core.c 217.7 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
136 137
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
138 139
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
140

141 142 143 144 145 146 147
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

148 149 150 151 152 153
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
154 155 156 157
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
158
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
159
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
161

162 163 164
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
165
static atomic_t nr_freq_events __read_mostly;
166
static atomic_t nr_switch_events __read_mostly;
167

P
Peter Zijlstra 已提交
168 169 170 171
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

172
/*
173
 * perf event paranoia level:
174 175
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
176
 *   1 - disallow cpu events for unpriv
177
 *   2 - disallow kernel profiling for unpriv
178
 */
179
int sysctl_perf_event_paranoid __read_mostly = 1;
180

181 182
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 184

/*
185
 * max perf event sample rate
186
 */
187 188 189 190 191 192 193 194 195
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
196 197
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198 199 200 201 202 203

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
204
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
205
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206
}
P
Peter Zijlstra 已提交
207

208 209
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
210 211 212 213
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
214
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
215 216 217 218 219

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
238 239 240

	return 0;
}
241

242 243 244 245 246 247 248
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
249
static DEFINE_PER_CPU(u64, running_sample_length);
250

251
static void perf_duration_warn(struct irq_work *w)
252
{
253
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254
	u64 avg_local_sample_len;
255
	u64 local_samples_len;
256

257
	local_samples_len = __this_cpu_read(running_sample_length);
258 259 260 261 262
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
263
			avg_local_sample_len, allowed_ns >> 1,
264 265 266 267 268 269 270
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
271
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 273
	u64 avg_local_sample_len;
	u64 local_samples_len;
274

P
Peter Zijlstra 已提交
275
	if (allowed_ns == 0)
276 277 278
		return;

	/* decay the counter by 1 average sample */
279
	local_samples_len = __this_cpu_read(running_sample_length);
280 281
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
282
	__this_cpu_write(running_sample_length, local_samples_len);
283 284 285 286 287 288 289 290

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
291
	if (avg_local_sample_len <= allowed_ns)
292 293 294 295 296 297 298 299 300 301
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
302

303 304 305 306 307 308
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
309 310
}

311
static atomic64_t perf_event_id;
312

313 314 315 316
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
317 318 319 320 321
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
322

323
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
324

325
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
326
{
327
	return "pmu";
T
Thomas Gleixner 已提交
328 329
}

330 331 332 333 334
static inline u64 perf_clock(void)
{
	return local_clock();
}

335 336 337 338 339
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
340 341 342 343 344 345
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
362 363 364 365 366 367 368 369
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
386 387 388 389
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
390
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
429 430
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
431
	/*
432 433
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
434
	 */
435
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
436 437
		return;

438 439 440 441 442 443
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
444 445 446
}

static inline void
447 448
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
449 450 451 452
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

453 454 455 456 457 458
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
459 460 461 462
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
463
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 497
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
498 499 500 501 502 503 504 505 506

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
507 508
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
509 510 511 512 513 514 515 516 517 518 519

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
520
				WARN_ON_ONCE(cpuctx->cgrp);
521 522 523 524
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
525 526 527 528
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
529 530
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
531 532 533 534 535 536 537 538
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

539 540
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
541
{
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
564 565
}

566 567
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
568
{
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
587 588 589 590 591 592 593 594
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
595 596
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
597

598
	if (!f.file)
S
Stephane Eranian 已提交
599 600
		return -EBADF;

A
Al Viro 已提交
601
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
602
					 &perf_event_cgrp_subsys);
603 604 605 606
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
620
out:
621
	fdput(f);
S
Stephane Eranian 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

695 696
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
697 698 699
{
}

700 701
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
702 703 704 705 706 707 708 709 710 711 712
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
713 714
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

745 746 747 748 749 750 751 752
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
753
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 755 756 757 758 759 760 761 762
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
763 764
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
765
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
766 767 768
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
769

P
Peter Zijlstra 已提交
770
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 772
}

773
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774
{
775
	struct hrtimer *timer = &cpuctx->hrtimer;
776
	struct pmu *pmu = cpuctx->ctx.pmu;
777
	u64 interval;
778 779 780 781 782

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

783 784 785 786
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
787 788 789
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790

791
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792

P
Peter Zijlstra 已提交
793 794
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795
	timer->function = perf_mux_hrtimer_handler;
796 797
}

798
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799
{
800
	struct hrtimer *timer = &cpuctx->hrtimer;
801
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
802
	unsigned long flags;
803 804 805

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
806
		return 0;
807

P
Peter Zijlstra 已提交
808 809 810 811 812 813 814
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815

816
	return 0;
817 818
}

P
Peter Zijlstra 已提交
819
void perf_pmu_disable(struct pmu *pmu)
820
{
P
Peter Zijlstra 已提交
821 822 823
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
824 825
}

P
Peter Zijlstra 已提交
826
void perf_pmu_enable(struct pmu *pmu)
827
{
P
Peter Zijlstra 已提交
828 829 830
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
831 832
}

833
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834 835

/*
836 837 838 839
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
840
 */
841
static void perf_event_ctx_activate(struct perf_event_context *ctx)
842
{
843
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
844

845
	WARN_ON(!irqs_disabled());
846

847 848 849 850 851 852 853 854 855 856 857 858
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
859 860
}

861
static void get_ctx(struct perf_event_context *ctx)
862
{
863
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 865
}

866 867 868 869 870 871 872 873 874
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

875
static void put_ctx(struct perf_event_context *ctx)
876
{
877 878 879
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
880 881
		if (ctx->task)
			put_task_struct(ctx->task);
882
		call_rcu(&ctx->rcu_head, free_ctx);
883
	}
884 885
}

P
Peter Zijlstra 已提交
886 887 888 889 890 891 892
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
947 948
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
949 950 951 952 953 954 955 956 957 958 959 960
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
961
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
962 963 964 965 966 967 968 969 970
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
971 972 973 974 975 976
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
977 978 979 980 981 982 983
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

984 985 986 987 988 989 990
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
991
{
992 993 994 995 996
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
997
		ctx->parent_ctx = NULL;
998
	ctx->generation++;
999 1000

	return parent_ctx;
1001 1002
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1025
/*
1026
 * If we inherit events we want to return the parent event id
1027 1028
 * to userspace.
 */
1029
static u64 primary_event_id(struct perf_event *event)
1030
{
1031
	u64 id = event->id;
1032

1033 1034
	if (event->parent)
		id = event->parent->id;
1035 1036 1037 1038

	return id;
}

1039
/*
1040
 * Get the perf_event_context for a task and lock it.
1041 1042 1043
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1044
static struct perf_event_context *
P
Peter Zijlstra 已提交
1045
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046
{
1047
	struct perf_event_context *ctx;
1048

P
Peter Zijlstra 已提交
1049
retry:
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1061
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 1063 1064 1065
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1066
		 * perf_event_task_sched_out, though the
1067 1068 1069 1070 1071 1072
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1073
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1074
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1076 1077
			rcu_read_unlock();
			preempt_enable();
1078 1079
			goto retry;
		}
1080 1081

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1082
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1083 1084
			ctx = NULL;
		}
1085 1086
	}
	rcu_read_unlock();
1087
	preempt_enable();
1088 1089 1090 1091 1092 1093 1094 1095
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1096 1097
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1098
{
1099
	struct perf_event_context *ctx;
1100 1101
	unsigned long flags;

P
Peter Zijlstra 已提交
1102
	ctx = perf_lock_task_context(task, ctxn, &flags);
1103 1104
	if (ctx) {
		++ctx->pin_count;
1105
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1106 1107 1108 1109
	}
	return ctx;
}

1110
static void perf_unpin_context(struct perf_event_context *ctx)
1111 1112 1113
{
	unsigned long flags;

1114
	raw_spin_lock_irqsave(&ctx->lock, flags);
1115
	--ctx->pin_count;
1116
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1130 1131 1132
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1133 1134 1135 1136

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1137 1138 1139
	return ctx ? ctx->time : 0;
}

1140 1141
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1142
 * The caller of this function needs to hold the ctx->lock.
1143 1144 1145 1146 1147 1148 1149 1150 1151
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1163
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1164 1165
	else if (ctx->is_active)
		run_end = ctx->time;
1166 1167 1168 1169
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1170 1171 1172 1173

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1174
		run_end = perf_event_time(event);
1175 1176

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1177

1178 1179
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1192 1193 1194 1195 1196 1197 1198 1199 1200
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1201
/*
1202
 * Add a event from the lists for its context.
1203 1204
 * Must be called with ctx->mutex and ctx->lock held.
 */
1205
static void
1206
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1207
{
1208 1209
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1210 1211

	/*
1212 1213 1214
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1215
	 */
1216
	if (event->group_leader == event) {
1217 1218
		struct list_head *list;

1219 1220 1221
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1222 1223
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1224
	}
P
Peter Zijlstra 已提交
1225

1226
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1227 1228
		ctx->nr_cgroups++;

1229 1230 1231
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1232
		ctx->nr_stat++;
1233 1234

	ctx->generation++;
1235 1236
}

J
Jiri Olsa 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1285 1286 1287 1288 1289 1290
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1291 1292 1293
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1294 1295 1296
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1297 1298 1299
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1300 1301 1302
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1303 1304 1305 1306 1307 1308 1309 1310 1311
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1312 1313 1314 1315 1316 1317
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1318 1319 1320
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1321 1322 1323 1324 1325 1326 1327 1328 1329
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1330
	event->id_header_size = size;
1331 1332
}

1333 1334
static void perf_group_attach(struct perf_event *event)
{
1335
	struct perf_event *group_leader = event->group_leader, *pos;
1336

P
Peter Zijlstra 已提交
1337 1338 1339 1340 1341 1342
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1343 1344 1345 1346 1347
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1348 1349
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1350 1351 1352 1353 1354 1355
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1356 1357 1358 1359 1360

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1361 1362
}

1363
/*
1364
 * Remove a event from the lists for its context.
1365
 * Must be called with ctx->mutex and ctx->lock held.
1366
 */
1367
static void
1368
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1369
{
1370
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1371 1372 1373 1374

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1375 1376 1377 1378
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1379
		return;
1380 1381 1382

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1383
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1384
		ctx->nr_cgroups--;
1385 1386 1387 1388 1389 1390 1391 1392 1393
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1394

1395 1396
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1397
		ctx->nr_stat--;
1398

1399
	list_del_rcu(&event->event_entry);
1400

1401 1402
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1403

1404
	update_group_times(event);
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1415 1416

	ctx->generation++;
1417 1418
}

1419
static void perf_group_detach(struct perf_event *event)
1420 1421
{
	struct perf_event *sibling, *tmp;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1438
		goto out;
1439 1440 1441 1442
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1443

1444
	/*
1445 1446
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1447
	 * to whatever list we are on.
1448
	 */
1449
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1450 1451
		if (list)
			list_move_tail(&sibling->group_entry, list);
1452
		sibling->group_leader = sibling;
1453 1454 1455

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1456 1457

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1458
	}
1459 1460 1461 1462 1463 1464

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1465 1466
}

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1506 1507 1508 1509 1510 1511
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1512 1513 1514
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1515
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1516
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1517 1518
}

1519 1520
static void
event_sched_out(struct perf_event *event,
1521
		  struct perf_cpu_context *cpuctx,
1522
		  struct perf_event_context *ctx)
1523
{
1524
	u64 tstamp = perf_event_time(event);
1525
	u64 delta;
P
Peter Zijlstra 已提交
1526 1527 1528 1529

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1530 1531 1532 1533 1534 1535 1536 1537
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1538
		delta = tstamp - event->tstamp_stopped;
1539
		event->tstamp_running += delta;
1540
		event->tstamp_stopped = tstamp;
1541 1542
	}

1543
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1544
		return;
1545

1546 1547
	perf_pmu_disable(event->pmu);

1548 1549 1550 1551
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1552
	}
1553
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1554
	event->pmu->del(event, 0);
1555
	event->oncpu = -1;
1556

1557
	if (!is_software_event(event))
1558
		cpuctx->active_oncpu--;
1559 1560
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1561 1562
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1563
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1564
		cpuctx->exclusive = 0;
1565

1566 1567 1568
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1569
	perf_pmu_enable(event->pmu);
1570 1571
}

1572
static void
1573
group_sched_out(struct perf_event *group_event,
1574
		struct perf_cpu_context *cpuctx,
1575
		struct perf_event_context *ctx)
1576
{
1577
	struct perf_event *event;
1578
	int state = group_event->state;
1579

1580
	event_sched_out(group_event, cpuctx, ctx);
1581 1582 1583 1584

	/*
	 * Schedule out siblings (if any):
	 */
1585 1586
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1587

1588
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1589 1590 1591
		cpuctx->exclusive = 0;
}

1592 1593 1594 1595 1596
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1597
/*
1598
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1599
 *
1600
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1601 1602
 * remove it from the context list.
 */
1603
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1604
{
1605 1606
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1607
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1608
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1609

1610
	raw_spin_lock(&ctx->lock);
1611
	event_sched_out(event, cpuctx, ctx);
1612 1613
	if (re->detach_group)
		perf_group_detach(event);
1614
	list_del_event(event, ctx);
1615 1616 1617 1618
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1619
	raw_spin_unlock(&ctx->lock);
1620 1621

	return 0;
T
Thomas Gleixner 已提交
1622 1623 1624 1625
}


/*
1626
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1627
 *
1628
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1629
 * call when the task is on a CPU.
1630
 *
1631 1632
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1633 1634
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1635
 * When called from perf_event_exit_task, it's OK because the
1636
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1637
 */
1638
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1639
{
1640
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1641
	struct task_struct *task = ctx->task;
1642 1643 1644 1645
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1646

1647 1648
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1649 1650
	if (!task) {
		/*
1651 1652 1653 1654
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1655
		 */
1656
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1657 1658 1659 1660
		return;
	}

retry:
1661
	if (!task_function_call(task, __perf_remove_from_context, &re))
1662
		return;
T
Thomas Gleixner 已提交
1663

1664
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1665
	/*
1666 1667
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1668
	 */
1669
	if (ctx->is_active) {
1670
		raw_spin_unlock_irq(&ctx->lock);
1671 1672 1673 1674 1675
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1676 1677 1678 1679
		goto retry;
	}

	/*
1680 1681
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1682
	 */
1683 1684
	if (detach_group)
		perf_group_detach(event);
1685
	list_del_event(event, ctx);
1686
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1687 1688
}

1689
/*
1690
 * Cross CPU call to disable a performance event
1691
 */
1692
int __perf_event_disable(void *info)
1693
{
1694 1695
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1696
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1697 1698

	/*
1699 1700
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1701 1702 1703
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1704
	 */
1705
	if (ctx->task && cpuctx->task_ctx != ctx)
1706
		return -EINVAL;
1707

1708
	raw_spin_lock(&ctx->lock);
1709 1710

	/*
1711
	 * If the event is on, turn it off.
1712 1713
	 * If it is in error state, leave it in error state.
	 */
1714
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1715
		update_context_time(ctx);
S
Stephane Eranian 已提交
1716
		update_cgrp_time_from_event(event);
1717 1718 1719
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1720
		else
1721 1722
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1723 1724
	}

1725
	raw_spin_unlock(&ctx->lock);
1726 1727

	return 0;
1728 1729 1730
}

/*
1731
 * Disable a event.
1732
 *
1733 1734
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1735
 * remains valid.  This condition is satisifed when called through
1736 1737 1738 1739
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1740
 * is the current context on this CPU and preemption is disabled,
1741
 * hence we can't get into perf_event_task_sched_out for this context.
1742
 */
P
Peter Zijlstra 已提交
1743
static void _perf_event_disable(struct perf_event *event)
1744
{
1745
	struct perf_event_context *ctx = event->ctx;
1746 1747 1748 1749
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1750
		 * Disable the event on the cpu that it's on
1751
		 */
1752
		cpu_function_call(event->cpu, __perf_event_disable, event);
1753 1754 1755
		return;
	}

P
Peter Zijlstra 已提交
1756
retry:
1757 1758
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1759

1760
	raw_spin_lock_irq(&ctx->lock);
1761
	/*
1762
	 * If the event is still active, we need to retry the cross-call.
1763
	 */
1764
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1765
		raw_spin_unlock_irq(&ctx->lock);
1766 1767 1768 1769 1770
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1771 1772 1773 1774 1775 1776 1777
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1778 1779 1780
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1781
	}
1782
	raw_spin_unlock_irq(&ctx->lock);
1783
}
P
Peter Zijlstra 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1797
EXPORT_SYMBOL_GPL(perf_event_disable);
1798

S
Stephane Eranian 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1834 1835 1836
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1837
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1838

1839
static int
1840
event_sched_in(struct perf_event *event,
1841
		 struct perf_cpu_context *cpuctx,
1842
		 struct perf_event_context *ctx)
1843
{
1844
	u64 tstamp = perf_event_time(event);
1845
	int ret = 0;
1846

1847 1848
	lockdep_assert_held(&ctx->lock);

1849
	if (event->state <= PERF_EVENT_STATE_OFF)
1850 1851
		return 0;

1852
	event->state = PERF_EVENT_STATE_ACTIVE;
1853
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1865 1866 1867 1868 1869
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1870 1871
	perf_pmu_disable(event->pmu);

1872 1873
	perf_set_shadow_time(event, ctx, tstamp);

1874 1875
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1876
	if (event->pmu->add(event, PERF_EF_START)) {
1877 1878
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1879 1880
		ret = -EAGAIN;
		goto out;
1881 1882
	}

1883 1884
	event->tstamp_running += tstamp - event->tstamp_stopped;

1885
	if (!is_software_event(event))
1886
		cpuctx->active_oncpu++;
1887 1888
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1889 1890
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1891

1892
	if (event->attr.exclusive)
1893 1894
		cpuctx->exclusive = 1;

1895 1896 1897
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1898 1899 1900 1901
out:
	perf_pmu_enable(event->pmu);

	return ret;
1902 1903
}

1904
static int
1905
group_sched_in(struct perf_event *group_event,
1906
	       struct perf_cpu_context *cpuctx,
1907
	       struct perf_event_context *ctx)
1908
{
1909
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1910
	struct pmu *pmu = ctx->pmu;
1911 1912
	u64 now = ctx->time;
	bool simulate = false;
1913

1914
	if (group_event->state == PERF_EVENT_STATE_OFF)
1915 1916
		return 0;

1917
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1918

1919
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1920
		pmu->cancel_txn(pmu);
1921
		perf_mux_hrtimer_restart(cpuctx);
1922
		return -EAGAIN;
1923
	}
1924 1925 1926 1927

	/*
	 * Schedule in siblings as one group (if any):
	 */
1928
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1929
		if (event_sched_in(event, cpuctx, ctx)) {
1930
			partial_group = event;
1931 1932 1933 1934
			goto group_error;
		}
	}

1935
	if (!pmu->commit_txn(pmu))
1936
		return 0;
1937

1938 1939 1940 1941
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1952
	 */
1953 1954
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1955 1956 1957 1958 1959 1960 1961 1962
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1963
	}
1964
	event_sched_out(group_event, cpuctx, ctx);
1965

P
Peter Zijlstra 已提交
1966
	pmu->cancel_txn(pmu);
1967

1968
	perf_mux_hrtimer_restart(cpuctx);
1969

1970 1971 1972
	return -EAGAIN;
}

1973
/*
1974
 * Work out whether we can put this event group on the CPU now.
1975
 */
1976
static int group_can_go_on(struct perf_event *event,
1977 1978 1979 1980
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1981
	 * Groups consisting entirely of software events can always go on.
1982
	 */
1983
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1984 1985 1986
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1987
	 * events can go on.
1988 1989 1990 1991 1992
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1993
	 * events on the CPU, it can't go on.
1994
	 */
1995
	if (event->attr.exclusive && cpuctx->active_oncpu)
1996 1997 1998 1999 2000 2001 2002 2003
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2004 2005
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2006
{
2007 2008
	u64 tstamp = perf_event_time(event);

2009
	list_add_event(event, ctx);
2010
	perf_group_attach(event);
2011 2012 2013
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2014 2015
}

2016 2017 2018 2019 2020 2021
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2022

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2035
/*
2036
 * Cross CPU call to install and enable a performance event
2037 2038
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2039
 */
2040
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2041
{
2042 2043
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2044
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2045 2046 2047
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2048
	perf_ctx_lock(cpuctx, task_ctx);
2049
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2050 2051

	/*
2052
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2053
	 */
2054
	if (task_ctx)
2055
		task_ctx_sched_out(task_ctx);
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2070 2071
		task = task_ctx->task;
	}
2072

2073
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2074

2075
	update_context_time(ctx);
S
Stephane Eranian 已提交
2076 2077 2078 2079 2080 2081
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2082

2083
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2084

2085
	/*
2086
	 * Schedule everything back in
2087
	 */
2088
	perf_event_sched_in(cpuctx, task_ctx, task);
2089 2090 2091

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2092 2093

	return 0;
T
Thomas Gleixner 已提交
2094 2095 2096
}

/*
2097
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2098
 *
2099 2100
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2101
 *
2102
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2103 2104 2105 2106
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2107 2108
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2109 2110 2111 2112
			int cpu)
{
	struct task_struct *task = ctx->task;

2113 2114
	lockdep_assert_held(&ctx->mutex);

2115
	event->ctx = ctx;
2116 2117
	if (event->cpu != -1)
		event->cpu = cpu;
2118

T
Thomas Gleixner 已提交
2119 2120
	if (!task) {
		/*
2121
		 * Per cpu events are installed via an smp call and
2122
		 * the install is always successful.
T
Thomas Gleixner 已提交
2123
		 */
2124
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2125 2126 2127 2128
		return;
	}

retry:
2129 2130
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2131

2132
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2133
	/*
2134 2135
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2136
	 */
2137
	if (ctx->is_active) {
2138
		raw_spin_unlock_irq(&ctx->lock);
2139 2140 2141 2142 2143
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2144 2145 2146 2147
		goto retry;
	}

	/*
2148 2149
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2150
	 */
2151
	add_event_to_ctx(event, ctx);
2152
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2153 2154
}

2155
/*
2156
 * Put a event into inactive state and update time fields.
2157 2158 2159 2160 2161 2162
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2163
static void __perf_event_mark_enabled(struct perf_event *event)
2164
{
2165
	struct perf_event *sub;
2166
	u64 tstamp = perf_event_time(event);
2167

2168
	event->state = PERF_EVENT_STATE_INACTIVE;
2169
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2170
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2171 2172
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2173
	}
2174 2175
}

2176
/*
2177
 * Cross CPU call to enable a performance event
2178
 */
2179
static int __perf_event_enable(void *info)
2180
{
2181 2182 2183
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2184
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2185
	int err;
2186

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2197
		return -EINVAL;
2198

2199
	raw_spin_lock(&ctx->lock);
2200
	update_context_time(ctx);
2201

2202
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2203
		goto unlock;
S
Stephane Eranian 已提交
2204 2205 2206 2207

	/*
	 * set current task's cgroup time reference point
	 */
2208
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2209

2210
	__perf_event_mark_enabled(event);
2211

S
Stephane Eranian 已提交
2212 2213 2214
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2215
		goto unlock;
S
Stephane Eranian 已提交
2216
	}
2217

2218
	/*
2219
	 * If the event is in a group and isn't the group leader,
2220
	 * then don't put it on unless the group is on.
2221
	 */
2222
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2223
		goto unlock;
2224

2225
	if (!group_can_go_on(event, cpuctx, 1)) {
2226
		err = -EEXIST;
2227
	} else {
2228
		if (event == leader)
2229
			err = group_sched_in(event, cpuctx, ctx);
2230
		else
2231
			err = event_sched_in(event, cpuctx, ctx);
2232
	}
2233 2234 2235

	if (err) {
		/*
2236
		 * If this event can't go on and it's part of a
2237 2238
		 * group, then the whole group has to come off.
		 */
2239
		if (leader != event) {
2240
			group_sched_out(leader, cpuctx, ctx);
2241
			perf_mux_hrtimer_restart(cpuctx);
2242
		}
2243
		if (leader->attr.pinned) {
2244
			update_group_times(leader);
2245
			leader->state = PERF_EVENT_STATE_ERROR;
2246
		}
2247 2248
	}

P
Peter Zijlstra 已提交
2249
unlock:
2250
	raw_spin_unlock(&ctx->lock);
2251 2252

	return 0;
2253 2254 2255
}

/*
2256
 * Enable a event.
2257
 *
2258 2259
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2260
 * remains valid.  This condition is satisfied when called through
2261 2262
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2263
 */
P
Peter Zijlstra 已提交
2264
static void _perf_event_enable(struct perf_event *event)
2265
{
2266
	struct perf_event_context *ctx = event->ctx;
2267 2268 2269 2270
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2271
		 * Enable the event on the cpu that it's on
2272
		 */
2273
		cpu_function_call(event->cpu, __perf_event_enable, event);
2274 2275 2276
		return;
	}

2277
	raw_spin_lock_irq(&ctx->lock);
2278
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2279 2280 2281
		goto out;

	/*
2282 2283
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2284 2285 2286 2287
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2288 2289
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2290

P
Peter Zijlstra 已提交
2291
retry:
2292
	if (!ctx->is_active) {
2293
		__perf_event_mark_enabled(event);
2294 2295 2296
		goto out;
	}

2297
	raw_spin_unlock_irq(&ctx->lock);
2298 2299 2300

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2301

2302
	raw_spin_lock_irq(&ctx->lock);
2303 2304

	/*
2305
	 * If the context is active and the event is still off,
2306 2307
	 * we need to retry the cross-call.
	 */
2308 2309 2310 2311 2312 2313
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2314
		goto retry;
2315
	}
2316

P
Peter Zijlstra 已提交
2317
out:
2318
	raw_spin_unlock_irq(&ctx->lock);
2319
}
P
Peter Zijlstra 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2332
EXPORT_SYMBOL_GPL(perf_event_enable);
2333

P
Peter Zijlstra 已提交
2334
static int _perf_event_refresh(struct perf_event *event, int refresh)
2335
{
2336
	/*
2337
	 * not supported on inherited events
2338
	 */
2339
	if (event->attr.inherit || !is_sampling_event(event))
2340 2341
		return -EINVAL;

2342
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2343
	_perf_event_enable(event);
2344 2345

	return 0;
2346
}
P
Peter Zijlstra 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2362
EXPORT_SYMBOL_GPL(perf_event_refresh);
2363

2364 2365 2366
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2367
{
2368
	struct perf_event *event;
2369
	int is_active = ctx->is_active;
2370

2371
	ctx->is_active &= ~event_type;
2372
	if (likely(!ctx->nr_events))
2373 2374
		return;

2375
	update_context_time(ctx);
S
Stephane Eranian 已提交
2376
	update_cgrp_time_from_cpuctx(cpuctx);
2377
	if (!ctx->nr_active)
2378
		return;
2379

P
Peter Zijlstra 已提交
2380
	perf_pmu_disable(ctx->pmu);
2381
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2382 2383
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2384
	}
2385

2386
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2387
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2388
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2389
	}
P
Peter Zijlstra 已提交
2390
	perf_pmu_enable(ctx->pmu);
2391 2392
}

2393
/*
2394 2395 2396 2397 2398 2399
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2400
 */
2401 2402
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2403
{
2404 2405 2406
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2429 2430
}

2431 2432
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2433 2434 2435
{
	u64 value;

2436
	if (!event->attr.inherit_stat)
2437 2438 2439
		return;

	/*
2440
	 * Update the event value, we cannot use perf_event_read()
2441 2442
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2443
	 * we know the event must be on the current CPU, therefore we
2444 2445
	 * don't need to use it.
	 */
2446 2447
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2448 2449
		event->pmu->read(event);
		/* fall-through */
2450

2451 2452
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2453 2454 2455 2456 2457 2458 2459
		break;

	default:
		break;
	}

	/*
2460
	 * In order to keep per-task stats reliable we need to flip the event
2461 2462
	 * values when we flip the contexts.
	 */
2463 2464 2465
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2466

2467 2468
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2469

2470
	/*
2471
	 * Since we swizzled the values, update the user visible data too.
2472
	 */
2473 2474
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2475 2476
}

2477 2478
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2479
{
2480
	struct perf_event *event, *next_event;
2481 2482 2483 2484

	if (!ctx->nr_stat)
		return;

2485 2486
	update_context_time(ctx);

2487 2488
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2489

2490 2491
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2492

2493 2494
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2495

2496
		__perf_event_sync_stat(event, next_event);
2497

2498 2499
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2500 2501 2502
	}
}

2503 2504
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2505
{
P
Peter Zijlstra 已提交
2506
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2507
	struct perf_event_context *next_ctx;
2508
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2509
	struct perf_cpu_context *cpuctx;
2510
	int do_switch = 1;
T
Thomas Gleixner 已提交
2511

P
Peter Zijlstra 已提交
2512 2513
	if (likely(!ctx))
		return;
2514

P
Peter Zijlstra 已提交
2515 2516
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2517 2518
		return;

2519
	rcu_read_lock();
P
Peter Zijlstra 已提交
2520
	next_ctx = next->perf_event_ctxp[ctxn];
2521 2522 2523 2524 2525 2526 2527
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2528
	if (!parent && !next_parent)
2529 2530 2531
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2532 2533 2534 2535 2536 2537 2538 2539 2540
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2541 2542
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2543
		if (context_equiv(ctx, next_ctx)) {
2544 2545
			/*
			 * XXX do we need a memory barrier of sorts
2546
			 * wrt to rcu_dereference() of perf_event_ctxp
2547
			 */
P
Peter Zijlstra 已提交
2548 2549
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2550 2551
			ctx->task = next;
			next_ctx->task = task;
2552 2553 2554

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2555
			do_switch = 0;
2556

2557
			perf_event_sync_stat(ctx, next_ctx);
2558
		}
2559 2560
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2561
	}
2562
unlock:
2563
	rcu_read_unlock();
2564

2565
	if (do_switch) {
2566
		raw_spin_lock(&ctx->lock);
2567
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2568
		cpuctx->task_ctx = NULL;
2569
		raw_spin_unlock(&ctx->lock);
2570
	}
T
Thomas Gleixner 已提交
2571 2572
}

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2623 2624 2625
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2640 2641
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2642 2643 2644
{
	int ctxn;

2645 2646 2647
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2648 2649 2650
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2651 2652
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2653 2654 2655 2656 2657 2658

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2659
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2660
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2661 2662
}

2663
static void task_ctx_sched_out(struct perf_event_context *ctx)
2664
{
P
Peter Zijlstra 已提交
2665
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2666

2667 2668
	if (!cpuctx->task_ctx)
		return;
2669 2670 2671 2672

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2673
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2674 2675 2676
	cpuctx->task_ctx = NULL;
}

2677 2678 2679 2680 2681 2682 2683
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2684 2685
}

2686
static void
2687
ctx_pinned_sched_in(struct perf_event_context *ctx,
2688
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2689
{
2690
	struct perf_event *event;
T
Thomas Gleixner 已提交
2691

2692 2693
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2694
			continue;
2695
		if (!event_filter_match(event))
2696 2697
			continue;

S
Stephane Eranian 已提交
2698 2699 2700 2701
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2702
		if (group_can_go_on(event, cpuctx, 1))
2703
			group_sched_in(event, cpuctx, ctx);
2704 2705 2706 2707 2708

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2709 2710 2711
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2712
		}
2713
	}
2714 2715 2716 2717
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2718
		      struct perf_cpu_context *cpuctx)
2719 2720 2721
{
	struct perf_event *event;
	int can_add_hw = 1;
2722

2723 2724 2725
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2726
			continue;
2727 2728
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2729
		 * of events:
2730
		 */
2731
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2732 2733
			continue;

S
Stephane Eranian 已提交
2734 2735 2736 2737
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2738
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2739
			if (group_sched_in(event, cpuctx, ctx))
2740
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2741
		}
T
Thomas Gleixner 已提交
2742
	}
2743 2744 2745 2746 2747
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2748 2749
	     enum event_type_t event_type,
	     struct task_struct *task)
2750
{
S
Stephane Eranian 已提交
2751
	u64 now;
2752
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2753

2754
	ctx->is_active |= event_type;
2755
	if (likely(!ctx->nr_events))
2756
		return;
2757

S
Stephane Eranian 已提交
2758 2759
	now = perf_clock();
	ctx->timestamp = now;
2760
	perf_cgroup_set_timestamp(task, ctx);
2761 2762 2763 2764
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2765
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2766
		ctx_pinned_sched_in(ctx, cpuctx);
2767 2768

	/* Then walk through the lower prio flexible groups */
2769
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2770
		ctx_flexible_sched_in(ctx, cpuctx);
2771 2772
}

2773
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2774 2775
			     enum event_type_t event_type,
			     struct task_struct *task)
2776 2777 2778
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2779
	ctx_sched_in(ctx, cpuctx, event_type, task);
2780 2781
}

S
Stephane Eranian 已提交
2782 2783
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2784
{
P
Peter Zijlstra 已提交
2785
	struct perf_cpu_context *cpuctx;
2786

P
Peter Zijlstra 已提交
2787
	cpuctx = __get_cpu_context(ctx);
2788 2789 2790
	if (cpuctx->task_ctx == ctx)
		return;

2791
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2792
	perf_pmu_disable(ctx->pmu);
2793 2794 2795 2796 2797 2798 2799
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2800 2801
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2802

2803 2804
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2805 2806
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2807 2808
}

P
Peter Zijlstra 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2820 2821
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2822 2823 2824 2825 2826 2827 2828 2829 2830
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2831
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2832
	}
S
Stephane Eranian 已提交
2833 2834 2835 2836 2837
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2838
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2839
		perf_cgroup_sched_in(prev, task);
2840

2841 2842 2843
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2844 2845
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2846 2847
}

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2875
#define REDUCE_FLS(a, b)		\
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2915 2916 2917
	if (!divisor)
		return dividend;

2918 2919 2920
	return div64_u64(dividend, divisor);
}

2921 2922 2923
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2924
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2925
{
2926
	struct hw_perf_event *hwc = &event->hw;
2927
	s64 period, sample_period;
2928 2929
	s64 delta;

2930
	period = perf_calculate_period(event, nsec, count);
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2941

2942
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2943 2944 2945
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2946
		local64_set(&hwc->period_left, 0);
2947 2948 2949

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2950
	}
2951 2952
}

2953 2954 2955 2956 2957 2958 2959
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2960
{
2961 2962
	struct perf_event *event;
	struct hw_perf_event *hwc;
2963
	u64 now, period = TICK_NSEC;
2964
	s64 delta;
2965

2966 2967 2968 2969 2970 2971
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2972 2973
		return;

2974
	raw_spin_lock(&ctx->lock);
2975
	perf_pmu_disable(ctx->pmu);
2976

2977
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2978
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2979 2980
			continue;

2981
		if (!event_filter_match(event))
2982 2983
			continue;

2984 2985
		perf_pmu_disable(event->pmu);

2986
		hwc = &event->hw;
2987

2988
		if (hwc->interrupts == MAX_INTERRUPTS) {
2989
			hwc->interrupts = 0;
2990
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2991
			event->pmu->start(event, 0);
2992 2993
		}

2994
		if (!event->attr.freq || !event->attr.sample_freq)
2995
			goto next;
2996

2997 2998 2999 3000 3001
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3002
		now = local64_read(&event->count);
3003 3004
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3005

3006 3007 3008
		/*
		 * restart the event
		 * reload only if value has changed
3009 3010 3011
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3012
		 */
3013
		if (delta > 0)
3014
			perf_adjust_period(event, period, delta, false);
3015 3016

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3017 3018
	next:
		perf_pmu_enable(event->pmu);
3019
	}
3020

3021
	perf_pmu_enable(ctx->pmu);
3022
	raw_spin_unlock(&ctx->lock);
3023 3024
}

3025
/*
3026
 * Round-robin a context's events:
3027
 */
3028
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3029
{
3030 3031 3032 3033 3034 3035
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3036 3037
}

3038
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3039
{
P
Peter Zijlstra 已提交
3040
	struct perf_event_context *ctx = NULL;
3041
	int rotate = 0;
3042

3043 3044 3045 3046
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3047

P
Peter Zijlstra 已提交
3048
	ctx = cpuctx->task_ctx;
3049 3050 3051 3052
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3053

3054
	if (!rotate)
3055 3056
		goto done;

3057
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3058
	perf_pmu_disable(cpuctx->ctx.pmu);
3059

3060 3061 3062
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3063

3064 3065 3066
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3067

3068
	perf_event_sched_in(cpuctx, ctx, current);
3069

3070 3071
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3072
done:
3073 3074

	return rotate;
3075 3076
}

3077 3078 3079
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3080
	if (atomic_read(&nr_freq_events) ||
3081
	    __this_cpu_read(perf_throttled_count))
3082
		return false;
3083 3084
	else
		return true;
3085 3086 3087
}
#endif

3088 3089
void perf_event_task_tick(void)
{
3090 3091
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3092
	int throttled;
3093

3094 3095
	WARN_ON(!irqs_disabled());

3096 3097 3098
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3099
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3100
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3101 3102
}

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3113
	__perf_event_mark_enabled(event);
3114 3115 3116 3117

	return 1;
}

3118
/*
3119
 * Enable all of a task's events that have been marked enable-on-exec.
3120 3121
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3122
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3123
{
3124
	struct perf_event_context *clone_ctx = NULL;
3125
	struct perf_event *event;
3126 3127
	unsigned long flags;
	int enabled = 0;
3128
	int ret;
3129 3130

	local_irq_save(flags);
3131
	if (!ctx || !ctx->nr_events)
3132 3133
		goto out;

3134 3135 3136 3137 3138 3139 3140
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3141
	perf_cgroup_sched_out(current, NULL);
3142

3143
	raw_spin_lock(&ctx->lock);
3144
	task_ctx_sched_out(ctx);
3145

3146
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3147 3148 3149
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3150 3151 3152
	}

	/*
3153
	 * Unclone this context if we enabled any event.
3154
	 */
3155
	if (enabled)
3156
		clone_ctx = unclone_ctx(ctx);
3157

3158
	raw_spin_unlock(&ctx->lock);
3159

3160 3161 3162
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3163
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3164
out:
3165
	local_irq_restore(flags);
3166 3167 3168

	if (clone_ctx)
		put_ctx(clone_ctx);
3169 3170
}

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

3187 3188 3189 3190 3191
struct perf_read_data {
	struct perf_event *event;
	bool group;
};

T
Thomas Gleixner 已提交
3192
/*
3193
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3194
 */
3195
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3196
{
3197 3198
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3199
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3200
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3201

3202 3203 3204 3205
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3206 3207
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3208 3209 3210 3211
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3212
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3213
	if (ctx->is_active) {
3214
		update_context_time(ctx);
S
Stephane Eranian 已提交
3215 3216
		update_cgrp_time_from_event(event);
	}
3217

3218
	update_event_times(event);
3219 3220
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231

	if (!data->group)
		goto unlock;

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
		if (sub->state == PERF_EVENT_STATE_ACTIVE)
			sub->pmu->read(sub);
	}

unlock:
3232
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3233 3234
}

P
Peter Zijlstra 已提交
3235 3236
static inline u64 perf_event_count(struct perf_event *event)
{
3237 3238 3239 3240
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3241 3242
}

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3296
static void perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3297 3298
{
	/*
3299 3300
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3301
	 */
3302
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3303 3304 3305 3306
		struct perf_read_data data = {
			.event = event,
			.group = group,
		};
3307
		smp_call_function_single(event->oncpu,
3308
					 __perf_event_read, &data, 1);
3309
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3310 3311 3312
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3313
		raw_spin_lock_irqsave(&ctx->lock, flags);
3314 3315 3316 3317 3318
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3319
		if (ctx->is_active) {
3320
			update_context_time(ctx);
S
Stephane Eranian 已提交
3321 3322
			update_cgrp_time_from_event(event);
		}
3323 3324 3325 3326
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3327
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3328 3329 3330
	}
}

3331
/*
3332
 * Initialize the perf_event context in a task_struct:
3333
 */
3334
static void __perf_event_init_context(struct perf_event_context *ctx)
3335
{
3336
	raw_spin_lock_init(&ctx->lock);
3337
	mutex_init(&ctx->mutex);
3338
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3339 3340
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3341 3342
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3343
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3359
	}
3360 3361 3362
	ctx->pmu = pmu;

	return ctx;
3363 3364
}

3365 3366 3367 3368 3369
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3370 3371

	rcu_read_lock();
3372
	if (!vpid)
T
Thomas Gleixner 已提交
3373 3374
		task = current;
	else
3375
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3376 3377 3378 3379 3380 3381 3382 3383
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3384 3385 3386 3387
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3388 3389 3390 3391 3392 3393 3394
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3395 3396 3397
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3398
static struct perf_event_context *
3399 3400
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3401
{
3402
	struct perf_event_context *ctx, *clone_ctx = NULL;
3403
	struct perf_cpu_context *cpuctx;
3404
	void *task_ctx_data = NULL;
3405
	unsigned long flags;
P
Peter Zijlstra 已提交
3406
	int ctxn, err;
3407
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3408

3409
	if (!task) {
3410
		/* Must be root to operate on a CPU event: */
3411
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3412 3413 3414
			return ERR_PTR(-EACCES);

		/*
3415
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3416 3417 3418
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3419
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3420 3421
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3422
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3423
		ctx = &cpuctx->ctx;
3424
		get_ctx(ctx);
3425
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3426 3427 3428 3429

		return ctx;
	}

P
Peter Zijlstra 已提交
3430 3431 3432 3433 3434
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3435 3436 3437 3438 3439 3440 3441 3442
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3443
retry:
P
Peter Zijlstra 已提交
3444
	ctx = perf_lock_task_context(task, ctxn, &flags);
3445
	if (ctx) {
3446
		clone_ctx = unclone_ctx(ctx);
3447
		++ctx->pin_count;
3448 3449 3450 3451 3452

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3453
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3454 3455 3456

		if (clone_ctx)
			put_ctx(clone_ctx);
3457
	} else {
3458
		ctx = alloc_perf_context(pmu, task);
3459 3460 3461
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3462

3463 3464 3465 3466 3467
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3478
		else {
3479
			get_ctx(ctx);
3480
			++ctx->pin_count;
3481
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3482
		}
3483 3484 3485
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3486
			put_ctx(ctx);
3487 3488 3489 3490

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3491 3492 3493
		}
	}

3494
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3495
	return ctx;
3496

P
Peter Zijlstra 已提交
3497
errout:
3498
	kfree(task_ctx_data);
3499
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3500 3501
}

L
Li Zefan 已提交
3502
static void perf_event_free_filter(struct perf_event *event);
3503
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3504

3505
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3506
{
3507
	struct perf_event *event;
P
Peter Zijlstra 已提交
3508

3509 3510 3511
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3512
	perf_event_free_filter(event);
3513
	kfree(event);
P
Peter Zijlstra 已提交
3514 3515
}

3516 3517
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3518

3519
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3520
{
3521 3522 3523 3524 3525 3526
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3527

3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3541 3542
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3543 3544 3545 3546
	if (event->attr.context_switch) {
		static_key_slow_dec_deferred(&perf_sched_events);
		atomic_dec(&nr_switch_events);
	}
3547 3548 3549 3550 3551 3552 3553
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3554

3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3640 3641
static void __free_event(struct perf_event *event)
{
3642
	if (!event->parent) {
3643 3644
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3645
	}
3646

3647 3648
	perf_event_free_bpf_prog(event);

3649 3650 3651 3652 3653 3654
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3655 3656
	if (event->pmu) {
		exclusive_event_destroy(event);
3657
		module_put(event->pmu->module);
3658
	}
3659

3660 3661
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3662 3663

static void _free_event(struct perf_event *event)
3664
{
3665
	irq_work_sync(&event->pending);
3666

3667
	unaccount_event(event);
3668

3669
	if (event->rb) {
3670 3671 3672 3673 3674 3675 3676
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3677
		ring_buffer_attach(event, NULL);
3678
		mutex_unlock(&event->mmap_mutex);
3679 3680
	}

S
Stephane Eranian 已提交
3681 3682 3683
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3684
	__free_event(event);
3685 3686
}

P
Peter Zijlstra 已提交
3687 3688 3689 3690 3691
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3692
{
P
Peter Zijlstra 已提交
3693 3694 3695 3696 3697 3698
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3699

P
Peter Zijlstra 已提交
3700
	_free_event(event);
T
Thomas Gleixner 已提交
3701 3702
}

3703
/*
3704
 * Remove user event from the owner task.
3705
 */
3706
static void perf_remove_from_owner(struct perf_event *event)
3707
{
P
Peter Zijlstra 已提交
3708
	struct task_struct *owner;
3709

P
Peter Zijlstra 已提交
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3751 3752 3753 3754
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3755
	struct perf_event_context *ctx;
3756 3757 3758 3759 3760 3761

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3762

P
Peter Zijlstra 已提交
3763 3764 3765 3766 3767 3768 3769
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3770
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3771 3772 3773 3774
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3775 3776
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3777
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3778
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3779 3780

	_free_event(event);
3781 3782
}

P
Peter Zijlstra 已提交
3783 3784 3785 3786 3787 3788 3789
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3790 3791 3792
/*
 * Called when the last reference to the file is gone.
 */
3793 3794 3795 3796
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3797 3798
}

3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3835
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3836
{
3837
	struct perf_event *child;
3838 3839
	u64 total = 0;

3840 3841 3842
	*enabled = 0;
	*running = 0;

3843
	mutex_lock(&event->child_mutex);
3844

3845
	perf_event_read(event, false);
3846 3847
	total += perf_event_count(event);

3848 3849 3850 3851 3852 3853
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3854
		perf_event_read(child, false);
3855
		total += perf_event_count(child);
3856 3857 3858
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3859
	mutex_unlock(&event->child_mutex);
3860 3861 3862

	return total;
}
3863
EXPORT_SYMBOL_GPL(perf_event_read_value);
3864

3865 3866
static void __perf_read_group_add(struct perf_event *leader,
					u64 read_format, u64 *values)
3867
{
3868 3869
	struct perf_event *sub;
	int n = 1; /* skip @nr */
P
Peter Zijlstra 已提交
3870

3871
	perf_event_read(leader, true);
3872

3873 3874 3875 3876 3877 3878 3879 3880 3881
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3882

3883 3884 3885 3886 3887 3888 3889 3890 3891
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3892 3893
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3894

3895 3896 3897 3898 3899 3900
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
}
3901

3902 3903 3904 3905 3906 3907 3908
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
	int ret = event->read_size;
	u64 *values;
3909

3910
	lockdep_assert_held(&ctx->mutex);
3911

3912 3913 3914
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3915

3916 3917 3918 3919 3920 3921 3922
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3923

3924 3925 3926
	__perf_read_group_add(leader, read_format, values);
	list_for_each_entry(child, &leader->child_list, child_list)
		__perf_read_group_add(child, read_format, values);
3927

3928
	mutex_unlock(&leader->child_mutex);
3929

3930 3931 3932 3933
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;

	kfree(values);
3934

3935
	return ret;
3936 3937
}

3938
static int perf_read_one(struct perf_event *event,
3939 3940
				 u64 read_format, char __user *buf)
{
3941
	u64 enabled, running;
3942 3943 3944
	u64 values[4];
	int n = 0;

3945 3946 3947 3948 3949
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3950
	if (read_format & PERF_FORMAT_ID)
3951
		values[n++] = primary_event_id(event);
3952 3953 3954 3955 3956 3957 3958

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3972
/*
3973
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3974 3975
 */
static ssize_t
3976
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3977
{
3978
	u64 read_format = event->attr.read_format;
3979
	int ret;
T
Thomas Gleixner 已提交
3980

3981
	/*
3982
	 * Return end-of-file for a read on a event that is in
3983 3984 3985
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3986
	if (event->state == PERF_EVENT_STATE_ERROR)
3987 3988
		return 0;

3989
	if (count < event->read_size)
3990 3991
		return -ENOSPC;

3992
	WARN_ON_ONCE(event->ctx->parent_ctx);
3993
	if (read_format & PERF_FORMAT_GROUP)
3994
		ret = perf_read_group(event, read_format, buf);
3995
	else
3996
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3997

3998
	return ret;
T
Thomas Gleixner 已提交
3999 4000 4001 4002 4003
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4004
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4005 4006
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4007

P
Peter Zijlstra 已提交
4008
	ctx = perf_event_ctx_lock(event);
4009
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4010 4011 4012
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4013 4014 4015 4016
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4017
	struct perf_event *event = file->private_data;
4018
	struct ring_buffer *rb;
4019
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4020

4021
	poll_wait(file, &event->waitq, wait);
4022

4023
	if (is_event_hup(event))
4024
		return events;
P
Peter Zijlstra 已提交
4025

4026
	/*
4027 4028
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4029 4030
	 */
	mutex_lock(&event->mmap_mutex);
4031 4032
	rb = event->rb;
	if (rb)
4033
		events = atomic_xchg(&rb->poll, 0);
4034
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4035 4036 4037
	return events;
}

P
Peter Zijlstra 已提交
4038
static void _perf_event_reset(struct perf_event *event)
4039
{
4040
	perf_event_read(event, false);
4041
	local64_set(&event->count, 0);
4042
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4043 4044
}

4045
/*
4046 4047 4048 4049
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4050
 */
4051 4052
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4053
{
4054
	struct perf_event *child;
P
Peter Zijlstra 已提交
4055

4056
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4057

4058 4059 4060
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4061
		func(child);
4062
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4063 4064
}

4065 4066
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4067
{
4068 4069
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4070

P
Peter Zijlstra 已提交
4071 4072
	lockdep_assert_held(&ctx->mutex);

4073
	event = event->group_leader;
4074

4075 4076
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4077
		perf_event_for_each_child(sibling, func);
4078 4079
}

4080 4081
struct period_event {
	struct perf_event *event;
4082
	u64 value;
4083
};
4084

4085 4086 4087 4088 4089 4090 4091
static int __perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	struct perf_event_context *ctx = event->ctx;
	u64 value = pe->value;
	bool active;
4092

4093
	raw_spin_lock(&ctx->lock);
4094 4095
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4096
	} else {
4097 4098
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4099
	}
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4113
	raw_spin_unlock(&ctx->lock);
4114

4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
	return 0;
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	struct period_event pe = { .event = event, };
	struct perf_event_context *ctx = event->ctx;
	struct task_struct *task;
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

	task = ctx->task;
	pe.value = value;

	if (!task) {
		cpu_function_call(event->cpu, __perf_event_period, &pe);
		return 0;
	}

retry:
	if (!task_function_call(task, __perf_event_period, &pe))
		return 0;

	raw_spin_lock_irq(&ctx->lock);
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		task = ctx->task;
		goto retry;
	}

	__perf_event_period(&pe);
4157
	raw_spin_unlock_irq(&ctx->lock);
4158

4159
	return 0;
4160 4161
}

4162 4163
static const struct file_operations perf_fops;

4164
static inline int perf_fget_light(int fd, struct fd *p)
4165
{
4166 4167 4168
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4169

4170 4171 4172
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4173
	}
4174 4175
	*p = f;
	return 0;
4176 4177 4178 4179
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4180
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4181
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4182

P
Peter Zijlstra 已提交
4183
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4184
{
4185
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4186
	u32 flags = arg;
4187 4188

	switch (cmd) {
4189
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4190
		func = _perf_event_enable;
4191
		break;
4192
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4193
		func = _perf_event_disable;
4194
		break;
4195
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4196
		func = _perf_event_reset;
4197
		break;
P
Peter Zijlstra 已提交
4198

4199
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4200
		return _perf_event_refresh(event, arg);
4201

4202 4203
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4204

4205 4206 4207 4208 4209 4210 4211 4212 4213
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4214
	case PERF_EVENT_IOC_SET_OUTPUT:
4215 4216 4217
	{
		int ret;
		if (arg != -1) {
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4228 4229 4230
		}
		return ret;
	}
4231

L
Li Zefan 已提交
4232 4233 4234
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4235 4236 4237
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4238
	default:
P
Peter Zijlstra 已提交
4239
		return -ENOTTY;
4240
	}
P
Peter Zijlstra 已提交
4241 4242

	if (flags & PERF_IOC_FLAG_GROUP)
4243
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4244
	else
4245
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4246 4247

	return 0;
4248 4249
}

P
Peter Zijlstra 已提交
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4283
int perf_event_task_enable(void)
4284
{
P
Peter Zijlstra 已提交
4285
	struct perf_event_context *ctx;
4286
	struct perf_event *event;
4287

4288
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4289 4290 4291 4292 4293
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4294
	mutex_unlock(&current->perf_event_mutex);
4295 4296 4297 4298

	return 0;
}

4299
int perf_event_task_disable(void)
4300
{
P
Peter Zijlstra 已提交
4301
	struct perf_event_context *ctx;
4302
	struct perf_event *event;
4303

4304
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4305 4306 4307 4308 4309
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4310
	mutex_unlock(&current->perf_event_mutex);
4311 4312 4313 4314

	return 0;
}

4315
static int perf_event_index(struct perf_event *event)
4316
{
P
Peter Zijlstra 已提交
4317 4318 4319
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4320
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4321 4322
		return 0;

4323
	return event->pmu->event_idx(event);
4324 4325
}

4326
static void calc_timer_values(struct perf_event *event,
4327
				u64 *now,
4328 4329
				u64 *enabled,
				u64 *running)
4330
{
4331
	u64 ctx_time;
4332

4333 4334
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4335 4336 4337 4338
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4354 4355
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4356 4357 4358 4359 4360

unlock:
	rcu_read_unlock();
}

4361 4362
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4363 4364 4365
{
}

4366 4367 4368 4369 4370
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4371
void perf_event_update_userpage(struct perf_event *event)
4372
{
4373
	struct perf_event_mmap_page *userpg;
4374
	struct ring_buffer *rb;
4375
	u64 enabled, running, now;
4376 4377

	rcu_read_lock();
4378 4379 4380 4381
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4382 4383 4384 4385 4386 4387 4388 4389 4390
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4391
	calc_timer_values(event, &now, &enabled, &running);
4392

4393
	userpg = rb->user_page;
4394 4395 4396 4397 4398
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4399
	++userpg->lock;
4400
	barrier();
4401
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4402
	userpg->offset = perf_event_count(event);
4403
	if (userpg->index)
4404
		userpg->offset -= local64_read(&event->hw.prev_count);
4405

4406
	userpg->time_enabled = enabled +
4407
			atomic64_read(&event->child_total_time_enabled);
4408

4409
	userpg->time_running = running +
4410
			atomic64_read(&event->child_total_time_running);
4411

4412
	arch_perf_update_userpage(event, userpg, now);
4413

4414
	barrier();
4415
	++userpg->lock;
4416
	preempt_enable();
4417
unlock:
4418
	rcu_read_unlock();
4419 4420
}

4421 4422 4423
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4424
	struct ring_buffer *rb;
4425 4426 4427 4428 4429 4430 4431 4432 4433
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4434 4435
	rb = rcu_dereference(event->rb);
	if (!rb)
4436 4437 4438 4439 4440
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4441
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4456 4457 4458
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4459
	struct ring_buffer *old_rb = NULL;
4460 4461
	unsigned long flags;

4462 4463 4464 4465 4466 4467
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4468

4469 4470 4471 4472
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4473

4474 4475
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4476
	}
4477

4478
	if (rb) {
4479 4480 4481 4482 4483
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4500 4501 4502 4503 4504 4505 4506 4507
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4508 4509 4510 4511
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4512 4513 4514
	rcu_read_unlock();
}

4515
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4516
{
4517
	struct ring_buffer *rb;
4518

4519
	rcu_read_lock();
4520 4521 4522 4523
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4524 4525 4526
	}
	rcu_read_unlock();

4527
	return rb;
4528 4529
}

4530
void ring_buffer_put(struct ring_buffer *rb)
4531
{
4532
	if (!atomic_dec_and_test(&rb->refcount))
4533
		return;
4534

4535
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4536

4537
	call_rcu(&rb->rcu_head, rb_free_rcu);
4538 4539 4540 4541
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4542
	struct perf_event *event = vma->vm_file->private_data;
4543

4544
	atomic_inc(&event->mmap_count);
4545
	atomic_inc(&event->rb->mmap_count);
4546

4547 4548 4549
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4550 4551
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4552 4553
}

4554 4555 4556 4557 4558 4559 4560 4561
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4562 4563
static void perf_mmap_close(struct vm_area_struct *vma)
{
4564
	struct perf_event *event = vma->vm_file->private_data;
4565

4566
	struct ring_buffer *rb = ring_buffer_get(event);
4567 4568 4569
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4570

4571 4572 4573
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4588 4589 4590
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4591
		goto out_put;
4592

4593
	ring_buffer_attach(event, NULL);
4594 4595 4596
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4597 4598
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4599

4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4616

4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4628 4629 4630
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4631
		mutex_unlock(&event->mmap_mutex);
4632
		put_event(event);
4633

4634 4635 4636 4637 4638
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4639
	}
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4655
out_put:
4656
	ring_buffer_put(rb); /* could be last */
4657 4658
}

4659
static const struct vm_operations_struct perf_mmap_vmops = {
4660
	.open		= perf_mmap_open,
4661
	.close		= perf_mmap_close, /* non mergable */
4662 4663
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4664 4665 4666 4667
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4668
	struct perf_event *event = file->private_data;
4669
	unsigned long user_locked, user_lock_limit;
4670
	struct user_struct *user = current_user();
4671
	unsigned long locked, lock_limit;
4672
	struct ring_buffer *rb = NULL;
4673 4674
	unsigned long vma_size;
	unsigned long nr_pages;
4675
	long user_extra = 0, extra = 0;
4676
	int ret = 0, flags = 0;
4677

4678 4679 4680
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4681
	 * same rb.
4682 4683 4684 4685
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4686
	if (!(vma->vm_flags & VM_SHARED))
4687
		return -EINVAL;
4688 4689

	vma_size = vma->vm_end - vma->vm_start;
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4750

4751
	/*
4752
	 * If we have rb pages ensure they're a power-of-two number, so we
4753 4754
	 * can do bitmasks instead of modulo.
	 */
4755
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4756 4757
		return -EINVAL;

4758
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4759 4760
		return -EINVAL;

4761
	WARN_ON_ONCE(event->ctx->parent_ctx);
4762
again:
4763
	mutex_lock(&event->mmap_mutex);
4764
	if (event->rb) {
4765
		if (event->rb->nr_pages != nr_pages) {
4766
			ret = -EINVAL;
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4780 4781 4782
		goto unlock;
	}

4783
	user_extra = nr_pages + 1;
4784 4785

accounting:
4786
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4787 4788 4789 4790 4791 4792

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4793
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4794

4795 4796
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4797

4798
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4799
	lock_limit >>= PAGE_SHIFT;
4800
	locked = vma->vm_mm->pinned_vm + extra;
4801

4802 4803
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4804 4805 4806
		ret = -EPERM;
		goto unlock;
	}
4807

4808
	WARN_ON(!rb && event->rb);
4809

4810
	if (vma->vm_flags & VM_WRITE)
4811
		flags |= RING_BUFFER_WRITABLE;
4812

4813
	if (!rb) {
4814 4815 4816
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4817

4818 4819 4820 4821
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4822

4823 4824 4825
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4826

4827
		ring_buffer_attach(event, rb);
4828

4829 4830 4831
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4832 4833
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4834 4835 4836
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4837

4838
unlock:
4839 4840 4841 4842
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4843
		atomic_inc(&event->mmap_count);
4844 4845 4846 4847
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4848
	mutex_unlock(&event->mmap_mutex);
4849

4850 4851 4852 4853
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4854
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4855
	vma->vm_ops = &perf_mmap_vmops;
4856

4857 4858 4859
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4860
	return ret;
4861 4862
}

P
Peter Zijlstra 已提交
4863 4864
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4865
	struct inode *inode = file_inode(filp);
4866
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4867 4868 4869
	int retval;

	mutex_lock(&inode->i_mutex);
4870
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4871 4872 4873 4874 4875 4876 4877 4878
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4879
static const struct file_operations perf_fops = {
4880
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4881 4882 4883
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4884
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4885
	.compat_ioctl		= perf_compat_ioctl,
4886
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4887
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4888 4889
};

4890
/*
4891
 * Perf event wakeup
4892 4893 4894 4895 4896
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4897 4898 4899 4900 4901 4902 4903 4904
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4905
void perf_event_wakeup(struct perf_event *event)
4906
{
4907
	ring_buffer_wakeup(event);
4908

4909
	if (event->pending_kill) {
4910
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4911
		event->pending_kill = 0;
4912
	}
4913 4914
}

4915
static void perf_pending_event(struct irq_work *entry)
4916
{
4917 4918
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4919 4920 4921 4922 4923 4924 4925
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4926

4927 4928 4929
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4930 4931
	}

4932 4933 4934
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4935
	}
4936 4937 4938

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4939 4940
}

4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4977
static void perf_sample_regs_user(struct perf_regs *regs_user,
4978 4979
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4980
{
4981 4982
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4983
		regs_user->regs = regs;
4984 4985
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4986 4987 4988
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4989 4990 4991
	}
}

4992 4993 4994 4995 4996 4997 4998 4999
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5095 5096 5097
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5111
		data->time = perf_event_clock(event);
5112

5113
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5125 5126 5127
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5152 5153 5154

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5155 5156
}

5157 5158 5159
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5160 5161 5162 5163 5164
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5165
static void perf_output_read_one(struct perf_output_handle *handle,
5166 5167
				 struct perf_event *event,
				 u64 enabled, u64 running)
5168
{
5169
	u64 read_format = event->attr.read_format;
5170 5171 5172
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5173
	values[n++] = perf_event_count(event);
5174
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5175
		values[n++] = enabled +
5176
			atomic64_read(&event->child_total_time_enabled);
5177 5178
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5179
		values[n++] = running +
5180
			atomic64_read(&event->child_total_time_running);
5181 5182
	}
	if (read_format & PERF_FORMAT_ID)
5183
		values[n++] = primary_event_id(event);
5184

5185
	__output_copy(handle, values, n * sizeof(u64));
5186 5187 5188
}

/*
5189
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5190 5191
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5192 5193
			    struct perf_event *event,
			    u64 enabled, u64 running)
5194
{
5195 5196
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5197 5198 5199 5200 5201 5202
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5203
		values[n++] = enabled;
5204 5205

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5206
		values[n++] = running;
5207

5208
	if (leader != event)
5209 5210
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5211
	values[n++] = perf_event_count(leader);
5212
	if (read_format & PERF_FORMAT_ID)
5213
		values[n++] = primary_event_id(leader);
5214

5215
	__output_copy(handle, values, n * sizeof(u64));
5216

5217
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5218 5219
		n = 0;

5220 5221
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5222 5223
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5224
		values[n++] = perf_event_count(sub);
5225
		if (read_format & PERF_FORMAT_ID)
5226
			values[n++] = primary_event_id(sub);
5227

5228
		__output_copy(handle, values, n * sizeof(u64));
5229 5230 5231
	}
}

5232 5233 5234
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5235
static void perf_output_read(struct perf_output_handle *handle,
5236
			     struct perf_event *event)
5237
{
5238
	u64 enabled = 0, running = 0, now;
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5250
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5251
		calc_timer_values(event, &now, &enabled, &running);
5252

5253
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5254
		perf_output_read_group(handle, event, enabled, running);
5255
	else
5256
		perf_output_read_one(handle, event, enabled, running);
5257 5258
}

5259 5260 5261
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5262
			struct perf_event *event)
5263 5264 5265 5266 5267
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5268 5269 5270
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5296
		perf_output_read(handle, event);
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5307
			__output_copy(handle, data->callchain, size);
5308 5309 5310 5311 5312 5313 5314 5315 5316
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
5317 5318
			__output_copy(handle, data->raw->data,
					   data->raw->size);
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5330

5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5365

5366
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5367 5368 5369
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5370
	}
A
Andi Kleen 已提交
5371 5372 5373

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5374 5375 5376

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5377

A
Andi Kleen 已提交
5378 5379 5380
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5411 5412 5413 5414
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5415
			 struct perf_event *event,
5416
			 struct pt_regs *regs)
5417
{
5418
	u64 sample_type = event->attr.sample_type;
5419

5420
	header->type = PERF_RECORD_SAMPLE;
5421
	header->size = sizeof(*header) + event->header_size;
5422 5423 5424

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5425

5426
	__perf_event_header__init_id(header, data, event);
5427

5428
	if (sample_type & PERF_SAMPLE_IP)
5429 5430
		data->ip = perf_instruction_pointer(regs);

5431
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5432
		int size = 1;
5433

5434
		data->callchain = perf_callchain(event, regs);
5435 5436 5437 5438 5439

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5440 5441
	}

5442
	if (sample_type & PERF_SAMPLE_RAW) {
5443 5444 5445 5446 5447 5448 5449 5450
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5451
		header->size += size;
5452
	}
5453 5454 5455 5456 5457 5458 5459 5460 5461

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5462

5463
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5464 5465
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5466

5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5490
						     data->regs_user.regs);
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5518
}
5519

5520 5521 5522
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5523 5524 5525
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5526

5527 5528 5529
	/* protect the callchain buffers */
	rcu_read_lock();

5530
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5531

5532
	if (perf_output_begin(&handle, event, header.size))
5533
		goto exit;
5534

5535
	perf_output_sample(&handle, &header, data, event);
5536

5537
	perf_output_end(&handle);
5538 5539 5540

exit:
	rcu_read_unlock();
5541 5542
}

5543
/*
5544
 * read event_id
5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5555
perf_event_read_event(struct perf_event *event,
5556 5557 5558
			struct task_struct *task)
{
	struct perf_output_handle handle;
5559
	struct perf_sample_data sample;
5560
	struct perf_read_event read_event = {
5561
		.header = {
5562
			.type = PERF_RECORD_READ,
5563
			.misc = 0,
5564
			.size = sizeof(read_event) + event->read_size,
5565
		},
5566 5567
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5568
	};
5569
	int ret;
5570

5571
	perf_event_header__init_id(&read_event.header, &sample, event);
5572
	ret = perf_output_begin(&handle, event, read_event.header.size);
5573 5574 5575
	if (ret)
		return;

5576
	perf_output_put(&handle, read_event);
5577
	perf_output_read(&handle, event);
5578
	perf_event__output_id_sample(event, &handle, &sample);
5579

5580 5581 5582
	perf_output_end(&handle);
}

5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5597
		output(event, data);
5598 5599 5600 5601
	}
}

static void
5602
perf_event_aux(perf_event_aux_output_cb output, void *data,
5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5615
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5616 5617 5618 5619 5620 5621 5622
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5623
			perf_event_aux_ctx(ctx, output, data);
5624 5625 5626 5627 5628 5629
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5630
		perf_event_aux_ctx(task_ctx, output, data);
5631 5632 5633 5634 5635
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5636
/*
P
Peter Zijlstra 已提交
5637 5638
 * task tracking -- fork/exit
 *
5639
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5640 5641
 */

P
Peter Zijlstra 已提交
5642
struct perf_task_event {
5643
	struct task_struct		*task;
5644
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5645 5646 5647 5648 5649 5650

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5651 5652
		u32				tid;
		u32				ptid;
5653
		u64				time;
5654
	} event_id;
P
Peter Zijlstra 已提交
5655 5656
};

5657 5658
static int perf_event_task_match(struct perf_event *event)
{
5659 5660 5661
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5662 5663
}

5664
static void perf_event_task_output(struct perf_event *event,
5665
				   void *data)
P
Peter Zijlstra 已提交
5666
{
5667
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5668
	struct perf_output_handle handle;
5669
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5670
	struct task_struct *task = task_event->task;
5671
	int ret, size = task_event->event_id.header.size;
5672

5673 5674 5675
	if (!perf_event_task_match(event))
		return;

5676
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5677

5678
	ret = perf_output_begin(&handle, event,
5679
				task_event->event_id.header.size);
5680
	if (ret)
5681
		goto out;
P
Peter Zijlstra 已提交
5682

5683 5684
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5685

5686 5687
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5688

5689 5690
	task_event->event_id.time = perf_event_clock(event);

5691
	perf_output_put(&handle, task_event->event_id);
5692

5693 5694
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5695
	perf_output_end(&handle);
5696 5697
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5698 5699
}

5700 5701
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5702
			      int new)
P
Peter Zijlstra 已提交
5703
{
P
Peter Zijlstra 已提交
5704
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5705

5706 5707 5708
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5709 5710
		return;

P
Peter Zijlstra 已提交
5711
	task_event = (struct perf_task_event){
5712 5713
		.task	  = task,
		.task_ctx = task_ctx,
5714
		.event_id    = {
P
Peter Zijlstra 已提交
5715
			.header = {
5716
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5717
				.misc = 0,
5718
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5719
			},
5720 5721
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5722 5723
			/* .tid  */
			/* .ptid */
5724
			/* .time */
P
Peter Zijlstra 已提交
5725 5726 5727
		},
	};

5728
	perf_event_aux(perf_event_task_output,
5729 5730
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5731 5732
}

5733
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5734
{
5735
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5736 5737
}

5738 5739 5740 5741 5742
/*
 * comm tracking
 */

struct perf_comm_event {
5743 5744
	struct task_struct	*task;
	char			*comm;
5745 5746 5747 5748 5749 5750 5751
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5752
	} event_id;
5753 5754
};

5755 5756 5757 5758 5759
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5760
static void perf_event_comm_output(struct perf_event *event,
5761
				   void *data)
5762
{
5763
	struct perf_comm_event *comm_event = data;
5764
	struct perf_output_handle handle;
5765
	struct perf_sample_data sample;
5766
	int size = comm_event->event_id.header.size;
5767 5768
	int ret;

5769 5770 5771
	if (!perf_event_comm_match(event))
		return;

5772 5773
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5774
				comm_event->event_id.header.size);
5775 5776

	if (ret)
5777
		goto out;
5778

5779 5780
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5781

5782
	perf_output_put(&handle, comm_event->event_id);
5783
	__output_copy(&handle, comm_event->comm,
5784
				   comm_event->comm_size);
5785 5786 5787

	perf_event__output_id_sample(event, &handle, &sample);

5788
	perf_output_end(&handle);
5789 5790
out:
	comm_event->event_id.header.size = size;
5791 5792
}

5793
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5794
{
5795
	char comm[TASK_COMM_LEN];
5796 5797
	unsigned int size;

5798
	memset(comm, 0, sizeof(comm));
5799
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5800
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5801 5802 5803 5804

	comm_event->comm = comm;
	comm_event->comm_size = size;

5805
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5806

5807
	perf_event_aux(perf_event_comm_output,
5808 5809
		       comm_event,
		       NULL);
5810 5811
}

5812
void perf_event_comm(struct task_struct *task, bool exec)
5813
{
5814 5815
	struct perf_comm_event comm_event;

5816
	if (!atomic_read(&nr_comm_events))
5817
		return;
5818

5819
	comm_event = (struct perf_comm_event){
5820
		.task	= task,
5821 5822
		/* .comm      */
		/* .comm_size */
5823
		.event_id  = {
5824
			.header = {
5825
				.type = PERF_RECORD_COMM,
5826
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5827 5828 5829 5830
				/* .size */
			},
			/* .pid */
			/* .tid */
5831 5832 5833
		},
	};

5834
	perf_event_comm_event(&comm_event);
5835 5836
}

5837 5838 5839 5840 5841
/*
 * mmap tracking
 */

struct perf_mmap_event {
5842 5843 5844 5845
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5846 5847 5848
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5849
	u32			prot, flags;
5850 5851 5852 5853 5854 5855 5856 5857 5858

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5859
	} event_id;
5860 5861
};

5862 5863 5864 5865 5866 5867 5868 5869
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5870
	       (executable && (event->attr.mmap || event->attr.mmap2));
5871 5872
}

5873
static void perf_event_mmap_output(struct perf_event *event,
5874
				   void *data)
5875
{
5876
	struct perf_mmap_event *mmap_event = data;
5877
	struct perf_output_handle handle;
5878
	struct perf_sample_data sample;
5879
	int size = mmap_event->event_id.header.size;
5880
	int ret;
5881

5882 5883 5884
	if (!perf_event_mmap_match(event, data))
		return;

5885 5886 5887 5888 5889
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5890
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5891 5892
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5893 5894
	}

5895 5896
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5897
				mmap_event->event_id.header.size);
5898
	if (ret)
5899
		goto out;
5900

5901 5902
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5903

5904
	perf_output_put(&handle, mmap_event->event_id);
5905 5906 5907 5908 5909 5910

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5911 5912
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5913 5914
	}

5915
	__output_copy(&handle, mmap_event->file_name,
5916
				   mmap_event->file_size);
5917 5918 5919

	perf_event__output_id_sample(event, &handle, &sample);

5920
	perf_output_end(&handle);
5921 5922
out:
	mmap_event->event_id.header.size = size;
5923 5924
}

5925
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5926
{
5927 5928
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5929 5930
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5931
	u32 prot = 0, flags = 0;
5932 5933 5934
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5935
	char *name;
5936

5937
	if (file) {
5938 5939
		struct inode *inode;
		dev_t dev;
5940

5941
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5942
		if (!buf) {
5943 5944
			name = "//enomem";
			goto cpy_name;
5945
		}
5946
		/*
5947
		 * d_path() works from the end of the rb backwards, so we
5948 5949 5950
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5951
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5952
		if (IS_ERR(name)) {
5953 5954
			name = "//toolong";
			goto cpy_name;
5955
		}
5956 5957 5958 5959 5960 5961
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5984
		goto got_name;
5985
	} else {
5986 5987 5988 5989 5990 5991
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5992
		name = (char *)arch_vma_name(vma);
5993 5994
		if (name)
			goto cpy_name;
5995

5996
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5997
				vma->vm_end >= vma->vm_mm->brk) {
5998 5999
			name = "[heap]";
			goto cpy_name;
6000 6001
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6002
				vma->vm_end >= vma->vm_mm->start_stack) {
6003 6004
			name = "[stack]";
			goto cpy_name;
6005 6006
		}

6007 6008
		name = "//anon";
		goto cpy_name;
6009 6010
	}

6011 6012 6013
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6014
got_name:
6015 6016 6017 6018 6019 6020 6021 6022
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6023 6024 6025

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6026 6027 6028 6029
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6030 6031
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6032

6033 6034 6035
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6036
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6037

6038
	perf_event_aux(perf_event_mmap_output,
6039 6040
		       mmap_event,
		       NULL);
6041

6042 6043 6044
	kfree(buf);
}

6045
void perf_event_mmap(struct vm_area_struct *vma)
6046
{
6047 6048
	struct perf_mmap_event mmap_event;

6049
	if (!atomic_read(&nr_mmap_events))
6050 6051 6052
		return;

	mmap_event = (struct perf_mmap_event){
6053
		.vma	= vma,
6054 6055
		/* .file_name */
		/* .file_size */
6056
		.event_id  = {
6057
			.header = {
6058
				.type = PERF_RECORD_MMAP,
6059
				.misc = PERF_RECORD_MISC_USER,
6060 6061 6062 6063
				/* .size */
			},
			/* .pid */
			/* .tid */
6064 6065
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6066
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6067
		},
6068 6069 6070 6071
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6072 6073
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6074 6075
	};

6076
	perf_event_mmap_event(&mmap_event);
6077 6078
}

A
Alexander Shishkin 已提交
6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6231 6232 6233 6234
/*
 * IRQ throttle logging
 */

6235
static void perf_log_throttle(struct perf_event *event, int enable)
6236 6237
{
	struct perf_output_handle handle;
6238
	struct perf_sample_data sample;
6239 6240 6241 6242 6243
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6244
		u64				id;
6245
		u64				stream_id;
6246 6247
	} throttle_event = {
		.header = {
6248
			.type = PERF_RECORD_THROTTLE,
6249 6250 6251
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6252
		.time		= perf_event_clock(event),
6253 6254
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6255 6256
	};

6257
	if (enable)
6258
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6259

6260 6261 6262
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6263
				throttle_event.header.size);
6264 6265 6266 6267
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6268
	perf_event__output_id_sample(event, &handle, &sample);
6269 6270 6271
	perf_output_end(&handle);
}

6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6308
/*
6309
 * Generic event overflow handling, sampling.
6310 6311
 */

6312
static int __perf_event_overflow(struct perf_event *event,
6313 6314
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6315
{
6316 6317
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6318
	u64 seq;
6319 6320
	int ret = 0;

6321 6322 6323 6324 6325 6326 6327
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6328 6329 6330 6331 6332 6333 6334 6335 6336
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6337 6338
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6339
			tick_nohz_full_kick();
6340 6341
			ret = 1;
		}
6342
	}
6343

6344
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6345
		u64 now = perf_clock();
6346
		s64 delta = now - hwc->freq_time_stamp;
6347

6348
		hwc->freq_time_stamp = now;
6349

6350
		if (delta > 0 && delta < 2*TICK_NSEC)
6351
			perf_adjust_period(event, delta, hwc->last_period, true);
6352 6353
	}

6354 6355
	/*
	 * XXX event_limit might not quite work as expected on inherited
6356
	 * events
6357 6358
	 */

6359 6360
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6361
		ret = 1;
6362
		event->pending_kill = POLL_HUP;
6363 6364
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6365 6366
	}

6367
	if (event->overflow_handler)
6368
		event->overflow_handler(event, data, regs);
6369
	else
6370
		perf_event_output(event, data, regs);
6371

6372
	if (*perf_event_fasync(event) && event->pending_kill) {
6373 6374
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6375 6376
	}

6377
	return ret;
6378 6379
}

6380
int perf_event_overflow(struct perf_event *event,
6381 6382
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6383
{
6384
	return __perf_event_overflow(event, 1, data, regs);
6385 6386
}

6387
/*
6388
 * Generic software event infrastructure
6389 6390
 */

6391 6392 6393 6394 6395 6396 6397
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
6398 6399 6400

	/* Keeps track of cpu being initialized/exited */
	bool				online;
6401 6402 6403 6404
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6405
/*
6406 6407
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6408 6409 6410 6411
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6412
u64 perf_swevent_set_period(struct perf_event *event)
6413
{
6414
	struct hw_perf_event *hwc = &event->hw;
6415 6416 6417 6418 6419
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6420 6421

again:
6422
	old = val = local64_read(&hwc->period_left);
6423 6424
	if (val < 0)
		return 0;
6425

6426 6427 6428
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6429
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6430
		goto again;
6431

6432
	return nr;
6433 6434
}

6435
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6436
				    struct perf_sample_data *data,
6437
				    struct pt_regs *regs)
6438
{
6439
	struct hw_perf_event *hwc = &event->hw;
6440
	int throttle = 0;
6441

6442 6443
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6444

6445 6446
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6447

6448
	for (; overflow; overflow--) {
6449
		if (__perf_event_overflow(event, throttle,
6450
					    data, regs)) {
6451 6452 6453 6454 6455 6456
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6457
		throttle = 1;
6458
	}
6459 6460
}

P
Peter Zijlstra 已提交
6461
static void perf_swevent_event(struct perf_event *event, u64 nr,
6462
			       struct perf_sample_data *data,
6463
			       struct pt_regs *regs)
6464
{
6465
	struct hw_perf_event *hwc = &event->hw;
6466

6467
	local64_add(nr, &event->count);
6468

6469 6470 6471
	if (!regs)
		return;

6472
	if (!is_sampling_event(event))
6473
		return;
6474

6475 6476 6477 6478 6479 6480
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6481
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6482
		return perf_swevent_overflow(event, 1, data, regs);
6483

6484
	if (local64_add_negative(nr, &hwc->period_left))
6485
		return;
6486

6487
	perf_swevent_overflow(event, 0, data, regs);
6488 6489
}

6490 6491 6492
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6493
	if (event->hw.state & PERF_HES_STOPPED)
6494
		return 1;
P
Peter Zijlstra 已提交
6495

6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6507
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6508
				enum perf_type_id type,
L
Li Zefan 已提交
6509 6510 6511
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6512
{
6513
	if (event->attr.type != type)
6514
		return 0;
6515

6516
	if (event->attr.config != event_id)
6517 6518
		return 0;

6519 6520
	if (perf_exclude_event(event, regs))
		return 0;
6521 6522 6523 6524

	return 1;
}

6525 6526 6527 6528 6529 6530 6531
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6532 6533
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6534
{
6535 6536 6537 6538
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6539

6540 6541
/* For the read side: events when they trigger */
static inline struct hlist_head *
6542
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6543 6544
{
	struct swevent_hlist *hlist;
6545

6546
	hlist = rcu_dereference(swhash->swevent_hlist);
6547 6548 6549
	if (!hlist)
		return NULL;

6550 6551 6552 6553 6554
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6555
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6556 6557 6558 6559 6560 6561 6562 6563 6564 6565
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6566
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6567 6568 6569 6570 6571
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6572 6573 6574
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6575
				    u64 nr,
6576 6577
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6578
{
6579
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6580
	struct perf_event *event;
6581
	struct hlist_head *head;
6582

6583
	rcu_read_lock();
6584
	head = find_swevent_head_rcu(swhash, type, event_id);
6585 6586 6587
	if (!head)
		goto end;

6588
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6589
		if (perf_swevent_match(event, type, event_id, data, regs))
6590
			perf_swevent_event(event, nr, data, regs);
6591
	}
6592 6593
end:
	rcu_read_unlock();
6594 6595
}

6596 6597
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6598
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6599
{
6600
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6601

6602
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6603
}
I
Ingo Molnar 已提交
6604
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6605

6606
inline void perf_swevent_put_recursion_context(int rctx)
6607
{
6608
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6609

6610
	put_recursion_context(swhash->recursion, rctx);
6611
}
6612

6613
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6614
{
6615
	struct perf_sample_data data;
6616

6617
	if (WARN_ON_ONCE(!regs))
6618
		return;
6619

6620
	perf_sample_data_init(&data, addr, 0);
6621
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6634 6635

	perf_swevent_put_recursion_context(rctx);
6636
fail:
6637
	preempt_enable_notrace();
6638 6639
}

6640
static void perf_swevent_read(struct perf_event *event)
6641 6642 6643
{
}

P
Peter Zijlstra 已提交
6644
static int perf_swevent_add(struct perf_event *event, int flags)
6645
{
6646
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6647
	struct hw_perf_event *hwc = &event->hw;
6648 6649
	struct hlist_head *head;

6650
	if (is_sampling_event(event)) {
6651
		hwc->last_period = hwc->sample_period;
6652
		perf_swevent_set_period(event);
6653
	}
6654

P
Peter Zijlstra 已提交
6655 6656
	hwc->state = !(flags & PERF_EF_START);

6657
	head = find_swevent_head(swhash, event);
6658 6659 6660 6661 6662 6663
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6664
		return -EINVAL;
6665
	}
6666 6667

	hlist_add_head_rcu(&event->hlist_entry, head);
6668
	perf_event_update_userpage(event);
6669

6670 6671 6672
	return 0;
}

P
Peter Zijlstra 已提交
6673
static void perf_swevent_del(struct perf_event *event, int flags)
6674
{
6675
	hlist_del_rcu(&event->hlist_entry);
6676 6677
}

P
Peter Zijlstra 已提交
6678
static void perf_swevent_start(struct perf_event *event, int flags)
6679
{
P
Peter Zijlstra 已提交
6680
	event->hw.state = 0;
6681
}
I
Ingo Molnar 已提交
6682

P
Peter Zijlstra 已提交
6683
static void perf_swevent_stop(struct perf_event *event, int flags)
6684
{
P
Peter Zijlstra 已提交
6685
	event->hw.state = PERF_HES_STOPPED;
6686 6687
}

6688 6689
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6690
swevent_hlist_deref(struct swevent_htable *swhash)
6691
{
6692 6693
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6694 6695
}

6696
static void swevent_hlist_release(struct swevent_htable *swhash)
6697
{
6698
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6699

6700
	if (!hlist)
6701 6702
		return;

6703
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6704
	kfree_rcu(hlist, rcu_head);
6705 6706 6707 6708
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6709
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6710

6711
	mutex_lock(&swhash->hlist_mutex);
6712

6713 6714
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6715

6716
	mutex_unlock(&swhash->hlist_mutex);
6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6729
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6730 6731
	int err = 0;

6732
	mutex_lock(&swhash->hlist_mutex);
6733

6734
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6735 6736 6737 6738 6739 6740 6741
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6742
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6743
	}
6744
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6745
exit:
6746
	mutex_unlock(&swhash->hlist_mutex);
6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6767
fail:
6768 6769 6770 6771 6772 6773 6774 6775 6776 6777
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6778
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6779

6780 6781 6782
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6783

6784 6785
	WARN_ON(event->parent);

6786
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6787 6788 6789 6790 6791
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6792
	u64 event_id = event->attr.config;
6793 6794 6795 6796

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6797 6798 6799 6800 6801 6802
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6803 6804 6805 6806 6807 6808 6809 6810 6811
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6812
	if (event_id >= PERF_COUNT_SW_MAX)
6813 6814 6815 6816 6817 6818 6819 6820 6821
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6822
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6823 6824 6825 6826 6827 6828 6829
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6830
	.task_ctx_nr	= perf_sw_context,
6831

6832 6833
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6834
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6835 6836 6837 6838
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6839 6840 6841
	.read		= perf_swevent_read,
};

6842 6843
#ifdef CONFIG_EVENT_TRACING

6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6858 6859
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6860 6861 6862 6863
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6864 6865 6866 6867 6868 6869 6870 6871 6872
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6873 6874
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6875 6876
{
	struct perf_sample_data data;
6877 6878
	struct perf_event *event;

6879 6880 6881 6882 6883
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6884
	perf_sample_data_init(&data, addr, 0);
6885 6886
	data.raw = &raw;

6887
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6888
		if (perf_tp_event_match(event, &data, regs))
6889
			perf_swevent_event(event, count, &data, regs);
6890
	}
6891

6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6917
	perf_swevent_put_recursion_context(rctx);
6918 6919 6920
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6921
static void tp_perf_event_destroy(struct perf_event *event)
6922
{
6923
	perf_trace_destroy(event);
6924 6925
}

6926
static int perf_tp_event_init(struct perf_event *event)
6927
{
6928 6929
	int err;

6930 6931 6932
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6933 6934 6935 6936 6937 6938
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6939 6940
	err = perf_trace_init(event);
	if (err)
6941
		return err;
6942

6943
	event->destroy = tp_perf_event_destroy;
6944

6945 6946 6947 6948
	return 0;
}

static struct pmu perf_tracepoint = {
6949 6950
	.task_ctx_nr	= perf_sw_context,

6951
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6952 6953 6954 6955
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6956 6957 6958 6959 6960
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6961
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6962
}
L
Li Zefan 已提交
6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6987 6988 6989 6990 6991 6992 6993 6994 6995 6996
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

6997 6998
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
6999 7000 7001 7002 7003 7004
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7005
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7030
#else
L
Li Zefan 已提交
7031

7032
static inline void perf_tp_register(void)
7033 7034
{
}
L
Li Zefan 已提交
7035 7036 7037 7038 7039 7040 7041 7042 7043 7044

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7045 7046 7047 7048 7049 7050 7051 7052
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7053
#endif /* CONFIG_EVENT_TRACING */
7054

7055
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7056
void perf_bp_event(struct perf_event *bp, void *data)
7057
{
7058 7059 7060
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7061
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7062

P
Peter Zijlstra 已提交
7063
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7064
		perf_swevent_event(bp, 1, &sample, regs);
7065 7066 7067
}
#endif

7068 7069 7070
/*
 * hrtimer based swevent callback
 */
7071

7072
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7073
{
7074 7075 7076 7077 7078
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7079

7080
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7081 7082 7083 7084

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7085
	event->pmu->read(event);
7086

7087
	perf_sample_data_init(&data, 0, event->hw.last_period);
7088 7089 7090
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7091
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7092
			if (__perf_event_overflow(event, 1, &data, regs))
7093 7094
				ret = HRTIMER_NORESTART;
	}
7095

7096 7097
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7098

7099
	return ret;
7100 7101
}

7102
static void perf_swevent_start_hrtimer(struct perf_event *event)
7103
{
7104
	struct hw_perf_event *hwc = &event->hw;
7105 7106 7107 7108
	s64 period;

	if (!is_sampling_event(event))
		return;
7109

7110 7111 7112 7113
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7114

7115 7116 7117 7118
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7119 7120
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7121
}
7122 7123

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7124
{
7125 7126
	struct hw_perf_event *hwc = &event->hw;

7127
	if (is_sampling_event(event)) {
7128
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7129
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7130 7131 7132

		hrtimer_cancel(&hwc->hrtimer);
	}
7133 7134
}

P
Peter Zijlstra 已提交
7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7155
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7156 7157 7158 7159
		event->attr.freq = 0;
	}
}

7160 7161 7162 7163 7164
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7165
{
7166 7167 7168
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7169
	now = local_clock();
7170 7171
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7172 7173
}

P
Peter Zijlstra 已提交
7174
static void cpu_clock_event_start(struct perf_event *event, int flags)
7175
{
P
Peter Zijlstra 已提交
7176
	local64_set(&event->hw.prev_count, local_clock());
7177 7178 7179
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7180
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7181
{
7182 7183 7184
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7185

P
Peter Zijlstra 已提交
7186 7187 7188 7189
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7190
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7191 7192 7193 7194 7195 7196 7197 7198 7199

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7200 7201 7202 7203
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7204

7205 7206 7207 7208 7209 7210 7211 7212
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7213 7214 7215 7216 7217 7218
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7219 7220
	perf_swevent_init_hrtimer(event);

7221
	return 0;
7222 7223
}

7224
static struct pmu perf_cpu_clock = {
7225 7226
	.task_ctx_nr	= perf_sw_context,

7227 7228
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7229
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7230 7231 7232 7233
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7234 7235 7236 7237 7238 7239 7240 7241
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7242
{
7243 7244
	u64 prev;
	s64 delta;
7245

7246 7247 7248 7249
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7250

P
Peter Zijlstra 已提交
7251
static void task_clock_event_start(struct perf_event *event, int flags)
7252
{
P
Peter Zijlstra 已提交
7253
	local64_set(&event->hw.prev_count, event->ctx->time);
7254 7255 7256
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7257
static void task_clock_event_stop(struct perf_event *event, int flags)
7258 7259 7260
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7261 7262 7263 7264 7265 7266
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7267
	perf_event_update_userpage(event);
7268

P
Peter Zijlstra 已提交
7269 7270 7271 7272 7273 7274
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7275 7276 7277 7278
}

static void task_clock_event_read(struct perf_event *event)
{
7279 7280 7281
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7282 7283 7284 7285 7286

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7287
{
7288 7289 7290 7291 7292 7293
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7294 7295 7296 7297 7298 7299
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7300 7301
	perf_swevent_init_hrtimer(event);

7302
	return 0;
L
Li Zefan 已提交
7303 7304
}

7305
static struct pmu perf_task_clock = {
7306 7307
	.task_ctx_nr	= perf_sw_context,

7308 7309
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7310
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7311 7312 7313 7314
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7315 7316
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7317

P
Peter Zijlstra 已提交
7318
static void perf_pmu_nop_void(struct pmu *pmu)
7319 7320
{
}
L
Li Zefan 已提交
7321

7322 7323 7324 7325
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7326
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7327
{
P
Peter Zijlstra 已提交
7328
	return 0;
L
Li Zefan 已提交
7329 7330
}

7331 7332 7333
DEFINE_PER_CPU(unsigned int, nop_txn_flags);

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7334
{
7335 7336 7337 7338 7339
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7340
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7341 7342
}

P
Peter Zijlstra 已提交
7343 7344
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7345 7346 7347 7348 7349 7350 7351
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7352 7353 7354
	perf_pmu_enable(pmu);
	return 0;
}
7355

P
Peter Zijlstra 已提交
7356
static void perf_pmu_cancel_txn(struct pmu *pmu)
7357
{
7358 7359 7360 7361 7362 7363 7364
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7365
	perf_pmu_enable(pmu);
7366 7367
}

7368 7369
static int perf_event_idx_default(struct perf_event *event)
{
7370
	return 0;
7371 7372
}

P
Peter Zijlstra 已提交
7373 7374 7375 7376
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7377
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7378
{
P
Peter Zijlstra 已提交
7379
	struct pmu *pmu;
7380

P
Peter Zijlstra 已提交
7381 7382
	if (ctxn < 0)
		return NULL;
7383

P
Peter Zijlstra 已提交
7384 7385 7386 7387
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7388

P
Peter Zijlstra 已提交
7389
	return NULL;
7390 7391
}

7392
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7393
{
7394 7395 7396 7397 7398 7399 7400
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7401 7402
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7403 7404 7405 7406 7407 7408
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7409

P
Peter Zijlstra 已提交
7410
	mutex_lock(&pmus_lock);
7411
	/*
P
Peter Zijlstra 已提交
7412
	 * Like a real lame refcount.
7413
	 */
7414 7415 7416
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7417
			goto out;
7418
		}
P
Peter Zijlstra 已提交
7419
	}
7420

7421
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7422 7423
out:
	mutex_unlock(&pmus_lock);
7424
}
P
Peter Zijlstra 已提交
7425
static struct idr pmu_idr;
7426

P
Peter Zijlstra 已提交
7427 7428 7429 7430 7431 7432 7433
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7434
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7435

7436 7437 7438 7439 7440 7441 7442 7443 7444 7445
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7446 7447
static DEFINE_MUTEX(mux_interval_mutex);

7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7467
	mutex_lock(&mux_interval_mutex);
7468 7469 7470
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7471 7472
	get_online_cpus();
	for_each_online_cpu(cpu) {
7473 7474 7475 7476
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7477 7478
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7479
	}
7480 7481
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7482 7483 7484

	return count;
}
7485
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7486

7487 7488 7489 7490
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7491
};
7492
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7493 7494 7495 7496

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7497
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7513
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7534
static struct lock_class_key cpuctx_mutex;
7535
static struct lock_class_key cpuctx_lock;
7536

7537
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7538
{
P
Peter Zijlstra 已提交
7539
	int cpu, ret;
7540

7541
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7542 7543 7544 7545
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7546

P
Peter Zijlstra 已提交
7547 7548 7549 7550 7551 7552
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7553 7554 7555
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7556 7557 7558 7559 7560
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7561 7562 7563 7564 7565 7566
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7567
skip_type:
P
Peter Zijlstra 已提交
7568 7569 7570
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7571

W
Wei Yongjun 已提交
7572
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7573 7574
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7575
		goto free_dev;
7576

P
Peter Zijlstra 已提交
7577 7578 7579 7580
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7581
		__perf_event_init_context(&cpuctx->ctx);
7582
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7583
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7584
		cpuctx->ctx.pmu = pmu;
7585

7586
		__perf_mux_hrtimer_init(cpuctx, cpu);
7587

7588
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7589
	}
7590

P
Peter Zijlstra 已提交
7591
got_cpu_context:
P
Peter Zijlstra 已提交
7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7603
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7604 7605
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7606
		}
7607
	}
7608

P
Peter Zijlstra 已提交
7609 7610 7611 7612 7613
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7614 7615 7616
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7617
	list_add_rcu(&pmu->entry, &pmus);
7618
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7619 7620
	ret = 0;
unlock:
7621 7622
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7623
	return ret;
P
Peter Zijlstra 已提交
7624

P
Peter Zijlstra 已提交
7625 7626 7627 7628
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7629 7630 7631 7632
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7633 7634 7635
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7636
}
7637
EXPORT_SYMBOL_GPL(perf_pmu_register);
7638

7639
void perf_pmu_unregister(struct pmu *pmu)
7640
{
7641 7642 7643
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7644

7645
	/*
P
Peter Zijlstra 已提交
7646 7647
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7648
	 */
7649
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7650
	synchronize_rcu();
7651

P
Peter Zijlstra 已提交
7652
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7653 7654
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7655 7656
	device_del(pmu->dev);
	put_device(pmu->dev);
7657
	free_pmu_context(pmu);
7658
}
7659
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7660

7661 7662
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7663
	struct perf_event_context *ctx = NULL;
7664 7665 7666 7667
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7668 7669

	if (event->group_leader != event) {
7670 7671 7672 7673 7674 7675
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7676 7677 7678
		BUG_ON(!ctx);
	}

7679 7680
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7681 7682 7683 7684

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7685 7686 7687 7688 7689 7690
	if (ret)
		module_put(pmu->module);

	return ret;
}

7691 7692 7693 7694
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
7695
	int ret;
7696 7697

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7698 7699 7700 7701

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7702
	if (pmu) {
7703
		ret = perf_try_init_event(pmu, event);
7704 7705
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7706
		goto unlock;
7707
	}
P
Peter Zijlstra 已提交
7708

7709
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7710
		ret = perf_try_init_event(pmu, event);
7711
		if (!ret)
P
Peter Zijlstra 已提交
7712
			goto unlock;
7713

7714 7715
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7716
			goto unlock;
7717
		}
7718
	}
P
Peter Zijlstra 已提交
7719 7720
	pmu = ERR_PTR(-ENOENT);
unlock:
7721
	srcu_read_unlock(&pmus_srcu, idx);
7722

7723
	return pmu;
7724 7725
}

7726 7727 7728 7729 7730 7731 7732 7733 7734
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7735 7736
static void account_event(struct perf_event *event)
{
7737 7738 7739
	if (event->parent)
		return;

7740 7741 7742 7743 7744 7745 7746 7747
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7748 7749 7750 7751
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7752 7753 7754 7755
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
		static_key_slow_inc(&perf_sched_events.key);
	}
7756
	if (has_branch_stack(event))
7757
		static_key_slow_inc(&perf_sched_events.key);
7758
	if (is_cgroup_event(event))
7759
		static_key_slow_inc(&perf_sched_events.key);
7760 7761

	account_event_cpu(event, event->cpu);
7762 7763
}

T
Thomas Gleixner 已提交
7764
/*
7765
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7766
 */
7767
static struct perf_event *
7768
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7769 7770 7771
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7772
		 perf_overflow_handler_t overflow_handler,
7773
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7774
{
P
Peter Zijlstra 已提交
7775
	struct pmu *pmu;
7776 7777
	struct perf_event *event;
	struct hw_perf_event *hwc;
7778
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7779

7780 7781 7782 7783 7784
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7785
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7786
	if (!event)
7787
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7788

7789
	/*
7790
	 * Single events are their own group leaders, with an
7791 7792 7793
	 * empty sibling list:
	 */
	if (!group_leader)
7794
		group_leader = event;
7795

7796 7797
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7798

7799 7800 7801
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7802
	INIT_LIST_HEAD(&event->rb_entry);
7803
	INIT_LIST_HEAD(&event->active_entry);
7804 7805
	INIT_HLIST_NODE(&event->hlist_entry);

7806

7807
	init_waitqueue_head(&event->waitq);
7808
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7809

7810
	mutex_init(&event->mmap_mutex);
7811

7812
	atomic_long_set(&event->refcount, 1);
7813 7814 7815 7816 7817
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7818

7819
	event->parent		= parent_event;
7820

7821
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7822
	event->id		= atomic64_inc_return(&perf_event_id);
7823

7824
	event->state		= PERF_EVENT_STATE_INACTIVE;
7825

7826 7827 7828
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7829 7830 7831
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7832
		 */
7833
		event->hw.target = task;
7834 7835
	}

7836 7837 7838 7839
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7840
	if (!overflow_handler && parent_event) {
7841
		overflow_handler = parent_event->overflow_handler;
7842 7843
		context = parent_event->overflow_handler_context;
	}
7844

7845
	event->overflow_handler	= overflow_handler;
7846
	event->overflow_handler_context = context;
7847

J
Jiri Olsa 已提交
7848
	perf_event__state_init(event);
7849

7850
	pmu = NULL;
7851

7852
	hwc = &event->hw;
7853
	hwc->sample_period = attr->sample_period;
7854
	if (attr->freq && attr->sample_freq)
7855
		hwc->sample_period = 1;
7856
	hwc->last_period = hwc->sample_period;
7857

7858
	local64_set(&hwc->period_left, hwc->sample_period);
7859

7860
	/*
7861
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7862
	 */
7863
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7864
		goto err_ns;
7865 7866 7867

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7868

7869 7870 7871 7872 7873 7874
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7875
	pmu = perf_init_event(event);
7876
	if (!pmu)
7877 7878
		goto err_ns;
	else if (IS_ERR(pmu)) {
7879
		err = PTR_ERR(pmu);
7880
		goto err_ns;
I
Ingo Molnar 已提交
7881
	}
7882

7883 7884 7885 7886
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7887
	if (!event->parent) {
7888 7889
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7890
			if (err)
7891
				goto err_per_task;
7892
		}
7893
	}
7894

7895
	return event;
7896

7897 7898 7899
err_per_task:
	exclusive_event_destroy(event);

7900 7901 7902
err_pmu:
	if (event->destroy)
		event->destroy(event);
7903
	module_put(pmu->module);
7904
err_ns:
7905 7906
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7907 7908 7909 7910 7911
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7912 7913
}

7914 7915
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7916 7917
{
	u32 size;
7918
	int ret;
7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7943 7944 7945
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7946 7947
	 */
	if (size > sizeof(*attr)) {
7948 7949 7950
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7951

7952 7953
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7954

7955
		for (; addr < end; addr++) {
7956 7957 7958 7959 7960 7961
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7962
		size = sizeof(*attr);
7963 7964 7965 7966 7967 7968
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7969
	if (attr->__reserved_1)
7970 7971 7972 7973 7974 7975 7976 7977
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8006 8007
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8008 8009
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8010
	}
8011

8012
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8013
		ret = perf_reg_validate(attr->sample_regs_user);
8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8032

8033 8034
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8035 8036 8037 8038 8039 8040 8041 8042 8043
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8044 8045
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8046
{
8047
	struct ring_buffer *rb = NULL;
8048 8049
	int ret = -EINVAL;

8050
	if (!output_event)
8051 8052
		goto set;

8053 8054
	/* don't allow circular references */
	if (event == output_event)
8055 8056
		goto out;

8057 8058 8059 8060 8061 8062 8063
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8064
	 * If its not a per-cpu rb, it must be the same task.
8065 8066 8067 8068
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8069 8070 8071 8072 8073 8074
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8075 8076 8077 8078 8079 8080 8081
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8082
set:
8083
	mutex_lock(&event->mmap_mutex);
8084 8085 8086
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8087

8088
	if (output_event) {
8089 8090 8091
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8092
			goto unlock;
8093 8094
	}

8095
	ring_buffer_attach(event, rb);
8096

8097
	ret = 0;
8098 8099 8100
unlock:
	mutex_unlock(&event->mmap_mutex);

8101 8102 8103 8104
out:
	return ret;
}

P
Peter Zijlstra 已提交
8105 8106 8107 8108 8109 8110 8111 8112 8113
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8151
/**
8152
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8153
 *
8154
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8155
 * @pid:		target pid
I
Ingo Molnar 已提交
8156
 * @cpu:		target cpu
8157
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8158
 */
8159 8160
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8161
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8162
{
8163 8164
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8165
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8166
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8167
	struct file *event_file = NULL;
8168
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8169
	struct task_struct *task = NULL;
8170
	struct pmu *pmu;
8171
	int event_fd;
8172
	int move_group = 0;
8173
	int err;
8174
	int f_flags = O_RDWR;
8175
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8176

8177
	/* for future expandability... */
S
Stephane Eranian 已提交
8178
	if (flags & ~PERF_FLAG_ALL)
8179 8180
		return -EINVAL;

8181 8182 8183
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8184

8185 8186 8187 8188 8189
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8190
	if (attr.freq) {
8191
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8192
			return -EINVAL;
8193 8194 8195
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8196 8197
	}

S
Stephane Eranian 已提交
8198 8199 8200 8201 8202 8203 8204 8205 8206
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8207 8208 8209 8210
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8211 8212 8213
	if (event_fd < 0)
		return event_fd;

8214
	if (group_fd != -1) {
8215 8216
		err = perf_fget_light(group_fd, &group);
		if (err)
8217
			goto err_fd;
8218
		group_leader = group.file->private_data;
8219 8220 8221 8222 8223 8224
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8225
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8226 8227 8228 8229 8230 8231 8232
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8233 8234 8235 8236 8237 8238
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8239 8240
	get_online_cpus();

8241 8242 8243
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8244
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8245
				 NULL, NULL, cgroup_fd);
8246 8247
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8248
		goto err_cpus;
8249 8250
	}

8251 8252 8253 8254 8255 8256 8257
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8258 8259
	account_event(event);

8260 8261 8262 8263 8264
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8265

8266 8267 8268 8269 8270 8271
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8294 8295 8296 8297

	/*
	 * Get the target context (task or percpu):
	 */
8298
	ctx = find_get_context(pmu, task, event);
8299 8300
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8301
		goto err_alloc;
8302 8303
	}

8304 8305 8306 8307 8308
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8309 8310 8311 8312 8313
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8314
	/*
8315
	 * Look up the group leader (we will attach this event to it):
8316
	 */
8317
	if (group_leader) {
8318
		err = -EINVAL;
8319 8320

		/*
I
Ingo Molnar 已提交
8321 8322 8323 8324
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8325
			goto err_context;
8326 8327 8328 8329 8330

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8331 8332 8333
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8334
		 */
8335
		if (move_group) {
8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8349 8350 8351 8352 8353 8354
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8355 8356 8357
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8358
		if (attr.exclusive || attr.pinned)
8359
			goto err_context;
8360 8361 8362 8363 8364
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8365
			goto err_context;
8366
	}
T
Thomas Gleixner 已提交
8367

8368 8369
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8370 8371
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8372
		goto err_context;
8373
	}
8374

8375
	if (move_group) {
P
Peter Zijlstra 已提交
8376 8377 8378 8379 8380 8381 8382
		gctx = group_leader->ctx;

		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8383

8384
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8385

8386 8387
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8388
			perf_remove_from_context(sibling, false);
8389 8390
			put_ctx(gctx);
		}
P
Peter Zijlstra 已提交
8391 8392
	} else {
		mutex_lock(&ctx->mutex);
8393
	}
8394

8395
	WARN_ON_ONCE(ctx->parent_ctx);
8396 8397

	if (move_group) {
P
Peter Zijlstra 已提交
8398 8399 8400 8401
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8402
		synchronize_rcu();
P
Peter Zijlstra 已提交
8403

8404 8405 8406 8407 8408 8409 8410 8411 8412 8413
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8414 8415
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8416
			perf_event__state_init(sibling);
8417
			perf_install_in_context(ctx, sibling, sibling->cpu);
8418 8419
			get_ctx(ctx);
		}
8420 8421 8422 8423 8424 8425 8426 8427 8428

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8429 8430
	}

8431 8432 8433 8434 8435 8436 8437
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
		mutex_unlock(&ctx->mutex);
		fput(event_file);
		goto err_context;
	}

8438
	perf_install_in_context(ctx, event, event->cpu);
8439
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8440 8441 8442 8443 8444

	if (move_group) {
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
	}
8445
	mutex_unlock(&ctx->mutex);
8446

8447 8448
	put_online_cpus();

8449
	event->owner = current;
P
Peter Zijlstra 已提交
8450

8451 8452 8453
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8454

8455 8456 8457 8458
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
8459
	perf_event__id_header_size(event);
8460

8461 8462 8463 8464 8465 8466
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8467
	fdput(group);
8468 8469
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8470

8471
err_context:
8472
	perf_unpin_context(ctx);
8473
	put_ctx(ctx);
8474
err_alloc:
8475
	free_event(event);
8476
err_cpus:
8477
	put_online_cpus();
8478
err_task:
P
Peter Zijlstra 已提交
8479 8480
	if (task)
		put_task_struct(task);
8481
err_group_fd:
8482
	fdput(group);
8483 8484
err_fd:
	put_unused_fd(event_fd);
8485
	return err;
T
Thomas Gleixner 已提交
8486 8487
}

8488 8489 8490 8491 8492
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8493
 * @task: task to profile (NULL for percpu)
8494 8495 8496
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8497
				 struct task_struct *task,
8498 8499
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8500 8501
{
	struct perf_event_context *ctx;
8502
	struct perf_event *event;
8503
	int err;
8504

8505 8506 8507
	/*
	 * Get the target context (task or percpu):
	 */
8508

8509
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8510
				 overflow_handler, context, -1);
8511 8512 8513 8514
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8515

8516 8517 8518
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8519 8520
	account_event(event);

8521
	ctx = find_get_context(event->pmu, task, event);
8522 8523
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8524
		goto err_free;
8525
	}
8526 8527 8528

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8529 8530 8531 8532 8533 8534 8535 8536
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8537
	perf_install_in_context(ctx, event, cpu);
8538
	perf_unpin_context(ctx);
8539 8540 8541 8542
	mutex_unlock(&ctx->mutex);

	return event;

8543 8544 8545
err_free:
	free_event(event);
err:
8546
	return ERR_PTR(err);
8547
}
8548
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8549

8550 8551 8552 8553 8554 8555 8556 8557 8558 8559
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8560 8561 8562 8563 8564
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8565 8566
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8567
		perf_remove_from_context(event, false);
8568
		unaccount_event_cpu(event, src_cpu);
8569
		put_ctx(src_ctx);
8570
		list_add(&event->migrate_entry, &events);
8571 8572
	}

8573 8574 8575
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8576 8577
	synchronize_rcu();

8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8602 8603
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8604 8605
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8606
		account_event_cpu(event, dst_cpu);
8607 8608 8609 8610
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8611
	mutex_unlock(&src_ctx->mutex);
8612 8613 8614
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8615
static void sync_child_event(struct perf_event *child_event,
8616
			       struct task_struct *child)
8617
{
8618
	struct perf_event *parent_event = child_event->parent;
8619
	u64 child_val;
8620

8621 8622
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8623

P
Peter Zijlstra 已提交
8624
	child_val = perf_event_count(child_event);
8625 8626 8627 8628

	/*
	 * Add back the child's count to the parent's count:
	 */
8629
	atomic64_add(child_val, &parent_event->child_count);
8630 8631 8632 8633
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8634 8635

	/*
8636
	 * Remove this event from the parent's list
8637
	 */
8638 8639 8640 8641
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8642

8643 8644 8645 8646 8647 8648
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8649
	/*
8650
	 * Release the parent event, if this was the last
8651 8652
	 * reference to it.
	 */
8653
	put_event(parent_event);
8654 8655
}

8656
static void
8657 8658
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8659
			 struct task_struct *child)
8660
{
8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8674

8675
	/*
8676
	 * It can happen that the parent exits first, and has events
8677
	 * that are still around due to the child reference. These
8678
	 * events need to be zapped.
8679
	 */
8680
	if (child_event->parent) {
8681 8682
		sync_child_event(child_event, child);
		free_event(child_event);
8683 8684 8685
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8686
	}
8687 8688
}

P
Peter Zijlstra 已提交
8689
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8690
{
8691
	struct perf_event *child_event, *next;
8692
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8693
	unsigned long flags;
8694

P
Peter Zijlstra 已提交
8695
	if (likely(!child->perf_event_ctxp[ctxn])) {
8696
		perf_event_task(child, NULL, 0);
8697
		return;
P
Peter Zijlstra 已提交
8698
	}
8699

8700
	local_irq_save(flags);
8701 8702 8703 8704 8705 8706
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8707
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8708 8709 8710

	/*
	 * Take the context lock here so that if find_get_context is
8711
	 * reading child->perf_event_ctxp, we wait until it has
8712 8713
	 * incremented the context's refcount before we do put_ctx below.
	 */
8714
	raw_spin_lock(&child_ctx->lock);
8715
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
8716
	child->perf_event_ctxp[ctxn] = NULL;
8717

8718 8719 8720
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8721
	 * the events from it.
8722
	 */
8723
	clone_ctx = unclone_ctx(child_ctx);
8724
	update_context_time(child_ctx);
8725
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8726

8727 8728
	if (clone_ctx)
		put_ctx(clone_ctx);
8729

P
Peter Zijlstra 已提交
8730
	/*
8731 8732 8733
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8734
	 */
8735
	perf_event_task(child, child_ctx, 0);
8736

8737 8738 8739
	/*
	 * We can recurse on the same lock type through:
	 *
8740 8741
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8742 8743
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8744 8745 8746
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8747
	mutex_lock(&child_ctx->mutex);
8748

8749
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8750
		__perf_event_exit_task(child_event, child_ctx, child);
8751

8752 8753 8754
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8755 8756
}

P
Peter Zijlstra 已提交
8757 8758 8759 8760 8761
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8762
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8763 8764
	int ctxn;

P
Peter Zijlstra 已提交
8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8780 8781 8782 8783
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8796
	put_event(parent);
8797

P
Peter Zijlstra 已提交
8798
	raw_spin_lock_irq(&ctx->lock);
8799
	perf_group_detach(event);
8800
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8801
	raw_spin_unlock_irq(&ctx->lock);
8802 8803 8804
	free_event(event);
}

8805
/*
P
Peter Zijlstra 已提交
8806
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8807
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8808 8809 8810
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8811
 */
8812
void perf_event_free_task(struct task_struct *task)
8813
{
P
Peter Zijlstra 已提交
8814
	struct perf_event_context *ctx;
8815
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8816
	int ctxn;
8817

P
Peter Zijlstra 已提交
8818 8819 8820 8821
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8822

P
Peter Zijlstra 已提交
8823
		mutex_lock(&ctx->mutex);
8824
again:
P
Peter Zijlstra 已提交
8825 8826 8827
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8828

P
Peter Zijlstra 已提交
8829 8830 8831
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8832

P
Peter Zijlstra 已提交
8833 8834 8835
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8836

P
Peter Zijlstra 已提交
8837
		mutex_unlock(&ctx->mutex);
8838

P
Peter Zijlstra 已提交
8839 8840
		put_ctx(ctx);
	}
8841 8842
}

8843 8844 8845 8846 8847 8848 8849 8850
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875
struct perf_event *perf_event_get(unsigned int fd)
{
	int err;
	struct fd f;
	struct perf_event *event;

	err = perf_fget_light(fd, &f);
	if (err)
		return ERR_PTR(err);

	event = f.file->private_data;
	atomic_long_inc(&event->refcount);
	fdput(f);

	return event;
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8887
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8888
	struct perf_event *child_event;
8889
	unsigned long flags;
P
Peter Zijlstra 已提交
8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8902
					   child,
P
Peter Zijlstra 已提交
8903
					   group_leader, parent_event,
8904
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8905 8906
	if (IS_ERR(child_event))
		return child_event;
8907

8908 8909
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8910 8911 8912 8913
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8914 8915 8916 8917 8918 8919 8920
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8921
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8938 8939
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8940

8941 8942 8943 8944
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8945
	perf_event__id_header_size(child_event);
8946

P
Peter Zijlstra 已提交
8947 8948 8949
	/*
	 * Link it up in the child's context:
	 */
8950
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8951
	add_event_to_ctx(child_event, child_ctx);
8952
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
8986 8987 8988 8989 8990
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
8991
		   struct task_struct *child, int ctxn,
8992 8993 8994
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
8995
	struct perf_event_context *child_ctx;
8996 8997 8998 8999

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9000 9001
	}

9002
	child_ctx = child->perf_event_ctxp[ctxn];
9003 9004 9005 9006 9007 9008 9009
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9010

9011
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9012 9013
		if (!child_ctx)
			return -ENOMEM;
9014

P
Peter Zijlstra 已提交
9015
		child->perf_event_ctxp[ctxn] = child_ctx;
9016 9017 9018 9019 9020 9021 9022 9023 9024
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9025 9026
}

9027
/*
9028
 * Initialize the perf_event context in task_struct
9029
 */
9030
static int perf_event_init_context(struct task_struct *child, int ctxn)
9031
{
9032
	struct perf_event_context *child_ctx, *parent_ctx;
9033 9034
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9035
	struct task_struct *parent = current;
9036
	int inherited_all = 1;
9037
	unsigned long flags;
9038
	int ret = 0;
9039

P
Peter Zijlstra 已提交
9040
	if (likely(!parent->perf_event_ctxp[ctxn]))
9041 9042
		return 0;

9043
	/*
9044 9045
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9046
	 */
P
Peter Zijlstra 已提交
9047
	parent_ctx = perf_pin_task_context(parent, ctxn);
9048 9049
	if (!parent_ctx)
		return 0;
9050

9051 9052 9053 9054 9055 9056 9057
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9058 9059 9060 9061
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9062
	mutex_lock(&parent_ctx->mutex);
9063 9064 9065 9066 9067

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9068
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9069 9070
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9071 9072 9073
		if (ret)
			break;
	}
9074

9075 9076 9077 9078 9079 9080 9081 9082 9083
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9084
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9085 9086
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9087
		if (ret)
9088
			break;
9089 9090
	}

9091 9092 9093
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9094
	child_ctx = child->perf_event_ctxp[ctxn];
9095

9096
	if (child_ctx && inherited_all) {
9097 9098 9099
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9100 9101 9102
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9103
		 */
P
Peter Zijlstra 已提交
9104
		cloned_ctx = parent_ctx->parent_ctx;
9105 9106
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9107
			child_ctx->parent_gen = parent_ctx->parent_gen;
9108 9109 9110 9111 9112
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9113 9114
	}

P
Peter Zijlstra 已提交
9115
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9116
	mutex_unlock(&parent_ctx->mutex);
9117

9118
	perf_unpin_context(parent_ctx);
9119
	put_ctx(parent_ctx);
9120

9121
	return ret;
9122 9123
}

P
Peter Zijlstra 已提交
9124 9125 9126 9127 9128 9129 9130
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9131 9132 9133 9134
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9135 9136
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9137 9138
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9139
			return ret;
P
Peter Zijlstra 已提交
9140
		}
P
Peter Zijlstra 已提交
9141 9142 9143 9144 9145
	}

	return 0;
}

9146 9147
static void __init perf_event_init_all_cpus(void)
{
9148
	struct swevent_htable *swhash;
9149 9150 9151
	int cpu;

	for_each_possible_cpu(cpu) {
9152 9153
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9154
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9155 9156 9157
	}
}

9158
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9159
{
P
Peter Zijlstra 已提交
9160
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9161

9162
	mutex_lock(&swhash->hlist_mutex);
9163
	swhash->online = true;
9164
	if (swhash->hlist_refcount > 0) {
9165 9166
		struct swevent_hlist *hlist;

9167 9168 9169
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9170
	}
9171
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9172 9173
}

9174
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9175
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9176
{
9177
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
9178
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
9179

P
Peter Zijlstra 已提交
9180
	rcu_read_lock();
9181 9182
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
9183
	rcu_read_unlock();
T
Thomas Gleixner 已提交
9184
}
P
Peter Zijlstra 已提交
9185 9186 9187 9188 9189 9190 9191 9192 9193

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9194
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9195 9196 9197 9198 9199 9200 9201 9202

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9203
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9204
{
9205
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9206

P
Peter Zijlstra 已提交
9207 9208
	perf_event_exit_cpu_context(cpu);

9209
	mutex_lock(&swhash->hlist_mutex);
9210
	swhash->online = false;
9211 9212
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9213 9214
}
#else
9215
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9216 9217
#endif

P
Peter Zijlstra 已提交
9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9238
static int
T
Thomas Gleixner 已提交
9239 9240 9241 9242
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9243
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9244 9245

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9246
	case CPU_DOWN_FAILED:
9247
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9248 9249
		break;

P
Peter Zijlstra 已提交
9250
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9251
	case CPU_DOWN_PREPARE:
9252
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9253 9254 9255 9256 9257 9258 9259 9260
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9261
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9262
{
9263 9264
	int ret;

P
Peter Zijlstra 已提交
9265 9266
	idr_init(&pmu_idr);

9267
	perf_event_init_all_cpus();
9268
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9269 9270 9271
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9272 9273
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9274
	register_reboot_notifier(&perf_reboot_notifier);
9275 9276 9277

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9278 9279 9280

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9281 9282 9283 9284 9285 9286 9287

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9288
}
P
Peter Zijlstra 已提交
9289

9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9329 9330

#ifdef CONFIG_CGROUP_PERF
9331 9332
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9333 9334 9335
{
	struct perf_cgroup *jc;

9336
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9349
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9350
{
9351 9352
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

9364 9365
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9366
{
9367 9368
	struct task_struct *task;

9369
	cgroup_taskset_for_each(task, tset)
9370
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9371 9372
}

9373 9374
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
9375
			     struct task_struct *task)
S
Stephane Eranian 已提交
9376
{
9377
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9378 9379
}

9380
struct cgroup_subsys perf_event_cgrp_subsys = {
9381 9382
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9383
	.exit		= perf_cgroup_exit,
9384
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9385 9386
};
#endif /* CONFIG_CGROUP_PERF */