent_hlist *hlist;

7848 7849 7850
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7851
	}
7852
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7853 7854
}

P
Peter Zijlstra 已提交
7855
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7856
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7857
{
7858 7859 7860 7861 7862 7863 7864
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7865
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7866
{
7867
	struct remove_event re = { .detach_group = false };
P
Peter Zijlstra 已提交
7868
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
7869

P
Peter Zijlstra 已提交
7870
	perf_pmu_rotate_stop(ctx->pmu);
7871

P
Peter Zijlstra 已提交
7872
	rcu_read_lock();
7873 7874
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
7875
	rcu_read_unlock();
T
Thomas Gleixner 已提交
7876
}
P
Peter Zijlstra 已提交
7877 7878 7879 7880 7881 7882 7883 7884 7885

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7886
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7887 7888 7889 7890 7891 7892 7893 7894

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7895
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7896
{
7897
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7898

P
Peter Zijlstra 已提交
7899 7900
	perf_event_exit_cpu_context(cpu);

7901 7902 7903
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7904 7905
}
#else
7906
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7907 7908
#endif

P
Peter Zijlstra 已提交
7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

7929
static int
T
Thomas Gleixner 已提交
7930 7931 7932 7933
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7934
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7935 7936

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7937
	case CPU_DOWN_FAILED:
7938
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7939 7940
		break;

P
Peter Zijlstra 已提交
7941
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7942
	case CPU_DOWN_PREPARE:
7943
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7944 7945 7946 7947 7948 7949 7950 7951
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7952
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7953
{
7954 7955
	int ret;

P
Peter Zijlstra 已提交
7956 7957
	idr_init(&pmu_idr);

7958
	perf_event_init_all_cpus();
7959
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7960 7961 7962
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7963 7964
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7965
	register_reboot_notifier(&perf_reboot_notifier);
7966 7967 7968

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7969 7970 7971

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7972 7973 7974 7975 7976 7977 7978

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7979
}
P
Peter Zijlstra 已提交
7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8008 8009

#ifdef CONFIG_CGROUP_PERF
8010 8011
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8012 8013 8014
{
	struct perf_cgroup *jc;

8015
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8028
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8029
{
8030 8031
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8043 8044
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8045
{
8046 8047
	struct task_struct *task;

8048
	cgroup_taskset_for_each(task, tset)
8049
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8050 8051
}

8052 8053
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8054
			     struct task_struct *task)
S
Stephane Eranian 已提交
8055 8056 8057 8058 8059 8060 8061 8062 8063
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8064
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8065 8066
}

8067
struct cgroup_subsys perf_event_cgrp_subsys = {
8068 8069
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8070
	.exit		= perf_cgroup_exit,
8071
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8072 8073
};
#endif /* CONFIG_CGROUP_PERF */