core.c 192.6 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
T
Thomas Gleixner 已提交
45

46 47
#include "internal.h"

48 49
#include <asm/irq_regs.h>

50 51
static struct workqueue_struct *perf_wq;

52
struct remote_function_call {
53 54 55 56
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
90 91 92 93
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
114 115 116 117
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
118 119 120 121 122 123 124
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

125 126 127 128 129 130 131
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
132 133
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
134 135
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
136

137 138 139 140 141 142 143
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

144 145 146 147 148 149
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
150 151 152 153
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
154
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
155
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
157

158 159 160
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
161
static atomic_t nr_freq_events __read_mostly;
162

P
Peter Zijlstra 已提交
163 164 165 166
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

167
/*
168
 * perf event paranoia level:
169 170
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
171
 *   1 - disallow cpu events for unpriv
172
 *   2 - disallow kernel profiling for unpriv
173
 */
174
int sysctl_perf_event_paranoid __read_mostly = 1;
175

176 177
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178 179

/*
180
 * max perf event sample rate
181
 */
182 183 184 185 186 187 188 189 190
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
191 192
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193 194 195 196 197 198

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
199
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
200
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201
}
P
Peter Zijlstra 已提交
202

203 204
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
205 206 207 208
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
209
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
210 211 212 213 214

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
233 234 235

	return 0;
}
236

237 238 239 240 241 242 243
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
244
static DEFINE_PER_CPU(u64, running_sample_length);
245

246
static void perf_duration_warn(struct irq_work *w)
247
{
248
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249
	u64 avg_local_sample_len;
250
	u64 local_samples_len;
251 252 253 254 255 256 257

	local_samples_len = __get_cpu_var(running_sample_length);
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
258
			avg_local_sample_len, allowed_ns >> 1,
259 260 261 262 263 264 265
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
266
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 268
	u64 avg_local_sample_len;
	u64 local_samples_len;
269

P
Peter Zijlstra 已提交
270
	if (allowed_ns == 0)
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
286
	if (avg_local_sample_len <= allowed_ns)
287 288 289 290 291 292 293 294 295 296
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
297

298 299 300 301 302 303
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
304 305
}

306
static atomic64_t perf_event_id;
307

308 309 310 311
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
312 313 314 315 316
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
317

318
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
319

320
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
321
{
322
	return "pmu";
T
Thomas Gleixner 已提交
323 324
}

325 326 327 328 329
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
330 331 332 333 334 335
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
352 353
#ifdef CONFIG_CGROUP_PERF

354 355 356 357 358 359 360 361 362 363 364
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
365
	struct perf_cgroup_info	__percpu *info;
366 367
};

368 369 370 371 372
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
373 374 375
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
376
	return container_of(task_css(task, perf_event_cgrp_id),
377
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
378 379 380 381 382 383 384 385
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
450 451
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
452
	/*
453 454
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
455
	 */
456
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
457 458
		return;

459 460 461 462 463 464
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
465 466 467
}

static inline void
468 469
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
470 471 472 473
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

474 475 476 477 478 479
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
480 481 482 483
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
484
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
517 518
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
519 520 521 522 523 524 525 526 527

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
528 529
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
530 531 532 533 534 535 536 537 538 539 540

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
541
				WARN_ON_ONCE(cpuctx->cgrp);
542 543 544 545
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
546 547 548 549
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
550 551
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
552 553 554 555 556 557 558 559
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

560 561
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
562
{
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
585 586
}

587 588
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
589
{
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
608 609 610 611 612 613 614 615
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
616 617
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
618

619
	if (!f.file)
S
Stephane Eranian 已提交
620 621
		return -EBADF;

622 623
	css = css_tryget_online_from_dir(f.file->f_dentry,
					 &perf_event_cgrp_subsys);
624 625 626 627
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
641
out:
642
	fdput(f);
S
Stephane Eranian 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

716 717
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
718 719 720
{
}

721 722
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
723 724 725 726 727 728 729 730 731 732 733
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
734 735
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
829
	int timer;
830 831 832 833 834

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

835 836 837 838 839 840 841 842 843
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
866
void perf_pmu_disable(struct pmu *pmu)
867
{
P
Peter Zijlstra 已提交
868 869 870
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
871 872
}

P
Peter Zijlstra 已提交
873
void perf_pmu_enable(struct pmu *pmu)
874
{
P
Peter Zijlstra 已提交
875 876 877
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
878 879
}

880 881 882 883 884 885 886
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
887
static void perf_pmu_rotate_start(struct pmu *pmu)
888
{
P
Peter Zijlstra 已提交
889
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
890
	struct list_head *head = &__get_cpu_var(rotation_list);
891

892
	WARN_ON(!irqs_disabled());
893

894
	if (list_empty(&cpuctx->rotation_list))
895
		list_add(&cpuctx->rotation_list, head);
896 897
}

898
static void get_ctx(struct perf_event_context *ctx)
899
{
900
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
901 902
}

903
static void put_ctx(struct perf_event_context *ctx)
904
{
905 906 907
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
908 909
		if (ctx->task)
			put_task_struct(ctx->task);
910
		kfree_rcu(ctx, rcu_head);
911
	}
912 913
}

914
static void unclone_ctx(struct perf_event_context *ctx)
915 916 917 918 919
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
920
	ctx->generation++;
921 922
}

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

945
/*
946
 * If we inherit events we want to return the parent event id
947 948
 * to userspace.
 */
949
static u64 primary_event_id(struct perf_event *event)
950
{
951
	u64 id = event->id;
952

953 954
	if (event->parent)
		id = event->parent->id;
955 956 957 958

	return id;
}

959
/*
960
 * Get the perf_event_context for a task and lock it.
961 962 963
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
964
static struct perf_event_context *
P
Peter Zijlstra 已提交
965
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
966
{
967
	struct perf_event_context *ctx;
968

P
Peter Zijlstra 已提交
969
retry:
970 971 972 973 974 975 976 977 978 979 980
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
981
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
982 983 984 985
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
986
		 * perf_event_task_sched_out, though the
987 988 989 990 991 992
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
993
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
994
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
995
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
996 997
			rcu_read_unlock();
			preempt_enable();
998 999
			goto retry;
		}
1000 1001

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1002
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1003 1004
			ctx = NULL;
		}
1005 1006
	}
	rcu_read_unlock();
1007
	preempt_enable();
1008 1009 1010 1011 1012 1013 1014 1015
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1016 1017
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1018
{
1019
	struct perf_event_context *ctx;
1020 1021
	unsigned long flags;

P
Peter Zijlstra 已提交
1022
	ctx = perf_lock_task_context(task, ctxn, &flags);
1023 1024
	if (ctx) {
		++ctx->pin_count;
1025
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1026 1027 1028 1029
	}
	return ctx;
}

1030
static void perf_unpin_context(struct perf_event_context *ctx)
1031 1032 1033
{
	unsigned long flags;

1034
	raw_spin_lock_irqsave(&ctx->lock, flags);
1035
	--ctx->pin_count;
1036
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1037 1038
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1050 1051 1052
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1053 1054 1055 1056

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1057 1058 1059
	return ctx ? ctx->time : 0;
}

1060 1061
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1062
 * The caller of this function needs to hold the ctx->lock.
1063 1064 1065 1066 1067 1068 1069 1070 1071
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1083
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1084 1085
	else if (ctx->is_active)
		run_end = ctx->time;
1086 1087 1088 1089
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1090 1091 1092 1093

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1094
		run_end = perf_event_time(event);
1095 1096

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1097

1098 1099
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1112 1113 1114 1115 1116 1117 1118 1119 1120
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1121
/*
1122
 * Add a event from the lists for its context.
1123 1124
 * Must be called with ctx->mutex and ctx->lock held.
 */
1125
static void
1126
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1127
{
1128 1129
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1130 1131

	/*
1132 1133 1134
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1135
	 */
1136
	if (event->group_leader == event) {
1137 1138
		struct list_head *list;

1139 1140 1141
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1142 1143
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1144
	}
P
Peter Zijlstra 已提交
1145

1146
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1147 1148
		ctx->nr_cgroups++;

1149 1150 1151
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1152
	list_add_rcu(&event->event_entry, &ctx->event_list);
1153
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1154
		perf_pmu_rotate_start(ctx->pmu);
1155 1156
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1157
		ctx->nr_stat++;
1158 1159

	ctx->generation++;
1160 1161
}

J
Jiri Olsa 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1210 1211 1212 1213 1214 1215
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1216 1217 1218
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1219 1220 1221
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1222 1223 1224
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1225 1226 1227
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1228 1229 1230 1231 1232 1233 1234 1235 1236
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1237 1238 1239 1240 1241 1242
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1243 1244 1245
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1246 1247 1248 1249 1250 1251 1252 1253 1254
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1255
	event->id_header_size = size;
1256 1257
}

1258 1259
static void perf_group_attach(struct perf_event *event)
{
1260
	struct perf_event *group_leader = event->group_leader, *pos;
1261

P
Peter Zijlstra 已提交
1262 1263 1264 1265 1266 1267
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1279 1280 1281 1282 1283

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1284 1285
}

1286
/*
1287
 * Remove a event from the lists for its context.
1288
 * Must be called with ctx->mutex and ctx->lock held.
1289
 */
1290
static void
1291
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1292
{
1293
	struct perf_cpu_context *cpuctx;
1294 1295 1296 1297
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1298
		return;
1299 1300 1301

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1302
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1303
		ctx->nr_cgroups--;
1304 1305 1306 1307 1308 1309 1310 1311 1312
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1313

1314 1315 1316
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1317 1318
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1319
		ctx->nr_stat--;
1320

1321
	list_del_rcu(&event->event_entry);
1322

1323 1324
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1325

1326
	update_group_times(event);
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1337 1338

	ctx->generation++;
1339 1340
}

1341
static void perf_group_detach(struct perf_event *event)
1342 1343
{
	struct perf_event *sibling, *tmp;
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1360
		goto out;
1361 1362 1363 1364
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1365

1366
	/*
1367 1368
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1369
	 * to whatever list we are on.
1370
	 */
1371
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1372 1373
		if (list)
			list_move_tail(&sibling->group_entry, list);
1374
		sibling->group_leader = sibling;
1375 1376 1377

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1378
	}
1379 1380 1381 1382 1383 1384

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1385 1386
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1426 1427 1428
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1429 1430
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1431 1432
}

1433 1434
static void
event_sched_out(struct perf_event *event,
1435
		  struct perf_cpu_context *cpuctx,
1436
		  struct perf_event_context *ctx)
1437
{
1438
	u64 tstamp = perf_event_time(event);
1439 1440 1441 1442 1443 1444 1445 1446 1447
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1448
		delta = tstamp - event->tstamp_stopped;
1449
		event->tstamp_running += delta;
1450
		event->tstamp_stopped = tstamp;
1451 1452
	}

1453
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1454
		return;
1455

1456 1457
	perf_pmu_disable(event->pmu);

1458 1459 1460 1461
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1462
	}
1463
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1464
	event->pmu->del(event, 0);
1465
	event->oncpu = -1;
1466

1467
	if (!is_software_event(event))
1468 1469
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1470 1471
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1472
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1473
		cpuctx->exclusive = 0;
1474

1475 1476 1477
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1478
	perf_pmu_enable(event->pmu);
1479 1480
}

1481
static void
1482
group_sched_out(struct perf_event *group_event,
1483
		struct perf_cpu_context *cpuctx,
1484
		struct perf_event_context *ctx)
1485
{
1486
	struct perf_event *event;
1487
	int state = group_event->state;
1488

1489
	event_sched_out(group_event, cpuctx, ctx);
1490 1491 1492 1493

	/*
	 * Schedule out siblings (if any):
	 */
1494 1495
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1496

1497
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1498 1499 1500
		cpuctx->exclusive = 0;
}

1501 1502 1503 1504 1505
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1506
/*
1507
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1508
 *
1509
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1510 1511
 * remove it from the context list.
 */
1512
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1513
{
1514 1515
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1516
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1517
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1518

1519
	raw_spin_lock(&ctx->lock);
1520
	event_sched_out(event, cpuctx, ctx);
1521 1522
	if (re->detach_group)
		perf_group_detach(event);
1523
	list_del_event(event, ctx);
1524 1525 1526 1527
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1528
	raw_spin_unlock(&ctx->lock);
1529 1530

	return 0;
T
Thomas Gleixner 已提交
1531 1532 1533 1534
}


/*
1535
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1536
 *
1537
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1538
 * call when the task is on a CPU.
1539
 *
1540 1541
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1542 1543
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1544
 * When called from perf_event_exit_task, it's OK because the
1545
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1546
 */
1547
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1548
{
1549
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1550
	struct task_struct *task = ctx->task;
1551 1552 1553 1554
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1555

1556 1557
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1558 1559
	if (!task) {
		/*
1560
		 * Per cpu events are removed via an smp call and
1561
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1562
		 */
1563
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1564 1565 1566 1567
		return;
	}

retry:
1568
	if (!task_function_call(task, __perf_remove_from_context, &re))
1569
		return;
T
Thomas Gleixner 已提交
1570

1571
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1572
	/*
1573 1574
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1575
	 */
1576
	if (ctx->is_active) {
1577
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1578 1579 1580 1581
		goto retry;
	}

	/*
1582 1583
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1584
	 */
1585 1586
	if (detach_group)
		perf_group_detach(event);
1587
	list_del_event(event, ctx);
1588
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1589 1590
}

1591
/*
1592
 * Cross CPU call to disable a performance event
1593
 */
1594
int __perf_event_disable(void *info)
1595
{
1596 1597
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1598
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1599 1600

	/*
1601 1602
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1603 1604 1605
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1606
	 */
1607
	if (ctx->task && cpuctx->task_ctx != ctx)
1608
		return -EINVAL;
1609

1610
	raw_spin_lock(&ctx->lock);
1611 1612

	/*
1613
	 * If the event is on, turn it off.
1614 1615
	 * If it is in error state, leave it in error state.
	 */
1616
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1617
		update_context_time(ctx);
S
Stephane Eranian 已提交
1618
		update_cgrp_time_from_event(event);
1619 1620 1621
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1622
		else
1623 1624
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1625 1626
	}

1627
	raw_spin_unlock(&ctx->lock);
1628 1629

	return 0;
1630 1631 1632
}

/*
1633
 * Disable a event.
1634
 *
1635 1636
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1637
 * remains valid.  This condition is satisifed when called through
1638 1639 1640 1641
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1642
 * is the current context on this CPU and preemption is disabled,
1643
 * hence we can't get into perf_event_task_sched_out for this context.
1644
 */
1645
void perf_event_disable(struct perf_event *event)
1646
{
1647
	struct perf_event_context *ctx = event->ctx;
1648 1649 1650 1651
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1652
		 * Disable the event on the cpu that it's on
1653
		 */
1654
		cpu_function_call(event->cpu, __perf_event_disable, event);
1655 1656 1657
		return;
	}

P
Peter Zijlstra 已提交
1658
retry:
1659 1660
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1661

1662
	raw_spin_lock_irq(&ctx->lock);
1663
	/*
1664
	 * If the event is still active, we need to retry the cross-call.
1665
	 */
1666
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1667
		raw_spin_unlock_irq(&ctx->lock);
1668 1669 1670 1671 1672
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1673 1674 1675 1676 1677 1678 1679
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1680 1681 1682
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1683
	}
1684
	raw_spin_unlock_irq(&ctx->lock);
1685
}
1686
EXPORT_SYMBOL_GPL(perf_event_disable);
1687

S
Stephane Eranian 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1723 1724 1725 1726
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1727
static int
1728
event_sched_in(struct perf_event *event,
1729
		 struct perf_cpu_context *cpuctx,
1730
		 struct perf_event_context *ctx)
1731
{
1732
	u64 tstamp = perf_event_time(event);
1733
	int ret = 0;
1734

1735 1736
	lockdep_assert_held(&ctx->lock);

1737
	if (event->state <= PERF_EVENT_STATE_OFF)
1738 1739
		return 0;

1740
	event->state = PERF_EVENT_STATE_ACTIVE;
1741
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1753 1754 1755 1756 1757
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1758 1759
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1760
	if (event->pmu->add(event, PERF_EF_START)) {
1761 1762
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1763 1764
		ret = -EAGAIN;
		goto out;
1765 1766
	}

1767
	event->tstamp_running += tstamp - event->tstamp_stopped;
1768

S
Stephane Eranian 已提交
1769
	perf_set_shadow_time(event, ctx, tstamp);
1770

1771
	if (!is_software_event(event))
1772
		cpuctx->active_oncpu++;
1773
	ctx->nr_active++;
1774 1775
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1776

1777
	if (event->attr.exclusive)
1778 1779
		cpuctx->exclusive = 1;

1780 1781 1782
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1783 1784 1785 1786
out:
	perf_pmu_enable(event->pmu);

	return ret;
1787 1788
}

1789
static int
1790
group_sched_in(struct perf_event *group_event,
1791
	       struct perf_cpu_context *cpuctx,
1792
	       struct perf_event_context *ctx)
1793
{
1794
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1795
	struct pmu *pmu = ctx->pmu;
1796 1797
	u64 now = ctx->time;
	bool simulate = false;
1798

1799
	if (group_event->state == PERF_EVENT_STATE_OFF)
1800 1801
		return 0;

P
Peter Zijlstra 已提交
1802
	pmu->start_txn(pmu);
1803

1804
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1805
		pmu->cancel_txn(pmu);
1806
		perf_cpu_hrtimer_restart(cpuctx);
1807
		return -EAGAIN;
1808
	}
1809 1810 1811 1812

	/*
	 * Schedule in siblings as one group (if any):
	 */
1813
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1814
		if (event_sched_in(event, cpuctx, ctx)) {
1815
			partial_group = event;
1816 1817 1818 1819
			goto group_error;
		}
	}

1820
	if (!pmu->commit_txn(pmu))
1821
		return 0;
1822

1823 1824 1825 1826
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1837
	 */
1838 1839
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1840 1841 1842 1843 1844 1845 1846 1847
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1848
	}
1849
	event_sched_out(group_event, cpuctx, ctx);
1850

P
Peter Zijlstra 已提交
1851
	pmu->cancel_txn(pmu);
1852

1853 1854
	perf_cpu_hrtimer_restart(cpuctx);

1855 1856 1857
	return -EAGAIN;
}

1858
/*
1859
 * Work out whether we can put this event group on the CPU now.
1860
 */
1861
static int group_can_go_on(struct perf_event *event,
1862 1863 1864 1865
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1866
	 * Groups consisting entirely of software events can always go on.
1867
	 */
1868
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1869 1870 1871
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1872
	 * events can go on.
1873 1874 1875 1876 1877
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1878
	 * events on the CPU, it can't go on.
1879
	 */
1880
	if (event->attr.exclusive && cpuctx->active_oncpu)
1881 1882 1883 1884 1885 1886 1887 1888
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1889 1890
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1891
{
1892 1893
	u64 tstamp = perf_event_time(event);

1894
	list_add_event(event, ctx);
1895
	perf_group_attach(event);
1896 1897 1898
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1899 1900
}

1901 1902 1903 1904 1905 1906
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1907

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1920
/*
1921
 * Cross CPU call to install and enable a performance event
1922 1923
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1924
 */
1925
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1926
{
1927 1928
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1929
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1930 1931 1932
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1933
	perf_ctx_lock(cpuctx, task_ctx);
1934
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1935 1936

	/*
1937
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1938
	 */
1939
	if (task_ctx)
1940
		task_ctx_sched_out(task_ctx);
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1955 1956
		task = task_ctx->task;
	}
1957

1958
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1959

1960
	update_context_time(ctx);
S
Stephane Eranian 已提交
1961 1962 1963 1964 1965 1966
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1967

1968
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1969

1970
	/*
1971
	 * Schedule everything back in
1972
	 */
1973
	perf_event_sched_in(cpuctx, task_ctx, task);
1974 1975 1976

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1977 1978

	return 0;
T
Thomas Gleixner 已提交
1979 1980 1981
}

/*
1982
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1983
 *
1984 1985
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1986
 *
1987
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1988 1989 1990 1991
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1992 1993
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1994 1995 1996 1997
			int cpu)
{
	struct task_struct *task = ctx->task;

1998 1999
	lockdep_assert_held(&ctx->mutex);

2000
	event->ctx = ctx;
2001 2002
	if (event->cpu != -1)
		event->cpu = cpu;
2003

T
Thomas Gleixner 已提交
2004 2005
	if (!task) {
		/*
2006
		 * Per cpu events are installed via an smp call and
2007
		 * the install is always successful.
T
Thomas Gleixner 已提交
2008
		 */
2009
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2010 2011 2012 2013
		return;
	}

retry:
2014 2015
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2016

2017
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2018
	/*
2019 2020
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2021
	 */
2022
	if (ctx->is_active) {
2023
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2024 2025 2026 2027
		goto retry;
	}

	/*
2028 2029
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2030
	 */
2031
	add_event_to_ctx(event, ctx);
2032
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2033 2034
}

2035
/*
2036
 * Put a event into inactive state and update time fields.
2037 2038 2039 2040 2041 2042
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2043
static void __perf_event_mark_enabled(struct perf_event *event)
2044
{
2045
	struct perf_event *sub;
2046
	u64 tstamp = perf_event_time(event);
2047

2048
	event->state = PERF_EVENT_STATE_INACTIVE;
2049
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2050
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2051 2052
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2053
	}
2054 2055
}

2056
/*
2057
 * Cross CPU call to enable a performance event
2058
 */
2059
static int __perf_event_enable(void *info)
2060
{
2061 2062 2063
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2064
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2065
	int err;
2066

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2077
		return -EINVAL;
2078

2079
	raw_spin_lock(&ctx->lock);
2080
	update_context_time(ctx);
2081

2082
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2083
		goto unlock;
S
Stephane Eranian 已提交
2084 2085 2086 2087

	/*
	 * set current task's cgroup time reference point
	 */
2088
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2089

2090
	__perf_event_mark_enabled(event);
2091

S
Stephane Eranian 已提交
2092 2093 2094
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2095
		goto unlock;
S
Stephane Eranian 已提交
2096
	}
2097

2098
	/*
2099
	 * If the event is in a group and isn't the group leader,
2100
	 * then don't put it on unless the group is on.
2101
	 */
2102
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2103
		goto unlock;
2104

2105
	if (!group_can_go_on(event, cpuctx, 1)) {
2106
		err = -EEXIST;
2107
	} else {
2108
		if (event == leader)
2109
			err = group_sched_in(event, cpuctx, ctx);
2110
		else
2111
			err = event_sched_in(event, cpuctx, ctx);
2112
	}
2113 2114 2115

	if (err) {
		/*
2116
		 * If this event can't go on and it's part of a
2117 2118
		 * group, then the whole group has to come off.
		 */
2119
		if (leader != event) {
2120
			group_sched_out(leader, cpuctx, ctx);
2121 2122
			perf_cpu_hrtimer_restart(cpuctx);
		}
2123
		if (leader->attr.pinned) {
2124
			update_group_times(leader);
2125
			leader->state = PERF_EVENT_STATE_ERROR;
2126
		}
2127 2128
	}

P
Peter Zijlstra 已提交
2129
unlock:
2130
	raw_spin_unlock(&ctx->lock);
2131 2132

	return 0;
2133 2134 2135
}

/*
2136
 * Enable a event.
2137
 *
2138 2139
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2140
 * remains valid.  This condition is satisfied when called through
2141 2142
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2143
 */
2144
void perf_event_enable(struct perf_event *event)
2145
{
2146
	struct perf_event_context *ctx = event->ctx;
2147 2148 2149 2150
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2151
		 * Enable the event on the cpu that it's on
2152
		 */
2153
		cpu_function_call(event->cpu, __perf_event_enable, event);
2154 2155 2156
		return;
	}

2157
	raw_spin_lock_irq(&ctx->lock);
2158
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2159 2160 2161
		goto out;

	/*
2162 2163
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2164 2165 2166 2167
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2168 2169
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2170

P
Peter Zijlstra 已提交
2171
retry:
2172
	if (!ctx->is_active) {
2173
		__perf_event_mark_enabled(event);
2174 2175 2176
		goto out;
	}

2177
	raw_spin_unlock_irq(&ctx->lock);
2178 2179 2180

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2181

2182
	raw_spin_lock_irq(&ctx->lock);
2183 2184

	/*
2185
	 * If the context is active and the event is still off,
2186 2187
	 * we need to retry the cross-call.
	 */
2188 2189 2190 2191 2192 2193
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2194
		goto retry;
2195
	}
2196

P
Peter Zijlstra 已提交
2197
out:
2198
	raw_spin_unlock_irq(&ctx->lock);
2199
}
2200
EXPORT_SYMBOL_GPL(perf_event_enable);
2201

2202
int perf_event_refresh(struct perf_event *event, int refresh)
2203
{
2204
	/*
2205
	 * not supported on inherited events
2206
	 */
2207
	if (event->attr.inherit || !is_sampling_event(event))
2208 2209
		return -EINVAL;

2210 2211
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2212 2213

	return 0;
2214
}
2215
EXPORT_SYMBOL_GPL(perf_event_refresh);
2216

2217 2218 2219
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2220
{
2221
	struct perf_event *event;
2222
	int is_active = ctx->is_active;
2223

2224
	ctx->is_active &= ~event_type;
2225
	if (likely(!ctx->nr_events))
2226 2227
		return;

2228
	update_context_time(ctx);
S
Stephane Eranian 已提交
2229
	update_cgrp_time_from_cpuctx(cpuctx);
2230
	if (!ctx->nr_active)
2231
		return;
2232

P
Peter Zijlstra 已提交
2233
	perf_pmu_disable(ctx->pmu);
2234
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2235 2236
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2237
	}
2238

2239
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2240
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2241
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2242
	}
P
Peter Zijlstra 已提交
2243
	perf_pmu_enable(ctx->pmu);
2244 2245
}

2246
/*
2247 2248 2249 2250 2251 2252
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2253
 */
2254 2255
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2256
{
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2279 2280
}

2281 2282
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2283 2284 2285
{
	u64 value;

2286
	if (!event->attr.inherit_stat)
2287 2288 2289
		return;

	/*
2290
	 * Update the event value, we cannot use perf_event_read()
2291 2292
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2293
	 * we know the event must be on the current CPU, therefore we
2294 2295
	 * don't need to use it.
	 */
2296 2297
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2298 2299
		event->pmu->read(event);
		/* fall-through */
2300

2301 2302
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2303 2304 2305 2306 2307 2308 2309
		break;

	default:
		break;
	}

	/*
2310
	 * In order to keep per-task stats reliable we need to flip the event
2311 2312
	 * values when we flip the contexts.
	 */
2313 2314 2315
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2316

2317 2318
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2319

2320
	/*
2321
	 * Since we swizzled the values, update the user visible data too.
2322
	 */
2323 2324
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2325 2326
}

2327 2328
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2329
{
2330
	struct perf_event *event, *next_event;
2331 2332 2333 2334

	if (!ctx->nr_stat)
		return;

2335 2336
	update_context_time(ctx);

2337 2338
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2339

2340 2341
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2342

2343 2344
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2345

2346
		__perf_event_sync_stat(event, next_event);
2347

2348 2349
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2350 2351 2352
	}
}

2353 2354
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2355
{
P
Peter Zijlstra 已提交
2356
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2357
	struct perf_event_context *next_ctx;
2358
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2359
	struct perf_cpu_context *cpuctx;
2360
	int do_switch = 1;
T
Thomas Gleixner 已提交
2361

P
Peter Zijlstra 已提交
2362 2363
	if (likely(!ctx))
		return;
2364

P
Peter Zijlstra 已提交
2365 2366
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2367 2368
		return;

2369
	rcu_read_lock();
P
Peter Zijlstra 已提交
2370
	next_ctx = next->perf_event_ctxp[ctxn];
2371 2372 2373 2374 2375 2376 2377
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2378
	if (!parent || !next_parent)
2379 2380 2381
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2382 2383 2384 2385 2386 2387 2388 2389 2390
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2391 2392
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2393
		if (context_equiv(ctx, next_ctx)) {
2394 2395
			/*
			 * XXX do we need a memory barrier of sorts
2396
			 * wrt to rcu_dereference() of perf_event_ctxp
2397
			 */
P
Peter Zijlstra 已提交
2398 2399
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2400 2401 2402
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2403

2404
			perf_event_sync_stat(ctx, next_ctx);
2405
		}
2406 2407
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2408
	}
2409
unlock:
2410
	rcu_read_unlock();
2411

2412
	if (do_switch) {
2413
		raw_spin_lock(&ctx->lock);
2414
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2415
		cpuctx->task_ctx = NULL;
2416
		raw_spin_unlock(&ctx->lock);
2417
	}
T
Thomas Gleixner 已提交
2418 2419
}

P
Peter Zijlstra 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2434 2435
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2436 2437 2438 2439 2440
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2441 2442 2443 2444 2445 2446 2447

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2448
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2449 2450
}

2451
static void task_ctx_sched_out(struct perf_event_context *ctx)
2452
{
P
Peter Zijlstra 已提交
2453
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2454

2455 2456
	if (!cpuctx->task_ctx)
		return;
2457 2458 2459 2460

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2461
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2462 2463 2464
	cpuctx->task_ctx = NULL;
}

2465 2466 2467 2468 2469 2470 2471
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2472 2473
}

2474
static void
2475
ctx_pinned_sched_in(struct perf_event_context *ctx,
2476
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2477
{
2478
	struct perf_event *event;
T
Thomas Gleixner 已提交
2479

2480 2481
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2482
			continue;
2483
		if (!event_filter_match(event))
2484 2485
			continue;

S
Stephane Eranian 已提交
2486 2487 2488 2489
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2490
		if (group_can_go_on(event, cpuctx, 1))
2491
			group_sched_in(event, cpuctx, ctx);
2492 2493 2494 2495 2496

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2497 2498 2499
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2500
		}
2501
	}
2502 2503 2504 2505
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2506
		      struct perf_cpu_context *cpuctx)
2507 2508 2509
{
	struct perf_event *event;
	int can_add_hw = 1;
2510

2511 2512 2513
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2514
			continue;
2515 2516
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2517
		 * of events:
2518
		 */
2519
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2520 2521
			continue;

S
Stephane Eranian 已提交
2522 2523 2524 2525
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2526
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2527
			if (group_sched_in(event, cpuctx, ctx))
2528
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2529
		}
T
Thomas Gleixner 已提交
2530
	}
2531 2532 2533 2534 2535
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2536 2537
	     enum event_type_t event_type,
	     struct task_struct *task)
2538
{
S
Stephane Eranian 已提交
2539
	u64 now;
2540
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2541

2542
	ctx->is_active |= event_type;
2543
	if (likely(!ctx->nr_events))
2544
		return;
2545

S
Stephane Eranian 已提交
2546 2547
	now = perf_clock();
	ctx->timestamp = now;
2548
	perf_cgroup_set_timestamp(task, ctx);
2549 2550 2551 2552
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2553
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2554
		ctx_pinned_sched_in(ctx, cpuctx);
2555 2556

	/* Then walk through the lower prio flexible groups */
2557
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2558
		ctx_flexible_sched_in(ctx, cpuctx);
2559 2560
}

2561
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2562 2563
			     enum event_type_t event_type,
			     struct task_struct *task)
2564 2565 2566
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2567
	ctx_sched_in(ctx, cpuctx, event_type, task);
2568 2569
}

S
Stephane Eranian 已提交
2570 2571
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2572
{
P
Peter Zijlstra 已提交
2573
	struct perf_cpu_context *cpuctx;
2574

P
Peter Zijlstra 已提交
2575
	cpuctx = __get_cpu_context(ctx);
2576 2577 2578
	if (cpuctx->task_ctx == ctx)
		return;

2579
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2580
	perf_pmu_disable(ctx->pmu);
2581 2582 2583 2584 2585 2586 2587
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2588 2589
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2590

2591 2592
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2593 2594 2595
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2596 2597 2598 2599
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2600
	perf_pmu_rotate_start(ctx->pmu);
2601 2602
}

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2672 2673
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2674 2675 2676 2677 2678 2679 2680 2681 2682
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2683
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2684
	}
S
Stephane Eranian 已提交
2685 2686 2687 2688 2689 2690
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2691
		perf_cgroup_sched_in(prev, task);
2692 2693 2694 2695

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2696 2697
}

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2725
#define REDUCE_FLS(a, b)		\
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2765 2766 2767
	if (!divisor)
		return dividend;

2768 2769 2770
	return div64_u64(dividend, divisor);
}

2771 2772 2773
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2774
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2775
{
2776
	struct hw_perf_event *hwc = &event->hw;
2777
	s64 period, sample_period;
2778 2779
	s64 delta;

2780
	period = perf_calculate_period(event, nsec, count);
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2791

2792
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2793 2794 2795
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2796
		local64_set(&hwc->period_left, 0);
2797 2798 2799

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2800
	}
2801 2802
}

2803 2804 2805 2806 2807 2808 2809
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2810
{
2811 2812
	struct perf_event *event;
	struct hw_perf_event *hwc;
2813
	u64 now, period = TICK_NSEC;
2814
	s64 delta;
2815

2816 2817 2818 2819 2820 2821
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2822 2823
		return;

2824
	raw_spin_lock(&ctx->lock);
2825
	perf_pmu_disable(ctx->pmu);
2826

2827
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2828
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2829 2830
			continue;

2831
		if (!event_filter_match(event))
2832 2833
			continue;

2834 2835
		perf_pmu_disable(event->pmu);

2836
		hwc = &event->hw;
2837

2838
		if (hwc->interrupts == MAX_INTERRUPTS) {
2839
			hwc->interrupts = 0;
2840
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2841
			event->pmu->start(event, 0);
2842 2843
		}

2844
		if (!event->attr.freq || !event->attr.sample_freq)
2845
			goto next;
2846

2847 2848 2849 2850 2851
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2852
		now = local64_read(&event->count);
2853 2854
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2855

2856 2857 2858
		/*
		 * restart the event
		 * reload only if value has changed
2859 2860 2861
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2862
		 */
2863
		if (delta > 0)
2864
			perf_adjust_period(event, period, delta, false);
2865 2866

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2867 2868
	next:
		perf_pmu_enable(event->pmu);
2869
	}
2870

2871
	perf_pmu_enable(ctx->pmu);
2872
	raw_spin_unlock(&ctx->lock);
2873 2874
}

2875
/*
2876
 * Round-robin a context's events:
2877
 */
2878
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2879
{
2880 2881 2882 2883 2884 2885
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2886 2887
}

2888
/*
2889 2890 2891
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2892
 */
2893
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2894
{
P
Peter Zijlstra 已提交
2895
	struct perf_event_context *ctx = NULL;
2896
	int rotate = 0, remove = 1;
2897

2898
	if (cpuctx->ctx.nr_events) {
2899
		remove = 0;
2900 2901 2902
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2903

P
Peter Zijlstra 已提交
2904
	ctx = cpuctx->task_ctx;
2905
	if (ctx && ctx->nr_events) {
2906
		remove = 0;
2907 2908 2909
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2910

2911
	if (!rotate)
2912 2913
		goto done;

2914
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2915
	perf_pmu_disable(cpuctx->ctx.pmu);
2916

2917 2918 2919
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2920

2921 2922 2923
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2924

2925
	perf_event_sched_in(cpuctx, ctx, current);
2926

2927 2928
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2929
done:
2930 2931
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2932 2933

	return rotate;
2934 2935
}

2936 2937 2938
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2939
	if (atomic_read(&nr_freq_events) ||
2940
	    __this_cpu_read(perf_throttled_count))
2941
		return false;
2942 2943
	else
		return true;
2944 2945 2946
}
#endif

2947 2948 2949 2950
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2951 2952
	struct perf_event_context *ctx;
	int throttled;
2953

2954 2955
	WARN_ON(!irqs_disabled());

2956 2957 2958
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2959
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2960 2961 2962 2963 2964 2965
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2966
	}
T
Thomas Gleixner 已提交
2967 2968
}

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2979
	__perf_event_mark_enabled(event);
2980 2981 2982 2983

	return 1;
}

2984
/*
2985
 * Enable all of a task's events that have been marked enable-on-exec.
2986 2987
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2988
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2989
{
2990
	struct perf_event *event;
2991 2992
	unsigned long flags;
	int enabled = 0;
2993
	int ret;
2994 2995

	local_irq_save(flags);
2996
	if (!ctx || !ctx->nr_events)
2997 2998
		goto out;

2999 3000 3001 3002 3003 3004 3005
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3006
	perf_cgroup_sched_out(current, NULL);
3007

3008
	raw_spin_lock(&ctx->lock);
3009
	task_ctx_sched_out(ctx);
3010

3011
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3012 3013 3014
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3015 3016 3017
	}

	/*
3018
	 * Unclone this context if we enabled any event.
3019
	 */
3020 3021
	if (enabled)
		unclone_ctx(ctx);
3022

3023
	raw_spin_unlock(&ctx->lock);
3024

3025 3026 3027
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3028
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3029
out:
3030 3031 3032
	local_irq_restore(flags);
}

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3049
/*
3050
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3051
 */
3052
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3053
{
3054 3055
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3056
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3057

3058 3059 3060 3061
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3062 3063
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3064 3065 3066 3067
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3068
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3069
	if (ctx->is_active) {
3070
		update_context_time(ctx);
S
Stephane Eranian 已提交
3071 3072
		update_cgrp_time_from_event(event);
	}
3073
	update_event_times(event);
3074 3075
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3076
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3077 3078
}

P
Peter Zijlstra 已提交
3079 3080
static inline u64 perf_event_count(struct perf_event *event)
{
3081
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3082 3083
}

3084
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3085 3086
{
	/*
3087 3088
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3089
	 */
3090 3091 3092 3093
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3094 3095 3096
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3097
		raw_spin_lock_irqsave(&ctx->lock, flags);
3098 3099 3100 3101 3102
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3103
		if (ctx->is_active) {
3104
			update_context_time(ctx);
S
Stephane Eranian 已提交
3105 3106
			update_cgrp_time_from_event(event);
		}
3107
		update_event_times(event);
3108
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3109 3110
	}

P
Peter Zijlstra 已提交
3111
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3112 3113
}

3114
/*
3115
 * Initialize the perf_event context in a task_struct:
3116
 */
3117
static void __perf_event_init_context(struct perf_event_context *ctx)
3118
{
3119
	raw_spin_lock_init(&ctx->lock);
3120
	mutex_init(&ctx->mutex);
3121 3122
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3123 3124
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3125
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3141
	}
3142 3143 3144
	ctx->pmu = pmu;

	return ctx;
3145 3146
}

3147 3148 3149 3150 3151
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3152 3153

	rcu_read_lock();
3154
	if (!vpid)
T
Thomas Gleixner 已提交
3155 3156
		task = current;
	else
3157
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3158 3159 3160 3161 3162 3163 3164 3165
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3166 3167 3168 3169
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3170 3171 3172 3173 3174 3175 3176
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3177 3178 3179
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3180
static struct perf_event_context *
M
Matt Helsley 已提交
3181
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3182
{
3183
	struct perf_event_context *ctx;
3184
	struct perf_cpu_context *cpuctx;
3185
	unsigned long flags;
P
Peter Zijlstra 已提交
3186
	int ctxn, err;
T
Thomas Gleixner 已提交
3187

3188
	if (!task) {
3189
		/* Must be root to operate on a CPU event: */
3190
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3191 3192 3193
			return ERR_PTR(-EACCES);

		/*
3194
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3195 3196 3197
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3198
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3199 3200
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3201
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3202
		ctx = &cpuctx->ctx;
3203
		get_ctx(ctx);
3204
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3205 3206 3207 3208

		return ctx;
	}

P
Peter Zijlstra 已提交
3209 3210 3211 3212 3213
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3214
retry:
P
Peter Zijlstra 已提交
3215
	ctx = perf_lock_task_context(task, ctxn, &flags);
3216
	if (ctx) {
3217
		unclone_ctx(ctx);
3218
		++ctx->pin_count;
3219
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3220
	} else {
3221
		ctx = alloc_perf_context(pmu, task);
3222 3223 3224
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3225

3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3236
		else {
3237
			get_ctx(ctx);
3238
			++ctx->pin_count;
3239
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3240
		}
3241 3242 3243
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3244
			put_ctx(ctx);
3245 3246 3247 3248

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3249 3250 3251
		}
	}

T
Thomas Gleixner 已提交
3252
	return ctx;
3253

P
Peter Zijlstra 已提交
3254
errout:
3255
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3256 3257
}

L
Li Zefan 已提交
3258 3259
static void perf_event_free_filter(struct perf_event *event);

3260
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3261
{
3262
	struct perf_event *event;
P
Peter Zijlstra 已提交
3263

3264 3265 3266
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3267
	perf_event_free_filter(event);
3268
	kfree(event);
P
Peter Zijlstra 已提交
3269 3270
}

3271
static void ring_buffer_put(struct ring_buffer *rb);
3272 3273
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3274

3275
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3276
{
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3287

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3301 3302
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3303 3304 3305 3306 3307 3308 3309
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3310

3311 3312
static void __free_event(struct perf_event *event)
{
3313
	if (!event->parent) {
3314 3315
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3316
	}
3317

3318 3319 3320 3321 3322 3323
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3324 3325 3326
	if (event->pmu)
		module_put(event->pmu->module);

3327 3328
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3329 3330

static void _free_event(struct perf_event *event)
3331
{
3332
	irq_work_sync(&event->pending);
3333

3334
	unaccount_event(event);
3335

3336
	if (event->rb) {
3337 3338 3339 3340 3341 3342 3343
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3344
		ring_buffer_attach(event, NULL);
3345
		mutex_unlock(&event->mmap_mutex);
3346 3347
	}

S
Stephane Eranian 已提交
3348 3349 3350
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3351
	__free_event(event);
3352 3353
}

P
Peter Zijlstra 已提交
3354 3355 3356 3357 3358
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3359
{
P
Peter Zijlstra 已提交
3360 3361 3362 3363 3364 3365
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3366

P
Peter Zijlstra 已提交
3367
	_free_event(event);
T
Thomas Gleixner 已提交
3368 3369
}

3370
/*
3371
 * Remove user event from the owner task.
3372
 */
3373
static void perf_remove_from_owner(struct perf_event *event)
3374
{
P
Peter Zijlstra 已提交
3375
	struct task_struct *owner;
3376

P
Peter Zijlstra 已提交
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
}

/*
 * Called when the last reference to the file is gone.
 */
static void put_event(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3423

P
Peter Zijlstra 已提交
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
	WARN_ON_ONCE(ctx->parent_ctx);
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
	perf_remove_from_context(event, true);
	mutex_unlock(&ctx->mutex);

	_free_event(event);
3442 3443
}

P
Peter Zijlstra 已提交
3444 3445 3446 3447 3448 3449 3450
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3451 3452 3453 3454
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3455 3456
}

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3493
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3494
{
3495
	struct perf_event *child;
3496 3497
	u64 total = 0;

3498 3499 3500
	*enabled = 0;
	*running = 0;

3501
	mutex_lock(&event->child_mutex);
3502
	total += perf_event_read(event);
3503 3504 3505 3506 3507 3508
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3509
		total += perf_event_read(child);
3510 3511 3512
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3513
	mutex_unlock(&event->child_mutex);
3514 3515 3516

	return total;
}
3517
EXPORT_SYMBOL_GPL(perf_event_read_value);
3518

3519
static int perf_event_read_group(struct perf_event *event,
3520 3521
				   u64 read_format, char __user *buf)
{
3522
	struct perf_event *leader = event->group_leader, *sub;
3523 3524
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3525
	u64 values[5];
3526
	u64 count, enabled, running;
3527

3528
	mutex_lock(&ctx->mutex);
3529
	count = perf_event_read_value(leader, &enabled, &running);
3530 3531

	values[n++] = 1 + leader->nr_siblings;
3532 3533 3534 3535
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3536 3537 3538
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3539 3540 3541 3542

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3543
		goto unlock;
3544

3545
	ret = size;
3546

3547
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3548
		n = 0;
3549

3550
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3551 3552 3553 3554 3555
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3556
		if (copy_to_user(buf + ret, values, size)) {
3557 3558 3559
			ret = -EFAULT;
			goto unlock;
		}
3560 3561

		ret += size;
3562
	}
3563 3564
unlock:
	mutex_unlock(&ctx->mutex);
3565

3566
	return ret;
3567 3568
}

3569
static int perf_event_read_one(struct perf_event *event,
3570 3571
				 u64 read_format, char __user *buf)
{
3572
	u64 enabled, running;
3573 3574 3575
	u64 values[4];
	int n = 0;

3576 3577 3578 3579 3580
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3581
	if (read_format & PERF_FORMAT_ID)
3582
		values[n++] = primary_event_id(event);
3583 3584 3585 3586 3587 3588 3589

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3603
/*
3604
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3605 3606
 */
static ssize_t
3607
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3608
{
3609
	u64 read_format = event->attr.read_format;
3610
	int ret;
T
Thomas Gleixner 已提交
3611

3612
	/*
3613
	 * Return end-of-file for a read on a event that is in
3614 3615 3616
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3617
	if (event->state == PERF_EVENT_STATE_ERROR)
3618 3619
		return 0;

3620
	if (count < event->read_size)
3621 3622
		return -ENOSPC;

3623
	WARN_ON_ONCE(event->ctx->parent_ctx);
3624
	if (read_format & PERF_FORMAT_GROUP)
3625
		ret = perf_event_read_group(event, read_format, buf);
3626
	else
3627
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3628

3629
	return ret;
T
Thomas Gleixner 已提交
3630 3631 3632 3633 3634
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3635
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3636

3637
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3638 3639 3640 3641
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3642
	struct perf_event *event = file->private_data;
3643
	struct ring_buffer *rb;
3644
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3645

3646
	poll_wait(file, &event->waitq, wait);
3647

3648
	if (is_event_hup(event))
3649 3650
		return events;

3651
	/*
3652 3653
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3654 3655
	 */
	mutex_lock(&event->mmap_mutex);
3656 3657
	rb = event->rb;
	if (rb)
3658
		events = atomic_xchg(&rb->poll, 0);
3659
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
3660 3661 3662
	return events;
}

3663
static void perf_event_reset(struct perf_event *event)
3664
{
3665
	(void)perf_event_read(event);
3666
	local64_set(&event->count, 0);
3667
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3668 3669
}

3670
/*
3671 3672 3673 3674
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3675
 */
3676 3677
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3678
{
3679
	struct perf_event *child;
P
Peter Zijlstra 已提交
3680

3681 3682 3683 3684
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3685
		func(child);
3686
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3687 3688
}

3689 3690
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3691
{
3692 3693
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3694

3695 3696
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3697
	event = event->group_leader;
3698

3699 3700
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3701
		perf_event_for_each_child(sibling, func);
3702
	mutex_unlock(&ctx->mutex);
3703 3704
}

3705
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3706
{
3707
	struct perf_event_context *ctx = event->ctx;
3708
	int ret = 0, active;
3709 3710
	u64 value;

3711
	if (!is_sampling_event(event))
3712 3713
		return -EINVAL;

3714
	if (copy_from_user(&value, arg, sizeof(value)))
3715 3716 3717 3718 3719
		return -EFAULT;

	if (!value)
		return -EINVAL;

3720
	raw_spin_lock_irq(&ctx->lock);
3721 3722
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3723 3724 3725 3726
			ret = -EINVAL;
			goto unlock;
		}

3727
		event->attr.sample_freq = value;
3728
	} else {
3729 3730
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3731
	}
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3746
unlock:
3747
	raw_spin_unlock_irq(&ctx->lock);
3748 3749 3750 3751

	return ret;
}

3752 3753
static const struct file_operations perf_fops;

3754
static inline int perf_fget_light(int fd, struct fd *p)
3755
{
3756 3757 3758
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3759

3760 3761 3762
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3763
	}
3764 3765
	*p = f;
	return 0;
3766 3767 3768 3769
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3770
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3771

3772 3773
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3774 3775
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3776
	u32 flags = arg;
3777 3778

	switch (cmd) {
3779 3780
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3781
		break;
3782 3783
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3784
		break;
3785 3786
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3787
		break;
P
Peter Zijlstra 已提交
3788

3789 3790
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3791

3792 3793
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3794

3795 3796 3797 3798 3799 3800 3801 3802 3803
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3804
	case PERF_EVENT_IOC_SET_OUTPUT:
3805 3806 3807
	{
		int ret;
		if (arg != -1) {
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3818 3819 3820
		}
		return ret;
	}
3821

L
Li Zefan 已提交
3822 3823 3824
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3825
	default:
P
Peter Zijlstra 已提交
3826
		return -ENOTTY;
3827
	}
P
Peter Zijlstra 已提交
3828 3829

	if (flags & PERF_IOC_FLAG_GROUP)
3830
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3831
	else
3832
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3833 3834

	return 0;
3835 3836
}

P
Pawel Moll 已提交
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

3857
int perf_event_task_enable(void)
3858
{
3859
	struct perf_event *event;
3860

3861 3862 3863 3864
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3865 3866 3867 3868

	return 0;
}

3869
int perf_event_task_disable(void)
3870
{
3871
	struct perf_event *event;
3872

3873 3874 3875 3876
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3877 3878 3879 3880

	return 0;
}

3881
static int perf_event_index(struct perf_event *event)
3882
{
P
Peter Zijlstra 已提交
3883 3884 3885
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3886
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3887 3888
		return 0;

3889
	return event->pmu->event_idx(event);
3890 3891
}

3892
static void calc_timer_values(struct perf_event *event,
3893
				u64 *now,
3894 3895
				u64 *enabled,
				u64 *running)
3896
{
3897
	u64 ctx_time;
3898

3899 3900
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3901 3902 3903 3904
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

3925
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3926 3927 3928
{
}

3929 3930 3931 3932 3933
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3934
void perf_event_update_userpage(struct perf_event *event)
3935
{
3936
	struct perf_event_mmap_page *userpg;
3937
	struct ring_buffer *rb;
3938
	u64 enabled, running, now;
3939 3940

	rcu_read_lock();
3941 3942 3943 3944
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3945 3946 3947 3948 3949 3950 3951 3952 3953
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3954
	calc_timer_values(event, &now, &enabled, &running);
3955

3956
	userpg = rb->user_page;
3957 3958 3959 3960 3961
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3962
	++userpg->lock;
3963
	barrier();
3964
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3965
	userpg->offset = perf_event_count(event);
3966
	if (userpg->index)
3967
		userpg->offset -= local64_read(&event->hw.prev_count);
3968

3969
	userpg->time_enabled = enabled +
3970
			atomic64_read(&event->child_total_time_enabled);
3971

3972
	userpg->time_running = running +
3973
			atomic64_read(&event->child_total_time_running);
3974

3975
	arch_perf_update_userpage(userpg, now);
3976

3977
	barrier();
3978
	++userpg->lock;
3979
	preempt_enable();
3980
unlock:
3981
	rcu_read_unlock();
3982 3983
}

3984 3985 3986
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3987
	struct ring_buffer *rb;
3988 3989 3990 3991 3992 3993 3994 3995 3996
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3997 3998
	rb = rcu_dereference(event->rb);
	if (!rb)
3999 4000 4001 4002 4003
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4004
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4019 4020 4021
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4022
	struct ring_buffer *old_rb = NULL;
4023 4024
	unsigned long flags;

4025 4026 4027 4028 4029 4030
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4031

4032 4033 4034
		old_rb = event->rb;
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4035

4036 4037 4038 4039
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
	}
4040

4041 4042 4043 4044
	if (event->rcu_pending && rb) {
		cond_synchronize_rcu(event->rcu_batches);
		event->rcu_pending = 0;
	}
4045

4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
	if (rb) {
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4063 4064 4065 4066 4067 4068 4069 4070
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4071 4072 4073 4074
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4075 4076 4077
	rcu_read_unlock();
}

4078
static void rb_free_rcu(struct rcu_head *rcu_head)
4079
{
4080
	struct ring_buffer *rb;
4081

4082 4083
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
4084 4085
}

4086
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4087
{
4088
	struct ring_buffer *rb;
4089

4090
	rcu_read_lock();
4091 4092 4093 4094
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4095 4096 4097
	}
	rcu_read_unlock();

4098
	return rb;
4099 4100
}

4101
static void ring_buffer_put(struct ring_buffer *rb)
4102
{
4103
	if (!atomic_dec_and_test(&rb->refcount))
4104
		return;
4105

4106
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4107

4108
	call_rcu(&rb->rcu_head, rb_free_rcu);
4109 4110 4111 4112
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4113
	struct perf_event *event = vma->vm_file->private_data;
4114

4115
	atomic_inc(&event->mmap_count);
4116
	atomic_inc(&event->rb->mmap_count);
4117 4118
}

4119 4120 4121 4122 4123 4124 4125 4126
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4127 4128
static void perf_mmap_close(struct vm_area_struct *vma)
{
4129
	struct perf_event *event = vma->vm_file->private_data;
4130

4131
	struct ring_buffer *rb = ring_buffer_get(event);
4132 4133 4134
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4135

4136 4137 4138
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4139
		goto out_put;
4140

4141
	ring_buffer_attach(event, NULL);
4142 4143 4144
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4145 4146
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4147

4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4164

4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4176 4177 4178
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4179
		mutex_unlock(&event->mmap_mutex);
4180
		put_event(event);
4181

4182 4183 4184 4185 4186
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4187
	}
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4203
out_put:
4204
	ring_buffer_put(rb); /* could be last */
4205 4206
}

4207
static const struct vm_operations_struct perf_mmap_vmops = {
4208 4209 4210 4211
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4212 4213 4214 4215
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4216
	struct perf_event *event = file->private_data;
4217
	unsigned long user_locked, user_lock_limit;
4218
	struct user_struct *user = current_user();
4219
	unsigned long locked, lock_limit;
4220
	struct ring_buffer *rb;
4221 4222
	unsigned long vma_size;
	unsigned long nr_pages;
4223
	long user_extra, extra;
4224
	int ret = 0, flags = 0;
4225

4226 4227 4228
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4229
	 * same rb.
4230 4231 4232 4233
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4234
	if (!(vma->vm_flags & VM_SHARED))
4235
		return -EINVAL;
4236 4237 4238 4239

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4240
	/*
4241
	 * If we have rb pages ensure they're a power-of-two number, so we
4242 4243 4244
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4245 4246
		return -EINVAL;

4247
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4248 4249
		return -EINVAL;

4250 4251
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4252

4253
	WARN_ON_ONCE(event->ctx->parent_ctx);
4254
again:
4255
	mutex_lock(&event->mmap_mutex);
4256
	if (event->rb) {
4257
		if (event->rb->nr_pages != nr_pages) {
4258
			ret = -EINVAL;
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4272 4273 4274
		goto unlock;
	}

4275
	user_extra = nr_pages + 1;
4276
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4277 4278 4279 4280 4281 4282

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4283
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4284

4285 4286 4287
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4288

4289
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4290
	lock_limit >>= PAGE_SHIFT;
4291
	locked = vma->vm_mm->pinned_vm + extra;
4292

4293 4294
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4295 4296 4297
		ret = -EPERM;
		goto unlock;
	}
4298

4299
	WARN_ON(event->rb);
4300

4301
	if (vma->vm_flags & VM_WRITE)
4302
		flags |= RING_BUFFER_WRITABLE;
4303

4304 4305 4306 4307
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4308
	if (!rb) {
4309
		ret = -ENOMEM;
4310
		goto unlock;
4311
	}
P
Peter Zijlstra 已提交
4312

4313
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4314 4315
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4316

4317
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4318 4319
	vma->vm_mm->pinned_vm += extra;

4320
	ring_buffer_attach(event, rb);
4321

4322
	perf_event_init_userpage(event);
4323 4324
	perf_event_update_userpage(event);

4325
unlock:
4326 4327
	if (!ret)
		atomic_inc(&event->mmap_count);
4328
	mutex_unlock(&event->mmap_mutex);
4329

4330 4331 4332 4333
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4334
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4335
	vma->vm_ops = &perf_mmap_vmops;
4336 4337

	return ret;
4338 4339
}

P
Peter Zijlstra 已提交
4340 4341
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4342
	struct inode *inode = file_inode(filp);
4343
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4344 4345 4346
	int retval;

	mutex_lock(&inode->i_mutex);
4347
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4348 4349 4350 4351 4352 4353 4354 4355
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4356
static const struct file_operations perf_fops = {
4357
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4358 4359 4360
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4361
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4362
	.compat_ioctl		= perf_compat_ioctl,
4363
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4364
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4365 4366
};

4367
/*
4368
 * Perf event wakeup
4369 4370 4371 4372 4373
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4374
void perf_event_wakeup(struct perf_event *event)
4375
{
4376
	ring_buffer_wakeup(event);
4377

4378 4379 4380
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4381
	}
4382 4383
}

4384
static void perf_pending_event(struct irq_work *entry)
4385
{
4386 4387
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4388

4389 4390 4391
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4392 4393
	}

4394 4395 4396
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4397 4398 4399
	}
}

4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4547 4548 4549
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4565
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4577 4578 4579
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4604 4605 4606

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4607 4608
}

4609 4610 4611
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4612 4613 4614 4615 4616
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4617
static void perf_output_read_one(struct perf_output_handle *handle,
4618 4619
				 struct perf_event *event,
				 u64 enabled, u64 running)
4620
{
4621
	u64 read_format = event->attr.read_format;
4622 4623 4624
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4625
	values[n++] = perf_event_count(event);
4626
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4627
		values[n++] = enabled +
4628
			atomic64_read(&event->child_total_time_enabled);
4629 4630
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4631
		values[n++] = running +
4632
			atomic64_read(&event->child_total_time_running);
4633 4634
	}
	if (read_format & PERF_FORMAT_ID)
4635
		values[n++] = primary_event_id(event);
4636

4637
	__output_copy(handle, values, n * sizeof(u64));
4638 4639 4640
}

/*
4641
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4642 4643
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4644 4645
			    struct perf_event *event,
			    u64 enabled, u64 running)
4646
{
4647 4648
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4649 4650 4651 4652 4653 4654
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4655
		values[n++] = enabled;
4656 4657

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4658
		values[n++] = running;
4659

4660
	if (leader != event)
4661 4662
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4663
	values[n++] = perf_event_count(leader);
4664
	if (read_format & PERF_FORMAT_ID)
4665
		values[n++] = primary_event_id(leader);
4666

4667
	__output_copy(handle, values, n * sizeof(u64));
4668

4669
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4670 4671
		n = 0;

4672 4673
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4674 4675
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4676
		values[n++] = perf_event_count(sub);
4677
		if (read_format & PERF_FORMAT_ID)
4678
			values[n++] = primary_event_id(sub);
4679

4680
		__output_copy(handle, values, n * sizeof(u64));
4681 4682 4683
	}
}

4684 4685 4686
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4687
static void perf_output_read(struct perf_output_handle *handle,
4688
			     struct perf_event *event)
4689
{
4690
	u64 enabled = 0, running = 0, now;
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4702
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4703
		calc_timer_values(event, &now, &enabled, &running);
4704

4705
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4706
		perf_output_read_group(handle, event, enabled, running);
4707
	else
4708
		perf_output_read_one(handle, event, enabled, running);
4709 4710
}

4711 4712 4713
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4714
			struct perf_event *event)
4715 4716 4717 4718 4719
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4720 4721 4722
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4748
		perf_output_read(handle, event);
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4759
			__output_copy(handle, data->callchain, size);
4760 4761 4762 4763 4764 4765 4766 4767 4768
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4769 4770
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4782

4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4817

4818
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4819 4820 4821
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4822
	}
A
Andi Kleen 已提交
4823 4824 4825

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4826 4827 4828

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4829

A
Andi Kleen 已提交
4830 4831 4832
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4846 4847 4848 4849
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4850
			 struct perf_event *event,
4851
			 struct pt_regs *regs)
4852
{
4853
	u64 sample_type = event->attr.sample_type;
4854

4855
	header->type = PERF_RECORD_SAMPLE;
4856
	header->size = sizeof(*header) + event->header_size;
4857 4858 4859

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4860

4861
	__perf_event_header__init_id(header, data, event);
4862

4863
	if (sample_type & PERF_SAMPLE_IP)
4864 4865
		data->ip = perf_instruction_pointer(regs);

4866
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4867
		int size = 1;
4868

4869
		data->callchain = perf_callchain(event, regs);
4870 4871 4872 4873 4874

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4875 4876
	}

4877
	if (sample_type & PERF_SAMPLE_RAW) {
4878 4879 4880 4881 4882 4883 4884 4885
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4886
		header->size += size;
4887
	}
4888 4889 4890 4891 4892 4893 4894 4895 4896

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4940
}
4941

4942
static void perf_event_output(struct perf_event *event,
4943 4944 4945 4946 4947
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4948

4949 4950 4951
	/* protect the callchain buffers */
	rcu_read_lock();

4952
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4953

4954
	if (perf_output_begin(&handle, event, header.size))
4955
		goto exit;
4956

4957
	perf_output_sample(&handle, &header, data, event);
4958

4959
	perf_output_end(&handle);
4960 4961 4962

exit:
	rcu_read_unlock();
4963 4964
}

4965
/*
4966
 * read event_id
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4977
perf_event_read_event(struct perf_event *event,
4978 4979 4980
			struct task_struct *task)
{
	struct perf_output_handle handle;
4981
	struct perf_sample_data sample;
4982
	struct perf_read_event read_event = {
4983
		.header = {
4984
			.type = PERF_RECORD_READ,
4985
			.misc = 0,
4986
			.size = sizeof(read_event) + event->read_size,
4987
		},
4988 4989
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4990
	};
4991
	int ret;
4992

4993
	perf_event_header__init_id(&read_event.header, &sample, event);
4994
	ret = perf_output_begin(&handle, event, read_event.header.size);
4995 4996 4997
	if (ret)
		return;

4998
	perf_output_put(&handle, read_event);
4999
	perf_output_read(&handle, event);
5000
	perf_event__output_id_sample(event, &handle, &sample);
5001

5002 5003 5004
	perf_output_end(&handle);
}

5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5019
		output(event, data);
5020 5021 5022 5023
	}
}

static void
5024
perf_event_aux(perf_event_aux_output_cb output, void *data,
5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5037
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5038 5039 5040 5041 5042 5043 5044
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5045
			perf_event_aux_ctx(ctx, output, data);
5046 5047 5048 5049 5050 5051
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5052
		perf_event_aux_ctx(task_ctx, output, data);
5053 5054 5055 5056 5057
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5058
/*
P
Peter Zijlstra 已提交
5059 5060
 * task tracking -- fork/exit
 *
5061
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5062 5063
 */

P
Peter Zijlstra 已提交
5064
struct perf_task_event {
5065
	struct task_struct		*task;
5066
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5067 5068 5069 5070 5071 5072

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5073 5074
		u32				tid;
		u32				ptid;
5075
		u64				time;
5076
	} event_id;
P
Peter Zijlstra 已提交
5077 5078
};

5079 5080
static int perf_event_task_match(struct perf_event *event)
{
5081 5082 5083
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5084 5085
}

5086
static void perf_event_task_output(struct perf_event *event,
5087
				   void *data)
P
Peter Zijlstra 已提交
5088
{
5089
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5090
	struct perf_output_handle handle;
5091
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5092
	struct task_struct *task = task_event->task;
5093
	int ret, size = task_event->event_id.header.size;
5094

5095 5096 5097
	if (!perf_event_task_match(event))
		return;

5098
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5099

5100
	ret = perf_output_begin(&handle, event,
5101
				task_event->event_id.header.size);
5102
	if (ret)
5103
		goto out;
P
Peter Zijlstra 已提交
5104

5105 5106
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5107

5108 5109
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5110

5111
	perf_output_put(&handle, task_event->event_id);
5112

5113 5114
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5115
	perf_output_end(&handle);
5116 5117
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5118 5119
}

5120 5121
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5122
			      int new)
P
Peter Zijlstra 已提交
5123
{
P
Peter Zijlstra 已提交
5124
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5125

5126 5127 5128
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5129 5130
		return;

P
Peter Zijlstra 已提交
5131
	task_event = (struct perf_task_event){
5132 5133
		.task	  = task,
		.task_ctx = task_ctx,
5134
		.event_id    = {
P
Peter Zijlstra 已提交
5135
			.header = {
5136
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5137
				.misc = 0,
5138
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5139
			},
5140 5141
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5142 5143
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
5144
			.time = perf_clock(),
P
Peter Zijlstra 已提交
5145 5146 5147
		},
	};

5148
	perf_event_aux(perf_event_task_output,
5149 5150
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5151 5152
}

5153
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5154
{
5155
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5156 5157
}

5158 5159 5160 5161 5162
/*
 * comm tracking
 */

struct perf_comm_event {
5163 5164
	struct task_struct	*task;
	char			*comm;
5165 5166 5167 5168 5169 5170 5171
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5172
	} event_id;
5173 5174
};

5175 5176 5177 5178 5179
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5180
static void perf_event_comm_output(struct perf_event *event,
5181
				   void *data)
5182
{
5183
	struct perf_comm_event *comm_event = data;
5184
	struct perf_output_handle handle;
5185
	struct perf_sample_data sample;
5186
	int size = comm_event->event_id.header.size;
5187 5188
	int ret;

5189 5190 5191
	if (!perf_event_comm_match(event))
		return;

5192 5193
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5194
				comm_event->event_id.header.size);
5195 5196

	if (ret)
5197
		goto out;
5198

5199 5200
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5201

5202
	perf_output_put(&handle, comm_event->event_id);
5203
	__output_copy(&handle, comm_event->comm,
5204
				   comm_event->comm_size);
5205 5206 5207

	perf_event__output_id_sample(event, &handle, &sample);

5208
	perf_output_end(&handle);
5209 5210
out:
	comm_event->event_id.header.size = size;
5211 5212
}

5213
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5214
{
5215
	char comm[TASK_COMM_LEN];
5216 5217
	unsigned int size;

5218
	memset(comm, 0, sizeof(comm));
5219
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5220
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5221 5222 5223 5224

	comm_event->comm = comm;
	comm_event->comm_size = size;

5225
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5226

5227
	perf_event_aux(perf_event_comm_output,
5228 5229
		       comm_event,
		       NULL);
5230 5231
}

5232
void perf_event_comm(struct task_struct *task, bool exec)
5233
{
5234 5235
	struct perf_comm_event comm_event;

5236
	if (!atomic_read(&nr_comm_events))
5237
		return;
5238

5239
	comm_event = (struct perf_comm_event){
5240
		.task	= task,
5241 5242
		/* .comm      */
		/* .comm_size */
5243
		.event_id  = {
5244
			.header = {
5245
				.type = PERF_RECORD_COMM,
5246
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5247 5248 5249 5250
				/* .size */
			},
			/* .pid */
			/* .tid */
5251 5252 5253
		},
	};

5254
	perf_event_comm_event(&comm_event);
5255 5256
}

5257 5258 5259 5260 5261
/*
 * mmap tracking
 */

struct perf_mmap_event {
5262 5263 5264 5265
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5266 5267 5268
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5269
	u32			prot, flags;
5270 5271 5272 5273 5274 5275 5276 5277 5278

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5279
	} event_id;
5280 5281
};

5282 5283 5284 5285 5286 5287 5288 5289
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5290
	       (executable && (event->attr.mmap || event->attr.mmap2));
5291 5292
}

5293
static void perf_event_mmap_output(struct perf_event *event,
5294
				   void *data)
5295
{
5296
	struct perf_mmap_event *mmap_event = data;
5297
	struct perf_output_handle handle;
5298
	struct perf_sample_data sample;
5299
	int size = mmap_event->event_id.header.size;
5300
	int ret;
5301

5302 5303 5304
	if (!perf_event_mmap_match(event, data))
		return;

5305 5306 5307 5308 5309
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5310
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5311 5312
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5313 5314
	}

5315 5316
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5317
				mmap_event->event_id.header.size);
5318
	if (ret)
5319
		goto out;
5320

5321 5322
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5323

5324
	perf_output_put(&handle, mmap_event->event_id);
5325 5326 5327 5328 5329 5330

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5331 5332
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5333 5334
	}

5335
	__output_copy(&handle, mmap_event->file_name,
5336
				   mmap_event->file_size);
5337 5338 5339

	perf_event__output_id_sample(event, &handle, &sample);

5340
	perf_output_end(&handle);
5341 5342
out:
	mmap_event->event_id.header.size = size;
5343 5344
}

5345
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5346
{
5347 5348
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5349 5350
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5351
	u32 prot = 0, flags = 0;
5352 5353 5354
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5355
	char *name;
5356

5357
	if (file) {
5358 5359
		struct inode *inode;
		dev_t dev;
5360

5361
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5362
		if (!buf) {
5363 5364
			name = "//enomem";
			goto cpy_name;
5365
		}
5366
		/*
5367
		 * d_path() works from the end of the rb backwards, so we
5368 5369 5370
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5371
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5372
		if (IS_ERR(name)) {
5373 5374
			name = "//toolong";
			goto cpy_name;
5375
		}
5376 5377 5378 5379 5380 5381
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5404
		goto got_name;
5405
	} else {
5406 5407 5408 5409 5410 5411
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5412
		name = (char *)arch_vma_name(vma);
5413 5414
		if (name)
			goto cpy_name;
5415

5416
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5417
				vma->vm_end >= vma->vm_mm->brk) {
5418 5419
			name = "[heap]";
			goto cpy_name;
5420 5421
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5422
				vma->vm_end >= vma->vm_mm->start_stack) {
5423 5424
			name = "[stack]";
			goto cpy_name;
5425 5426
		}

5427 5428
		name = "//anon";
		goto cpy_name;
5429 5430
	}

5431 5432 5433
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5434
got_name:
5435 5436 5437 5438 5439 5440 5441 5442
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5443 5444 5445

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5446 5447 5448 5449
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5450 5451
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5452

5453 5454 5455
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5456
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5457

5458
	perf_event_aux(perf_event_mmap_output,
5459 5460
		       mmap_event,
		       NULL);
5461

5462 5463 5464
	kfree(buf);
}

5465
void perf_event_mmap(struct vm_area_struct *vma)
5466
{
5467 5468
	struct perf_mmap_event mmap_event;

5469
	if (!atomic_read(&nr_mmap_events))
5470 5471 5472
		return;

	mmap_event = (struct perf_mmap_event){
5473
		.vma	= vma,
5474 5475
		/* .file_name */
		/* .file_size */
5476
		.event_id  = {
5477
			.header = {
5478
				.type = PERF_RECORD_MMAP,
5479
				.misc = PERF_RECORD_MISC_USER,
5480 5481 5482 5483
				/* .size */
			},
			/* .pid */
			/* .tid */
5484 5485
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5486
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5487
		},
5488 5489 5490 5491
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5492 5493
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5494 5495
	};

5496
	perf_event_mmap_event(&mmap_event);
5497 5498
}

5499 5500 5501 5502
/*
 * IRQ throttle logging
 */

5503
static void perf_log_throttle(struct perf_event *event, int enable)
5504 5505
{
	struct perf_output_handle handle;
5506
	struct perf_sample_data sample;
5507 5508 5509 5510 5511
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5512
		u64				id;
5513
		u64				stream_id;
5514 5515
	} throttle_event = {
		.header = {
5516
			.type = PERF_RECORD_THROTTLE,
5517 5518 5519
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5520
		.time		= perf_clock(),
5521 5522
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5523 5524
	};

5525
	if (enable)
5526
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5527

5528 5529 5530
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5531
				throttle_event.header.size);
5532 5533 5534 5535
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5536
	perf_event__output_id_sample(event, &handle, &sample);
5537 5538 5539
	perf_output_end(&handle);
}

5540
/*
5541
 * Generic event overflow handling, sampling.
5542 5543
 */

5544
static int __perf_event_overflow(struct perf_event *event,
5545 5546
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5547
{
5548 5549
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5550
	u64 seq;
5551 5552
	int ret = 0;

5553 5554 5555 5556 5557 5558 5559
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5560 5561 5562 5563 5564 5565 5566 5567 5568
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5569 5570
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5571
			tick_nohz_full_kick();
5572 5573
			ret = 1;
		}
5574
	}
5575

5576
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5577
		u64 now = perf_clock();
5578
		s64 delta = now - hwc->freq_time_stamp;
5579

5580
		hwc->freq_time_stamp = now;
5581

5582
		if (delta > 0 && delta < 2*TICK_NSEC)
5583
			perf_adjust_period(event, delta, hwc->last_period, true);
5584 5585
	}

5586 5587
	/*
	 * XXX event_limit might not quite work as expected on inherited
5588
	 * events
5589 5590
	 */

5591 5592
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5593
		ret = 1;
5594
		event->pending_kill = POLL_HUP;
5595 5596
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5597 5598
	}

5599
	if (event->overflow_handler)
5600
		event->overflow_handler(event, data, regs);
5601
	else
5602
		perf_event_output(event, data, regs);
5603

P
Peter Zijlstra 已提交
5604
	if (event->fasync && event->pending_kill) {
5605 5606
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5607 5608
	}

5609
	return ret;
5610 5611
}

5612
int perf_event_overflow(struct perf_event *event,
5613 5614
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5615
{
5616
	return __perf_event_overflow(event, 1, data, regs);
5617 5618
}

5619
/*
5620
 * Generic software event infrastructure
5621 5622
 */

5623 5624 5625 5626 5627 5628 5629
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
5630 5631 5632

	/* Keeps track of cpu being initialized/exited */
	bool				online;
5633 5634 5635 5636
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5637
/*
5638 5639
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5640 5641 5642 5643
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5644
u64 perf_swevent_set_period(struct perf_event *event)
5645
{
5646
	struct hw_perf_event *hwc = &event->hw;
5647 5648 5649 5650 5651
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5652 5653

again:
5654
	old = val = local64_read(&hwc->period_left);
5655 5656
	if (val < 0)
		return 0;
5657

5658 5659 5660
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5661
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5662
		goto again;
5663

5664
	return nr;
5665 5666
}

5667
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5668
				    struct perf_sample_data *data,
5669
				    struct pt_regs *regs)
5670
{
5671
	struct hw_perf_event *hwc = &event->hw;
5672
	int throttle = 0;
5673

5674 5675
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5676

5677 5678
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5679

5680
	for (; overflow; overflow--) {
5681
		if (__perf_event_overflow(event, throttle,
5682
					    data, regs)) {
5683 5684 5685 5686 5687 5688
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5689
		throttle = 1;
5690
	}
5691 5692
}

P
Peter Zijlstra 已提交
5693
static void perf_swevent_event(struct perf_event *event, u64 nr,
5694
			       struct perf_sample_data *data,
5695
			       struct pt_regs *regs)
5696
{
5697
	struct hw_perf_event *hwc = &event->hw;
5698

5699
	local64_add(nr, &event->count);
5700

5701 5702 5703
	if (!regs)
		return;

5704
	if (!is_sampling_event(event))
5705
		return;
5706

5707 5708 5709 5710 5711 5712
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5713
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5714
		return perf_swevent_overflow(event, 1, data, regs);
5715

5716
	if (local64_add_negative(nr, &hwc->period_left))
5717
		return;
5718

5719
	perf_swevent_overflow(event, 0, data, regs);
5720 5721
}

5722 5723 5724
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5725
	if (event->hw.state & PERF_HES_STOPPED)
5726
		return 1;
P
Peter Zijlstra 已提交
5727

5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5739
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5740
				enum perf_type_id type,
L
Li Zefan 已提交
5741 5742 5743
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5744
{
5745
	if (event->attr.type != type)
5746
		return 0;
5747

5748
	if (event->attr.config != event_id)
5749 5750
		return 0;

5751 5752
	if (perf_exclude_event(event, regs))
		return 0;
5753 5754 5755 5756

	return 1;
}

5757 5758 5759 5760 5761 5762 5763
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5764 5765
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5766
{
5767 5768 5769 5770
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5771

5772 5773
/* For the read side: events when they trigger */
static inline struct hlist_head *
5774
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5775 5776
{
	struct swevent_hlist *hlist;
5777

5778
	hlist = rcu_dereference(swhash->swevent_hlist);
5779 5780 5781
	if (!hlist)
		return NULL;

5782 5783 5784 5785 5786
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5787
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5798
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5799 5800 5801 5802 5803
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5804 5805 5806
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5807
				    u64 nr,
5808 5809
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5810
{
5811
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5812
	struct perf_event *event;
5813
	struct hlist_head *head;
5814

5815
	rcu_read_lock();
5816
	head = find_swevent_head_rcu(swhash, type, event_id);
5817 5818 5819
	if (!head)
		goto end;

5820
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5821
		if (perf_swevent_match(event, type, event_id, data, regs))
5822
			perf_swevent_event(event, nr, data, regs);
5823
	}
5824 5825
end:
	rcu_read_unlock();
5826 5827
}

5828
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5829
{
5830
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5831

5832
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5833
}
I
Ingo Molnar 已提交
5834
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5835

5836
inline void perf_swevent_put_recursion_context(int rctx)
5837
{
5838
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5839

5840
	put_recursion_context(swhash->recursion, rctx);
5841
}
5842

5843
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5844
{
5845
	struct perf_sample_data data;
5846 5847
	int rctx;

5848
	preempt_disable_notrace();
5849 5850 5851
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5852

5853
	perf_sample_data_init(&data, addr, 0);
5854

5855
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5856 5857

	perf_swevent_put_recursion_context(rctx);
5858
	preempt_enable_notrace();
5859 5860
}

5861
static void perf_swevent_read(struct perf_event *event)
5862 5863 5864
{
}

P
Peter Zijlstra 已提交
5865
static int perf_swevent_add(struct perf_event *event, int flags)
5866
{
5867
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5868
	struct hw_perf_event *hwc = &event->hw;
5869 5870
	struct hlist_head *head;

5871
	if (is_sampling_event(event)) {
5872
		hwc->last_period = hwc->sample_period;
5873
		perf_swevent_set_period(event);
5874
	}
5875

P
Peter Zijlstra 已提交
5876 5877
	hwc->state = !(flags & PERF_EF_START);

5878
	head = find_swevent_head(swhash, event);
5879 5880 5881 5882 5883 5884
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
5885
		return -EINVAL;
5886
	}
5887 5888 5889

	hlist_add_head_rcu(&event->hlist_entry, head);

5890 5891 5892
	return 0;
}

P
Peter Zijlstra 已提交
5893
static void perf_swevent_del(struct perf_event *event, int flags)
5894
{
5895
	hlist_del_rcu(&event->hlist_entry);
5896 5897
}

P
Peter Zijlstra 已提交
5898
static void perf_swevent_start(struct perf_event *event, int flags)
5899
{
P
Peter Zijlstra 已提交
5900
	event->hw.state = 0;
5901
}
I
Ingo Molnar 已提交
5902

P
Peter Zijlstra 已提交
5903
static void perf_swevent_stop(struct perf_event *event, int flags)
5904
{
P
Peter Zijlstra 已提交
5905
	event->hw.state = PERF_HES_STOPPED;
5906 5907
}

5908 5909
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5910
swevent_hlist_deref(struct swevent_htable *swhash)
5911
{
5912 5913
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5914 5915
}

5916
static void swevent_hlist_release(struct swevent_htable *swhash)
5917
{
5918
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5919

5920
	if (!hlist)
5921 5922
		return;

5923
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
5924
	kfree_rcu(hlist, rcu_head);
5925 5926 5927 5928
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5929
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5930

5931
	mutex_lock(&swhash->hlist_mutex);
5932

5933 5934
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5935

5936
	mutex_unlock(&swhash->hlist_mutex);
5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5949
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5950 5951
	int err = 0;

5952
	mutex_lock(&swhash->hlist_mutex);
5953

5954
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5955 5956 5957 5958 5959 5960 5961
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5962
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5963
	}
5964
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5965
exit:
5966
	mutex_unlock(&swhash->hlist_mutex);
5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5987
fail:
5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5998
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5999

6000 6001 6002
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6003

6004 6005
	WARN_ON(event->parent);

6006
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6007 6008 6009 6010 6011
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6012
	u64 event_id = event->attr.config;
6013 6014 6015 6016

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6017 6018 6019 6020 6021 6022
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6023 6024 6025 6026 6027 6028 6029 6030 6031
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6032
	if (event_id >= PERF_COUNT_SW_MAX)
6033 6034 6035 6036 6037 6038 6039 6040 6041
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6042
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6043 6044 6045 6046 6047 6048
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

6049 6050 6051 6052 6053
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

6054
static struct pmu perf_swevent = {
6055
	.task_ctx_nr	= perf_sw_context,
6056

6057
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6058 6059 6060 6061
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6062
	.read		= perf_swevent_read,
6063 6064

	.event_idx	= perf_swevent_event_idx,
6065 6066
};

6067 6068
#ifdef CONFIG_EVENT_TRACING

6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6083 6084
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6085 6086 6087 6088
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6089 6090 6091 6092 6093 6094 6095 6096 6097
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6098 6099
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6100 6101
{
	struct perf_sample_data data;
6102 6103
	struct perf_event *event;

6104 6105 6106 6107 6108
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6109
	perf_sample_data_init(&data, addr, 0);
6110 6111
	data.raw = &raw;

6112
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6113
		if (perf_tp_event_match(event, &data, regs))
6114
			perf_swevent_event(event, count, &data, regs);
6115
	}
6116

6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6142
	perf_swevent_put_recursion_context(rctx);
6143 6144 6145
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6146
static void tp_perf_event_destroy(struct perf_event *event)
6147
{
6148
	perf_trace_destroy(event);
6149 6150
}

6151
static int perf_tp_event_init(struct perf_event *event)
6152
{
6153 6154
	int err;

6155 6156 6157
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6158 6159 6160 6161 6162 6163
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6164 6165
	err = perf_trace_init(event);
	if (err)
6166
		return err;
6167

6168
	event->destroy = tp_perf_event_destroy;
6169

6170 6171 6172 6173
	return 0;
}

static struct pmu perf_tracepoint = {
6174 6175
	.task_ctx_nr	= perf_sw_context,

6176
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6177 6178 6179 6180
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6181
	.read		= perf_swevent_read,
6182 6183

	.event_idx	= perf_swevent_event_idx,
6184 6185 6186 6187
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6188
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6189
}
L
Li Zefan 已提交
6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6214
#else
L
Li Zefan 已提交
6215

6216
static inline void perf_tp_register(void)
6217 6218
{
}
L
Li Zefan 已提交
6219 6220 6221 6222 6223 6224 6225 6226 6227 6228

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6229
#endif /* CONFIG_EVENT_TRACING */
6230

6231
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6232
void perf_bp_event(struct perf_event *bp, void *data)
6233
{
6234 6235 6236
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6237
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6238

P
Peter Zijlstra 已提交
6239
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6240
		perf_swevent_event(bp, 1, &sample, regs);
6241 6242 6243
}
#endif

6244 6245 6246
/*
 * hrtimer based swevent callback
 */
6247

6248
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6249
{
6250 6251 6252 6253 6254
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6255

6256
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6257 6258 6259 6260

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6261
	event->pmu->read(event);
6262

6263
	perf_sample_data_init(&data, 0, event->hw.last_period);
6264 6265 6266
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6267
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6268
			if (__perf_event_overflow(event, 1, &data, regs))
6269 6270
				ret = HRTIMER_NORESTART;
	}
6271

6272 6273
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6274

6275
	return ret;
6276 6277
}

6278
static void perf_swevent_start_hrtimer(struct perf_event *event)
6279
{
6280
	struct hw_perf_event *hwc = &event->hw;
6281 6282 6283 6284
	s64 period;

	if (!is_sampling_event(event))
		return;
6285

6286 6287 6288 6289
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6290

6291 6292 6293 6294 6295
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6296
				ns_to_ktime(period), 0,
6297
				HRTIMER_MODE_REL_PINNED, 0);
6298
}
6299 6300

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6301
{
6302 6303
	struct hw_perf_event *hwc = &event->hw;

6304
	if (is_sampling_event(event)) {
6305
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6306
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6307 6308 6309

		hrtimer_cancel(&hwc->hrtimer);
	}
6310 6311
}

P
Peter Zijlstra 已提交
6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6332
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6333 6334 6335 6336
		event->attr.freq = 0;
	}
}

6337 6338 6339 6340 6341
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6342
{
6343 6344 6345
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6346
	now = local_clock();
6347 6348
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6349 6350
}

P
Peter Zijlstra 已提交
6351
static void cpu_clock_event_start(struct perf_event *event, int flags)
6352
{
P
Peter Zijlstra 已提交
6353
	local64_set(&event->hw.prev_count, local_clock());
6354 6355 6356
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6357
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6358
{
6359 6360 6361
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6362

P
Peter Zijlstra 已提交
6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6376 6377 6378 6379
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6380

6381 6382 6383 6384 6385 6386 6387 6388
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6389 6390 6391 6392 6393 6394
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6395 6396
	perf_swevent_init_hrtimer(event);

6397
	return 0;
6398 6399
}

6400
static struct pmu perf_cpu_clock = {
6401 6402
	.task_ctx_nr	= perf_sw_context,

6403
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6404 6405 6406 6407
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6408
	.read		= cpu_clock_event_read,
6409 6410

	.event_idx	= perf_swevent_event_idx,
6411 6412 6413 6414 6415 6416 6417
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6418
{
6419 6420
	u64 prev;
	s64 delta;
6421

6422 6423 6424 6425
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6426

P
Peter Zijlstra 已提交
6427
static void task_clock_event_start(struct perf_event *event, int flags)
6428
{
P
Peter Zijlstra 已提交
6429
	local64_set(&event->hw.prev_count, event->ctx->time);
6430 6431 6432
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6433
static void task_clock_event_stop(struct perf_event *event, int flags)
6434 6435 6436
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6437 6438 6439 6440 6441 6442
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6443

P
Peter Zijlstra 已提交
6444 6445 6446 6447 6448 6449
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6450 6451 6452 6453
}

static void task_clock_event_read(struct perf_event *event)
{
6454 6455 6456
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6457 6458 6459 6460 6461

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6462
{
6463 6464 6465 6466 6467 6468
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6469 6470 6471 6472 6473 6474
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6475 6476
	perf_swevent_init_hrtimer(event);

6477
	return 0;
L
Li Zefan 已提交
6478 6479
}

6480
static struct pmu perf_task_clock = {
6481 6482
	.task_ctx_nr	= perf_sw_context,

6483
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6484 6485 6486 6487
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6488
	.read		= task_clock_event_read,
6489 6490

	.event_idx	= perf_swevent_event_idx,
6491
};
L
Li Zefan 已提交
6492

P
Peter Zijlstra 已提交
6493
static void perf_pmu_nop_void(struct pmu *pmu)
6494 6495
{
}
L
Li Zefan 已提交
6496

P
Peter Zijlstra 已提交
6497
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6498
{
P
Peter Zijlstra 已提交
6499
	return 0;
L
Li Zefan 已提交
6500 6501
}

P
Peter Zijlstra 已提交
6502
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6503
{
P
Peter Zijlstra 已提交
6504
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6505 6506
}

P
Peter Zijlstra 已提交
6507 6508 6509 6510 6511
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6512

P
Peter Zijlstra 已提交
6513
static void perf_pmu_cancel_txn(struct pmu *pmu)
6514
{
P
Peter Zijlstra 已提交
6515
	perf_pmu_enable(pmu);
6516 6517
}

6518 6519 6520 6521 6522
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6523 6524 6525 6526
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6527
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6528
{
P
Peter Zijlstra 已提交
6529
	struct pmu *pmu;
6530

P
Peter Zijlstra 已提交
6531 6532
	if (ctxn < 0)
		return NULL;
6533

P
Peter Zijlstra 已提交
6534 6535 6536 6537
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6538

P
Peter Zijlstra 已提交
6539
	return NULL;
6540 6541
}

6542
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6543
{
6544 6545 6546 6547 6548 6549 6550
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6551 6552
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6553 6554 6555 6556 6557 6558
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6559

P
Peter Zijlstra 已提交
6560
	mutex_lock(&pmus_lock);
6561
	/*
P
Peter Zijlstra 已提交
6562
	 * Like a real lame refcount.
6563
	 */
6564 6565 6566
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6567
			goto out;
6568
		}
P
Peter Zijlstra 已提交
6569
	}
6570

6571
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6572 6573
out:
	mutex_unlock(&pmus_lock);
6574
}
P
Peter Zijlstra 已提交
6575
static struct idr pmu_idr;
6576

P
Peter Zijlstra 已提交
6577 6578 6579 6580 6581 6582 6583
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6584
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6585

6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6629
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6630

6631 6632 6633 6634
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6635
};
6636
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6637 6638 6639 6640

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6641
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6657
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6678
static struct lock_class_key cpuctx_mutex;
6679
static struct lock_class_key cpuctx_lock;
6680

6681
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6682
{
P
Peter Zijlstra 已提交
6683
	int cpu, ret;
6684

6685
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6686 6687 6688 6689
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6690

P
Peter Zijlstra 已提交
6691 6692 6693 6694 6695 6696
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6697 6698 6699
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6700 6701 6702 6703 6704
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6705 6706 6707 6708 6709 6710
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6711
skip_type:
P
Peter Zijlstra 已提交
6712 6713 6714
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6715

W
Wei Yongjun 已提交
6716
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6717 6718
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6719
		goto free_dev;
6720

P
Peter Zijlstra 已提交
6721 6722 6723 6724
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6725
		__perf_event_init_context(&cpuctx->ctx);
6726
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6727
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6728
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6729
		cpuctx->ctx.pmu = pmu;
6730 6731 6732

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6733
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6734
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6735
	}
6736

P
Peter Zijlstra 已提交
6737
got_cpu_context:
P
Peter Zijlstra 已提交
6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6752
		}
6753
	}
6754

P
Peter Zijlstra 已提交
6755 6756 6757 6758 6759
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6760 6761 6762
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6763
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6764 6765
	ret = 0;
unlock:
6766 6767
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6768
	return ret;
P
Peter Zijlstra 已提交
6769

P
Peter Zijlstra 已提交
6770 6771 6772 6773
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6774 6775 6776 6777
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6778 6779 6780
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6781
}
6782
EXPORT_SYMBOL_GPL(perf_pmu_register);
6783

6784
void perf_pmu_unregister(struct pmu *pmu)
6785
{
6786 6787 6788
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6789

6790
	/*
P
Peter Zijlstra 已提交
6791 6792
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6793
	 */
6794
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6795
	synchronize_rcu();
6796

P
Peter Zijlstra 已提交
6797
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6798 6799
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6800 6801
	device_del(pmu->dev);
	put_device(pmu->dev);
6802
	free_pmu_context(pmu);
6803
}
6804
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6805

6806 6807 6808 6809
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6810
	int ret;
6811 6812

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6813 6814 6815 6816

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6817
	if (pmu) {
6818 6819 6820 6821
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
6822
		event->pmu = pmu;
6823 6824 6825
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6826
		goto unlock;
6827
	}
P
Peter Zijlstra 已提交
6828

6829
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6830 6831 6832 6833
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
6834
		event->pmu = pmu;
6835
		ret = pmu->event_init(event);
6836
		if (!ret)
P
Peter Zijlstra 已提交
6837
			goto unlock;
6838

6839 6840
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6841
			goto unlock;
6842
		}
6843
	}
P
Peter Zijlstra 已提交
6844 6845
	pmu = ERR_PTR(-ENOENT);
unlock:
6846
	srcu_read_unlock(&pmus_srcu, idx);
6847

6848
	return pmu;
6849 6850
}

6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6864 6865
static void account_event(struct perf_event *event)
{
6866 6867 6868
	if (event->parent)
		return;

6869 6870 6871 6872 6873 6874 6875 6876
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6877 6878 6879 6880
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6881
	if (has_branch_stack(event))
6882
		static_key_slow_inc(&perf_sched_events.key);
6883
	if (is_cgroup_event(event))
6884
		static_key_slow_inc(&perf_sched_events.key);
6885 6886

	account_event_cpu(event, event->cpu);
6887 6888
}

T
Thomas Gleixner 已提交
6889
/*
6890
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6891
 */
6892
static struct perf_event *
6893
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6894 6895 6896
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6897 6898
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6899
{
P
Peter Zijlstra 已提交
6900
	struct pmu *pmu;
6901 6902
	struct perf_event *event;
	struct hw_perf_event *hwc;
6903
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6904

6905 6906 6907 6908 6909
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6910
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6911
	if (!event)
6912
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6913

6914
	/*
6915
	 * Single events are their own group leaders, with an
6916 6917 6918
	 * empty sibling list:
	 */
	if (!group_leader)
6919
		group_leader = event;
6920

6921 6922
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6923

6924 6925 6926
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6927
	INIT_LIST_HEAD(&event->rb_entry);
6928
	INIT_LIST_HEAD(&event->active_entry);
6929 6930
	INIT_HLIST_NODE(&event->hlist_entry);

6931

6932
	init_waitqueue_head(&event->waitq);
6933
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6934

6935
	mutex_init(&event->mmap_mutex);
6936

6937
	atomic_long_set(&event->refcount, 1);
6938 6939 6940 6941 6942
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6943

6944
	event->parent		= parent_event;
6945

6946
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6947
	event->id		= atomic64_inc_return(&perf_event_id);
6948

6949
	event->state		= PERF_EVENT_STATE_INACTIVE;
6950

6951 6952
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6953 6954 6955

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6956 6957 6958 6959
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6960
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6961 6962 6963 6964
			event->hw.bp_target = task;
#endif
	}

6965
	if (!overflow_handler && parent_event) {
6966
		overflow_handler = parent_event->overflow_handler;
6967 6968
		context = parent_event->overflow_handler_context;
	}
6969

6970
	event->overflow_handler	= overflow_handler;
6971
	event->overflow_handler_context = context;
6972

J
Jiri Olsa 已提交
6973
	perf_event__state_init(event);
6974

6975
	pmu = NULL;
6976

6977
	hwc = &event->hw;
6978
	hwc->sample_period = attr->sample_period;
6979
	if (attr->freq && attr->sample_freq)
6980
		hwc->sample_period = 1;
6981
	hwc->last_period = hwc->sample_period;
6982

6983
	local64_set(&hwc->period_left, hwc->sample_period);
6984

6985
	/*
6986
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6987
	 */
6988
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6989
		goto err_ns;
6990

6991
	pmu = perf_init_event(event);
6992
	if (!pmu)
6993 6994
		goto err_ns;
	else if (IS_ERR(pmu)) {
6995
		err = PTR_ERR(pmu);
6996
		goto err_ns;
I
Ingo Molnar 已提交
6997
	}
6998

6999
	if (!event->parent) {
7000 7001
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7002 7003
			if (err)
				goto err_pmu;
7004
		}
7005
	}
7006

7007
	return event;
7008 7009 7010 7011

err_pmu:
	if (event->destroy)
		event->destroy(event);
7012
	module_put(pmu->module);
7013 7014 7015 7016 7017 7018
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7019 7020
}

7021 7022
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7023 7024
{
	u32 size;
7025
	int ret;
7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7050 7051 7052
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7053 7054
	 */
	if (size > sizeof(*attr)) {
7055 7056 7057
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7058

7059 7060
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7061

7062
		for (; addr < end; addr++) {
7063 7064 7065 7066 7067 7068
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7069
		size = sizeof(*attr);
7070 7071 7072 7073 7074 7075
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7076
	if (attr->__reserved_1)
7077 7078 7079 7080 7081 7082 7083 7084
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7113 7114
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7115 7116
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7117
	}
7118

7119
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7120
		ret = perf_reg_validate(attr->sample_regs_user);
7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7139

7140 7141 7142 7143 7144 7145 7146 7147 7148
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7149 7150
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7151
{
7152
	struct ring_buffer *rb = NULL;
7153 7154
	int ret = -EINVAL;

7155
	if (!output_event)
7156 7157
		goto set;

7158 7159
	/* don't allow circular references */
	if (event == output_event)
7160 7161
		goto out;

7162 7163 7164 7165 7166 7167 7168
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7169
	 * If its not a per-cpu rb, it must be the same task.
7170 7171 7172 7173
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7174
set:
7175
	mutex_lock(&event->mmap_mutex);
7176 7177 7178
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7179

7180
	if (output_event) {
7181 7182 7183
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7184
			goto unlock;
7185 7186
	}

7187
	ring_buffer_attach(event, rb);
7188

7189
	ret = 0;
7190 7191 7192
unlock:
	mutex_unlock(&event->mmap_mutex);

7193 7194 7195 7196
out:
	return ret;
}

T
Thomas Gleixner 已提交
7197
/**
7198
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7199
 *
7200
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7201
 * @pid:		target pid
I
Ingo Molnar 已提交
7202
 * @cpu:		target cpu
7203
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7204
 */
7205 7206
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7207
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7208
{
7209 7210
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7211 7212 7213
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
7214
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7215
	struct task_struct *task = NULL;
7216
	struct pmu *pmu;
7217
	int event_fd;
7218
	int move_group = 0;
7219
	int err;
7220
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7221

7222
	/* for future expandability... */
S
Stephane Eranian 已提交
7223
	if (flags & ~PERF_FLAG_ALL)
7224 7225
		return -EINVAL;

7226 7227 7228
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7229

7230 7231 7232 7233 7234
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7235
	if (attr.freq) {
7236
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7237
			return -EINVAL;
7238 7239 7240
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7241 7242
	}

S
Stephane Eranian 已提交
7243 7244 7245 7246 7247 7248 7249 7250 7251
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7252 7253 7254 7255
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7256 7257 7258
	if (event_fd < 0)
		return event_fd;

7259
	if (group_fd != -1) {
7260 7261
		err = perf_fget_light(group_fd, &group);
		if (err)
7262
			goto err_fd;
7263
		group_leader = group.file->private_data;
7264 7265 7266 7267 7268 7269
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7270
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7271 7272 7273 7274 7275 7276 7277
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7278 7279 7280 7281 7282 7283
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7284 7285
	get_online_cpus();

7286 7287
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7288 7289
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7290
		goto err_cpus;
7291 7292
	}

S
Stephane Eranian 已提交
7293 7294
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7295 7296
		if (err) {
			__free_event(event);
7297
			goto err_cpus;
7298
		}
S
Stephane Eranian 已提交
7299 7300
	}

7301 7302 7303 7304 7305 7306 7307
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

7308 7309
	account_event(event);

7310 7311 7312 7313 7314
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7338 7339 7340 7341

	/*
	 * Get the target context (task or percpu):
	 */
7342
	ctx = find_get_context(pmu, task, event->cpu);
7343 7344
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7345
		goto err_alloc;
7346 7347
	}

7348 7349 7350 7351 7352
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7353
	/*
7354
	 * Look up the group leader (we will attach this event to it):
7355
	 */
7356
	if (group_leader) {
7357
		err = -EINVAL;
7358 7359

		/*
I
Ingo Molnar 已提交
7360 7361 7362 7363
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7364
			goto err_context;
I
Ingo Molnar 已提交
7365 7366 7367
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7368
		 */
7369 7370 7371 7372 7373 7374 7375 7376
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7377 7378 7379
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7380
		if (attr.exclusive || attr.pinned)
7381
			goto err_context;
7382 7383 7384 7385 7386
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7387
			goto err_context;
7388
	}
T
Thomas Gleixner 已提交
7389

7390 7391
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7392 7393
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7394
		goto err_context;
7395
	}
7396

7397 7398 7399 7400
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7401
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
7402 7403 7404 7405 7406 7407 7408

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7409 7410
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7411
			perf_remove_from_context(sibling, false);
J
Jiri Olsa 已提交
7412
			perf_event__state_init(sibling);
7413 7414 7415 7416
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7417
	}
7418

7419
	WARN_ON_ONCE(ctx->parent_ctx);
7420
	mutex_lock(&ctx->mutex);
7421 7422

	if (move_group) {
7423
		synchronize_rcu();
7424
		perf_install_in_context(ctx, group_leader, event->cpu);
7425 7426 7427
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7428
			perf_install_in_context(ctx, sibling, event->cpu);
7429 7430 7431 7432
			get_ctx(ctx);
		}
	}

7433
	perf_install_in_context(ctx, event, event->cpu);
7434
	perf_unpin_context(ctx);
7435
	mutex_unlock(&ctx->mutex);
7436

7437 7438
	put_online_cpus();

7439
	event->owner = current;
P
Peter Zijlstra 已提交
7440

7441 7442 7443
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7444

7445 7446 7447 7448
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7449
	perf_event__id_header_size(event);
7450

7451 7452 7453 7454 7455 7456
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7457
	fdput(group);
7458 7459
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7460

7461
err_context:
7462
	perf_unpin_context(ctx);
7463
	put_ctx(ctx);
7464
err_alloc:
7465
	free_event(event);
7466
err_cpus:
7467
	put_online_cpus();
7468
err_task:
P
Peter Zijlstra 已提交
7469 7470
	if (task)
		put_task_struct(task);
7471
err_group_fd:
7472
	fdput(group);
7473 7474
err_fd:
	put_unused_fd(event_fd);
7475
	return err;
T
Thomas Gleixner 已提交
7476 7477
}

7478 7479 7480 7481 7482
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7483
 * @task: task to profile (NULL for percpu)
7484 7485 7486
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7487
				 struct task_struct *task,
7488 7489
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7490 7491
{
	struct perf_event_context *ctx;
7492
	struct perf_event *event;
7493
	int err;
7494

7495 7496 7497
	/*
	 * Get the target context (task or percpu):
	 */
7498

7499 7500
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7501 7502 7503 7504
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7505

7506 7507 7508
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

7509 7510
	account_event(event);

M
Matt Helsley 已提交
7511
	ctx = find_get_context(event->pmu, task, cpu);
7512 7513
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7514
		goto err_free;
7515
	}
7516 7517 7518 7519

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7520
	perf_unpin_context(ctx);
7521 7522 7523 7524
	mutex_unlock(&ctx->mutex);

	return event;

7525 7526 7527
err_free:
	free_event(event);
err:
7528
	return ERR_PTR(err);
7529
}
7530
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7531

7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
7545
		perf_remove_from_context(event, false);
7546
		unaccount_event_cpu(event, src_cpu);
7547
		put_ctx(src_ctx);
7548
		list_add(&event->migrate_entry, &events);
7549 7550 7551 7552 7553 7554
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
7555 7556
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7557 7558
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7559
		account_event_cpu(event, dst_cpu);
7560 7561 7562 7563 7564 7565 7566
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7567
static void sync_child_event(struct perf_event *child_event,
7568
			       struct task_struct *child)
7569
{
7570
	struct perf_event *parent_event = child_event->parent;
7571
	u64 child_val;
7572

7573 7574
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7575

P
Peter Zijlstra 已提交
7576
	child_val = perf_event_count(child_event);
7577 7578 7579 7580

	/*
	 * Add back the child's count to the parent's count:
	 */
7581
	atomic64_add(child_val, &parent_event->child_count);
7582 7583 7584 7585
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7586 7587

	/*
7588
	 * Remove this event from the parent's list
7589
	 */
7590 7591 7592 7593
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7594

7595 7596 7597 7598 7599 7600
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

7601
	/*
7602
	 * Release the parent event, if this was the last
7603 7604
	 * reference to it.
	 */
7605
	put_event(parent_event);
7606 7607
}

7608
static void
7609 7610
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7611
			 struct task_struct *child)
7612
{
7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
7626

7627
	/*
7628
	 * It can happen that the parent exits first, and has events
7629
	 * that are still around due to the child reference. These
7630
	 * events need to be zapped.
7631
	 */
7632
	if (child_event->parent) {
7633 7634
		sync_child_event(child_event, child);
		free_event(child_event);
7635 7636 7637
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
7638
	}
7639 7640
}

P
Peter Zijlstra 已提交
7641
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7642
{
7643
	struct perf_event *child_event, *next;
7644
	struct perf_event_context *child_ctx, *parent_ctx;
7645
	unsigned long flags;
7646

P
Peter Zijlstra 已提交
7647
	if (likely(!child->perf_event_ctxp[ctxn])) {
7648
		perf_event_task(child, NULL, 0);
7649
		return;
P
Peter Zijlstra 已提交
7650
	}
7651

7652
	local_irq_save(flags);
7653 7654 7655 7656 7657 7658
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7659
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7660 7661 7662

	/*
	 * Take the context lock here so that if find_get_context is
7663
	 * reading child->perf_event_ctxp, we wait until it has
7664 7665
	 * incremented the context's refcount before we do put_ctx below.
	 */
7666
	raw_spin_lock(&child_ctx->lock);
7667
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7668
	child->perf_event_ctxp[ctxn] = NULL;
7669 7670 7671 7672 7673 7674 7675 7676 7677

	/*
	 * In order to avoid freeing: child_ctx->parent_ctx->task
	 * under perf_event_context::lock, grab another reference.
	 */
	parent_ctx = child_ctx->parent_ctx;
	if (parent_ctx)
		get_ctx(parent_ctx);

7678 7679 7680
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7681
	 * the events from it.
7682 7683
	 */
	unclone_ctx(child_ctx);
7684
	update_context_time(child_ctx);
7685
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7686

7687 7688 7689 7690 7691 7692 7693
	/*
	 * Now that we no longer hold perf_event_context::lock, drop
	 * our extra child_ctx->parent_ctx reference.
	 */
	if (parent_ctx)
		put_ctx(parent_ctx);

P
Peter Zijlstra 已提交
7694
	/*
7695 7696 7697
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7698
	 */
7699
	perf_event_task(child, child_ctx, 0);
7700

7701 7702 7703
	/*
	 * We can recurse on the same lock type through:
	 *
7704 7705
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7706 7707
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7708 7709 7710
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7711
	mutex_lock(&child_ctx->mutex);
7712

7713
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7714
		__perf_event_exit_task(child_event, child_ctx, child);
7715

7716 7717 7718
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7719 7720
}

P
Peter Zijlstra 已提交
7721 7722 7723 7724 7725
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7726
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7727 7728
	int ctxn;

P
Peter Zijlstra 已提交
7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7744 7745 7746 7747
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7760
	put_event(parent);
7761

7762
	perf_group_detach(event);
7763 7764 7765 7766
	list_del_event(event, ctx);
	free_event(event);
}

7767 7768
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7769
 * perf_event_init_task below, used by fork() in case of fail.
7770
 */
7771
void perf_event_free_task(struct task_struct *task)
7772
{
P
Peter Zijlstra 已提交
7773
	struct perf_event_context *ctx;
7774
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7775
	int ctxn;
7776

P
Peter Zijlstra 已提交
7777 7778 7779 7780
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7781

P
Peter Zijlstra 已提交
7782
		mutex_lock(&ctx->mutex);
7783
again:
P
Peter Zijlstra 已提交
7784 7785 7786
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7787

P
Peter Zijlstra 已提交
7788 7789 7790
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7791

P
Peter Zijlstra 已提交
7792 7793 7794
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7795

P
Peter Zijlstra 已提交
7796
		mutex_unlock(&ctx->mutex);
7797

P
Peter Zijlstra 已提交
7798 7799
		put_ctx(ctx);
	}
7800 7801
}

7802 7803 7804 7805 7806 7807 7808 7809
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7822
	unsigned long flags;
P
Peter Zijlstra 已提交
7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7835
					   child,
P
Peter Zijlstra 已提交
7836
					   group_leader, parent_event,
7837
				           NULL, NULL);
P
Peter Zijlstra 已提交
7838 7839
	if (IS_ERR(child_event))
		return child_event;
7840

7841 7842
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
7843 7844 7845 7846
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7871 7872
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7873

7874 7875 7876 7877
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7878
	perf_event__id_header_size(child_event);
7879

P
Peter Zijlstra 已提交
7880 7881 7882
	/*
	 * Link it up in the child's context:
	 */
7883
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7884
	add_event_to_ctx(child_event, child_ctx);
7885
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7919 7920 7921 7922 7923
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7924
		   struct task_struct *child, int ctxn,
7925 7926 7927
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7928
	struct perf_event_context *child_ctx;
7929 7930 7931 7932

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7933 7934
	}

7935
	child_ctx = child->perf_event_ctxp[ctxn];
7936 7937 7938 7939 7940 7941 7942
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7943

7944
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7945 7946
		if (!child_ctx)
			return -ENOMEM;
7947

P
Peter Zijlstra 已提交
7948
		child->perf_event_ctxp[ctxn] = child_ctx;
7949 7950 7951 7952 7953 7954 7955 7956 7957
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7958 7959
}

7960
/*
7961
 * Initialize the perf_event context in task_struct
7962
 */
7963
static int perf_event_init_context(struct task_struct *child, int ctxn)
7964
{
7965
	struct perf_event_context *child_ctx, *parent_ctx;
7966 7967
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7968
	struct task_struct *parent = current;
7969
	int inherited_all = 1;
7970
	unsigned long flags;
7971
	int ret = 0;
7972

P
Peter Zijlstra 已提交
7973
	if (likely(!parent->perf_event_ctxp[ctxn]))
7974 7975
		return 0;

7976
	/*
7977 7978
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7979
	 */
P
Peter Zijlstra 已提交
7980
	parent_ctx = perf_pin_task_context(parent, ctxn);
7981 7982
	if (!parent_ctx)
		return 0;
7983

7984 7985 7986 7987 7988 7989 7990
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7991 7992 7993 7994
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7995
	mutex_lock(&parent_ctx->mutex);
7996 7997 7998 7999 8000

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
8001
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
8002 8003
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8004 8005 8006
		if (ret)
			break;
	}
8007

8008 8009 8010 8011 8012 8013 8014 8015 8016
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

8017
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
8018 8019
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8020
		if (ret)
8021
			break;
8022 8023
	}

8024 8025 8026
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
8027
	child_ctx = child->perf_event_ctxp[ctxn];
8028

8029
	if (child_ctx && inherited_all) {
8030 8031 8032
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
8033 8034 8035
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
8036
		 */
P
Peter Zijlstra 已提交
8037
		cloned_ctx = parent_ctx->parent_ctx;
8038 8039
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
8040
			child_ctx->parent_gen = parent_ctx->parent_gen;
8041 8042 8043 8044 8045
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
8046 8047
	}

P
Peter Zijlstra 已提交
8048
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8049
	mutex_unlock(&parent_ctx->mutex);
8050

8051
	perf_unpin_context(parent_ctx);
8052
	put_ctx(parent_ctx);
8053

8054
	return ret;
8055 8056
}

P
Peter Zijlstra 已提交
8057 8058 8059 8060 8061 8062 8063
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

8064 8065 8066 8067
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
8068 8069 8070 8071 8072 8073 8074 8075 8076
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

8077 8078
static void __init perf_event_init_all_cpus(void)
{
8079
	struct swevent_htable *swhash;
8080 8081 8082
	int cpu;

	for_each_possible_cpu(cpu) {
8083 8084
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
8085
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
8086 8087 8088
	}
}

8089
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
8090
{
P
Peter Zijlstra 已提交
8091
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
8092

8093
	mutex_lock(&swhash->hlist_mutex);
8094
	swhash->online = true;
8095
	if (swhash->hlist_refcount > 0) {
8096 8097
		struct swevent_hlist *hlist;

8098 8099 8100
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8101
	}
8102
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8103 8104
}

P
Peter Zijlstra 已提交
8105
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8106
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
8107
{
8108 8109 8110 8111 8112 8113 8114
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
8115
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
8116
{
8117
	struct remove_event re = { .detach_group = false };
P
Peter Zijlstra 已提交
8118
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
8119

P
Peter Zijlstra 已提交
8120
	perf_pmu_rotate_stop(ctx->pmu);
8121

P
Peter Zijlstra 已提交
8122
	rcu_read_lock();
8123 8124
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
8125
	rcu_read_unlock();
T
Thomas Gleixner 已提交
8126
}
P
Peter Zijlstra 已提交
8127 8128 8129 8130 8131 8132 8133 8134 8135

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8136
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
8137 8138 8139 8140 8141 8142 8143 8144

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

8145
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
8146
{
8147
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8148

P
Peter Zijlstra 已提交
8149 8150
	perf_event_exit_cpu_context(cpu);

8151
	mutex_lock(&swhash->hlist_mutex);
8152
	swhash->online = false;
8153 8154
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8155 8156
}
#else
8157
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
8158 8159
#endif

P
Peter Zijlstra 已提交
8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

8180
static int
T
Thomas Gleixner 已提交
8181 8182 8183 8184
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

8185
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
8186 8187

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
8188
	case CPU_DOWN_FAILED:
8189
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
8190 8191
		break;

P
Peter Zijlstra 已提交
8192
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
8193
	case CPU_DOWN_PREPARE:
8194
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
8195 8196 8197 8198 8199 8200 8201 8202
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

8203
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
8204
{
8205 8206
	int ret;

P
Peter Zijlstra 已提交
8207 8208
	idr_init(&pmu_idr);

8209
	perf_event_init_all_cpus();
8210
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
8211 8212 8213
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
8214 8215
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
8216
	register_reboot_notifier(&perf_reboot_notifier);
8217 8218 8219

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8220 8221 8222

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
8223 8224 8225 8226 8227 8228 8229

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8230
}
P
Peter Zijlstra 已提交
8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8259 8260

#ifdef CONFIG_CGROUP_PERF
8261 8262
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8263 8264 8265
{
	struct perf_cgroup *jc;

8266
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8279
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8280
{
8281 8282
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8294 8295
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8296
{
8297 8298
	struct task_struct *task;

8299
	cgroup_taskset_for_each(task, tset)
8300
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8301 8302
}

8303 8304
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8305
			     struct task_struct *task)
S
Stephane Eranian 已提交
8306 8307 8308 8309 8310 8311 8312 8313 8314
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8315
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8316 8317
}

8318
struct cgroup_subsys perf_event_cgrp_subsys = {
8319 8320
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8321
	.exit		= perf_cgroup_exit,
8322
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8323 8324
};
#endif /* CONFIG_CGROUP_PERF */