core.c 169.1 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/vmalloc.h>
29 30
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
31 32 33
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
34
#include <linux/kernel_stat.h>
35
#include <linux/perf_event.h>
L
Li Zefan 已提交
36
#include <linux/ftrace_event.h>
37
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
38

39 40
#include <asm/irq_regs.h>

41
struct remote_function_call {
42 43 44 45
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
79 80 81 82
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
103 104 105 106
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
107 108 109 110 111 112 113
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
114 115 116 117
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

118 119 120 121 122 123
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
124 125 126 127
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
128
struct jump_label_key perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
129 130
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

131 132 133
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
134

P
Peter Zijlstra 已提交
135 136 137 138
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

139
/*
140
 * perf event paranoia level:
141 142
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
143
 *   1 - disallow cpu events for unpriv
144
 *   2 - disallow kernel profiling for unpriv
145
 */
146
int sysctl_perf_event_paranoid __read_mostly = 1;
147

148 149
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
150 151

/*
152
 * max perf event sample rate
153
 */
P
Peter Zijlstra 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
172

173
static atomic64_t perf_event_id;
174

175 176 177 178
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
179 180 181 182 183
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
184

185
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
186

187
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
188
{
189
	return "pmu";
T
Thomas Gleixner 已提交
190 191
}

192 193 194 195 196
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
197 198 199 200 201 202
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
219 220
#ifdef CONFIG_CGROUP_PERF

221 222 223 224 225
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
293 294
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
295
	/*
296 297
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
298
	 */
299
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
300 301
		return;

302 303 304 305 306 307
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
308 309 310
}

static inline void
311 312
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
313 314 315 316
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

317 318 319 320 321 322
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
323 324 325 326
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
327
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
369 370
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
371 372 373 374 375 376 377 378 379 380 381

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
382
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
383 384 385 386 387 388 389
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
390 391
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWIN);
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
424 425 426 427
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
428 429 430 431

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

432 433 434
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
435 436 437 438 439 440 441 442 443
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
444
out:
S
Stephane Eranian 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
535 536
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
567
void perf_pmu_disable(struct pmu *pmu)
568
{
P
Peter Zijlstra 已提交
569 570 571
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
572 573
}

P
Peter Zijlstra 已提交
574
void perf_pmu_enable(struct pmu *pmu)
575
{
P
Peter Zijlstra 已提交
576 577 578
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
579 580
}

581 582 583 584 585 586 587
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
588
static void perf_pmu_rotate_start(struct pmu *pmu)
589
{
P
Peter Zijlstra 已提交
590
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
591
	struct list_head *head = &__get_cpu_var(rotation_list);
592

593
	WARN_ON(!irqs_disabled());
594

595 596
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
597 598
}

599
static void get_ctx(struct perf_event_context *ctx)
600
{
601
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
602 603
}

604
static void put_ctx(struct perf_event_context *ctx)
605
{
606 607 608
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
609 610
		if (ctx->task)
			put_task_struct(ctx->task);
611
		kfree_rcu(ctx, rcu_head);
612
	}
613 614
}

615
static void unclone_ctx(struct perf_event_context *ctx)
616 617 618 619 620 621 622
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

645
/*
646
 * If we inherit events we want to return the parent event id
647 648
 * to userspace.
 */
649
static u64 primary_event_id(struct perf_event *event)
650
{
651
	u64 id = event->id;
652

653 654
	if (event->parent)
		id = event->parent->id;
655 656 657 658

	return id;
}

659
/*
660
 * Get the perf_event_context for a task and lock it.
661 662 663
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
664
static struct perf_event_context *
P
Peter Zijlstra 已提交
665
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
666
{
667
	struct perf_event_context *ctx;
668 669

	rcu_read_lock();
P
Peter Zijlstra 已提交
670
retry:
P
Peter Zijlstra 已提交
671
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
672 673 674 675
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
676
		 * perf_event_task_sched_out, though the
677 678 679 680 681 682
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
683
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
684
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
685
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
686 687
			goto retry;
		}
688 689

		if (!atomic_inc_not_zero(&ctx->refcount)) {
690
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
691 692
			ctx = NULL;
		}
693 694 695 696 697 698 699 700 701 702
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
703 704
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
705
{
706
	struct perf_event_context *ctx;
707 708
	unsigned long flags;

P
Peter Zijlstra 已提交
709
	ctx = perf_lock_task_context(task, ctxn, &flags);
710 711
	if (ctx) {
		++ctx->pin_count;
712
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
713 714 715 716
	}
	return ctx;
}

717
static void perf_unpin_context(struct perf_event_context *ctx)
718 719 720
{
	unsigned long flags;

721
	raw_spin_lock_irqsave(&ctx->lock, flags);
722
	--ctx->pin_count;
723
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
724 725
}

726 727 728 729 730 731 732 733 734 735 736
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

737 738 739
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
740 741 742 743

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

744 745 746
	return ctx ? ctx->time : 0;
}

747 748 749 750 751 752 753 754 755 756 757
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
758 759 760 761 762 763 764 765 766 767 768
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
769
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
770 771
	else if (ctx->is_active)
		run_end = ctx->time;
772 773 774 775
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
776 777 778 779

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
780
		run_end = perf_event_time(event);
781 782

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
783

784 785
}

786 787 788 789 790 791 792 793 794 795 796 797
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

798 799 800 801 802 803 804 805 806
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

807
/*
808
 * Add a event from the lists for its context.
809 810
 * Must be called with ctx->mutex and ctx->lock held.
 */
811
static void
812
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
813
{
814 815
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
816 817

	/*
818 819 820
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
821
	 */
822
	if (event->group_leader == event) {
823 824
		struct list_head *list;

825 826 827
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

828 829
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
830
	}
P
Peter Zijlstra 已提交
831

832
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
833 834
		ctx->nr_cgroups++;

835
	list_add_rcu(&event->event_entry, &ctx->event_list);
836
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
837
		perf_pmu_rotate_start(ctx->pmu);
838 839
	ctx->nr_events++;
	if (event->attr.inherit_stat)
840
		ctx->nr_stat++;
841 842
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

915
	event->id_header_size = size;
916 917
}

918 919
static void perf_group_attach(struct perf_event *event)
{
920
	struct perf_event *group_leader = event->group_leader, *pos;
921

P
Peter Zijlstra 已提交
922 923 924 925 926 927
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

928 929 930 931 932 933 934 935 936 937 938
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
939 940 941 942 943

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
944 945
}

946
/*
947
 * Remove a event from the lists for its context.
948
 * Must be called with ctx->mutex and ctx->lock held.
949
 */
950
static void
951
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
952
{
953
	struct perf_cpu_context *cpuctx;
954 955 956 957
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
958
		return;
959 960 961

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

962
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
963
		ctx->nr_cgroups--;
964 965 966 967 968 969 970 971 972
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
973

974 975
	ctx->nr_events--;
	if (event->attr.inherit_stat)
976
		ctx->nr_stat--;
977

978
	list_del_rcu(&event->event_entry);
979

980 981
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
982

983
	update_group_times(event);
984 985 986 987 988 989 990 991 992 993

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
994 995
}

996
static void perf_group_detach(struct perf_event *event)
997 998
{
	struct perf_event *sibling, *tmp;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1015
		goto out;
1016 1017 1018 1019
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1020

1021
	/*
1022 1023
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1024
	 * to whatever list we are on.
1025
	 */
1026
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1027 1028
		if (list)
			list_move_tail(&sibling->group_entry, list);
1029
		sibling->group_leader = sibling;
1030 1031 1032

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1033
	}
1034 1035 1036 1037 1038 1039

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1040 1041
}

1042 1043 1044
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1045 1046
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1047 1048
}

1049 1050
static void
event_sched_out(struct perf_event *event,
1051
		  struct perf_cpu_context *cpuctx,
1052
		  struct perf_event_context *ctx)
1053
{
1054
	u64 tstamp = perf_event_time(event);
1055 1056 1057 1058 1059 1060 1061 1062 1063
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1064
		delta = tstamp - event->tstamp_stopped;
1065
		event->tstamp_running += delta;
1066
		event->tstamp_stopped = tstamp;
1067 1068
	}

1069
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1070
		return;
1071

1072 1073 1074 1075
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1076
	}
1077
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1078
	event->pmu->del(event, 0);
1079
	event->oncpu = -1;
1080

1081
	if (!is_software_event(event))
1082 1083
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1084
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1085 1086 1087
		cpuctx->exclusive = 0;
}

1088
static void
1089
group_sched_out(struct perf_event *group_event,
1090
		struct perf_cpu_context *cpuctx,
1091
		struct perf_event_context *ctx)
1092
{
1093
	struct perf_event *event;
1094
	int state = group_event->state;
1095

1096
	event_sched_out(group_event, cpuctx, ctx);
1097 1098 1099 1100

	/*
	 * Schedule out siblings (if any):
	 */
1101 1102
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1103

1104
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1105 1106 1107
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1108
/*
1109
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1110
 *
1111
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1112 1113
 * remove it from the context list.
 */
1114
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1115
{
1116 1117
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1118
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1119

1120
	raw_spin_lock(&ctx->lock);
1121 1122
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1123
	raw_spin_unlock(&ctx->lock);
1124 1125

	return 0;
T
Thomas Gleixner 已提交
1126 1127 1128 1129
}


/*
1130
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1131
 *
1132
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1133
 * call when the task is on a CPU.
1134
 *
1135 1136
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1137 1138
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1139
 * When called from perf_event_exit_task, it's OK because the
1140
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1141
 */
1142
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1143
{
1144
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1145 1146
	struct task_struct *task = ctx->task;

1147 1148
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1149 1150
	if (!task) {
		/*
1151
		 * Per cpu events are removed via an smp call and
1152
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1153
		 */
1154
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1155 1156 1157 1158
		return;
	}

retry:
1159 1160
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1161

1162
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1163
	/*
1164 1165
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1166
	 */
1167
	if (ctx->is_active) {
1168
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1169 1170 1171 1172
		goto retry;
	}

	/*
1173 1174
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1175
	 */
1176
	list_del_event(event, ctx);
1177
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1178 1179
}

1180
/*
1181
 * Cross CPU call to disable a performance event
1182
 */
1183
static int __perf_event_disable(void *info)
1184
{
1185 1186
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1187
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1188 1189

	/*
1190 1191
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1192 1193 1194
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1195
	 */
1196
	if (ctx->task && cpuctx->task_ctx != ctx)
1197
		return -EINVAL;
1198

1199
	raw_spin_lock(&ctx->lock);
1200 1201

	/*
1202
	 * If the event is on, turn it off.
1203 1204
	 * If it is in error state, leave it in error state.
	 */
1205
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1206
		update_context_time(ctx);
S
Stephane Eranian 已提交
1207
		update_cgrp_time_from_event(event);
1208 1209 1210
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1211
		else
1212 1213
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1214 1215
	}

1216
	raw_spin_unlock(&ctx->lock);
1217 1218

	return 0;
1219 1220 1221
}

/*
1222
 * Disable a event.
1223
 *
1224 1225
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1226
 * remains valid.  This condition is satisifed when called through
1227 1228 1229 1230
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1231
 * is the current context on this CPU and preemption is disabled,
1232
 * hence we can't get into perf_event_task_sched_out for this context.
1233
 */
1234
void perf_event_disable(struct perf_event *event)
1235
{
1236
	struct perf_event_context *ctx = event->ctx;
1237 1238 1239 1240
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1241
		 * Disable the event on the cpu that it's on
1242
		 */
1243
		cpu_function_call(event->cpu, __perf_event_disable, event);
1244 1245 1246
		return;
	}

P
Peter Zijlstra 已提交
1247
retry:
1248 1249
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1250

1251
	raw_spin_lock_irq(&ctx->lock);
1252
	/*
1253
	 * If the event is still active, we need to retry the cross-call.
1254
	 */
1255
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1256
		raw_spin_unlock_irq(&ctx->lock);
1257 1258 1259 1260 1261
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1262 1263 1264 1265 1266 1267 1268
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1269 1270 1271
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1272
	}
1273
	raw_spin_unlock_irq(&ctx->lock);
1274 1275
}

S
Stephane Eranian 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1311 1312 1313 1314
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1315
static int
1316
event_sched_in(struct perf_event *event,
1317
		 struct perf_cpu_context *cpuctx,
1318
		 struct perf_event_context *ctx)
1319
{
1320 1321
	u64 tstamp = perf_event_time(event);

1322
	if (event->state <= PERF_EVENT_STATE_OFF)
1323 1324
		return 0;

1325
	event->state = PERF_EVENT_STATE_ACTIVE;
1326
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1338 1339 1340 1341 1342
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1343
	if (event->pmu->add(event, PERF_EF_START)) {
1344 1345
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1346 1347 1348
		return -EAGAIN;
	}

1349
	event->tstamp_running += tstamp - event->tstamp_stopped;
1350

S
Stephane Eranian 已提交
1351
	perf_set_shadow_time(event, ctx, tstamp);
1352

1353
	if (!is_software_event(event))
1354
		cpuctx->active_oncpu++;
1355 1356
	ctx->nr_active++;

1357
	if (event->attr.exclusive)
1358 1359
		cpuctx->exclusive = 1;

1360 1361 1362
	return 0;
}

1363
static int
1364
group_sched_in(struct perf_event *group_event,
1365
	       struct perf_cpu_context *cpuctx,
1366
	       struct perf_event_context *ctx)
1367
{
1368
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1369
	struct pmu *pmu = group_event->pmu;
1370 1371
	u64 now = ctx->time;
	bool simulate = false;
1372

1373
	if (group_event->state == PERF_EVENT_STATE_OFF)
1374 1375
		return 0;

P
Peter Zijlstra 已提交
1376
	pmu->start_txn(pmu);
1377

1378
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1379
		pmu->cancel_txn(pmu);
1380
		return -EAGAIN;
1381
	}
1382 1383 1384 1385

	/*
	 * Schedule in siblings as one group (if any):
	 */
1386
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1387
		if (event_sched_in(event, cpuctx, ctx)) {
1388
			partial_group = event;
1389 1390 1391 1392
			goto group_error;
		}
	}

1393
	if (!pmu->commit_txn(pmu))
1394
		return 0;
1395

1396 1397 1398 1399
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1410
	 */
1411 1412
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1413 1414 1415 1416 1417 1418 1419 1420
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1421
	}
1422
	event_sched_out(group_event, cpuctx, ctx);
1423

P
Peter Zijlstra 已提交
1424
	pmu->cancel_txn(pmu);
1425

1426 1427 1428
	return -EAGAIN;
}

1429
/*
1430
 * Work out whether we can put this event group on the CPU now.
1431
 */
1432
static int group_can_go_on(struct perf_event *event,
1433 1434 1435 1436
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1437
	 * Groups consisting entirely of software events can always go on.
1438
	 */
1439
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1440 1441 1442
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1443
	 * events can go on.
1444 1445 1446 1447 1448
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1449
	 * events on the CPU, it can't go on.
1450
	 */
1451
	if (event->attr.exclusive && cpuctx->active_oncpu)
1452 1453 1454 1455 1456 1457 1458 1459
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1460 1461
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1462
{
1463 1464
	u64 tstamp = perf_event_time(event);

1465
	list_add_event(event, ctx);
1466
	perf_group_attach(event);
1467 1468 1469
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1470 1471
}

1472 1473 1474 1475 1476 1477
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1478

T
Thomas Gleixner 已提交
1479
/*
1480
 * Cross CPU call to install and enable a performance event
1481 1482
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1483
 */
1484
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1485
{
1486 1487
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1488
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1489 1490 1491 1492 1493
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1494 1495

	/*
1496
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1497
	 */
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	if (task_ctx) {
		task_ctx_sched_out(task_ctx);
		/*
		 * If the context we're installing events in is not the
		 * active task_ctx, flip them.
		 */
		if (ctx->task && task_ctx != ctx) {
			raw_spin_unlock(&cpuctx->ctx.lock);
			raw_spin_lock(&ctx->lock);
			cpuctx->task_ctx = task_ctx = ctx;
		}
		task = task_ctx->task;
	}
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1512

1513
	update_context_time(ctx);
S
Stephane Eranian 已提交
1514 1515 1516 1517 1518 1519
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1520

1521
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1522

1523
	/*
1524
	 * Schedule everything back in
1525
	 */
1526 1527 1528 1529 1530 1531 1532 1533 1534
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (task_ctx)
		ctx_sched_in(task_ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (task_ctx)
		ctx_sched_in(task_ctx, cpuctx, EVENT_FLEXIBLE, task);

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1535 1536

	return 0;
T
Thomas Gleixner 已提交
1537 1538 1539
}

/*
1540
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1541
 *
1542 1543
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1544
 *
1545
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1546 1547 1548 1549
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1550 1551
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1552 1553 1554 1555
			int cpu)
{
	struct task_struct *task = ctx->task;

1556 1557
	lockdep_assert_held(&ctx->mutex);

1558 1559
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1560 1561
	if (!task) {
		/*
1562
		 * Per cpu events are installed via an smp call and
1563
		 * the install is always successful.
T
Thomas Gleixner 已提交
1564
		 */
1565
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1566 1567 1568 1569
		return;
	}

retry:
1570 1571
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1572

1573
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1574
	/*
1575 1576
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1577
	 */
1578
	if (ctx->is_active) {
1579
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1580 1581 1582 1583
		goto retry;
	}

	/*
1584 1585
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1586
	 */
1587
	add_event_to_ctx(event, ctx);
1588
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1589 1590
}

1591
/*
1592
 * Put a event into inactive state and update time fields.
1593 1594 1595 1596 1597 1598
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1599 1600
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1601
{
1602
	struct perf_event *sub;
1603
	u64 tstamp = perf_event_time(event);
1604

1605
	event->state = PERF_EVENT_STATE_INACTIVE;
1606
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1607
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1608 1609
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1610
	}
1611 1612
}

1613
/*
1614
 * Cross CPU call to enable a performance event
1615
 */
1616
static int __perf_event_enable(void *info)
1617
{
1618 1619 1620
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1621
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1622
	int err;
1623

1624 1625
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1626

1627
	raw_spin_lock(&ctx->lock);
1628
	update_context_time(ctx);
1629

1630
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1631
		goto unlock;
S
Stephane Eranian 已提交
1632 1633 1634 1635

	/*
	 * set current task's cgroup time reference point
	 */
1636
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1637

1638
	__perf_event_mark_enabled(event, ctx);
1639

S
Stephane Eranian 已提交
1640 1641 1642
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1643
		goto unlock;
S
Stephane Eranian 已提交
1644
	}
1645

1646
	/*
1647
	 * If the event is in a group and isn't the group leader,
1648
	 * then don't put it on unless the group is on.
1649
	 */
1650
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1651
		goto unlock;
1652

1653
	if (!group_can_go_on(event, cpuctx, 1)) {
1654
		err = -EEXIST;
1655
	} else {
1656
		if (event == leader)
1657
			err = group_sched_in(event, cpuctx, ctx);
1658
		else
1659
			err = event_sched_in(event, cpuctx, ctx);
1660
	}
1661 1662 1663

	if (err) {
		/*
1664
		 * If this event can't go on and it's part of a
1665 1666
		 * group, then the whole group has to come off.
		 */
1667
		if (leader != event)
1668
			group_sched_out(leader, cpuctx, ctx);
1669
		if (leader->attr.pinned) {
1670
			update_group_times(leader);
1671
			leader->state = PERF_EVENT_STATE_ERROR;
1672
		}
1673 1674
	}

P
Peter Zijlstra 已提交
1675
unlock:
1676
	raw_spin_unlock(&ctx->lock);
1677 1678

	return 0;
1679 1680 1681
}

/*
1682
 * Enable a event.
1683
 *
1684 1685
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1686
 * remains valid.  This condition is satisfied when called through
1687 1688
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1689
 */
1690
void perf_event_enable(struct perf_event *event)
1691
{
1692
	struct perf_event_context *ctx = event->ctx;
1693 1694 1695 1696
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1697
		 * Enable the event on the cpu that it's on
1698
		 */
1699
		cpu_function_call(event->cpu, __perf_event_enable, event);
1700 1701 1702
		return;
	}

1703
	raw_spin_lock_irq(&ctx->lock);
1704
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1705 1706 1707
		goto out;

	/*
1708 1709
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1710 1711 1712 1713
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1714 1715
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1716

P
Peter Zijlstra 已提交
1717
retry:
1718 1719 1720 1721 1722
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1723
	raw_spin_unlock_irq(&ctx->lock);
1724 1725 1726

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1727

1728
	raw_spin_lock_irq(&ctx->lock);
1729 1730

	/*
1731
	 * If the context is active and the event is still off,
1732 1733
	 * we need to retry the cross-call.
	 */
1734 1735 1736 1737 1738 1739
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1740
		goto retry;
1741
	}
1742

P
Peter Zijlstra 已提交
1743
out:
1744
	raw_spin_unlock_irq(&ctx->lock);
1745 1746
}

1747
static int perf_event_refresh(struct perf_event *event, int refresh)
1748
{
1749
	/*
1750
	 * not supported on inherited events
1751
	 */
1752
	if (event->attr.inherit || !is_sampling_event(event))
1753 1754
		return -EINVAL;

1755 1756
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1757 1758

	return 0;
1759 1760
}

1761 1762 1763
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1764
{
1765
	struct perf_event *event;
1766

1767
	ctx->is_active = 0;
1768
	if (likely(!ctx->nr_events))
1769 1770
		return;

1771
	update_context_time(ctx);
S
Stephane Eranian 已提交
1772
	update_cgrp_time_from_cpuctx(cpuctx);
1773
	if (!ctx->nr_active)
1774
		return;
1775

P
Peter Zijlstra 已提交
1776
	perf_pmu_disable(ctx->pmu);
P
Peter Zijlstra 已提交
1777
	if (event_type & EVENT_PINNED) {
1778 1779
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1780
	}
1781

P
Peter Zijlstra 已提交
1782
	if (event_type & EVENT_FLEXIBLE) {
1783
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1784
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1785
	}
P
Peter Zijlstra 已提交
1786
	perf_pmu_enable(ctx->pmu);
1787 1788
}

1789 1790 1791
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1792 1793 1794 1795
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1796
 * in them directly with an fd; we can only enable/disable all
1797
 * events via prctl, or enable/disable all events in a family
1798 1799
 * via ioctl, which will have the same effect on both contexts.
 */
1800 1801
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1802 1803
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1804
		&& ctx1->parent_gen == ctx2->parent_gen
1805
		&& !ctx1->pin_count && !ctx2->pin_count;
1806 1807
}

1808 1809
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1810 1811 1812
{
	u64 value;

1813
	if (!event->attr.inherit_stat)
1814 1815 1816
		return;

	/*
1817
	 * Update the event value, we cannot use perf_event_read()
1818 1819
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1820
	 * we know the event must be on the current CPU, therefore we
1821 1822
	 * don't need to use it.
	 */
1823 1824
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1825 1826
		event->pmu->read(event);
		/* fall-through */
1827

1828 1829
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1830 1831 1832 1833 1834 1835 1836
		break;

	default:
		break;
	}

	/*
1837
	 * In order to keep per-task stats reliable we need to flip the event
1838 1839
	 * values when we flip the contexts.
	 */
1840 1841 1842
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1843

1844 1845
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1846

1847
	/*
1848
	 * Since we swizzled the values, update the user visible data too.
1849
	 */
1850 1851
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1852 1853 1854 1855 1856
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1857 1858
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1859
{
1860
	struct perf_event *event, *next_event;
1861 1862 1863 1864

	if (!ctx->nr_stat)
		return;

1865 1866
	update_context_time(ctx);

1867 1868
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1869

1870 1871
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1872

1873 1874
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1875

1876
		__perf_event_sync_stat(event, next_event);
1877

1878 1879
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1880 1881 1882
	}
}

1883 1884
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1885
{
P
Peter Zijlstra 已提交
1886
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1887 1888
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1889
	struct perf_cpu_context *cpuctx;
1890
	int do_switch = 1;
T
Thomas Gleixner 已提交
1891

P
Peter Zijlstra 已提交
1892 1893
	if (likely(!ctx))
		return;
1894

P
Peter Zijlstra 已提交
1895 1896
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1897 1898
		return;

1899 1900
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1901
	next_ctx = next->perf_event_ctxp[ctxn];
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1913 1914
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1915
		if (context_equiv(ctx, next_ctx)) {
1916 1917
			/*
			 * XXX do we need a memory barrier of sorts
1918
			 * wrt to rcu_dereference() of perf_event_ctxp
1919
			 */
P
Peter Zijlstra 已提交
1920 1921
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1922 1923 1924
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1925

1926
			perf_event_sync_stat(ctx, next_ctx);
1927
		}
1928 1929
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1930
	}
1931
	rcu_read_unlock();
1932

1933
	if (do_switch) {
1934
		raw_spin_lock(&ctx->lock);
1935
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1936
		cpuctx->task_ctx = NULL;
1937
		raw_spin_unlock(&ctx->lock);
1938
	}
T
Thomas Gleixner 已提交
1939 1940
}

P
Peter Zijlstra 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
1955 1956
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
1957 1958 1959 1960 1961
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
1962 1963 1964 1965 1966 1967 1968 1969

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_out(task);
P
Peter Zijlstra 已提交
1970 1971
}

1972
static void task_ctx_sched_out(struct perf_event_context *ctx)
1973
{
P
Peter Zijlstra 已提交
1974
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1975

1976 1977
	if (!cpuctx->task_ctx)
		return;
1978 1979 1980 1981

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1982
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1983 1984 1985
	cpuctx->task_ctx = NULL;
}

1986 1987 1988 1989 1990 1991 1992
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1993 1994
}

1995
static void
1996
ctx_pinned_sched_in(struct perf_event_context *ctx,
1997
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1998
{
1999
	struct perf_event *event;
T
Thomas Gleixner 已提交
2000

2001 2002
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2003
			continue;
2004
		if (!event_filter_match(event))
2005 2006
			continue;

S
Stephane Eranian 已提交
2007 2008 2009 2010
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2011
		if (group_can_go_on(event, cpuctx, 1))
2012
			group_sched_in(event, cpuctx, ctx);
2013 2014 2015 2016 2017

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2018 2019 2020
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2021
		}
2022
	}
2023 2024 2025 2026
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2027
		      struct perf_cpu_context *cpuctx)
2028 2029 2030
{
	struct perf_event *event;
	int can_add_hw = 1;
2031

2032 2033 2034
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2035
			continue;
2036 2037
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2038
		 * of events:
2039
		 */
2040
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2041 2042
			continue;

S
Stephane Eranian 已提交
2043 2044 2045 2046
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2047
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2048
			if (group_sched_in(event, cpuctx, ctx))
2049
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2050
		}
T
Thomas Gleixner 已提交
2051
	}
2052 2053 2054 2055 2056
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2057 2058
	     enum event_type_t event_type,
	     struct task_struct *task)
2059
{
S
Stephane Eranian 已提交
2060 2061
	u64 now;

2062 2063
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
2064
		return;
2065

S
Stephane Eranian 已提交
2066 2067
	now = perf_clock();
	ctx->timestamp = now;
2068
	perf_cgroup_set_timestamp(task, ctx);
2069 2070 2071 2072 2073
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
2074
		ctx_pinned_sched_in(ctx, cpuctx);
2075 2076 2077

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
2078
		ctx_flexible_sched_in(ctx, cpuctx);
2079 2080
}

2081
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2082 2083
			     enum event_type_t event_type,
			     struct task_struct *task)
2084 2085 2086
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2087
	ctx_sched_in(ctx, cpuctx, event_type, task);
2088 2089
}

S
Stephane Eranian 已提交
2090 2091
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2092
{
P
Peter Zijlstra 已提交
2093
	struct perf_cpu_context *cpuctx;
2094

P
Peter Zijlstra 已提交
2095
	cpuctx = __get_cpu_context(ctx);
2096 2097 2098
	if (cpuctx->task_ctx == ctx)
		return;

2099
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2100
	perf_pmu_disable(ctx->pmu);
2101 2102 2103 2104 2105 2106 2107
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

S
Stephane Eranian 已提交
2108 2109 2110
	ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2111 2112

	cpuctx->task_ctx = ctx;
2113

2114 2115 2116
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2117 2118 2119 2120
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2121
	perf_pmu_rotate_start(ctx->pmu);
2122 2123
}

P
Peter Zijlstra 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2135
void __perf_event_task_sched_in(struct task_struct *task)
P
Peter Zijlstra 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2145
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2146
	}
S
Stephane Eranian 已提交
2147 2148 2149 2150 2151 2152 2153
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_in(task);
2154 2155
}

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2183
#define REDUCE_FLS(a, b)		\
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2223 2224 2225
	if (!divisor)
		return dividend;

2226 2227 2228 2229
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2230
{
2231
	struct hw_perf_event *hwc = &event->hw;
2232
	s64 period, sample_period;
2233 2234
	s64 delta;

2235
	period = perf_calculate_period(event, nsec, count);
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2246

2247
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2248
		event->pmu->stop(event, PERF_EF_UPDATE);
2249
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2250
		event->pmu->start(event, PERF_EF_RELOAD);
2251
	}
2252 2253
}

2254
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2255
{
2256 2257
	struct perf_event *event;
	struct hw_perf_event *hwc;
2258 2259
	u64 interrupts, now;
	s64 delta;
2260

2261
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2262
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2263 2264
			continue;

2265
		if (!event_filter_match(event))
2266 2267
			continue;

2268
		hwc = &event->hw;
2269 2270 2271

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2272

2273
		/*
2274
		 * unthrottle events on the tick
2275
		 */
2276
		if (interrupts == MAX_INTERRUPTS) {
2277
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2278
			event->pmu->start(event, 0);
2279 2280
		}

2281
		if (!event->attr.freq || !event->attr.sample_freq)
2282 2283
			continue;

2284
		event->pmu->read(event);
2285
		now = local64_read(&event->count);
2286 2287
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2288

2289
		if (delta > 0)
2290
			perf_adjust_period(event, period, delta);
2291 2292 2293
	}
}

2294
/*
2295
 * Round-robin a context's events:
2296
 */
2297
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2298
{
2299 2300 2301 2302 2303 2304
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2305 2306
}

2307
/*
2308 2309 2310
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2311
 */
2312
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2313
{
2314
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2315
	struct perf_event_context *ctx = NULL;
2316
	int rotate = 0, remove = 1;
2317

2318
	if (cpuctx->ctx.nr_events) {
2319
		remove = 0;
2320 2321 2322
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2323

P
Peter Zijlstra 已提交
2324
	ctx = cpuctx->task_ctx;
2325
	if (ctx && ctx->nr_events) {
2326
		remove = 0;
2327 2328 2329
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2330

2331
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2332
	perf_pmu_disable(cpuctx->ctx.pmu);
2333
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2334
	if (ctx)
2335
		perf_ctx_adjust_freq(ctx, interval);
2336

2337
	if (!rotate)
2338
		goto done;
2339

2340
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2341
	if (ctx)
2342
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2343

2344
	rotate_ctx(&cpuctx->ctx);
2345 2346
	if (ctx)
		rotate_ctx(ctx);
2347

S
Stephane Eranian 已提交
2348
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, current);
2349
	if (ctx)
2350
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, current);
2351 2352

done:
2353 2354 2355
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
2356
	perf_pmu_enable(cpuctx->ctx.pmu);
2357
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2358 2359 2360 2361 2362 2363
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2364

2365 2366 2367 2368 2369 2370 2371
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2372 2373
}

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2389
/*
2390
 * Enable all of a task's events that have been marked enable-on-exec.
2391 2392
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2393
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2394
{
2395
	struct perf_event *event;
2396 2397
	unsigned long flags;
	int enabled = 0;
2398
	int ret;
2399 2400

	local_irq_save(flags);
2401
	if (!ctx || !ctx->nr_events)
2402 2403
		goto out;

2404 2405 2406 2407 2408 2409 2410 2411
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
	perf_cgroup_sched_out(current);
2412

2413
	raw_spin_lock(&ctx->lock);
2414
	task_ctx_sched_out(ctx);
2415

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2426 2427 2428
	}

	/*
2429
	 * Unclone this context if we enabled any event.
2430
	 */
2431 2432
	if (enabled)
		unclone_ctx(ctx);
2433

2434
	raw_spin_unlock(&ctx->lock);
2435

2436 2437 2438
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2439
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2440
out:
2441 2442 2443
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2444
/*
2445
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2446
 */
2447
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2448
{
2449 2450
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2451
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2452

2453 2454 2455 2456
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2457 2458
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2459 2460 2461 2462
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2463
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2464
	if (ctx->is_active) {
2465
		update_context_time(ctx);
S
Stephane Eranian 已提交
2466 2467
		update_cgrp_time_from_event(event);
	}
2468
	update_event_times(event);
2469 2470
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2471
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2472 2473
}

P
Peter Zijlstra 已提交
2474 2475
static inline u64 perf_event_count(struct perf_event *event)
{
2476
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2477 2478
}

2479
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2480 2481
{
	/*
2482 2483
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2484
	 */
2485 2486 2487 2488
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2489 2490 2491
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2492
		raw_spin_lock_irqsave(&ctx->lock, flags);
2493 2494 2495 2496 2497
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2498
		if (ctx->is_active) {
2499
			update_context_time(ctx);
S
Stephane Eranian 已提交
2500 2501
			update_cgrp_time_from_event(event);
		}
2502
		update_event_times(event);
2503
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2504 2505
	}

P
Peter Zijlstra 已提交
2506
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2507 2508
}

2509
/*
2510
 * Callchain support
2511
 */
2512 2513 2514 2515 2516 2517

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

2518
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2519 2520 2521 2522 2523 2524 2525
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
2526 2527 2528
{
}

2529 2530
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
2531
{
2532
}
T
Thomas Gleixner 已提交
2533

2534 2535 2536 2537
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
2538

2539
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
2540

2541 2542
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
2543

2544 2545
	kfree(entries);
}
T
Thomas Gleixner 已提交
2546

2547 2548 2549
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2550

2551 2552 2553 2554
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
2555

2556 2557 2558 2559 2560
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2561

2562
	/*
2563 2564 2565
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
2566
	 */
2567
	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2568

2569 2570 2571
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
2572

2573
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
2574

2575 2576 2577 2578 2579
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
2580 2581
	}

2582
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2583

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2718
/*
2719
 * Initialize the perf_event context in a task_struct:
2720
 */
2721
static void __perf_event_init_context(struct perf_event_context *ctx)
2722
{
2723
	raw_spin_lock_init(&ctx->lock);
2724
	mutex_init(&ctx->mutex);
2725 2726
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2727 2728
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2744
	}
2745 2746 2747
	ctx->pmu = pmu;

	return ctx;
2748 2749
}

2750 2751 2752 2753 2754
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2755 2756

	rcu_read_lock();
2757
	if (!vpid)
T
Thomas Gleixner 已提交
2758 2759
		task = current;
	else
2760
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2761 2762 2763 2764 2765 2766 2767 2768
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2769 2770 2771 2772
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2773 2774 2775 2776 2777 2778 2779
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2780 2781 2782
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2783
static struct perf_event_context *
M
Matt Helsley 已提交
2784
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2785
{
2786
	struct perf_event_context *ctx;
2787
	struct perf_cpu_context *cpuctx;
2788
	unsigned long flags;
P
Peter Zijlstra 已提交
2789
	int ctxn, err;
T
Thomas Gleixner 已提交
2790

2791
	if (!task) {
2792
		/* Must be root to operate on a CPU event: */
2793
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2794 2795 2796
			return ERR_PTR(-EACCES);

		/*
2797
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2798 2799 2800
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2801
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2802 2803
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2804
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2805
		ctx = &cpuctx->ctx;
2806
		get_ctx(ctx);
2807
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2808 2809 2810 2811

		return ctx;
	}

P
Peter Zijlstra 已提交
2812 2813 2814 2815 2816
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2817
retry:
P
Peter Zijlstra 已提交
2818
	ctx = perf_lock_task_context(task, ctxn, &flags);
2819
	if (ctx) {
2820
		unclone_ctx(ctx);
2821
		++ctx->pin_count;
2822
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2823
	} else {
2824
		ctx = alloc_perf_context(pmu, task);
2825 2826 2827
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2828

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2839
		else {
2840
			get_ctx(ctx);
2841
			++ctx->pin_count;
2842
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2843
		}
2844 2845 2846
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2847
			put_ctx(ctx);
2848 2849 2850 2851

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2852 2853 2854
		}
	}

T
Thomas Gleixner 已提交
2855
	return ctx;
2856

P
Peter Zijlstra 已提交
2857
errout:
2858
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2859 2860
}

L
Li Zefan 已提交
2861 2862
static void perf_event_free_filter(struct perf_event *event);

2863
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2864
{
2865
	struct perf_event *event;
P
Peter Zijlstra 已提交
2866

2867 2868 2869
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2870
	perf_event_free_filter(event);
2871
	kfree(event);
P
Peter Zijlstra 已提交
2872 2873
}

2874
static void perf_buffer_put(struct perf_buffer *buffer);
2875

2876
static void free_event(struct perf_event *event)
2877
{
2878
	irq_work_sync(&event->pending);
2879

2880
	if (!event->parent) {
2881
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2882
			jump_label_dec(&perf_sched_events);
2883
		if (event->attr.mmap || event->attr.mmap_data)
2884 2885 2886 2887 2888
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2889 2890
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2891 2892 2893 2894
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
			jump_label_dec(&perf_sched_events);
		}
2895
	}
2896

2897 2898 2899
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2900 2901
	}

S
Stephane Eranian 已提交
2902 2903 2904
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2905 2906
	if (event->destroy)
		event->destroy(event);
2907

P
Peter Zijlstra 已提交
2908 2909 2910
	if (event->ctx)
		put_ctx(event->ctx);

2911
	call_rcu(&event->rcu_head, free_event_rcu);
2912 2913
}

2914
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2915
{
2916
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2917

2918 2919 2920 2921 2922 2923
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2924
	WARN_ON_ONCE(ctx->parent_ctx);
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2938
	raw_spin_lock_irq(&ctx->lock);
2939
	perf_group_detach(event);
2940 2941
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2942
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2943

2944
	free_event(event);
T
Thomas Gleixner 已提交
2945 2946 2947

	return 0;
}
2948
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2949

2950 2951 2952 2953
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2954
{
2955
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2956
	struct task_struct *owner;
2957

2958
	file->private_data = NULL;
2959

P
Peter Zijlstra 已提交
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2993
	return perf_event_release_kernel(event);
2994 2995
}

2996
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2997
{
2998
	struct perf_event *child;
2999 3000
	u64 total = 0;

3001 3002 3003
	*enabled = 0;
	*running = 0;

3004
	mutex_lock(&event->child_mutex);
3005
	total += perf_event_read(event);
3006 3007 3008 3009 3010 3011
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3012
		total += perf_event_read(child);
3013 3014 3015
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3016
	mutex_unlock(&event->child_mutex);
3017 3018 3019

	return total;
}
3020
EXPORT_SYMBOL_GPL(perf_event_read_value);
3021

3022
static int perf_event_read_group(struct perf_event *event,
3023 3024
				   u64 read_format, char __user *buf)
{
3025
	struct perf_event *leader = event->group_leader, *sub;
3026 3027
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3028
	u64 values[5];
3029
	u64 count, enabled, running;
3030

3031
	mutex_lock(&ctx->mutex);
3032
	count = perf_event_read_value(leader, &enabled, &running);
3033 3034

	values[n++] = 1 + leader->nr_siblings;
3035 3036 3037 3038
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3039 3040 3041
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3042 3043 3044 3045

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3046
		goto unlock;
3047

3048
	ret = size;
3049

3050
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3051
		n = 0;
3052

3053
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3054 3055 3056 3057 3058
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3059
		if (copy_to_user(buf + ret, values, size)) {
3060 3061 3062
			ret = -EFAULT;
			goto unlock;
		}
3063 3064

		ret += size;
3065
	}
3066 3067
unlock:
	mutex_unlock(&ctx->mutex);
3068

3069
	return ret;
3070 3071
}

3072
static int perf_event_read_one(struct perf_event *event,
3073 3074
				 u64 read_format, char __user *buf)
{
3075
	u64 enabled, running;
3076 3077 3078
	u64 values[4];
	int n = 0;

3079 3080 3081 3082 3083
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3084
	if (read_format & PERF_FORMAT_ID)
3085
		values[n++] = primary_event_id(event);
3086 3087 3088 3089 3090 3091 3092

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3093
/*
3094
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3095 3096
 */
static ssize_t
3097
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3098
{
3099
	u64 read_format = event->attr.read_format;
3100
	int ret;
T
Thomas Gleixner 已提交
3101

3102
	/*
3103
	 * Return end-of-file for a read on a event that is in
3104 3105 3106
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3107
	if (event->state == PERF_EVENT_STATE_ERROR)
3108 3109
		return 0;

3110
	if (count < event->read_size)
3111 3112
		return -ENOSPC;

3113
	WARN_ON_ONCE(event->ctx->parent_ctx);
3114
	if (read_format & PERF_FORMAT_GROUP)
3115
		ret = perf_event_read_group(event, read_format, buf);
3116
	else
3117
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3118

3119
	return ret;
T
Thomas Gleixner 已提交
3120 3121 3122 3123 3124
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3125
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3126

3127
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3128 3129 3130 3131
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3132
	struct perf_event *event = file->private_data;
3133
	struct perf_buffer *buffer;
3134
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3135 3136

	rcu_read_lock();
3137 3138 3139
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
3140
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3141

3142
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3143 3144 3145 3146

	return events;
}

3147
static void perf_event_reset(struct perf_event *event)
3148
{
3149
	(void)perf_event_read(event);
3150
	local64_set(&event->count, 0);
3151
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3152 3153
}

3154
/*
3155 3156 3157 3158
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3159
 */
3160 3161
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3162
{
3163
	struct perf_event *child;
P
Peter Zijlstra 已提交
3164

3165 3166 3167 3168
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3169
		func(child);
3170
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3171 3172
}

3173 3174
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3175
{
3176 3177
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3178

3179 3180
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3181
	event = event->group_leader;
3182

3183 3184 3185 3186
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3187
	mutex_unlock(&ctx->mutex);
3188 3189
}

3190
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3191
{
3192
	struct perf_event_context *ctx = event->ctx;
3193 3194 3195
	int ret = 0;
	u64 value;

3196
	if (!is_sampling_event(event))
3197 3198
		return -EINVAL;

3199
	if (copy_from_user(&value, arg, sizeof(value)))
3200 3201 3202 3203 3204
		return -EFAULT;

	if (!value)
		return -EINVAL;

3205
	raw_spin_lock_irq(&ctx->lock);
3206 3207
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3208 3209 3210 3211
			ret = -EINVAL;
			goto unlock;
		}

3212
		event->attr.sample_freq = value;
3213
	} else {
3214 3215
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3216 3217
	}
unlock:
3218
	raw_spin_unlock_irq(&ctx->lock);
3219 3220 3221 3222

	return ret;
}

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3244
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3245

3246 3247
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3248 3249
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3250
	u32 flags = arg;
3251 3252

	switch (cmd) {
3253 3254
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3255
		break;
3256 3257
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3258
		break;
3259 3260
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3261
		break;
P
Peter Zijlstra 已提交
3262

3263 3264
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3265

3266 3267
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3268

3269
	case PERF_EVENT_IOC_SET_OUTPUT:
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3287

L
Li Zefan 已提交
3288 3289 3290
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3291
	default:
P
Peter Zijlstra 已提交
3292
		return -ENOTTY;
3293
	}
P
Peter Zijlstra 已提交
3294 3295

	if (flags & PERF_IOC_FLAG_GROUP)
3296
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3297
	else
3298
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3299 3300

	return 0;
3301 3302
}

3303
int perf_event_task_enable(void)
3304
{
3305
	struct perf_event *event;
3306

3307 3308 3309 3310
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3311 3312 3313 3314

	return 0;
}

3315
int perf_event_task_disable(void)
3316
{
3317
	struct perf_event *event;
3318

3319 3320 3321 3322
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3323 3324 3325 3326

	return 0;
}

3327 3328
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3329 3330
#endif

3331
static int perf_event_index(struct perf_event *event)
3332
{
P
Peter Zijlstra 已提交
3333 3334 3335
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3336
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3337 3338
		return 0;

3339
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3340 3341
}

3342 3343 3344 3345 3346
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3347
void perf_event_update_userpage(struct perf_event *event)
3348
{
3349
	struct perf_event_mmap_page *userpg;
3350
	struct perf_buffer *buffer;
3351 3352

	rcu_read_lock();
3353 3354
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3355 3356
		goto unlock;

3357
	userpg = buffer->user_page;
3358

3359 3360 3361 3362 3363
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3364
	++userpg->lock;
3365
	barrier();
3366
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3367
	userpg->offset = perf_event_count(event);
3368
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3369
		userpg->offset -= local64_read(&event->hw.prev_count);
3370

3371 3372
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3373

3374 3375
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3376

3377
	barrier();
3378
	++userpg->lock;
3379
	preempt_enable();
3380
unlock:
3381
	rcu_read_unlock();
3382 3383
}

3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

3403
#ifndef CONFIG_PERF_USE_VMALLOC
3404

3405 3406 3407
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
3408

3409
static struct page *
3410
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3411
{
3412
	if (pgoff > buffer->nr_pages)
3413
		return NULL;
3414

3415
	if (pgoff == 0)
3416
		return virt_to_page(buffer->user_page);
3417

3418
	return virt_to_page(buffer->data_pages[pgoff - 1]);
3419 3420
}

3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

3434
static struct perf_buffer *
3435
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3436
{
3437
	struct perf_buffer *buffer;
3438 3439 3440
	unsigned long size;
	int i;

3441
	size = sizeof(struct perf_buffer);
3442 3443
	size += nr_pages * sizeof(void *);

3444 3445
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3446 3447
		goto fail;

3448
	buffer->user_page = perf_mmap_alloc_page(cpu);
3449
	if (!buffer->user_page)
3450 3451 3452
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
3453
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
3454
		if (!buffer->data_pages[i])
3455 3456 3457
			goto fail_data_pages;
	}

3458
	buffer->nr_pages = nr_pages;
3459

3460 3461
	perf_buffer_init(buffer, watermark, flags);

3462
	return buffer;
3463 3464 3465

fail_data_pages:
	for (i--; i >= 0; i--)
3466
		free_page((unsigned long)buffer->data_pages[i]);
3467

3468
	free_page((unsigned long)buffer->user_page);
3469 3470

fail_user_page:
3471
	kfree(buffer);
3472 3473

fail:
3474
	return NULL;
3475 3476
}

3477 3478
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
3479
	struct page *page = virt_to_page((void *)addr);
3480 3481 3482 3483 3484

	page->mapping = NULL;
	__free_page(page);
}

3485
static void perf_buffer_free(struct perf_buffer *buffer)
3486 3487 3488
{
	int i;

3489 3490 3491 3492
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
3493 3494
}

3495
static inline int page_order(struct perf_buffer *buffer)
3496 3497 3498 3499
{
	return 0;
}

3500 3501 3502 3503 3504 3505 3506 3507
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

3508
static inline int page_order(struct perf_buffer *buffer)
3509
{
3510
	return buffer->page_order;
3511 3512
}

3513
static struct page *
3514
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3515
{
3516
	if (pgoff > (1UL << page_order(buffer)))
3517 3518
		return NULL;

3519
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
3520 3521 3522 3523 3524 3525 3526 3527 3528
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

3529
static void perf_buffer_free_work(struct work_struct *work)
3530
{
3531
	struct perf_buffer *buffer;
3532 3533 3534
	void *base;
	int i, nr;

3535 3536
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
3537

3538
	base = buffer->user_page;
3539 3540 3541 3542
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
3543
	kfree(buffer);
3544 3545
}

3546
static void perf_buffer_free(struct perf_buffer *buffer)
3547
{
3548
	schedule_work(&buffer->work);
3549 3550
}

3551
static struct perf_buffer *
3552
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3553
{
3554
	struct perf_buffer *buffer;
3555 3556 3557
	unsigned long size;
	void *all_buf;

3558
	size = sizeof(struct perf_buffer);
3559 3560
	size += sizeof(void *);

3561 3562
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3563 3564
		goto fail;

3565
	INIT_WORK(&buffer->work, perf_buffer_free_work);
3566 3567 3568 3569 3570

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

3571 3572 3573 3574
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
3575

3576 3577
	perf_buffer_init(buffer, watermark, flags);

3578
	return buffer;
3579 3580

fail_all_buf:
3581
	kfree(buffer);
3582 3583 3584 3585 3586 3587 3588

fail:
	return NULL;
}

#endif

3589
static unsigned long perf_data_size(struct perf_buffer *buffer)
3590
{
3591
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3592 3593
}

3594 3595 3596
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3597
	struct perf_buffer *buffer;
3598 3599 3600 3601 3602 3603 3604 3605 3606
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3607 3608
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3609 3610 3611 3612 3613
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3614
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3629
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3630
{
3631
	struct perf_buffer *buffer;
3632

3633 3634
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
3635 3636
}

3637
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3638
{
3639
	struct perf_buffer *buffer;
3640

3641
	rcu_read_lock();
3642 3643 3644 3645
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
3646 3647 3648
	}
	rcu_read_unlock();

3649
	return buffer;
3650 3651
}

3652
static void perf_buffer_put(struct perf_buffer *buffer)
3653
{
3654
	if (!atomic_dec_and_test(&buffer->refcount))
3655
		return;
3656

3657
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3658 3659 3660 3661
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3662
	struct perf_event *event = vma->vm_file->private_data;
3663

3664
	atomic_inc(&event->mmap_count);
3665 3666 3667 3668
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3669
	struct perf_event *event = vma->vm_file->private_data;
3670

3671
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3672
		unsigned long size = perf_data_size(event->buffer);
3673
		struct user_struct *user = event->mmap_user;
3674
		struct perf_buffer *buffer = event->buffer;
3675

3676
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3677
		vma->vm_mm->locked_vm -= event->mmap_locked;
3678
		rcu_assign_pointer(event->buffer, NULL);
3679
		mutex_unlock(&event->mmap_mutex);
3680

3681
		perf_buffer_put(buffer);
3682
		free_uid(user);
3683
	}
3684 3685
}

3686
static const struct vm_operations_struct perf_mmap_vmops = {
3687 3688 3689 3690
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3691 3692 3693 3694
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3695
	struct perf_event *event = file->private_data;
3696
	unsigned long user_locked, user_lock_limit;
3697
	struct user_struct *user = current_user();
3698
	unsigned long locked, lock_limit;
3699
	struct perf_buffer *buffer;
3700 3701
	unsigned long vma_size;
	unsigned long nr_pages;
3702
	long user_extra, extra;
3703
	int ret = 0, flags = 0;
3704

3705 3706 3707 3708 3709 3710 3711 3712
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3713
	if (!(vma->vm_flags & VM_SHARED))
3714
		return -EINVAL;
3715 3716 3717 3718

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3719
	/*
3720
	 * If we have buffer pages ensure they're a power-of-two number, so we
3721 3722 3723
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3724 3725
		return -EINVAL;

3726
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3727 3728
		return -EINVAL;

3729 3730
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3731

3732 3733
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3734 3735 3736
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
3737
		else
3738 3739 3740 3741
			ret = -EINVAL;
		goto unlock;
	}

3742
	user_extra = nr_pages + 1;
3743
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3744 3745 3746 3747 3748 3749

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3750
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3751

3752 3753 3754
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3755

3756
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3757
	lock_limit >>= PAGE_SHIFT;
3758
	locked = vma->vm_mm->locked_vm + extra;
3759

3760 3761
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3762 3763 3764
		ret = -EPERM;
		goto unlock;
	}
3765

3766
	WARN_ON(event->buffer);
3767

3768 3769 3770 3771 3772
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3773
	if (!buffer) {
3774
		ret = -ENOMEM;
3775
		goto unlock;
3776
	}
3777
	rcu_assign_pointer(event->buffer, buffer);
3778

3779 3780 3781 3782 3783
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3784
unlock:
3785 3786
	if (!ret)
		atomic_inc(&event->mmap_count);
3787
	mutex_unlock(&event->mmap_mutex);
3788 3789 3790

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3791 3792

	return ret;
3793 3794
}

P
Peter Zijlstra 已提交
3795 3796 3797
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3798
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3799 3800 3801
	int retval;

	mutex_lock(&inode->i_mutex);
3802
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3803 3804 3805 3806 3807 3808 3809 3810
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3811
static const struct file_operations perf_fops = {
3812
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3813 3814 3815
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3816 3817
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3818
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3819
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3820 3821
};

3822
/*
3823
 * Perf event wakeup
3824 3825 3826 3827 3828
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3829
void perf_event_wakeup(struct perf_event *event)
3830
{
3831
	wake_up_all(&event->waitq);
3832

3833 3834 3835
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3836
	}
3837 3838
}

3839
static void perf_pending_event(struct irq_work *entry)
3840
{
3841 3842
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3843

3844 3845 3846
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3847 3848
	}

3849 3850 3851
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3852 3853 3854
	}
}

3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3876 3877 3878
/*
 * Output
 */
3879
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3880
			      unsigned long offset, unsigned long head)
3881 3882 3883
{
	unsigned long mask;

3884
	if (!buffer->writable)
3885 3886
		return true;

3887
	mask = perf_data_size(buffer) - 1;
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3898
static void perf_output_wakeup(struct perf_output_handle *handle)
3899
{
3900
	atomic_set(&handle->buffer->poll, POLL_IN);
3901

3902
	if (handle->nmi) {
3903
		handle->event->pending_wakeup = 1;
3904
		irq_work_queue(&handle->event->pending);
3905
	} else
3906
		perf_event_wakeup(handle->event);
3907 3908
}

3909
/*
3910
 * We need to ensure a later event_id doesn't publish a head when a former
3911
 * event isn't done writing. However since we need to deal with NMIs we
3912 3913 3914
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3915
 * event completes.
3916
 */
3917
static void perf_output_get_handle(struct perf_output_handle *handle)
3918
{
3919
	struct perf_buffer *buffer = handle->buffer;
3920

3921
	preempt_disable();
3922 3923
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3924 3925
}

3926
static void perf_output_put_handle(struct perf_output_handle *handle)
3927
{
3928
	struct perf_buffer *buffer = handle->buffer;
3929
	unsigned long head;
3930 3931

again:
3932
	head = local_read(&buffer->head);
3933 3934

	/*
3935
	 * IRQ/NMI can happen here, which means we can miss a head update.
3936 3937
	 */

3938
	if (!local_dec_and_test(&buffer->nest))
3939
		goto out;
3940 3941

	/*
3942
	 * Publish the known good head. Rely on the full barrier implied
3943
	 * by atomic_dec_and_test() order the buffer->head read and this
3944
	 * write.
3945
	 */
3946
	buffer->user_page->data_head = head;
3947

3948 3949
	/*
	 * Now check if we missed an update, rely on the (compiler)
3950
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3951
	 */
3952 3953
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3954 3955 3956
		goto again;
	}

3957
	if (handle->wakeup != local_read(&buffer->wakeup))
3958
		perf_output_wakeup(handle);
3959

P
Peter Zijlstra 已提交
3960
out:
3961
	preempt_enable();
3962 3963
}

3964
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3965
		      const void *buf, unsigned int len)
3966
{
3967
	do {
3968
		unsigned long size = min_t(unsigned long, handle->size, len);
3969 3970 3971 3972 3973

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3974
		buf += size;
3975 3976
		handle->size -= size;
		if (!handle->size) {
3977
			struct perf_buffer *buffer = handle->buffer;
3978

3979
			handle->page++;
3980 3981 3982
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3983 3984
		}
	} while (len);
3985 3986
}

3987 3988 3989
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
static void perf_event_header__init_id(struct perf_event_header *header,
				       struct perf_sample_data *data,
				       struct perf_event *event)
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

static void perf_event__output_id_sample(struct perf_event *event,
					 struct perf_output_handle *handle,
					 struct perf_sample_data *sample)
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4054
int perf_output_begin(struct perf_output_handle *handle,
4055
		      struct perf_event *event, unsigned int size,
4056
		      int nmi, int sample)
4057
{
4058
	struct perf_buffer *buffer;
4059
	unsigned long tail, offset, head;
4060
	int have_lost;
4061
	struct perf_sample_data sample_data;
4062 4063 4064 4065 4066
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
4067

4068
	rcu_read_lock();
4069
	/*
4070
	 * For inherited events we send all the output towards the parent.
4071
	 */
4072 4073
	if (event->parent)
		event = event->parent;
4074

4075 4076
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
4077 4078
		goto out;

4079
	handle->buffer	= buffer;
4080
	handle->event	= event;
4081 4082
	handle->nmi	= nmi;
	handle->sample	= sample;
4083

4084
	if (!buffer->nr_pages)
4085
		goto out;
4086

4087
	have_lost = local_read(&buffer->lost);
4088 4089 4090 4091 4092 4093
	if (have_lost) {
		lost_event.header.size = sizeof(lost_event);
		perf_event_header__init_id(&lost_event.header, &sample_data,
					   event);
		size += lost_event.header.size;
	}
4094

4095
	perf_output_get_handle(handle);
4096

4097
	do {
4098 4099 4100 4101 4102
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
4103
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
4104
		smp_rmb();
4105
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
4106
		head += size;
4107
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
4108
			goto fail;
4109
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
4110

4111 4112
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
4113

4114 4115 4116 4117
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
4118
	handle->addr += handle->size;
4119
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
4120

4121
	if (have_lost) {
4122
		lost_event.header.type = PERF_RECORD_LOST;
4123
		lost_event.header.misc = 0;
4124
		lost_event.id          = event->id;
4125
		lost_event.lost        = local_xchg(&buffer->lost, 0);
4126 4127

		perf_output_put(handle, lost_event);
4128
		perf_event__output_id_sample(event, handle, &sample_data);
4129 4130
	}

4131
	return 0;
4132

4133
fail:
4134
	local_inc(&buffer->lost);
4135
	perf_output_put_handle(handle);
4136 4137
out:
	rcu_read_unlock();
4138

4139 4140
	return -ENOSPC;
}
4141

4142
void perf_output_end(struct perf_output_handle *handle)
4143
{
4144
	struct perf_event *event = handle->event;
4145
	struct perf_buffer *buffer = handle->buffer;
4146

4147
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
4148

4149
	if (handle->sample && wakeup_events) {
4150
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
4151
		if (events >= wakeup_events) {
4152 4153
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
4154
		}
4155 4156
	}

4157
	perf_output_put_handle(handle);
4158
	rcu_read_unlock();
4159 4160
}

4161
static void perf_output_read_one(struct perf_output_handle *handle,
4162 4163
				 struct perf_event *event,
				 u64 enabled, u64 running)
4164
{
4165
	u64 read_format = event->attr.read_format;
4166 4167 4168
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4169
	values[n++] = perf_event_count(event);
4170
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4171
		values[n++] = enabled +
4172
			atomic64_read(&event->child_total_time_enabled);
4173 4174
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4175
		values[n++] = running +
4176
			atomic64_read(&event->child_total_time_running);
4177 4178
	}
	if (read_format & PERF_FORMAT_ID)
4179
		values[n++] = primary_event_id(event);
4180 4181 4182 4183 4184

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
4185
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4186 4187
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4188 4189
			    struct perf_event *event,
			    u64 enabled, u64 running)
4190
{
4191 4192
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4193 4194 4195 4196 4197 4198
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4199
		values[n++] = enabled;
4200 4201

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4202
		values[n++] = running;
4203

4204
	if (leader != event)
4205 4206
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4207
	values[n++] = perf_event_count(leader);
4208
	if (read_format & PERF_FORMAT_ID)
4209
		values[n++] = primary_event_id(leader);
4210 4211 4212

	perf_output_copy(handle, values, n * sizeof(u64));

4213
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4214 4215
		n = 0;

4216
		if (sub != event)
4217 4218
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4219
		values[n++] = perf_event_count(sub);
4220
		if (read_format & PERF_FORMAT_ID)
4221
			values[n++] = primary_event_id(sub);
4222 4223 4224 4225 4226

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

4227 4228 4229
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4230
static void perf_output_read(struct perf_output_handle *handle,
4231
			     struct perf_event *event)
4232
{
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
	u64 enabled = 0, running = 0, now, ctx_time;
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIMES) {
		now = perf_clock();
		ctx_time = event->shadow_ctx_time + now;
		enabled = ctx_time - event->tstamp_enabled;
		running = ctx_time - event->tstamp_running;
	}

4252
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4253
		perf_output_read_group(handle, event, enabled, running);
4254
	else
4255
		perf_output_read_one(handle, event, enabled, running);
4256 4257
}

4258 4259 4260
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4261
			struct perf_event *event)
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4292
		perf_output_read(handle, event);
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4330
			 struct perf_event *event,
4331
			 struct pt_regs *regs)
4332
{
4333
	u64 sample_type = event->attr.sample_type;
4334

4335
	header->type = PERF_RECORD_SAMPLE;
4336
	header->size = sizeof(*header) + event->header_size;
4337 4338 4339

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4340

4341
	__perf_event_header__init_id(header, data, event);
4342

4343
	if (sample_type & PERF_SAMPLE_IP)
4344 4345
		data->ip = perf_instruction_pointer(regs);

4346
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4347
		int size = 1;
4348

4349 4350 4351 4352 4353 4354
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4355 4356
	}

4357
	if (sample_type & PERF_SAMPLE_RAW) {
4358 4359 4360 4361 4362 4363 4364 4365
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4366
		header->size += size;
4367
	}
4368
}
4369

4370
static void perf_event_output(struct perf_event *event, int nmi,
4371 4372 4373 4374 4375
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4376

4377 4378 4379
	/* protect the callchain buffers */
	rcu_read_lock();

4380
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4381

4382
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
4383
		goto exit;
4384

4385
	perf_output_sample(&handle, &header, data, event);
4386

4387
	perf_output_end(&handle);
4388 4389 4390

exit:
	rcu_read_unlock();
4391 4392
}

4393
/*
4394
 * read event_id
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4405
perf_event_read_event(struct perf_event *event,
4406 4407 4408
			struct task_struct *task)
{
	struct perf_output_handle handle;
4409
	struct perf_sample_data sample;
4410
	struct perf_read_event read_event = {
4411
		.header = {
4412
			.type = PERF_RECORD_READ,
4413
			.misc = 0,
4414
			.size = sizeof(read_event) + event->read_size,
4415
		},
4416 4417
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4418
	};
4419
	int ret;
4420

4421
	perf_event_header__init_id(&read_event.header, &sample, event);
4422
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
4423 4424 4425
	if (ret)
		return;

4426
	perf_output_put(&handle, read_event);
4427
	perf_output_read(&handle, event);
4428
	perf_event__output_id_sample(event, &handle, &sample);
4429

4430 4431 4432
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4433
/*
P
Peter Zijlstra 已提交
4434 4435
 * task tracking -- fork/exit
 *
4436
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4437 4438
 */

P
Peter Zijlstra 已提交
4439
struct perf_task_event {
4440
	struct task_struct		*task;
4441
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4442 4443 4444 4445 4446 4447

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4448 4449
		u32				tid;
		u32				ptid;
4450
		u64				time;
4451
	} event_id;
P
Peter Zijlstra 已提交
4452 4453
};

4454
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4455
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4456 4457
{
	struct perf_output_handle handle;
4458
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4459
	struct task_struct *task = task_event->task;
4460
	int ret, size = task_event->event_id.header.size;
4461

4462
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4463

4464 4465
	ret = perf_output_begin(&handle, event,
				task_event->event_id.header.size, 0, 0);
4466
	if (ret)
4467
		goto out;
P
Peter Zijlstra 已提交
4468

4469 4470
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4471

4472 4473
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4474

4475
	perf_output_put(&handle, task_event->event_id);
4476

4477 4478
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4479
	perf_output_end(&handle);
4480 4481
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4482 4483
}

4484
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4485
{
P
Peter Zijlstra 已提交
4486
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4487 4488
		return 0;

4489
	if (!event_filter_match(event))
4490 4491
		return 0;

4492 4493
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4494 4495 4496 4497 4498
		return 1;

	return 0;
}

4499
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4500
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4501
{
4502
	struct perf_event *event;
P
Peter Zijlstra 已提交
4503

4504 4505 4506
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4507 4508 4509
	}
}

4510
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4511 4512
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4513
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4514
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4515
	int ctxn;
P
Peter Zijlstra 已提交
4516

4517
	rcu_read_lock();
P
Peter Zijlstra 已提交
4518
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4519
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4520 4521
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4522
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4523 4524 4525 4526 4527

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4528
				goto next;
P
Peter Zijlstra 已提交
4529 4530 4531 4532
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4533 4534
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4535
	}
P
Peter Zijlstra 已提交
4536 4537 4538
	rcu_read_unlock();
}

4539 4540
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4541
			      int new)
P
Peter Zijlstra 已提交
4542
{
P
Peter Zijlstra 已提交
4543
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4544

4545 4546 4547
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4548 4549
		return;

P
Peter Zijlstra 已提交
4550
	task_event = (struct perf_task_event){
4551 4552
		.task	  = task,
		.task_ctx = task_ctx,
4553
		.event_id    = {
P
Peter Zijlstra 已提交
4554
			.header = {
4555
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4556
				.misc = 0,
4557
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4558
			},
4559 4560
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4561 4562
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4563
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4564 4565 4566
		},
	};

4567
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4568 4569
}

4570
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4571
{
4572
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4573 4574
}

4575 4576 4577 4578 4579
/*
 * comm tracking
 */

struct perf_comm_event {
4580 4581
	struct task_struct	*task;
	char			*comm;
4582 4583 4584 4585 4586 4587 4588
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4589
	} event_id;
4590 4591
};

4592
static void perf_event_comm_output(struct perf_event *event,
4593 4594 4595
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4596
	struct perf_sample_data sample;
4597
	int size = comm_event->event_id.header.size;
4598 4599 4600 4601 4602
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				comm_event->event_id.header.size, 0, 0);
4603 4604

	if (ret)
4605
		goto out;
4606

4607 4608
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4609

4610
	perf_output_put(&handle, comm_event->event_id);
4611 4612
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
4613 4614 4615

	perf_event__output_id_sample(event, &handle, &sample);

4616
	perf_output_end(&handle);
4617 4618
out:
	comm_event->event_id.header.size = size;
4619 4620
}

4621
static int perf_event_comm_match(struct perf_event *event)
4622
{
P
Peter Zijlstra 已提交
4623
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4624 4625
		return 0;

4626
	if (!event_filter_match(event))
4627 4628
		return 0;

4629
	if (event->attr.comm)
4630 4631 4632 4633 4634
		return 1;

	return 0;
}

4635
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4636 4637
				  struct perf_comm_event *comm_event)
{
4638
	struct perf_event *event;
4639

4640 4641 4642
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4643 4644 4645
	}
}

4646
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4647 4648
{
	struct perf_cpu_context *cpuctx;
4649
	struct perf_event_context *ctx;
4650
	char comm[TASK_COMM_LEN];
4651
	unsigned int size;
P
Peter Zijlstra 已提交
4652
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4653
	int ctxn;
4654

4655
	memset(comm, 0, sizeof(comm));
4656
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4657
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4658 4659 4660 4661

	comm_event->comm = comm;
	comm_event->comm_size = size;

4662
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4663
	rcu_read_lock();
P
Peter Zijlstra 已提交
4664
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4665
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4666 4667
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4668
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4669 4670 4671

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4672
			goto next;
P
Peter Zijlstra 已提交
4673 4674 4675 4676

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4677 4678
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4679
	}
4680
	rcu_read_unlock();
4681 4682
}

4683
void perf_event_comm(struct task_struct *task)
4684
{
4685
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4686 4687
	struct perf_event_context *ctx;
	int ctxn;
4688

P
Peter Zijlstra 已提交
4689 4690 4691 4692
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4693

P
Peter Zijlstra 已提交
4694 4695
		perf_event_enable_on_exec(ctx);
	}
4696

4697
	if (!atomic_read(&nr_comm_events))
4698
		return;
4699

4700
	comm_event = (struct perf_comm_event){
4701
		.task	= task,
4702 4703
		/* .comm      */
		/* .comm_size */
4704
		.event_id  = {
4705
			.header = {
4706
				.type = PERF_RECORD_COMM,
4707 4708 4709 4710 4711
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4712 4713 4714
		},
	};

4715
	perf_event_comm_event(&comm_event);
4716 4717
}

4718 4719 4720 4721 4722
/*
 * mmap tracking
 */

struct perf_mmap_event {
4723 4724 4725 4726
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4727 4728 4729 4730 4731 4732 4733 4734 4735

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4736
	} event_id;
4737 4738
};

4739
static void perf_event_mmap_output(struct perf_event *event,
4740 4741 4742
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4743
	struct perf_sample_data sample;
4744
	int size = mmap_event->event_id.header.size;
4745
	int ret;
4746

4747 4748 4749
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				mmap_event->event_id.header.size, 0, 0);
4750
	if (ret)
4751
		goto out;
4752

4753 4754
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4755

4756
	perf_output_put(&handle, mmap_event->event_id);
4757 4758
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4759 4760 4761

	perf_event__output_id_sample(event, &handle, &sample);

4762
	perf_output_end(&handle);
4763 4764
out:
	mmap_event->event_id.header.size = size;
4765 4766
}

4767
static int perf_event_mmap_match(struct perf_event *event,
4768 4769
				   struct perf_mmap_event *mmap_event,
				   int executable)
4770
{
P
Peter Zijlstra 已提交
4771
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4772 4773
		return 0;

4774
	if (!event_filter_match(event))
4775 4776
		return 0;

4777 4778
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4779 4780 4781 4782 4783
		return 1;

	return 0;
}

4784
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4785 4786
				  struct perf_mmap_event *mmap_event,
				  int executable)
4787
{
4788
	struct perf_event *event;
4789

4790
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4791
		if (perf_event_mmap_match(event, mmap_event, executable))
4792
			perf_event_mmap_output(event, mmap_event);
4793 4794 4795
	}
}

4796
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4797 4798
{
	struct perf_cpu_context *cpuctx;
4799
	struct perf_event_context *ctx;
4800 4801
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4802 4803 4804
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4805
	const char *name;
P
Peter Zijlstra 已提交
4806
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4807
	int ctxn;
4808

4809 4810
	memset(tmp, 0, sizeof(tmp));

4811
	if (file) {
4812 4813 4814 4815 4816 4817
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4818 4819 4820 4821
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4822
		name = d_path(&file->f_path, buf, PATH_MAX);
4823 4824 4825 4826 4827
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4828 4829 4830
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4831
			goto got_name;
4832
		}
4833 4834 4835 4836

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4837 4838 4839 4840 4841 4842 4843 4844
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4845 4846
		}

4847 4848 4849 4850 4851
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4852
	size = ALIGN(strlen(name)+1, sizeof(u64));
4853 4854 4855 4856

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4857
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4858

4859
	rcu_read_lock();
P
Peter Zijlstra 已提交
4860
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4861
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4862 4863
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4864 4865
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4866 4867 4868

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4869
			goto next;
P
Peter Zijlstra 已提交
4870 4871 4872 4873 4874 4875

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4876 4877
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4878
	}
4879 4880
	rcu_read_unlock();

4881 4882 4883
	kfree(buf);
}

4884
void perf_event_mmap(struct vm_area_struct *vma)
4885
{
4886 4887
	struct perf_mmap_event mmap_event;

4888
	if (!atomic_read(&nr_mmap_events))
4889 4890 4891
		return;

	mmap_event = (struct perf_mmap_event){
4892
		.vma	= vma,
4893 4894
		/* .file_name */
		/* .file_size */
4895
		.event_id  = {
4896
			.header = {
4897
				.type = PERF_RECORD_MMAP,
4898
				.misc = PERF_RECORD_MISC_USER,
4899 4900 4901 4902
				/* .size */
			},
			/* .pid */
			/* .tid */
4903 4904
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4905
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4906 4907 4908
		},
	};

4909
	perf_event_mmap_event(&mmap_event);
4910 4911
}

4912 4913 4914 4915
/*
 * IRQ throttle logging
 */

4916
static void perf_log_throttle(struct perf_event *event, int enable)
4917 4918
{
	struct perf_output_handle handle;
4919
	struct perf_sample_data sample;
4920 4921 4922 4923 4924
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4925
		u64				id;
4926
		u64				stream_id;
4927 4928
	} throttle_event = {
		.header = {
4929
			.type = PERF_RECORD_THROTTLE,
4930 4931 4932
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4933
		.time		= perf_clock(),
4934 4935
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4936 4937
	};

4938
	if (enable)
4939
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4940

4941 4942 4943 4944
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				throttle_event.header.size, 1, 0);
4945 4946 4947 4948
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4949
	perf_event__output_id_sample(event, &handle, &sample);
4950 4951 4952
	perf_output_end(&handle);
}

4953
/*
4954
 * Generic event overflow handling, sampling.
4955 4956
 */

4957
static int __perf_event_overflow(struct perf_event *event, int nmi,
4958 4959
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4960
{
4961 4962
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4963 4964
	int ret = 0;

4965 4966 4967 4968 4969 4970 4971
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4972 4973 4974 4975
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4976 4977
			ret = 1;
		}
P
Peter Zijlstra 已提交
4978 4979
	} else
		hwc->interrupts++;
4980

4981
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4982
		u64 now = perf_clock();
4983
		s64 delta = now - hwc->freq_time_stamp;
4984

4985
		hwc->freq_time_stamp = now;
4986

4987 4988
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4989 4990
	}

4991 4992
	/*
	 * XXX event_limit might not quite work as expected on inherited
4993
	 * events
4994 4995
	 */

4996 4997
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4998
		ret = 1;
4999
		event->pending_kill = POLL_HUP;
5000
		if (nmi) {
5001
			event->pending_disable = 1;
5002
			irq_work_queue(&event->pending);
5003
		} else
5004
			perf_event_disable(event);
5005 5006
	}

5007 5008 5009 5010 5011
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

P
Peter Zijlstra 已提交
5012 5013 5014 5015 5016 5017 5018 5019
	if (event->fasync && event->pending_kill) {
		if (nmi) {
			event->pending_wakeup = 1;
			irq_work_queue(&event->pending);
		} else
			perf_event_wakeup(event);
	}

5020
	return ret;
5021 5022
}

5023
int perf_event_overflow(struct perf_event *event, int nmi,
5024 5025
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5026
{
5027
	return __perf_event_overflow(event, nmi, 1, data, regs);
5028 5029
}

5030
/*
5031
 * Generic software event infrastructure
5032 5033
 */

5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5045
/*
5046 5047
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5048 5049 5050 5051
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5052
static u64 perf_swevent_set_period(struct perf_event *event)
5053
{
5054
	struct hw_perf_event *hwc = &event->hw;
5055 5056 5057 5058 5059
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5060 5061

again:
5062
	old = val = local64_read(&hwc->period_left);
5063 5064
	if (val < 0)
		return 0;
5065

5066 5067 5068
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5069
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5070
		goto again;
5071

5072
	return nr;
5073 5074
}

5075
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5076 5077
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
5078
{
5079
	struct hw_perf_event *hwc = &event->hw;
5080
	int throttle = 0;
5081

5082
	data->period = event->hw.last_period;
5083 5084
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5085

5086 5087
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5088

5089
	for (; overflow; overflow--) {
5090
		if (__perf_event_overflow(event, nmi, throttle,
5091
					    data, regs)) {
5092 5093 5094 5095 5096 5097
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5098
		throttle = 1;
5099
	}
5100 5101
}

P
Peter Zijlstra 已提交
5102
static void perf_swevent_event(struct perf_event *event, u64 nr,
5103 5104
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
5105
{
5106
	struct hw_perf_event *hwc = &event->hw;
5107

5108
	local64_add(nr, &event->count);
5109

5110 5111 5112
	if (!regs)
		return;

5113
	if (!is_sampling_event(event))
5114
		return;
5115

5116 5117 5118
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

5119
	if (local64_add_negative(nr, &hwc->period_left))
5120
		return;
5121

5122
	perf_swevent_overflow(event, 0, nmi, data, regs);
5123 5124
}

5125 5126 5127
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5128
	if (event->hw.state & PERF_HES_STOPPED)
5129
		return 1;
P
Peter Zijlstra 已提交
5130

5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5142
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5143
				enum perf_type_id type,
L
Li Zefan 已提交
5144 5145 5146
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5147
{
5148
	if (event->attr.type != type)
5149
		return 0;
5150

5151
	if (event->attr.config != event_id)
5152 5153
		return 0;

5154 5155
	if (perf_exclude_event(event, regs))
		return 0;
5156 5157 5158 5159

	return 1;
}

5160 5161 5162 5163 5164 5165 5166
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5167 5168
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5169
{
5170 5171 5172 5173
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5174

5175 5176
/* For the read side: events when they trigger */
static inline struct hlist_head *
5177
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5178 5179
{
	struct swevent_hlist *hlist;
5180

5181
	hlist = rcu_dereference(swhash->swevent_hlist);
5182 5183 5184
	if (!hlist)
		return NULL;

5185 5186 5187 5188 5189
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5190
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5201
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5202 5203 5204 5205 5206
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5207 5208 5209 5210 5211 5212
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5213
{
5214
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5215
	struct perf_event *event;
5216 5217
	struct hlist_node *node;
	struct hlist_head *head;
5218

5219
	rcu_read_lock();
5220
	head = find_swevent_head_rcu(swhash, type, event_id);
5221 5222 5223 5224
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
5225
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
5226
			perf_swevent_event(event, nr, nmi, data, regs);
5227
	}
5228 5229
end:
	rcu_read_unlock();
5230 5231
}

5232
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5233
{
5234
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5235

5236
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5237
}
I
Ingo Molnar 已提交
5238
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5239

5240
inline void perf_swevent_put_recursion_context(int rctx)
5241
{
5242
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5243

5244
	put_recursion_context(swhash->recursion, rctx);
5245
}
5246

5247
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
5248
			    struct pt_regs *regs, u64 addr)
5249
{
5250
	struct perf_sample_data data;
5251 5252
	int rctx;

5253
	preempt_disable_notrace();
5254 5255 5256
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5257

5258
	perf_sample_data_init(&data, addr);
5259

5260
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
5261 5262

	perf_swevent_put_recursion_context(rctx);
5263
	preempt_enable_notrace();
5264 5265
}

5266
static void perf_swevent_read(struct perf_event *event)
5267 5268 5269
{
}

P
Peter Zijlstra 已提交
5270
static int perf_swevent_add(struct perf_event *event, int flags)
5271
{
5272
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5273
	struct hw_perf_event *hwc = &event->hw;
5274 5275
	struct hlist_head *head;

5276
	if (is_sampling_event(event)) {
5277
		hwc->last_period = hwc->sample_period;
5278
		perf_swevent_set_period(event);
5279
	}
5280

P
Peter Zijlstra 已提交
5281 5282
	hwc->state = !(flags & PERF_EF_START);

5283
	head = find_swevent_head(swhash, event);
5284 5285 5286 5287 5288
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5289 5290 5291
	return 0;
}

P
Peter Zijlstra 已提交
5292
static void perf_swevent_del(struct perf_event *event, int flags)
5293
{
5294
	hlist_del_rcu(&event->hlist_entry);
5295 5296
}

P
Peter Zijlstra 已提交
5297
static void perf_swevent_start(struct perf_event *event, int flags)
5298
{
P
Peter Zijlstra 已提交
5299
	event->hw.state = 0;
5300
}
I
Ingo Molnar 已提交
5301

P
Peter Zijlstra 已提交
5302
static void perf_swevent_stop(struct perf_event *event, int flags)
5303
{
P
Peter Zijlstra 已提交
5304
	event->hw.state = PERF_HES_STOPPED;
5305 5306
}

5307 5308
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5309
swevent_hlist_deref(struct swevent_htable *swhash)
5310
{
5311 5312
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5313 5314
}

5315
static void swevent_hlist_release(struct swevent_htable *swhash)
5316
{
5317
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5318

5319
	if (!hlist)
5320 5321
		return;

5322
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5323
	kfree_rcu(hlist, rcu_head);
5324 5325 5326 5327
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5328
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5329

5330
	mutex_lock(&swhash->hlist_mutex);
5331

5332 5333
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5334

5335
	mutex_unlock(&swhash->hlist_mutex);
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5353
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5354 5355
	int err = 0;

5356
	mutex_lock(&swhash->hlist_mutex);
5357

5358
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5359 5360 5361 5362 5363 5364 5365
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5366
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5367
	}
5368
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5369
exit:
5370
	mutex_unlock(&swhash->hlist_mutex);
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5394
fail:
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5405
struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5406

5407 5408 5409
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5410

5411 5412
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
5413
	jump_label_dec(&perf_swevent_enabled[event_id]);
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5433
	if (event_id >= PERF_COUNT_SW_MAX)
5434 5435 5436 5437 5438 5439 5440 5441 5442
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
5443
		jump_label_inc(&perf_swevent_enabled[event_id]);
5444 5445 5446 5447 5448 5449 5450
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5451
	.task_ctx_nr	= perf_sw_context,
5452

5453
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5454 5455 5456 5457
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5458 5459 5460
	.read		= perf_swevent_read,
};

5461 5462
#ifdef CONFIG_EVENT_TRACING

5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5477 5478
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5479 5480 5481 5482
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5483 5484 5485 5486 5487 5488 5489 5490 5491
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5492
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5493 5494
{
	struct perf_sample_data data;
5495 5496 5497
	struct perf_event *event;
	struct hlist_node *node;

5498 5499 5500 5501 5502 5503 5504 5505
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5506 5507
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
5508
			perf_swevent_event(event, count, 1, &data, regs);
5509
	}
5510 5511

	perf_swevent_put_recursion_context(rctx);
5512 5513 5514
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5515
static void tp_perf_event_destroy(struct perf_event *event)
5516
{
5517
	perf_trace_destroy(event);
5518 5519
}

5520
static int perf_tp_event_init(struct perf_event *event)
5521
{
5522 5523
	int err;

5524 5525 5526
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5527 5528
	err = perf_trace_init(event);
	if (err)
5529
		return err;
5530

5531
	event->destroy = tp_perf_event_destroy;
5532

5533 5534 5535 5536
	return 0;
}

static struct pmu perf_tracepoint = {
5537 5538
	.task_ctx_nr	= perf_sw_context,

5539
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5540 5541 5542 5543
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5544 5545 5546 5547 5548
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5549
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5550
}
L
Li Zefan 已提交
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5575
#else
L
Li Zefan 已提交
5576

5577
static inline void perf_tp_register(void)
5578 5579
{
}
L
Li Zefan 已提交
5580 5581 5582 5583 5584 5585 5586 5587 5588 5589

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5590
#endif /* CONFIG_EVENT_TRACING */
5591

5592
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5593
void perf_bp_event(struct perf_event *bp, void *data)
5594
{
5595 5596 5597
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5598
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5599

P
Peter Zijlstra 已提交
5600 5601
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
5602 5603 5604
}
#endif

5605 5606 5607
/*
 * hrtimer based swevent callback
 */
5608

5609
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5610
{
5611 5612 5613 5614 5615
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5616

5617
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5618 5619 5620 5621

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5622
	event->pmu->read(event);
5623

5624 5625 5626 5627 5628 5629 5630 5631 5632
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
5633

5634 5635
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5636

5637
	return ret;
5638 5639
}

5640
static void perf_swevent_start_hrtimer(struct perf_event *event)
5641
{
5642
	struct hw_perf_event *hwc = &event->hw;
5643 5644 5645 5646
	s64 period;

	if (!is_sampling_event(event))
		return;
5647

5648 5649 5650 5651
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5652

5653 5654 5655 5656 5657
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5658
				ns_to_ktime(period), 0,
5659
				HRTIMER_MODE_REL_PINNED, 0);
5660
}
5661 5662

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5663
{
5664 5665
	struct hw_perf_event *hwc = &event->hw;

5666
	if (is_sampling_event(event)) {
5667
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5668
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5669 5670 5671

		hrtimer_cancel(&hwc->hrtimer);
	}
5672 5673
}

P
Peter Zijlstra 已提交
5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5698 5699 5700 5701 5702
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5703
{
5704 5705 5706
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5707
	now = local_clock();
5708 5709
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5710 5711
}

P
Peter Zijlstra 已提交
5712
static void cpu_clock_event_start(struct perf_event *event, int flags)
5713
{
P
Peter Zijlstra 已提交
5714
	local64_set(&event->hw.prev_count, local_clock());
5715 5716 5717
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5718
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5719
{
5720 5721 5722
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5723

P
Peter Zijlstra 已提交
5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5737 5738 5739 5740
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5741

5742 5743 5744 5745 5746 5747 5748 5749
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5750 5751
	perf_swevent_init_hrtimer(event);

5752
	return 0;
5753 5754
}

5755
static struct pmu perf_cpu_clock = {
5756 5757
	.task_ctx_nr	= perf_sw_context,

5758
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5759 5760 5761 5762
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5763 5764 5765 5766 5767 5768 5769 5770
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5771
{
5772 5773
	u64 prev;
	s64 delta;
5774

5775 5776 5777 5778
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5779

P
Peter Zijlstra 已提交
5780
static void task_clock_event_start(struct perf_event *event, int flags)
5781
{
P
Peter Zijlstra 已提交
5782
	local64_set(&event->hw.prev_count, event->ctx->time);
5783 5784 5785
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5786
static void task_clock_event_stop(struct perf_event *event, int flags)
5787 5788 5789
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5790 5791 5792 5793 5794 5795
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5796

P
Peter Zijlstra 已提交
5797 5798 5799 5800 5801 5802
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5803 5804 5805 5806
}

static void task_clock_event_read(struct perf_event *event)
{
5807 5808 5809
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5810 5811 5812 5813 5814

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5815
{
5816 5817 5818 5819 5820 5821
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5822 5823
	perf_swevent_init_hrtimer(event);

5824
	return 0;
L
Li Zefan 已提交
5825 5826
}

5827
static struct pmu perf_task_clock = {
5828 5829
	.task_ctx_nr	= perf_sw_context,

5830
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5831 5832 5833 5834
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5835 5836
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5837

P
Peter Zijlstra 已提交
5838
static void perf_pmu_nop_void(struct pmu *pmu)
5839 5840
{
}
L
Li Zefan 已提交
5841

P
Peter Zijlstra 已提交
5842
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5843
{
P
Peter Zijlstra 已提交
5844
	return 0;
L
Li Zefan 已提交
5845 5846
}

P
Peter Zijlstra 已提交
5847
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5848
{
P
Peter Zijlstra 已提交
5849
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5850 5851
}

P
Peter Zijlstra 已提交
5852 5853 5854 5855 5856
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5857

P
Peter Zijlstra 已提交
5858
static void perf_pmu_cancel_txn(struct pmu *pmu)
5859
{
P
Peter Zijlstra 已提交
5860
	perf_pmu_enable(pmu);
5861 5862
}

P
Peter Zijlstra 已提交
5863 5864 5865 5866 5867
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5868
{
P
Peter Zijlstra 已提交
5869
	struct pmu *pmu;
5870

P
Peter Zijlstra 已提交
5871 5872
	if (ctxn < 0)
		return NULL;
5873

P
Peter Zijlstra 已提交
5874 5875 5876 5877
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5878

P
Peter Zijlstra 已提交
5879
	return NULL;
5880 5881
}

5882
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5883
{
5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5899

P
Peter Zijlstra 已提交
5900
	mutex_lock(&pmus_lock);
5901
	/*
P
Peter Zijlstra 已提交
5902
	 * Like a real lame refcount.
5903
	 */
5904 5905 5906
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5907
			goto out;
5908
		}
P
Peter Zijlstra 已提交
5909
	}
5910

5911
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5912 5913
out:
	mutex_unlock(&pmus_lock);
5914
}
P
Peter Zijlstra 已提交
5915
static struct idr pmu_idr;
5916

P
Peter Zijlstra 已提交
5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5969
static struct lock_class_key cpuctx_mutex;
5970
static struct lock_class_key cpuctx_lock;
5971

P
Peter Zijlstra 已提交
5972
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5973
{
P
Peter Zijlstra 已提交
5974
	int cpu, ret;
5975

5976
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5977 5978 5979 5980
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5981

P
Peter Zijlstra 已提交
5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6000 6001 6002 6003 6004 6005
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6006
skip_type:
P
Peter Zijlstra 已提交
6007 6008 6009
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6010

P
Peter Zijlstra 已提交
6011 6012
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6013
		goto free_dev;
6014

P
Peter Zijlstra 已提交
6015 6016 6017 6018
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6019
		__perf_event_init_context(&cpuctx->ctx);
6020
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6021
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6022
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6023
		cpuctx->ctx.pmu = pmu;
6024 6025
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6026
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
6027
	}
6028

P
Peter Zijlstra 已提交
6029
got_cpu_context:
P
Peter Zijlstra 已提交
6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6044
		}
6045
	}
6046

P
Peter Zijlstra 已提交
6047 6048 6049 6050 6051
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6052
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6053 6054
	ret = 0;
unlock:
6055 6056
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6057
	return ret;
P
Peter Zijlstra 已提交
6058

P
Peter Zijlstra 已提交
6059 6060 6061 6062
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6063 6064 6065 6066
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6067 6068 6069
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6070 6071
}

6072
void perf_pmu_unregister(struct pmu *pmu)
6073
{
6074 6075 6076
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6077

6078
	/*
P
Peter Zijlstra 已提交
6079 6080
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6081
	 */
6082
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6083
	synchronize_rcu();
6084

P
Peter Zijlstra 已提交
6085
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6086 6087
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6088 6089
	device_del(pmu->dev);
	put_device(pmu->dev);
6090
	free_pmu_context(pmu);
6091
}
6092

6093 6094 6095 6096
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6097
	int ret;
6098 6099

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6100 6101 6102 6103

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6104 6105 6106 6107
	if (pmu) {
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6108
		goto unlock;
6109
	}
P
Peter Zijlstra 已提交
6110

6111
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6112
		ret = pmu->event_init(event);
6113
		if (!ret)
P
Peter Zijlstra 已提交
6114
			goto unlock;
6115

6116 6117
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6118
			goto unlock;
6119
		}
6120
	}
P
Peter Zijlstra 已提交
6121 6122
	pmu = ERR_PTR(-ENOENT);
unlock:
6123
	srcu_read_unlock(&pmus_srcu, idx);
6124

6125
	return pmu;
6126 6127
}

T
Thomas Gleixner 已提交
6128
/*
6129
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6130
 */
6131
static struct perf_event *
6132
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6133 6134 6135 6136
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
		 perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
6137
{
P
Peter Zijlstra 已提交
6138
	struct pmu *pmu;
6139 6140
	struct perf_event *event;
	struct hw_perf_event *hwc;
6141
	long err;
T
Thomas Gleixner 已提交
6142

6143 6144 6145 6146 6147
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6148
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6149
	if (!event)
6150
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6151

6152
	/*
6153
	 * Single events are their own group leaders, with an
6154 6155 6156
	 * empty sibling list:
	 */
	if (!group_leader)
6157
		group_leader = event;
6158

6159 6160
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6161

6162 6163 6164 6165
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
6166
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6167

6168
	mutex_init(&event->mmap_mutex);
6169

6170 6171 6172 6173 6174
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6175

6176
	event->parent		= parent_event;
6177

6178 6179
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
6180

6181
	event->state		= PERF_EVENT_STATE_INACTIVE;
6182

6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

6194 6195
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
6196

6197
	event->overflow_handler	= overflow_handler;
6198

6199
	if (attr->disabled)
6200
		event->state = PERF_EVENT_STATE_OFF;
6201

6202
	pmu = NULL;
6203

6204
	hwc = &event->hw;
6205
	hwc->sample_period = attr->sample_period;
6206
	if (attr->freq && attr->sample_freq)
6207
		hwc->sample_period = 1;
6208
	hwc->last_period = hwc->sample_period;
6209

6210
	local64_set(&hwc->period_left, hwc->sample_period);
6211

6212
	/*
6213
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6214
	 */
6215
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6216 6217
		goto done;

6218
	pmu = perf_init_event(event);
6219

6220 6221
done:
	err = 0;
6222
	if (!pmu)
6223
		err = -EINVAL;
6224 6225
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6226

6227
	if (err) {
6228 6229 6230
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6231
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6232
	}
6233

6234
	event->pmu = pmu;
T
Thomas Gleixner 已提交
6235

6236
	if (!event->parent) {
6237
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
6238
			jump_label_inc(&perf_sched_events);
6239
		if (event->attr.mmap || event->attr.mmap_data)
6240 6241 6242 6243 6244
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6245 6246 6247 6248 6249 6250 6251
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6252
	}
6253

6254
	return event;
T
Thomas Gleixner 已提交
6255 6256
}

6257 6258
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6259 6260
{
	u32 size;
6261
	int ret;
6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6286 6287 6288
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6289 6290
	 */
	if (size > sizeof(*attr)) {
6291 6292 6293
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6294

6295 6296
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6297

6298
		for (; addr < end; addr++) {
6299 6300 6301 6302 6303 6304
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6305
		size = sizeof(*attr);
6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

6319
	if (attr->__reserved_1)
6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6337 6338
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6339
{
6340
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
6341 6342
	int ret = -EINVAL;

6343
	if (!output_event)
6344 6345
		goto set;

6346 6347
	/* don't allow circular references */
	if (event == output_event)
6348 6349
		goto out;

6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6362
set:
6363
	mutex_lock(&event->mmap_mutex);
6364 6365 6366
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6367

6368 6369
	if (output_event) {
		/* get the buffer we want to redirect to */
6370 6371
		buffer = perf_buffer_get(output_event);
		if (!buffer)
6372
			goto unlock;
6373 6374
	}

6375 6376
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
6377
	ret = 0;
6378 6379 6380
unlock:
	mutex_unlock(&event->mmap_mutex);

6381 6382
	if (old_buffer)
		perf_buffer_put(old_buffer);
6383 6384 6385 6386
out:
	return ret;
}

T
Thomas Gleixner 已提交
6387
/**
6388
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6389
 *
6390
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6391
 * @pid:		target pid
I
Ingo Molnar 已提交
6392
 * @cpu:		target cpu
6393
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6394
 */
6395 6396
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6397
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6398
{
6399 6400
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6401 6402 6403
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6404
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6405
	struct task_struct *task = NULL;
6406
	struct pmu *pmu;
6407
	int event_fd;
6408
	int move_group = 0;
6409
	int fput_needed = 0;
6410
	int err;
T
Thomas Gleixner 已提交
6411

6412
	/* for future expandability... */
S
Stephane Eranian 已提交
6413
	if (flags & ~PERF_FLAG_ALL)
6414 6415
		return -EINVAL;

6416 6417 6418
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6419

6420 6421 6422 6423 6424
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6425
	if (attr.freq) {
6426
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6427 6428 6429
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6430 6431 6432 6433 6434 6435 6436 6437 6438
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6439 6440 6441 6442
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6443 6444 6445 6446
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6447
			goto err_fd;
6448 6449 6450 6451 6452 6453 6454 6455
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6456
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6457 6458 6459 6460 6461 6462 6463
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6464
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
6465 6466
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6467
		goto err_task;
6468 6469
	}

S
Stephane Eranian 已提交
6470 6471 6472 6473
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6474 6475 6476 6477 6478 6479 6480
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
S
Stephane Eranian 已提交
6481 6482
	}

6483 6484 6485 6486 6487
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6511 6512 6513 6514

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6515
	ctx = find_get_context(pmu, task, cpu);
6516 6517
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6518
		goto err_alloc;
6519 6520
	}

6521 6522 6523 6524 6525
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6526
	/*
6527
	 * Look up the group leader (we will attach this event to it):
6528
	 */
6529
	if (group_leader) {
6530
		err = -EINVAL;
6531 6532

		/*
I
Ingo Molnar 已提交
6533 6534 6535 6536
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6537
			goto err_context;
I
Ingo Molnar 已提交
6538 6539 6540
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6541
		 */
6542 6543 6544 6545 6546 6547 6548 6549
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6550 6551 6552
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6553
		if (attr.exclusive || attr.pinned)
6554
			goto err_context;
6555 6556 6557 6558 6559
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6560
			goto err_context;
6561
	}
T
Thomas Gleixner 已提交
6562

6563 6564 6565
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6566
		goto err_context;
6567
	}
6568

6569 6570 6571 6572
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6573
		perf_remove_from_context(group_leader);
6574 6575
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6576
			perf_remove_from_context(sibling);
6577 6578 6579 6580
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6581
	}
6582

6583
	event->filp = event_file;
6584
	WARN_ON_ONCE(ctx->parent_ctx);
6585
	mutex_lock(&ctx->mutex);
6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6597
	perf_install_in_context(ctx, event, cpu);
6598
	++ctx->generation;
6599
	perf_unpin_context(ctx);
6600
	mutex_unlock(&ctx->mutex);
6601

6602
	event->owner = current;
P
Peter Zijlstra 已提交
6603

6604 6605 6606
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6607

6608 6609 6610 6611
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6612
	perf_event__id_header_size(event);
6613

6614 6615 6616 6617 6618 6619
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6620 6621 6622
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6623

6624
err_context:
6625
	perf_unpin_context(ctx);
6626
	put_ctx(ctx);
6627
err_alloc:
6628
	free_event(event);
P
Peter Zijlstra 已提交
6629 6630 6631
err_task:
	if (task)
		put_task_struct(task);
6632
err_group_fd:
6633
	fput_light(group_file, fput_needed);
6634 6635
err_fd:
	put_unused_fd(event_fd);
6636
	return err;
T
Thomas Gleixner 已提交
6637 6638
}

6639 6640 6641 6642 6643
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6644
 * @task: task to profile (NULL for percpu)
6645 6646 6647
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6648
				 struct task_struct *task,
6649
				 perf_overflow_handler_t overflow_handler)
6650 6651
{
	struct perf_event_context *ctx;
6652
	struct perf_event *event;
6653
	int err;
6654

6655 6656 6657
	/*
	 * Get the target context (task or percpu):
	 */
6658

6659
	event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6660 6661 6662 6663
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6664

M
Matt Helsley 已提交
6665
	ctx = find_get_context(event->pmu, task, cpu);
6666 6667
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6668
		goto err_free;
6669
	}
6670 6671 6672 6673 6674 6675

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6676
	perf_unpin_context(ctx);
6677 6678 6679 6680
	mutex_unlock(&ctx->mutex);

	return event;

6681 6682 6683
err_free:
	free_event(event);
err:
6684
	return ERR_PTR(err);
6685
}
6686
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6687

6688
static void sync_child_event(struct perf_event *child_event,
6689
			       struct task_struct *child)
6690
{
6691
	struct perf_event *parent_event = child_event->parent;
6692
	u64 child_val;
6693

6694 6695
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6696

P
Peter Zijlstra 已提交
6697
	child_val = perf_event_count(child_event);
6698 6699 6700 6701

	/*
	 * Add back the child's count to the parent's count:
	 */
6702
	atomic64_add(child_val, &parent_event->child_count);
6703 6704 6705 6706
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6707 6708

	/*
6709
	 * Remove this event from the parent's list
6710
	 */
6711 6712 6713 6714
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6715 6716

	/*
6717
	 * Release the parent event, if this was the last
6718 6719
	 * reference to it.
	 */
6720
	fput(parent_event->filp);
6721 6722
}

6723
static void
6724 6725
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6726
			 struct task_struct *child)
6727
{
6728 6729 6730 6731 6732
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6733

6734
	perf_remove_from_context(child_event);
6735

6736
	/*
6737
	 * It can happen that the parent exits first, and has events
6738
	 * that are still around due to the child reference. These
6739
	 * events need to be zapped.
6740
	 */
6741
	if (child_event->parent) {
6742 6743
		sync_child_event(child_event, child);
		free_event(child_event);
6744
	}
6745 6746
}

P
Peter Zijlstra 已提交
6747
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6748
{
6749 6750
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6751
	unsigned long flags;
6752

P
Peter Zijlstra 已提交
6753
	if (likely(!child->perf_event_ctxp[ctxn])) {
6754
		perf_event_task(child, NULL, 0);
6755
		return;
P
Peter Zijlstra 已提交
6756
	}
6757

6758
	local_irq_save(flags);
6759 6760 6761 6762 6763 6764
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6765
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6766 6767 6768

	/*
	 * Take the context lock here so that if find_get_context is
6769
	 * reading child->perf_event_ctxp, we wait until it has
6770 6771
	 * incremented the context's refcount before we do put_ctx below.
	 */
6772
	raw_spin_lock(&child_ctx->lock);
6773
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6774
	child->perf_event_ctxp[ctxn] = NULL;
6775 6776 6777
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6778
	 * the events from it.
6779 6780
	 */
	unclone_ctx(child_ctx);
6781
	update_context_time(child_ctx);
6782
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6783 6784

	/*
6785 6786 6787
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6788
	 */
6789
	perf_event_task(child, child_ctx, 0);
6790

6791 6792 6793
	/*
	 * We can recurse on the same lock type through:
	 *
6794 6795 6796
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6797 6798 6799 6800 6801
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6802
	mutex_lock(&child_ctx->mutex);
6803

6804
again:
6805 6806 6807 6808 6809
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6810
				 group_entry)
6811
		__perf_event_exit_task(child_event, child_ctx, child);
6812 6813

	/*
6814
	 * If the last event was a group event, it will have appended all
6815 6816 6817
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6818 6819
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6820
		goto again;
6821 6822 6823 6824

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6825 6826
}

P
Peter Zijlstra 已提交
6827 6828 6829 6830 6831
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6832
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6833 6834
	int ctxn;

P
Peter Zijlstra 已提交
6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6850 6851 6852 6853
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6868
	perf_group_detach(event);
6869 6870 6871 6872
	list_del_event(event, ctx);
	free_event(event);
}

6873 6874
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6875
 * perf_event_init_task below, used by fork() in case of fail.
6876
 */
6877
void perf_event_free_task(struct task_struct *task)
6878
{
P
Peter Zijlstra 已提交
6879
	struct perf_event_context *ctx;
6880
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6881
	int ctxn;
6882

P
Peter Zijlstra 已提交
6883 6884 6885 6886
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6887

P
Peter Zijlstra 已提交
6888
		mutex_lock(&ctx->mutex);
6889
again:
P
Peter Zijlstra 已提交
6890 6891 6892
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6893

P
Peter Zijlstra 已提交
6894 6895 6896
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6897

P
Peter Zijlstra 已提交
6898 6899 6900
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6901

P
Peter Zijlstra 已提交
6902
		mutex_unlock(&ctx->mutex);
6903

P
Peter Zijlstra 已提交
6904 6905
		put_ctx(ctx);
	}
6906 6907
}

6908 6909 6910 6911 6912 6913 6914 6915
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6928
	unsigned long flags;
P
Peter Zijlstra 已提交
6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6941
					   child,
P
Peter Zijlstra 已提交
6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

6971 6972 6973 6974
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6975
	perf_event__id_header_size(child_event);
6976

P
Peter Zijlstra 已提交
6977 6978 6979
	/*
	 * Link it up in the child's context:
	 */
6980
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6981
	add_event_to_ctx(child_event, child_ctx);
6982
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7024 7025 7026 7027 7028
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7029
		   struct task_struct *child, int ctxn,
7030 7031 7032
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7033
	struct perf_event_context *child_ctx;
7034 7035 7036 7037

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7038 7039
	}

7040
	child_ctx = child->perf_event_ctxp[ctxn];
7041 7042 7043 7044 7045 7046 7047
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7048

7049
		child_ctx = alloc_perf_context(event->pmu, child);
7050 7051
		if (!child_ctx)
			return -ENOMEM;
7052

P
Peter Zijlstra 已提交
7053
		child->perf_event_ctxp[ctxn] = child_ctx;
7054 7055 7056 7057 7058 7059 7060 7061 7062
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7063 7064
}

7065
/*
7066
 * Initialize the perf_event context in task_struct
7067
 */
P
Peter Zijlstra 已提交
7068
int perf_event_init_context(struct task_struct *child, int ctxn)
7069
{
7070
	struct perf_event_context *child_ctx, *parent_ctx;
7071 7072
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7073
	struct task_struct *parent = current;
7074
	int inherited_all = 1;
7075
	unsigned long flags;
7076
	int ret = 0;
7077

P
Peter Zijlstra 已提交
7078
	if (likely(!parent->perf_event_ctxp[ctxn]))
7079 7080
		return 0;

7081
	/*
7082 7083
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7084
	 */
P
Peter Zijlstra 已提交
7085
	parent_ctx = perf_pin_task_context(parent, ctxn);
7086

7087 7088 7089 7090 7091 7092 7093
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7094 7095 7096 7097
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7098
	mutex_lock(&parent_ctx->mutex);
7099 7100 7101 7102 7103

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7104
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7105 7106
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7107 7108 7109
		if (ret)
			break;
	}
7110

7111 7112 7113 7114 7115 7116 7117 7118 7119
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7120
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7121 7122
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7123
		if (ret)
7124
			break;
7125 7126
	}

7127 7128 7129
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7130
	child_ctx = child->perf_event_ctxp[ctxn];
7131

7132
	if (child_ctx && inherited_all) {
7133 7134 7135
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7136 7137 7138
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7139
		 */
P
Peter Zijlstra 已提交
7140
		cloned_ctx = parent_ctx->parent_ctx;
7141 7142
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7143
			child_ctx->parent_gen = parent_ctx->parent_gen;
7144 7145 7146 7147 7148
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7149 7150
	}

P
Peter Zijlstra 已提交
7151
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7152
	mutex_unlock(&parent_ctx->mutex);
7153

7154
	perf_unpin_context(parent_ctx);
7155
	put_ctx(parent_ctx);
7156

7157
	return ret;
7158 7159
}

P
Peter Zijlstra 已提交
7160 7161 7162 7163 7164 7165 7166
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7167 7168 7169 7170
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7171 7172 7173 7174 7175 7176 7177 7178 7179
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7180 7181
static void __init perf_event_init_all_cpus(void)
{
7182
	struct swevent_htable *swhash;
7183 7184 7185
	int cpu;

	for_each_possible_cpu(cpu) {
7186 7187
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7188
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7189 7190 7191
	}
}

7192
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7193
{
P
Peter Zijlstra 已提交
7194
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7195

7196 7197
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
7198 7199
		struct swevent_hlist *hlist;

7200 7201 7202
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7203
	}
7204
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7205 7206
}

P
Peter Zijlstra 已提交
7207
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7208
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7209
{
7210 7211 7212 7213 7214 7215 7216
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7217
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7218
{
P
Peter Zijlstra 已提交
7219
	struct perf_event_context *ctx = __info;
7220
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7221

P
Peter Zijlstra 已提交
7222
	perf_pmu_rotate_stop(ctx->pmu);
7223

7224
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7225
		__perf_remove_from_context(event);
7226
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7227
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7228
}
P
Peter Zijlstra 已提交
7229 7230 7231 7232 7233 7234 7235 7236 7237

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7238
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7239 7240 7241 7242 7243 7244 7245 7246

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7247
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7248
{
7249
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7250

7251 7252 7253
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7254

P
Peter Zijlstra 已提交
7255
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7256 7257
}
#else
7258
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7259 7260
#endif

P
Peter Zijlstra 已提交
7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7281 7282 7283 7284 7285
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
7286
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7287 7288

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7289
	case CPU_DOWN_FAILED:
7290
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7291 7292
		break;

P
Peter Zijlstra 已提交
7293
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7294
	case CPU_DOWN_PREPARE:
7295
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7296 7297 7298 7299 7300 7301 7302 7303 7304
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7305
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7306
{
7307 7308
	int ret;

P
Peter Zijlstra 已提交
7309 7310
	idr_init(&pmu_idr);

7311
	perf_event_init_all_cpus();
7312
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7313 7314 7315
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7316 7317
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7318
	register_reboot_notifier(&perf_reboot_notifier);
7319 7320 7321

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
7322
}
P
Peter Zijlstra 已提交
7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7351 7352 7353 7354 7355 7356 7357

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

7358
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

static void perf_cgroup_move(struct task_struct *task)
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task,
		bool threadgroup)
{
	perf_cgroup_move(task);
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
			perf_cgroup_move(c);
		}
		rcu_read_unlock();
	}
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	perf_cgroup_move(task);
}

struct cgroup_subsys perf_subsys = {
7423 7424 7425 7426 7427 7428
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7429 7430
};
#endif /* CONFIG_CGROUP_PERF */