core.c 220.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

151 152 153 154
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
155
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
156 157
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * This is because we need a ctx->lock serialized variable (ctx->is_active)
 * to reliably determine if a particular task/context is scheduled in. The
 * task_curr() use in task_function_call() is racy in that a remote context
 * switch is not a single atomic operation.
 *
 * As is, the situation is 'safe' because we set rq->curr before we do the
 * actual context switch. This means that task_curr() will fail early, but
 * we'll continue spinning on ctx->is_active until we've passed
 * perf_event_task_sched_out().
 *
 * Without this ctx->lock serialized variable we could have race where we find
 * the task (and hence the context) would not be active while in fact they are.
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206
	int ret = 0;
207 208 209

	WARN_ON_ONCE(!irqs_disabled());

210
	perf_ctx_lock(cpuctx, task_ctx);
211 212 213 214 215
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
216 217 218 219
		if (ctx->task != current) {
			ret = -EAGAIN;
			goto unlock;
		}
220 221 222 223 224 225 226 227 228 229 230 231 232

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
233 234 235
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236
	}
237

238
	efs->func(event, cpuctx, ctx, efs->data);
239
unlock:
240 241
	perf_ctx_unlock(cpuctx, task_ctx);

242
	return ret;
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
}

static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};

	int ret = event_function(&efs);
	WARN_ON_ONCE(ret);
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
258 259
{
	struct perf_event_context *ctx = event->ctx;
260
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261 262 263 264 265
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
266

P
Peter Zijlstra 已提交
267 268 269 270 271 272 273 274 275
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}

276
	if (!task) {
277
		cpu_function_call(event->cpu, event_function, &efs);
278 279 280 281
		return;
	}

again:
282 283 284
	if (task == TASK_TOMBSTONE)
		return;

285
	if (!task_function_call(task, event_function, &efs))
286 287 288
		return;

	raw_spin_lock_irq(&ctx->lock);
289 290 291 292 293 294 295 296 297 298 299
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
	if (task != TASK_TOMBSTONE) {
		if (ctx->is_active) {
			raw_spin_unlock_irq(&ctx->lock);
			goto again;
		}
		func(event, NULL, ctx, data);
300 301 302 303
	}
	raw_spin_unlock_irq(&ctx->lock);
}

S
Stephane Eranian 已提交
304 305
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
306 307
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
308

309 310 311 312 313 314 315
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

316 317 318 319 320 321
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
322 323 324 325
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
326
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
327
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
328
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
329

330 331 332
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
333
static atomic_t nr_freq_events __read_mostly;
334
static atomic_t nr_switch_events __read_mostly;
335

P
Peter Zijlstra 已提交
336 337 338 339
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

340
/*
341
 * perf event paranoia level:
342 343
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
344
 *   1 - disallow cpu events for unpriv
345
 *   2 - disallow kernel profiling for unpriv
346
 */
347
int sysctl_perf_event_paranoid __read_mostly = 1;
348

349 350
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
351 352

/*
353
 * max perf event sample rate
354
 */
355 356 357 358 359 360 361 362 363
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
364 365
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
366

367
static void update_perf_cpu_limits(void)
368 369 370 371
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
372
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
373
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
374
}
P
Peter Zijlstra 已提交
375

376 377
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
378 379 380 381
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
382
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
383 384 385 386 387

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
406 407 408

	return 0;
}
409

410 411 412 413 414 415 416
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
417
static DEFINE_PER_CPU(u64, running_sample_length);
418

419
static void perf_duration_warn(struct irq_work *w)
420
{
421
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
422
	u64 avg_local_sample_len;
423
	u64 local_samples_len;
424

425
	local_samples_len = __this_cpu_read(running_sample_length);
426 427 428 429 430
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
431
			avg_local_sample_len, allowed_ns >> 1,
432 433 434 435 436 437 438
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
439
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
440 441
	u64 avg_local_sample_len;
	u64 local_samples_len;
442

P
Peter Zijlstra 已提交
443
	if (allowed_ns == 0)
444 445 446
		return;

	/* decay the counter by 1 average sample */
447
	local_samples_len = __this_cpu_read(running_sample_length);
448 449
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
450
	__this_cpu_write(running_sample_length, local_samples_len);
451 452 453 454 455 456 457 458

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
459
	if (avg_local_sample_len <= allowed_ns)
460 461 462 463 464 465 466 467 468 469
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
470

471 472 473 474 475 476
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
477 478
}

479
static atomic64_t perf_event_id;
480

481 482 483 484
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
485 486 487 488 489
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
490

491
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
492

493
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
494
{
495
	return "pmu";
T
Thomas Gleixner 已提交
496 497
}

498 499 500 501 502
static inline u64 perf_clock(void)
{
	return local_clock();
}

503 504 505 506 507
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
508 509 510 511 512 513 514 515
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
532 533 534 535
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
536
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
575 576
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
577
	/*
578 579
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
580
	 */
581
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
582 583
		return;

584
	cgrp = perf_cgroup_from_task(current, event->ctx);
585 586 587 588 589
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
590 591 592
}

static inline void
593 594
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
595 596 597 598
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

599 600 601 602 603 604
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
605 606
		return;

607
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
608
	info = this_cpu_ptr(cgrp->info);
609
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
610 611 612 613 614 615 616 617 618 619 620
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
621
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
641 642
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
643 644 645 646 647 648 649 650 651

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
652 653
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
654 655 656 657 658 659 660 661 662 663 664

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
665
				WARN_ON_ONCE(cpuctx->cgrp);
666 667 668 669
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
670 671
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
672
				 */
673
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
674 675
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
676 677
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
678 679 680 681 682 683
		}
	}

	local_irq_restore(flags);
}

684 685
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
686
{
687 688 689
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

690
	rcu_read_lock();
691 692
	/*
	 * we come here when we know perf_cgroup_events > 0
693 694
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
695
	 */
696
	cgrp1 = perf_cgroup_from_task(task, NULL);
697
	cgrp2 = perf_cgroup_from_task(next, NULL);
698 699 700 701 702 703 704 705

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
706 707

	rcu_read_unlock();
S
Stephane Eranian 已提交
708 709
}

710 711
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
712
{
713 714 715
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

716
	rcu_read_lock();
717 718
	/*
	 * we come here when we know perf_cgroup_events > 0
719 720
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
721
	 */
722 723
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
724 725 726 727 728 729 730 731

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
732 733

	rcu_read_unlock();
S
Stephane Eranian 已提交
734 735 736 737 738 739 740 741
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
742 743
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
744

745
	if (!f.file)
S
Stephane Eranian 已提交
746 747
		return -EBADF;

A
Al Viro 已提交
748
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
749
					 &perf_event_cgrp_subsys);
750 751 752 753
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
767
out:
768
	fdput(f);
S
Stephane Eranian 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

842 843
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
844 845 846
{
}

847 848
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
849 850 851 852 853 854 855 856 857 858 859
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
860 861
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

892 893 894 895 896 897 898 899
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
900
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
901 902 903 904 905 906 907 908 909
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
910 911
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
912
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
913 914 915
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
916

P
Peter Zijlstra 已提交
917
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
918 919
}

920
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
921
{
922
	struct hrtimer *timer = &cpuctx->hrtimer;
923
	struct pmu *pmu = cpuctx->ctx.pmu;
924
	u64 interval;
925 926 927 928 929

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

930 931 932 933
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
934 935 936
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
937

938
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
939

P
Peter Zijlstra 已提交
940 941
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
942
	timer->function = perf_mux_hrtimer_handler;
943 944
}

945
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
946
{
947
	struct hrtimer *timer = &cpuctx->hrtimer;
948
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
949
	unsigned long flags;
950 951 952

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
953
		return 0;
954

P
Peter Zijlstra 已提交
955 956 957 958 959 960 961
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
962

963
	return 0;
964 965
}

P
Peter Zijlstra 已提交
966
void perf_pmu_disable(struct pmu *pmu)
967
{
P
Peter Zijlstra 已提交
968 969 970
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
971 972
}

P
Peter Zijlstra 已提交
973
void perf_pmu_enable(struct pmu *pmu)
974
{
P
Peter Zijlstra 已提交
975 976 977
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
978 979
}

980
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
981 982

/*
983 984 985 986
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
987
 */
988
static void perf_event_ctx_activate(struct perf_event_context *ctx)
989
{
990
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
991

992
	WARN_ON(!irqs_disabled());
993

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1006 1007
}

1008
static void get_ctx(struct perf_event_context *ctx)
1009
{
1010
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1011 1012
}

1013 1014 1015 1016 1017 1018 1019 1020 1021
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1022
static void put_ctx(struct perf_event_context *ctx)
1023
{
1024 1025 1026
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1027
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1028
			put_task_struct(ctx->task);
1029
		call_rcu(&ctx->rcu_head, free_ctx);
1030
	}
1031 1032
}

P
Peter Zijlstra 已提交
1033 1034 1035 1036 1037 1038 1039
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1040 1041 1042 1043
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1044 1045
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1089
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1090 1091 1092
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1093 1094
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1107
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1117 1118 1119 1120 1121 1122
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1123 1124 1125 1126 1127 1128 1129
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1130 1131 1132 1133 1134 1135 1136
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1137
{
1138 1139 1140 1141 1142
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1143
		ctx->parent_ctx = NULL;
1144
	ctx->generation++;
1145 1146

	return parent_ctx;
1147 1148
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1171
/*
1172
 * If we inherit events we want to return the parent event id
1173 1174
 * to userspace.
 */
1175
static u64 primary_event_id(struct perf_event *event)
1176
{
1177
	u64 id = event->id;
1178

1179 1180
	if (event->parent)
		id = event->parent->id;
1181 1182 1183 1184

	return id;
}

1185
/*
1186
 * Get the perf_event_context for a task and lock it.
1187
 *
1188 1189 1190
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1191
static struct perf_event_context *
P
Peter Zijlstra 已提交
1192
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1193
{
1194
	struct perf_event_context *ctx;
1195

P
Peter Zijlstra 已提交
1196
retry:
1197 1198 1199
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1200
	 * part of the read side critical section was irqs-enabled -- see
1201 1202 1203
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1204
	 * side critical section has interrupts disabled.
1205
	 */
1206
	local_irq_save(*flags);
1207
	rcu_read_lock();
P
Peter Zijlstra 已提交
1208
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1209 1210 1211 1212
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1213
		 * perf_event_task_sched_out, though the
1214 1215 1216 1217 1218 1219
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1220
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1221
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1222
			raw_spin_unlock(&ctx->lock);
1223
			rcu_read_unlock();
1224
			local_irq_restore(*flags);
1225 1226
			goto retry;
		}
1227

1228 1229
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1230
			raw_spin_unlock(&ctx->lock);
1231
			ctx = NULL;
P
Peter Zijlstra 已提交
1232 1233
		} else {
			WARN_ON_ONCE(ctx->task != task);
1234
		}
1235 1236
	}
	rcu_read_unlock();
1237 1238
	if (!ctx)
		local_irq_restore(*flags);
1239 1240 1241 1242 1243 1244 1245 1246
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1247 1248
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1249
{
1250
	struct perf_event_context *ctx;
1251 1252
	unsigned long flags;

P
Peter Zijlstra 已提交
1253
	ctx = perf_lock_task_context(task, ctxn, &flags);
1254 1255
	if (ctx) {
		++ctx->pin_count;
1256
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1257 1258 1259 1260
	}
	return ctx;
}

1261
static void perf_unpin_context(struct perf_event_context *ctx)
1262 1263 1264
{
	unsigned long flags;

1265
	raw_spin_lock_irqsave(&ctx->lock, flags);
1266
	--ctx->pin_count;
1267
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1268 1269
}

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1281 1282 1283
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1284 1285 1286 1287

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1288 1289 1290
	return ctx ? ctx->time : 0;
}

1291 1292
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1293
 * The caller of this function needs to hold the ctx->lock.
1294 1295 1296 1297 1298 1299 1300 1301 1302
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1314
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1315 1316
	else if (ctx->is_active)
		run_end = ctx->time;
1317 1318 1319 1320
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1321 1322 1323 1324

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1325
		run_end = perf_event_time(event);
1326 1327

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1328

1329 1330
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1343 1344 1345 1346 1347 1348 1349 1350 1351
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1352
/*
1353
 * Add a event from the lists for its context.
1354 1355
 * Must be called with ctx->mutex and ctx->lock held.
 */
1356
static void
1357
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1358
{
P
Peter Zijlstra 已提交
1359 1360
	lockdep_assert_held(&ctx->lock);

1361 1362
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1363 1364

	/*
1365 1366 1367
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1368
	 */
1369
	if (event->group_leader == event) {
1370 1371
		struct list_head *list;

1372 1373 1374
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1375 1376
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1377
	}
P
Peter Zijlstra 已提交
1378

1379
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1380 1381
		ctx->nr_cgroups++;

1382 1383 1384
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1385
		ctx->nr_stat++;
1386 1387

	ctx->generation++;
1388 1389
}

J
Jiri Olsa 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1399
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1415
		nr += nr_siblings;
1416 1417 1418 1419 1420 1421 1422
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1423
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1424 1425 1426 1427 1428 1429 1430
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1431 1432 1433 1434 1435 1436
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1437 1438 1439
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1440 1441 1442
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1443 1444 1445
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1446 1447 1448
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1449 1450 1451
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1463 1464 1465 1466 1467 1468
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1469 1470 1471 1472 1473 1474
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1475 1476 1477
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1478 1479 1480 1481 1482 1483 1484 1485 1486
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1487
	event->id_header_size = size;
1488 1489
}

P
Peter Zijlstra 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1511 1512
static void perf_group_attach(struct perf_event *event)
{
1513
	struct perf_event *group_leader = event->group_leader, *pos;
1514

P
Peter Zijlstra 已提交
1515 1516 1517 1518 1519 1520
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1521 1522 1523 1524 1525
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1526 1527
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1528 1529 1530 1531 1532 1533
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1534 1535 1536 1537 1538

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1539 1540
}

1541
/*
1542
 * Remove a event from the lists for its context.
1543
 * Must be called with ctx->mutex and ctx->lock held.
1544
 */
1545
static void
1546
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1547
{
1548
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1549 1550 1551 1552

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1553 1554 1555 1556
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1557
		return;
1558 1559 1560

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1561
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1562
		ctx->nr_cgroups--;
1563 1564 1565 1566
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1567 1568
		cpuctx = __get_cpu_context(ctx);
		/*
1569 1570
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1571 1572 1573 1574
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1575

1576 1577
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1578
		ctx->nr_stat--;
1579

1580
	list_del_rcu(&event->event_entry);
1581

1582 1583
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1584

1585
	update_group_times(event);
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1596 1597

	ctx->generation++;
1598 1599
}

1600
static void perf_group_detach(struct perf_event *event)
1601 1602
{
	struct perf_event *sibling, *tmp;
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1619
		goto out;
1620 1621 1622 1623
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1624

1625
	/*
1626 1627
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1628
	 * to whatever list we are on.
1629
	 */
1630
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1631 1632
		if (list)
			list_move_tail(&sibling->group_entry, list);
1633
		sibling->group_leader = sibling;
1634 1635 1636

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1637 1638

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1639
	}
1640 1641 1642 1643 1644 1645

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1646 1647
}

1648 1649 1650 1651 1652
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
1653
	return event && event->state == PERF_EVENT_STATE_EXIT;
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1687 1688 1689 1690 1691 1692
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1693 1694 1695
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1696
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1697
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1698 1699
}

1700 1701
static void
event_sched_out(struct perf_event *event,
1702
		  struct perf_cpu_context *cpuctx,
1703
		  struct perf_event_context *ctx)
1704
{
1705
	u64 tstamp = perf_event_time(event);
1706
	u64 delta;
P
Peter Zijlstra 已提交
1707 1708 1709 1710

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1711 1712 1713 1714 1715 1716 1717 1718
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1719
		delta = tstamp - event->tstamp_stopped;
1720
		event->tstamp_running += delta;
1721
		event->tstamp_stopped = tstamp;
1722 1723
	}

1724
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1725
		return;
1726

1727 1728
	perf_pmu_disable(event->pmu);

1729 1730 1731 1732
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1733
	}
1734
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1735
	event->pmu->del(event, 0);
1736
	event->oncpu = -1;
1737

1738
	if (!is_software_event(event))
1739
		cpuctx->active_oncpu--;
1740 1741
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1742 1743
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1744
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1745
		cpuctx->exclusive = 0;
1746

1747 1748 1749
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1750
	perf_pmu_enable(event->pmu);
1751 1752
}

1753
static void
1754
group_sched_out(struct perf_event *group_event,
1755
		struct perf_cpu_context *cpuctx,
1756
		struct perf_event_context *ctx)
1757
{
1758
	struct perf_event *event;
1759
	int state = group_event->state;
1760

1761
	event_sched_out(group_event, cpuctx, ctx);
1762 1763 1764 1765

	/*
	 * Schedule out siblings (if any):
	 */
1766 1767
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1768

1769
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1770 1771 1772
		cpuctx->exclusive = 0;
}

1773
#define DETACH_GROUP	0x01UL
1774
#define DETACH_STATE	0x02UL
1775

T
Thomas Gleixner 已提交
1776
/*
1777
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1778
 *
1779
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1780 1781
 * remove it from the context list.
 */
1782 1783 1784 1785 1786
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1787
{
1788
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1789

1790
	event_sched_out(event, cpuctx, ctx);
1791
	if (flags & DETACH_GROUP)
1792
		perf_group_detach(event);
1793
	list_del_event(event, ctx);
1794 1795
	if (flags & DETACH_STATE)
		event->state = PERF_EVENT_STATE_EXIT;
1796 1797

	if (!ctx->nr_events && ctx->is_active) {
1798
		ctx->is_active = 0;
1799 1800 1801 1802
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1803
	}
T
Thomas Gleixner 已提交
1804 1805 1806
}

/*
1807
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1808
 *
1809 1810
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1811 1812
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1813
 * When called from perf_event_exit_task, it's OK because the
1814
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1815
 */
1816
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1817
{
1818
	lockdep_assert_held(&event->ctx->mutex);
1819

1820
	event_function_call(event, __perf_remove_from_context, (void *)flags);
T
Thomas Gleixner 已提交
1821 1822
}

1823
/*
1824
 * Cross CPU call to disable a performance event
1825
 */
1826 1827 1828 1829
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1830
{
1831 1832
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1833

1834 1835 1836 1837 1838 1839 1840 1841
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1842 1843
}

1844
/*
1845
 * Disable a event.
1846
 *
1847 1848
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1849
 * remains valid.  This condition is satisifed when called through
1850 1851
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1852 1853
 * goes to exit will block in perf_event_exit_event().
 *
1854
 * When called from perf_pending_event it's OK because event->ctx
1855
 * is the current context on this CPU and preemption is disabled,
1856
 * hence we can't get into perf_event_task_sched_out for this context.
1857
 */
P
Peter Zijlstra 已提交
1858
static void _perf_event_disable(struct perf_event *event)
1859
{
1860
	struct perf_event_context *ctx = event->ctx;
1861

1862
	raw_spin_lock_irq(&ctx->lock);
1863
	if (event->state <= PERF_EVENT_STATE_OFF) {
1864
		raw_spin_unlock_irq(&ctx->lock);
1865
		return;
1866
	}
1867
	raw_spin_unlock_irq(&ctx->lock);
1868

1869 1870 1871 1872 1873 1874
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1875
}
P
Peter Zijlstra 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1889
EXPORT_SYMBOL_GPL(perf_event_disable);
1890

S
Stephane Eranian 已提交
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1926 1927 1928
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1929
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1930

1931
static int
1932
event_sched_in(struct perf_event *event,
1933
		 struct perf_cpu_context *cpuctx,
1934
		 struct perf_event_context *ctx)
1935
{
1936
	u64 tstamp = perf_event_time(event);
1937
	int ret = 0;
1938

1939 1940
	lockdep_assert_held(&ctx->lock);

1941
	if (event->state <= PERF_EVENT_STATE_OFF)
1942 1943
		return 0;

1944
	event->state = PERF_EVENT_STATE_ACTIVE;
1945
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1957 1958 1959 1960 1961
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1962 1963
	perf_pmu_disable(event->pmu);

1964 1965
	perf_set_shadow_time(event, ctx, tstamp);

1966 1967
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1968
	if (event->pmu->add(event, PERF_EF_START)) {
1969 1970
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1971 1972
		ret = -EAGAIN;
		goto out;
1973 1974
	}

1975 1976
	event->tstamp_running += tstamp - event->tstamp_stopped;

1977
	if (!is_software_event(event))
1978
		cpuctx->active_oncpu++;
1979 1980
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1981 1982
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1983

1984
	if (event->attr.exclusive)
1985 1986
		cpuctx->exclusive = 1;

1987 1988 1989
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1990 1991 1992 1993
out:
	perf_pmu_enable(event->pmu);

	return ret;
1994 1995
}

1996
static int
1997
group_sched_in(struct perf_event *group_event,
1998
	       struct perf_cpu_context *cpuctx,
1999
	       struct perf_event_context *ctx)
2000
{
2001
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
2002
	struct pmu *pmu = ctx->pmu;
2003 2004
	u64 now = ctx->time;
	bool simulate = false;
2005

2006
	if (group_event->state == PERF_EVENT_STATE_OFF)
2007 2008
		return 0;

2009
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2010

2011
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2012
		pmu->cancel_txn(pmu);
2013
		perf_mux_hrtimer_restart(cpuctx);
2014
		return -EAGAIN;
2015
	}
2016 2017 2018 2019

	/*
	 * Schedule in siblings as one group (if any):
	 */
2020
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2021
		if (event_sched_in(event, cpuctx, ctx)) {
2022
			partial_group = event;
2023 2024 2025 2026
			goto group_error;
		}
	}

2027
	if (!pmu->commit_txn(pmu))
2028
		return 0;
2029

2030 2031 2032 2033
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2044
	 */
2045 2046
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2047 2048 2049 2050 2051 2052 2053 2054
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2055
	}
2056
	event_sched_out(group_event, cpuctx, ctx);
2057

P
Peter Zijlstra 已提交
2058
	pmu->cancel_txn(pmu);
2059

2060
	perf_mux_hrtimer_restart(cpuctx);
2061

2062 2063 2064
	return -EAGAIN;
}

2065
/*
2066
 * Work out whether we can put this event group on the CPU now.
2067
 */
2068
static int group_can_go_on(struct perf_event *event,
2069 2070 2071 2072
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2073
	 * Groups consisting entirely of software events can always go on.
2074
	 */
2075
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2076 2077 2078
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2079
	 * events can go on.
2080 2081 2082 2083 2084
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2085
	 * events on the CPU, it can't go on.
2086
	 */
2087
	if (event->attr.exclusive && cpuctx->active_oncpu)
2088 2089 2090 2091 2092 2093 2094 2095
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2096 2097
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2098
{
2099 2100
	u64 tstamp = perf_event_time(event);

2101
	list_add_event(event, ctx);
2102
	perf_group_attach(event);
2103 2104 2105
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2106 2107
}

2108 2109
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx);
2110 2111 2112 2113 2114
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2115

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
{
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
}

T
Thomas Gleixner 已提交
2139
/*
2140
 * Cross CPU call to install and enable a performance event
2141 2142
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2143
 */
2144
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2145
{
2146
	struct perf_event_context *ctx = info;
P
Peter Zijlstra 已提交
2147
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2148 2149
	struct perf_event_context *task_ctx = cpuctx->task_ctx;

2150
	raw_spin_lock(&cpuctx->ctx.lock);
2151
	if (ctx->task) {
2152
		raw_spin_lock(&ctx->lock);
2153 2154 2155 2156
		/*
		 * If we hit the 'wrong' task, we've since scheduled and
		 * everything should be sorted, nothing to do!
		 */
2157
		task_ctx = ctx;
2158
		if (ctx->task != current)
2159
			goto unlock;
2160

2161 2162 2163 2164
		/*
		 * If task_ctx is set, it had better be to us.
		 */
		WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
2165 2166
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2167 2168
	}

2169
	ctx_resched(cpuctx, task_ctx);
2170
unlock:
2171
	perf_ctx_unlock(cpuctx, task_ctx);
2172 2173

	return 0;
T
Thomas Gleixner 已提交
2174 2175 2176
}

/*
2177
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2178 2179
 */
static void
2180 2181
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2182 2183
			int cpu)
{
2184 2185
	struct task_struct *task = NULL;

2186 2187
	lockdep_assert_held(&ctx->mutex);

2188
	event->ctx = ctx;
2189 2190
	if (event->cpu != -1)
		event->cpu = cpu;
2191

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 *
	 * So what we do is we add the event to the list here, which will allow
	 * a future context switch to DTRT and then send a racy IPI. If the IPI
	 * fails to hit the right task, this means a context switch must have
	 * happened and that will have taken care of business.
	 */
	raw_spin_lock_irq(&ctx->lock);
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
	task = ctx->task;
	/*
	 * Worse, we cannot even rely on the ctx actually existing anymore. If
	 * between find_get_context() and perf_install_in_context() the task
	 * went through perf_event_exit_task() its dead and we should not be
	 * adding new events.
	 */
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
	update_context_time(ctx);
	/*
	 * Update cgrp time only if current cgrp matches event->cgrp.
	 * Must be done before calling add_event_to_ctx().
	 */
	update_cgrp_time_from_event(event);
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);

	if (task)
		task_function_call(task, __perf_install_in_context, ctx);
	else
		cpu_function_call(cpu, __perf_install_in_context, ctx);
T
Thomas Gleixner 已提交
2226 2227
}

2228
/*
2229
 * Put a event into inactive state and update time fields.
2230 2231 2232 2233 2234 2235
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2236
static void __perf_event_mark_enabled(struct perf_event *event)
2237
{
2238
	struct perf_event *sub;
2239
	u64 tstamp = perf_event_time(event);
2240

2241
	event->state = PERF_EVENT_STATE_INACTIVE;
2242
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2243
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2244 2245
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2246
	}
2247 2248
}

2249
/*
2250
 * Cross CPU call to enable a performance event
2251
 */
2252 2253 2254 2255
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2256
{
2257
	struct perf_event *leader = event->group_leader;
2258
	struct perf_event_context *task_ctx;
2259

P
Peter Zijlstra 已提交
2260 2261
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2262
		return;
S
Stephane Eranian 已提交
2263

2264
	update_context_time(ctx);
2265
	__perf_event_mark_enabled(event);
2266

2267 2268 2269
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2270
	if (!event_filter_match(event)) {
2271 2272
		if (is_cgroup_event(event)) {
			perf_cgroup_set_timestamp(current, ctx); // XXX ?
S
Stephane Eranian 已提交
2273
			perf_cgroup_defer_enabled(event);
2274 2275
		}
		return;
S
Stephane Eranian 已提交
2276
	}
2277

2278
	/*
2279
	 * If the event is in a group and isn't the group leader,
2280
	 * then don't put it on unless the group is on.
2281
	 */
2282
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2283
		return;
2284

2285 2286 2287
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2288

2289
	ctx_resched(cpuctx, task_ctx);
2290 2291
}

2292
/*
2293
 * Enable a event.
2294
 *
2295 2296
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2297
 * remains valid.  This condition is satisfied when called through
2298 2299
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2300
 */
P
Peter Zijlstra 已提交
2301
static void _perf_event_enable(struct perf_event *event)
2302
{
2303
	struct perf_event_context *ctx = event->ctx;
2304

2305
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2306 2307
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2308
		raw_spin_unlock_irq(&ctx->lock);
2309 2310 2311 2312
		return;
	}

	/*
2313
	 * If the event is in error state, clear that first.
2314 2315 2316 2317
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2318
	 */
2319 2320
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2321
	raw_spin_unlock_irq(&ctx->lock);
2322

2323
	event_function_call(event, __perf_event_enable, NULL);
2324
}
P
Peter Zijlstra 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2337
EXPORT_SYMBOL_GPL(perf_event_enable);
2338

P
Peter Zijlstra 已提交
2339
static int _perf_event_refresh(struct perf_event *event, int refresh)
2340
{
2341
	/*
2342
	 * not supported on inherited events
2343
	 */
2344
	if (event->attr.inherit || !is_sampling_event(event))
2345 2346
		return -EINVAL;

2347
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2348
	_perf_event_enable(event);
2349 2350

	return 0;
2351
}
P
Peter Zijlstra 已提交
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2367
EXPORT_SYMBOL_GPL(perf_event_refresh);
2368

2369 2370 2371
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2372
{
2373
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2374 2375 2376
	struct perf_event *event;

	lockdep_assert_held(&ctx->lock);
2377

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
		return;
	}

2388
	ctx->is_active &= ~event_type;
2389 2390 2391 2392 2393 2394
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}

2395
	update_context_time(ctx);
S
Stephane Eranian 已提交
2396
	update_cgrp_time_from_cpuctx(cpuctx);
2397
	if (!ctx->nr_active)
2398
		return;
2399

P
Peter Zijlstra 已提交
2400
	perf_pmu_disable(ctx->pmu);
2401
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2402 2403
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2404
	}
2405

2406
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2407
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2408
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2409
	}
P
Peter Zijlstra 已提交
2410
	perf_pmu_enable(ctx->pmu);
2411 2412
}

2413
/*
2414 2415 2416 2417 2418 2419
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2420
 */
2421 2422
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2423
{
2424 2425 2426
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2449 2450
}

2451 2452
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2453 2454 2455
{
	u64 value;

2456
	if (!event->attr.inherit_stat)
2457 2458 2459
		return;

	/*
2460
	 * Update the event value, we cannot use perf_event_read()
2461 2462
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2463
	 * we know the event must be on the current CPU, therefore we
2464 2465
	 * don't need to use it.
	 */
2466 2467
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2468 2469
		event->pmu->read(event);
		/* fall-through */
2470

2471 2472
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2473 2474 2475 2476 2477 2478 2479
		break;

	default:
		break;
	}

	/*
2480
	 * In order to keep per-task stats reliable we need to flip the event
2481 2482
	 * values when we flip the contexts.
	 */
2483 2484 2485
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2486

2487 2488
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2489

2490
	/*
2491
	 * Since we swizzled the values, update the user visible data too.
2492
	 */
2493 2494
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2495 2496
}

2497 2498
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2499
{
2500
	struct perf_event *event, *next_event;
2501 2502 2503 2504

	if (!ctx->nr_stat)
		return;

2505 2506
	update_context_time(ctx);

2507 2508
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2509

2510 2511
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2512

2513 2514
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2515

2516
		__perf_event_sync_stat(event, next_event);
2517

2518 2519
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2520 2521 2522
	}
}

2523 2524
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2525
{
P
Peter Zijlstra 已提交
2526
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2527
	struct perf_event_context *next_ctx;
2528
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2529
	struct perf_cpu_context *cpuctx;
2530
	int do_switch = 1;
T
Thomas Gleixner 已提交
2531

P
Peter Zijlstra 已提交
2532 2533
	if (likely(!ctx))
		return;
2534

P
Peter Zijlstra 已提交
2535 2536
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2537 2538
		return;

2539
	rcu_read_lock();
P
Peter Zijlstra 已提交
2540
	next_ctx = next->perf_event_ctxp[ctxn];
2541 2542 2543 2544 2545 2546 2547
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2548
	if (!parent && !next_parent)
2549 2550 2551
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2552 2553 2554 2555 2556 2557 2558 2559 2560
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2561 2562
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2563
		if (context_equiv(ctx, next_ctx)) {
2564 2565
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2566 2567 2568

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2579
			do_switch = 0;
2580

2581
			perf_event_sync_stat(ctx, next_ctx);
2582
		}
2583 2584
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2585
	}
2586
unlock:
2587
	rcu_read_unlock();
2588

2589
	if (do_switch) {
2590
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2591
		task_ctx_sched_out(cpuctx, ctx);
2592
		raw_spin_unlock(&ctx->lock);
2593
	}
T
Thomas Gleixner 已提交
2594 2595
}

2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2646 2647 2648
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2663 2664
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2665 2666 2667
{
	int ctxn;

2668 2669 2670
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2671 2672 2673
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2674 2675
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2676 2677 2678 2679 2680 2681

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2682
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2683
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2684 2685
}

2686 2687
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
2688
{
2689 2690
	if (!cpuctx->task_ctx)
		return;
2691 2692 2693 2694

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2695
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2696 2697
}

2698 2699 2700 2701 2702 2703 2704
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2705 2706
}

2707
static void
2708
ctx_pinned_sched_in(struct perf_event_context *ctx,
2709
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2710
{
2711
	struct perf_event *event;
T
Thomas Gleixner 已提交
2712

2713 2714
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2715
			continue;
2716
		if (!event_filter_match(event))
2717 2718
			continue;

S
Stephane Eranian 已提交
2719 2720 2721 2722
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2723
		if (group_can_go_on(event, cpuctx, 1))
2724
			group_sched_in(event, cpuctx, ctx);
2725 2726 2727 2728 2729

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2730 2731 2732
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2733
		}
2734
	}
2735 2736 2737 2738
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2739
		      struct perf_cpu_context *cpuctx)
2740 2741 2742
{
	struct perf_event *event;
	int can_add_hw = 1;
2743

2744 2745 2746
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2747
			continue;
2748 2749
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2750
		 * of events:
2751
		 */
2752
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2753 2754
			continue;

S
Stephane Eranian 已提交
2755 2756 2757 2758
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2759
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2760
			if (group_sched_in(event, cpuctx, ctx))
2761
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2762
		}
T
Thomas Gleixner 已提交
2763
	}
2764 2765 2766 2767 2768
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2769 2770
	     enum event_type_t event_type,
	     struct task_struct *task)
2771
{
2772
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2773 2774 2775
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2776

2777 2778 2779
	if (likely(!ctx->nr_events))
		return;

2780
	ctx->is_active |= event_type;
2781 2782 2783 2784 2785 2786 2787
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

S
Stephane Eranian 已提交
2788 2789
	now = perf_clock();
	ctx->timestamp = now;
2790
	perf_cgroup_set_timestamp(task, ctx);
2791 2792 2793 2794
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2795
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2796
		ctx_pinned_sched_in(ctx, cpuctx);
2797 2798

	/* Then walk through the lower prio flexible groups */
2799
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2800
		ctx_flexible_sched_in(ctx, cpuctx);
2801 2802
}

2803
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2804 2805
			     enum event_type_t event_type,
			     struct task_struct *task)
2806 2807 2808
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2809
	ctx_sched_in(ctx, cpuctx, event_type, task);
2810 2811
}

S
Stephane Eranian 已提交
2812 2813
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2814
{
P
Peter Zijlstra 已提交
2815
	struct perf_cpu_context *cpuctx;
2816

P
Peter Zijlstra 已提交
2817
	cpuctx = __get_cpu_context(ctx);
2818 2819 2820
	if (cpuctx->task_ctx == ctx)
		return;

2821
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2822
	perf_pmu_disable(ctx->pmu);
2823 2824 2825 2826 2827 2828
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2829
	perf_event_sched_in(cpuctx, ctx, task);
2830 2831
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2832 2833
}

P
Peter Zijlstra 已提交
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2845 2846
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2847 2848 2849 2850
{
	struct perf_event_context *ctx;
	int ctxn;

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2861 2862 2863 2864 2865
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2866
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2867
	}
2868

2869 2870 2871
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2872 2873
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2874 2875
}

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2903
#define REDUCE_FLS(a, b)		\
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2943 2944 2945
	if (!divisor)
		return dividend;

2946 2947 2948
	return div64_u64(dividend, divisor);
}

2949 2950 2951
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2952
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2953
{
2954
	struct hw_perf_event *hwc = &event->hw;
2955
	s64 period, sample_period;
2956 2957
	s64 delta;

2958
	period = perf_calculate_period(event, nsec, count);
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2969

2970
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2971 2972 2973
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2974
		local64_set(&hwc->period_left, 0);
2975 2976 2977

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2978
	}
2979 2980
}

2981 2982 2983 2984 2985 2986 2987
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2988
{
2989 2990
	struct perf_event *event;
	struct hw_perf_event *hwc;
2991
	u64 now, period = TICK_NSEC;
2992
	s64 delta;
2993

2994 2995 2996 2997 2998 2999
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3000 3001
		return;

3002
	raw_spin_lock(&ctx->lock);
3003
	perf_pmu_disable(ctx->pmu);
3004

3005
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3006
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3007 3008
			continue;

3009
		if (!event_filter_match(event))
3010 3011
			continue;

3012 3013
		perf_pmu_disable(event->pmu);

3014
		hwc = &event->hw;
3015

3016
		if (hwc->interrupts == MAX_INTERRUPTS) {
3017
			hwc->interrupts = 0;
3018
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3019
			event->pmu->start(event, 0);
3020 3021
		}

3022
		if (!event->attr.freq || !event->attr.sample_freq)
3023
			goto next;
3024

3025 3026 3027 3028 3029
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3030
		now = local64_read(&event->count);
3031 3032
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3033

3034 3035 3036
		/*
		 * restart the event
		 * reload only if value has changed
3037 3038 3039
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3040
		 */
3041
		if (delta > 0)
3042
			perf_adjust_period(event, period, delta, false);
3043 3044

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3045 3046
	next:
		perf_pmu_enable(event->pmu);
3047
	}
3048

3049
	perf_pmu_enable(ctx->pmu);
3050
	raw_spin_unlock(&ctx->lock);
3051 3052
}

3053
/*
3054
 * Round-robin a context's events:
3055
 */
3056
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3057
{
3058 3059 3060 3061 3062 3063
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3064 3065
}

3066
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3067
{
P
Peter Zijlstra 已提交
3068
	struct perf_event_context *ctx = NULL;
3069
	int rotate = 0;
3070

3071 3072 3073 3074
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3075

P
Peter Zijlstra 已提交
3076
	ctx = cpuctx->task_ctx;
3077 3078 3079 3080
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3081

3082
	if (!rotate)
3083 3084
		goto done;

3085
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3086
	perf_pmu_disable(cpuctx->ctx.pmu);
3087

3088 3089 3090
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3091

3092 3093 3094
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3095

3096
	perf_event_sched_in(cpuctx, ctx, current);
3097

3098 3099
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3100
done:
3101 3102

	return rotate;
3103 3104
}

3105 3106 3107
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3108
	if (atomic_read(&nr_freq_events) ||
3109
	    __this_cpu_read(perf_throttled_count))
3110
		return false;
3111 3112
	else
		return true;
3113 3114 3115
}
#endif

3116 3117
void perf_event_task_tick(void)
{
3118 3119
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3120
	int throttled;
3121

3122 3123
	WARN_ON(!irqs_disabled());

3124 3125 3126
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3127
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3128
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3129 3130
}

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3141
	__perf_event_mark_enabled(event);
3142 3143 3144 3145

	return 1;
}

3146
/*
3147
 * Enable all of a task's events that have been marked enable-on-exec.
3148 3149
 * This expects task == current.
 */
3150
static void perf_event_enable_on_exec(int ctxn)
3151
{
3152
	struct perf_event_context *ctx, *clone_ctx = NULL;
3153
	struct perf_cpu_context *cpuctx;
3154
	struct perf_event *event;
3155 3156 3157 3158
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3159
	ctx = current->perf_event_ctxp[ctxn];
3160
	if (!ctx || !ctx->nr_events)
3161 3162
		goto out;

3163 3164 3165 3166
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3167 3168

	/*
3169
	 * Unclone and reschedule this context if we enabled any event.
3170
	 */
3171
	if (enabled) {
3172
		clone_ctx = unclone_ctx(ctx);
3173 3174 3175
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3176

P
Peter Zijlstra 已提交
3177
out:
3178
	local_irq_restore(flags);
3179 3180 3181

	if (clone_ctx)
		put_ctx(clone_ctx);
3182 3183
}

3184 3185 3186 3187 3188
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3189 3190
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3191 3192 3193
	rcu_read_unlock();
}

3194 3195 3196
struct perf_read_data {
	struct perf_event *event;
	bool group;
3197
	int ret;
3198 3199
};

T
Thomas Gleixner 已提交
3200
/*
3201
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3202
 */
3203
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3204
{
3205 3206
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3207
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3208
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3209
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3210

3211 3212 3213 3214
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3215 3216
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3217 3218 3219 3220
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3221
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3222
	if (ctx->is_active) {
3223
		update_context_time(ctx);
S
Stephane Eranian 已提交
3224 3225
		update_cgrp_time_from_event(event);
	}
3226

3227
	update_event_times(event);
3228 3229
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3230

3231 3232 3233
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3234
		goto unlock;
3235 3236 3237 3238 3239
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3240 3241 3242

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3243 3244 3245 3246 3247
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3248
			sub->pmu->read(sub);
3249
		}
3250
	}
3251 3252

	data->ret = pmu->commit_txn(pmu);
3253 3254

unlock:
3255
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3256 3257
}

P
Peter Zijlstra 已提交
3258 3259
static inline u64 perf_event_count(struct perf_event *event)
{
3260 3261 3262 3263
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3264 3265
}

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3319
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3320
{
3321 3322
	int ret = 0;

T
Thomas Gleixner 已提交
3323
	/*
3324 3325
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3326
	 */
3327
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3328 3329 3330
		struct perf_read_data data = {
			.event = event,
			.group = group,
3331
			.ret = 0,
3332
		};
3333
		smp_call_function_single(event->oncpu,
3334
					 __perf_event_read, &data, 1);
3335
		ret = data.ret;
3336
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3337 3338 3339
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3340
		raw_spin_lock_irqsave(&ctx->lock, flags);
3341 3342 3343 3344 3345
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3346
		if (ctx->is_active) {
3347
			update_context_time(ctx);
S
Stephane Eranian 已提交
3348 3349
			update_cgrp_time_from_event(event);
		}
3350 3351 3352 3353
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3354
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3355
	}
3356 3357

	return ret;
T
Thomas Gleixner 已提交
3358 3359
}

3360
/*
3361
 * Initialize the perf_event context in a task_struct:
3362
 */
3363
static void __perf_event_init_context(struct perf_event_context *ctx)
3364
{
3365
	raw_spin_lock_init(&ctx->lock);
3366
	mutex_init(&ctx->mutex);
3367
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3368 3369
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3370 3371
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3372
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3388
	}
3389 3390 3391
	ctx->pmu = pmu;

	return ctx;
3392 3393
}

3394 3395 3396 3397 3398
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3399 3400

	rcu_read_lock();
3401
	if (!vpid)
T
Thomas Gleixner 已提交
3402 3403
		task = current;
	else
3404
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3405 3406 3407 3408 3409 3410 3411 3412
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3413 3414 3415 3416
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3417 3418 3419 3420 3421 3422 3423
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3424 3425 3426
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3427
static struct perf_event_context *
3428 3429
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3430
{
3431
	struct perf_event_context *ctx, *clone_ctx = NULL;
3432
	struct perf_cpu_context *cpuctx;
3433
	void *task_ctx_data = NULL;
3434
	unsigned long flags;
P
Peter Zijlstra 已提交
3435
	int ctxn, err;
3436
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3437

3438
	if (!task) {
3439
		/* Must be root to operate on a CPU event: */
3440
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3441 3442 3443
			return ERR_PTR(-EACCES);

		/*
3444
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3445 3446 3447
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3448
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3449 3450
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3451
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3452
		ctx = &cpuctx->ctx;
3453
		get_ctx(ctx);
3454
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3455 3456 3457 3458

		return ctx;
	}

P
Peter Zijlstra 已提交
3459 3460 3461 3462 3463
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3464 3465 3466 3467 3468 3469 3470 3471
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3472
retry:
P
Peter Zijlstra 已提交
3473
	ctx = perf_lock_task_context(task, ctxn, &flags);
3474
	if (ctx) {
3475
		clone_ctx = unclone_ctx(ctx);
3476
		++ctx->pin_count;
3477 3478 3479 3480 3481

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3482
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3483 3484 3485

		if (clone_ctx)
			put_ctx(clone_ctx);
3486
	} else {
3487
		ctx = alloc_perf_context(pmu, task);
3488 3489 3490
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3491

3492 3493 3494 3495 3496
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3507
		else {
3508
			get_ctx(ctx);
3509
			++ctx->pin_count;
3510
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3511
		}
3512 3513 3514
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3515
			put_ctx(ctx);
3516 3517 3518 3519

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3520 3521 3522
		}
	}

3523
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3524
	return ctx;
3525

P
Peter Zijlstra 已提交
3526
errout:
3527
	kfree(task_ctx_data);
3528
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3529 3530
}

L
Li Zefan 已提交
3531
static void perf_event_free_filter(struct perf_event *event);
3532
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3533

3534
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3535
{
3536
	struct perf_event *event;
P
Peter Zijlstra 已提交
3537

3538 3539 3540
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3541
	perf_event_free_filter(event);
3542
	kfree(event);
P
Peter Zijlstra 已提交
3543 3544
}

3545 3546
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3547

3548
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3549
{
3550 3551 3552 3553 3554 3555
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3556

3557 3558
static void unaccount_event(struct perf_event *event)
{
3559 3560
	bool dec = false;

3561 3562 3563 3564
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3565
		dec = true;
3566 3567 3568 3569 3570 3571
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3572 3573
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3574
	if (event->attr.context_switch) {
3575
		dec = true;
3576 3577
		atomic_dec(&nr_switch_events);
	}
3578
	if (is_cgroup_event(event))
3579
		dec = true;
3580
	if (has_branch_stack(event))
3581 3582 3583
		dec = true;

	if (dec)
3584 3585 3586 3587
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3588

3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3599
 * _free_event()), the latter -- before the first perf_install_in_context().
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

P
Peter Zijlstra 已提交
3674
static void _free_event(struct perf_event *event)
3675
{
3676
	irq_work_sync(&event->pending);
3677

3678
	unaccount_event(event);
3679

3680
	if (event->rb) {
3681 3682 3683 3684 3685 3686 3687
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3688
		ring_buffer_attach(event, NULL);
3689
		mutex_unlock(&event->mmap_mutex);
3690 3691
	}

S
Stephane Eranian 已提交
3692 3693 3694
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	if (event->pmu) {
		exclusive_event_destroy(event);
		module_put(event->pmu->module);
	}

	call_rcu(&event->rcu_head, free_event_rcu);
3714 3715
}

P
Peter Zijlstra 已提交
3716 3717 3718 3719 3720
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3721
{
P
Peter Zijlstra 已提交
3722 3723 3724 3725 3726 3727
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3728

P
Peter Zijlstra 已提交
3729
	_free_event(event);
T
Thomas Gleixner 已提交
3730 3731
}

3732
/*
3733
 * Remove user event from the owner task.
3734
 */
3735
static void perf_remove_from_owner(struct perf_event *event)
3736
{
P
Peter Zijlstra 已提交
3737
	struct task_struct *owner;
3738

P
Peter Zijlstra 已提交
3739 3740
	rcu_read_lock();
	/*
3741 3742 3743
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
3744 3745
	 * owner->perf_event_mutex.
	 */
3746
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3768 3769 3770 3771 3772 3773
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
3774
		if (event->owner) {
P
Peter Zijlstra 已提交
3775
			list_del_init(&event->owner_entry);
3776 3777
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
3778 3779 3780
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3781 3782 3783 3784
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3785
	struct perf_event_context *ctx;
3786 3787 3788 3789 3790 3791

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3792

P
Peter Zijlstra 已提交
3793 3794 3795 3796 3797 3798 3799
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3800
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3801 3802 3803 3804
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3805 3806
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
3807
	perf_remove_from_context(event, DETACH_GROUP | DETACH_STATE);
L
Leon Yu 已提交
3808
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3809

3810 3811 3812 3813 3814 3815 3816
	/*
	 * At this point we must have event->state == PERF_EVENT_STATE_EXIT,
	 * either from the above perf_remove_from_context() or through
	 * perf_event_exit_event().
	 */
	WARN_ON_ONCE(event->state != PERF_EVENT_STATE_EXIT);

P
Peter Zijlstra 已提交
3817
	_free_event(event);
3818 3819
}

P
Peter Zijlstra 已提交
3820 3821 3822 3823 3824 3825 3826
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3827 3828 3829
/*
 * Called when the last reference to the file is gone.
 */
3830 3831 3832 3833
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3834 3835
}

3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

3854
		perf_remove_from_context(event, DETACH_GROUP);
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3872
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3873
{
3874
	struct perf_event *child;
3875 3876
	u64 total = 0;

3877 3878 3879
	*enabled = 0;
	*running = 0;

3880
	mutex_lock(&event->child_mutex);
3881

3882
	(void)perf_event_read(event, false);
3883 3884
	total += perf_event_count(event);

3885 3886 3887 3888 3889 3890
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3891
		(void)perf_event_read(child, false);
3892
		total += perf_event_count(child);
3893 3894 3895
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3896
	mutex_unlock(&event->child_mutex);
3897 3898 3899

	return total;
}
3900
EXPORT_SYMBOL_GPL(perf_event_read_value);
3901

3902
static int __perf_read_group_add(struct perf_event *leader,
3903
					u64 read_format, u64 *values)
3904
{
3905 3906
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3907
	int ret;
P
Peter Zijlstra 已提交
3908

3909 3910 3911
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3912

3913 3914 3915 3916 3917 3918 3919 3920 3921
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3922

3923 3924 3925 3926 3927 3928 3929 3930 3931
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3932 3933
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3934

3935 3936 3937 3938 3939
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3940 3941

	return 0;
3942
}
3943

3944 3945 3946 3947 3948
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3949
	int ret;
3950
	u64 *values;
3951

3952
	lockdep_assert_held(&ctx->mutex);
3953

3954 3955 3956
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3957

3958 3959 3960 3961 3962 3963 3964
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3965

3966 3967 3968 3969 3970 3971 3972 3973 3974
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3975

3976
	mutex_unlock(&leader->child_mutex);
3977

3978
	ret = event->read_size;
3979 3980
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3981
	goto out;
3982

3983 3984 3985
unlock:
	mutex_unlock(&leader->child_mutex);
out:
3986
	kfree(values);
3987
	return ret;
3988 3989
}

3990
static int perf_read_one(struct perf_event *event,
3991 3992
				 u64 read_format, char __user *buf)
{
3993
	u64 enabled, running;
3994 3995 3996
	u64 values[4];
	int n = 0;

3997 3998 3999 4000 4001
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4002
	if (read_format & PERF_FORMAT_ID)
4003
		values[n++] = primary_event_id(event);
4004 4005 4006 4007 4008 4009 4010

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4024
/*
4025
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4026 4027
 */
static ssize_t
4028
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4029
{
4030
	u64 read_format = event->attr.read_format;
4031
	int ret;
T
Thomas Gleixner 已提交
4032

4033
	/*
4034
	 * Return end-of-file for a read on a event that is in
4035 4036 4037
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4038
	if (event->state == PERF_EVENT_STATE_ERROR)
4039 4040
		return 0;

4041
	if (count < event->read_size)
4042 4043
		return -ENOSPC;

4044
	WARN_ON_ONCE(event->ctx->parent_ctx);
4045
	if (read_format & PERF_FORMAT_GROUP)
4046
		ret = perf_read_group(event, read_format, buf);
4047
	else
4048
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4049

4050
	return ret;
T
Thomas Gleixner 已提交
4051 4052 4053 4054 4055
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4056
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4057 4058
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4059

P
Peter Zijlstra 已提交
4060
	ctx = perf_event_ctx_lock(event);
4061
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4062 4063 4064
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4065 4066 4067 4068
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4069
	struct perf_event *event = file->private_data;
4070
	struct ring_buffer *rb;
4071
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4072

4073
	poll_wait(file, &event->waitq, wait);
4074

4075
	if (is_event_hup(event))
4076
		return events;
P
Peter Zijlstra 已提交
4077

4078
	/*
4079 4080
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4081 4082
	 */
	mutex_lock(&event->mmap_mutex);
4083 4084
	rb = event->rb;
	if (rb)
4085
		events = atomic_xchg(&rb->poll, 0);
4086
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4087 4088 4089
	return events;
}

P
Peter Zijlstra 已提交
4090
static void _perf_event_reset(struct perf_event *event)
4091
{
4092
	(void)perf_event_read(event, false);
4093
	local64_set(&event->count, 0);
4094
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4095 4096
}

4097
/*
4098 4099
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4100
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4101
 * task existence requirements of perf_event_enable/disable.
4102
 */
4103 4104
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4105
{
4106
	struct perf_event *child;
P
Peter Zijlstra 已提交
4107

4108
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4109

4110 4111 4112
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4113
		func(child);
4114
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4115 4116
}

4117 4118
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4119
{
4120 4121
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4122

P
Peter Zijlstra 已提交
4123 4124
	lockdep_assert_held(&ctx->mutex);

4125
	event = event->group_leader;
4126

4127 4128
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4129
		perf_event_for_each_child(sibling, func);
4130 4131
}

4132 4133 4134 4135
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4136
{
4137
	u64 value = *((u64 *)info);
4138
	bool active;
4139

4140 4141
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4142
	} else {
4143 4144
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4145
	}
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4177
	event_function_call(event, __perf_event_period, &value);
4178

4179
	return 0;
4180 4181
}

4182 4183
static const struct file_operations perf_fops;

4184
static inline int perf_fget_light(int fd, struct fd *p)
4185
{
4186 4187 4188
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4189

4190 4191 4192
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4193
	}
4194 4195
	*p = f;
	return 0;
4196 4197 4198 4199
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4200
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4201
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4202

P
Peter Zijlstra 已提交
4203
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4204
{
4205
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4206
	u32 flags = arg;
4207 4208

	switch (cmd) {
4209
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4210
		func = _perf_event_enable;
4211
		break;
4212
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4213
		func = _perf_event_disable;
4214
		break;
4215
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4216
		func = _perf_event_reset;
4217
		break;
P
Peter Zijlstra 已提交
4218

4219
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4220
		return _perf_event_refresh(event, arg);
4221

4222 4223
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4224

4225 4226 4227 4228 4229 4230 4231 4232 4233
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4234
	case PERF_EVENT_IOC_SET_OUTPUT:
4235 4236 4237
	{
		int ret;
		if (arg != -1) {
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4248 4249 4250
		}
		return ret;
	}
4251

L
Li Zefan 已提交
4252 4253 4254
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4255 4256 4257
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4258
	default:
P
Peter Zijlstra 已提交
4259
		return -ENOTTY;
4260
	}
P
Peter Zijlstra 已提交
4261 4262

	if (flags & PERF_IOC_FLAG_GROUP)
4263
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4264
	else
4265
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4266 4267

	return 0;
4268 4269
}

P
Peter Zijlstra 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4303
int perf_event_task_enable(void)
4304
{
P
Peter Zijlstra 已提交
4305
	struct perf_event_context *ctx;
4306
	struct perf_event *event;
4307

4308
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4309 4310 4311 4312 4313
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4314
	mutex_unlock(&current->perf_event_mutex);
4315 4316 4317 4318

	return 0;
}

4319
int perf_event_task_disable(void)
4320
{
P
Peter Zijlstra 已提交
4321
	struct perf_event_context *ctx;
4322
	struct perf_event *event;
4323

4324
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4325 4326 4327 4328 4329
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4330
	mutex_unlock(&current->perf_event_mutex);
4331 4332 4333 4334

	return 0;
}

4335
static int perf_event_index(struct perf_event *event)
4336
{
P
Peter Zijlstra 已提交
4337 4338 4339
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4340
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4341 4342
		return 0;

4343
	return event->pmu->event_idx(event);
4344 4345
}

4346
static void calc_timer_values(struct perf_event *event,
4347
				u64 *now,
4348 4349
				u64 *enabled,
				u64 *running)
4350
{
4351
	u64 ctx_time;
4352

4353 4354
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4355 4356 4357 4358
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4374 4375
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4376 4377 4378 4379 4380

unlock:
	rcu_read_unlock();
}

4381 4382
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4383 4384 4385
{
}

4386 4387 4388 4389 4390
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4391
void perf_event_update_userpage(struct perf_event *event)
4392
{
4393
	struct perf_event_mmap_page *userpg;
4394
	struct ring_buffer *rb;
4395
	u64 enabled, running, now;
4396 4397

	rcu_read_lock();
4398 4399 4400 4401
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4402 4403 4404 4405 4406 4407 4408 4409 4410
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4411
	calc_timer_values(event, &now, &enabled, &running);
4412

4413
	userpg = rb->user_page;
4414 4415 4416 4417 4418
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4419
	++userpg->lock;
4420
	barrier();
4421
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4422
	userpg->offset = perf_event_count(event);
4423
	if (userpg->index)
4424
		userpg->offset -= local64_read(&event->hw.prev_count);
4425

4426
	userpg->time_enabled = enabled +
4427
			atomic64_read(&event->child_total_time_enabled);
4428

4429
	userpg->time_running = running +
4430
			atomic64_read(&event->child_total_time_running);
4431

4432
	arch_perf_update_userpage(event, userpg, now);
4433

4434
	barrier();
4435
	++userpg->lock;
4436
	preempt_enable();
4437
unlock:
4438
	rcu_read_unlock();
4439 4440
}

4441 4442 4443
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4444
	struct ring_buffer *rb;
4445 4446 4447 4448 4449 4450 4451 4452 4453
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4454 4455
	rb = rcu_dereference(event->rb);
	if (!rb)
4456 4457 4458 4459 4460
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4461
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4476 4477 4478
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4479
	struct ring_buffer *old_rb = NULL;
4480 4481
	unsigned long flags;

4482 4483 4484 4485 4486 4487
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4488

4489 4490 4491 4492
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4493

4494 4495
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4496
	}
4497

4498
	if (rb) {
4499 4500 4501 4502 4503
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4520 4521 4522 4523 4524 4525 4526 4527
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4528 4529 4530 4531
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4532 4533 4534
	rcu_read_unlock();
}

4535
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4536
{
4537
	struct ring_buffer *rb;
4538

4539
	rcu_read_lock();
4540 4541 4542 4543
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4544 4545 4546
	}
	rcu_read_unlock();

4547
	return rb;
4548 4549
}

4550
void ring_buffer_put(struct ring_buffer *rb)
4551
{
4552
	if (!atomic_dec_and_test(&rb->refcount))
4553
		return;
4554

4555
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4556

4557
	call_rcu(&rb->rcu_head, rb_free_rcu);
4558 4559 4560 4561
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4562
	struct perf_event *event = vma->vm_file->private_data;
4563

4564
	atomic_inc(&event->mmap_count);
4565
	atomic_inc(&event->rb->mmap_count);
4566

4567 4568 4569
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4570 4571
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4572 4573
}

4574 4575 4576 4577 4578 4579 4580 4581
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4582 4583
static void perf_mmap_close(struct vm_area_struct *vma)
{
4584
	struct perf_event *event = vma->vm_file->private_data;
4585

4586
	struct ring_buffer *rb = ring_buffer_get(event);
4587 4588 4589
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4590

4591 4592 4593
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4608 4609 4610
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4611
		goto out_put;
4612

4613
	ring_buffer_attach(event, NULL);
4614 4615 4616
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4617 4618
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4619

4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4636

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4648 4649 4650
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4651
		mutex_unlock(&event->mmap_mutex);
4652
		put_event(event);
4653

4654 4655 4656 4657 4658
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4659
	}
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4675
out_put:
4676
	ring_buffer_put(rb); /* could be last */
4677 4678
}

4679
static const struct vm_operations_struct perf_mmap_vmops = {
4680
	.open		= perf_mmap_open,
4681
	.close		= perf_mmap_close, /* non mergable */
4682 4683
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4684 4685 4686 4687
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4688
	struct perf_event *event = file->private_data;
4689
	unsigned long user_locked, user_lock_limit;
4690
	struct user_struct *user = current_user();
4691
	unsigned long locked, lock_limit;
4692
	struct ring_buffer *rb = NULL;
4693 4694
	unsigned long vma_size;
	unsigned long nr_pages;
4695
	long user_extra = 0, extra = 0;
4696
	int ret = 0, flags = 0;
4697

4698 4699 4700
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4701
	 * same rb.
4702 4703 4704 4705
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4706
	if (!(vma->vm_flags & VM_SHARED))
4707
		return -EINVAL;
4708 4709

	vma_size = vma->vm_end - vma->vm_start;
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4770

4771
	/*
4772
	 * If we have rb pages ensure they're a power-of-two number, so we
4773 4774
	 * can do bitmasks instead of modulo.
	 */
4775
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4776 4777
		return -EINVAL;

4778
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4779 4780
		return -EINVAL;

4781
	WARN_ON_ONCE(event->ctx->parent_ctx);
4782
again:
4783
	mutex_lock(&event->mmap_mutex);
4784
	if (event->rb) {
4785
		if (event->rb->nr_pages != nr_pages) {
4786
			ret = -EINVAL;
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4800 4801 4802
		goto unlock;
	}

4803
	user_extra = nr_pages + 1;
4804 4805

accounting:
4806
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4807 4808 4809 4810 4811 4812

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4813
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4814

4815 4816
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4817

4818
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4819
	lock_limit >>= PAGE_SHIFT;
4820
	locked = vma->vm_mm->pinned_vm + extra;
4821

4822 4823
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4824 4825 4826
		ret = -EPERM;
		goto unlock;
	}
4827

4828
	WARN_ON(!rb && event->rb);
4829

4830
	if (vma->vm_flags & VM_WRITE)
4831
		flags |= RING_BUFFER_WRITABLE;
4832

4833
	if (!rb) {
4834 4835 4836
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4837

4838 4839 4840 4841
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4842

4843 4844 4845
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4846

4847
		ring_buffer_attach(event, rb);
4848

4849 4850 4851
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4852 4853
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4854 4855 4856
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4857

4858
unlock:
4859 4860 4861 4862
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4863
		atomic_inc(&event->mmap_count);
4864 4865 4866 4867
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4868
	mutex_unlock(&event->mmap_mutex);
4869

4870 4871 4872 4873
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4874
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4875
	vma->vm_ops = &perf_mmap_vmops;
4876

4877 4878 4879
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4880
	return ret;
4881 4882
}

P
Peter Zijlstra 已提交
4883 4884
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4885
	struct inode *inode = file_inode(filp);
4886
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4887 4888 4889
	int retval;

	mutex_lock(&inode->i_mutex);
4890
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4891 4892 4893 4894 4895 4896 4897 4898
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4899
static const struct file_operations perf_fops = {
4900
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4901 4902 4903
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4904
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4905
	.compat_ioctl		= perf_compat_ioctl,
4906
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4907
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4908 4909
};

4910
/*
4911
 * Perf event wakeup
4912 4913 4914 4915 4916
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4917 4918 4919 4920 4921 4922 4923 4924
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4925
void perf_event_wakeup(struct perf_event *event)
4926
{
4927
	ring_buffer_wakeup(event);
4928

4929
	if (event->pending_kill) {
4930
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4931
		event->pending_kill = 0;
4932
	}
4933 4934
}

4935
static void perf_pending_event(struct irq_work *entry)
4936
{
4937 4938
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4939 4940 4941 4942 4943 4944 4945
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4946

4947 4948
	if (event->pending_disable) {
		event->pending_disable = 0;
4949
		perf_event_disable_local(event);
4950 4951
	}

4952 4953 4954
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4955
	}
4956 4957 4958

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4959 4960
}

4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4997
static void perf_sample_regs_user(struct perf_regs *regs_user,
4998 4999
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5000
{
5001 5002
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5003
		regs_user->regs = regs;
5004 5005
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5006 5007 5008
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5009 5010 5011
	}
}

5012 5013 5014 5015 5016 5017 5018 5019
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5115 5116 5117
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5131
		data->time = perf_event_clock(event);
5132

5133
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5145 5146 5147
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5172 5173 5174

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5175 5176
}

5177 5178 5179
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5180 5181 5182 5183 5184
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5185
static void perf_output_read_one(struct perf_output_handle *handle,
5186 5187
				 struct perf_event *event,
				 u64 enabled, u64 running)
5188
{
5189
	u64 read_format = event->attr.read_format;
5190 5191 5192
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5193
	values[n++] = perf_event_count(event);
5194
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5195
		values[n++] = enabled +
5196
			atomic64_read(&event->child_total_time_enabled);
5197 5198
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5199
		values[n++] = running +
5200
			atomic64_read(&event->child_total_time_running);
5201 5202
	}
	if (read_format & PERF_FORMAT_ID)
5203
		values[n++] = primary_event_id(event);
5204

5205
	__output_copy(handle, values, n * sizeof(u64));
5206 5207 5208
}

/*
5209
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5210 5211
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5212 5213
			    struct perf_event *event,
			    u64 enabled, u64 running)
5214
{
5215 5216
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5217 5218 5219 5220 5221 5222
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5223
		values[n++] = enabled;
5224 5225

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5226
		values[n++] = running;
5227

5228
	if (leader != event)
5229 5230
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5231
	values[n++] = perf_event_count(leader);
5232
	if (read_format & PERF_FORMAT_ID)
5233
		values[n++] = primary_event_id(leader);
5234

5235
	__output_copy(handle, values, n * sizeof(u64));
5236

5237
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5238 5239
		n = 0;

5240 5241
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5242 5243
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5244
		values[n++] = perf_event_count(sub);
5245
		if (read_format & PERF_FORMAT_ID)
5246
			values[n++] = primary_event_id(sub);
5247

5248
		__output_copy(handle, values, n * sizeof(u64));
5249 5250 5251
	}
}

5252 5253 5254
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5255
static void perf_output_read(struct perf_output_handle *handle,
5256
			     struct perf_event *event)
5257
{
5258
	u64 enabled = 0, running = 0, now;
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5270
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5271
		calc_timer_values(event, &now, &enabled, &running);
5272

5273
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5274
		perf_output_read_group(handle, event, enabled, running);
5275
	else
5276
		perf_output_read_one(handle, event, enabled, running);
5277 5278
}

5279 5280 5281
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5282
			struct perf_event *event)
5283 5284 5285 5286 5287
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5288 5289 5290
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5316
		perf_output_read(handle, event);
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5327
			__output_copy(handle, data->callchain, size);
5328 5329 5330 5331 5332 5333 5334 5335
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5336 5337 5338 5339 5340 5341 5342 5343 5344
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5356

5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5391

5392
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5393 5394 5395
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5396
	}
A
Andi Kleen 已提交
5397 5398 5399

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5400 5401 5402

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5403

A
Andi Kleen 已提交
5404 5405 5406
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5437 5438 5439 5440
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5441
			 struct perf_event *event,
5442
			 struct pt_regs *regs)
5443
{
5444
	u64 sample_type = event->attr.sample_type;
5445

5446
	header->type = PERF_RECORD_SAMPLE;
5447
	header->size = sizeof(*header) + event->header_size;
5448 5449 5450

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5451

5452
	__perf_event_header__init_id(header, data, event);
5453

5454
	if (sample_type & PERF_SAMPLE_IP)
5455 5456
		data->ip = perf_instruction_pointer(regs);

5457
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5458
		int size = 1;
5459

5460
		data->callchain = perf_callchain(event, regs);
5461 5462 5463 5464 5465

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5466 5467
	}

5468
	if (sample_type & PERF_SAMPLE_RAW) {
5469 5470 5471 5472 5473 5474 5475
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5476
		header->size += round_up(size, sizeof(u64));
5477
	}
5478 5479 5480 5481 5482 5483 5484 5485 5486

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5487

5488
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5489 5490
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5491

5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5515
						     data->regs_user.regs);
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5543
}
5544

5545 5546 5547
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5548 5549 5550
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5551

5552 5553 5554
	/* protect the callchain buffers */
	rcu_read_lock();

5555
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5556

5557
	if (perf_output_begin(&handle, event, header.size))
5558
		goto exit;
5559

5560
	perf_output_sample(&handle, &header, data, event);
5561

5562
	perf_output_end(&handle);
5563 5564 5565

exit:
	rcu_read_unlock();
5566 5567
}

5568
/*
5569
 * read event_id
5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5580
perf_event_read_event(struct perf_event *event,
5581 5582 5583
			struct task_struct *task)
{
	struct perf_output_handle handle;
5584
	struct perf_sample_data sample;
5585
	struct perf_read_event read_event = {
5586
		.header = {
5587
			.type = PERF_RECORD_READ,
5588
			.misc = 0,
5589
			.size = sizeof(read_event) + event->read_size,
5590
		},
5591 5592
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5593
	};
5594
	int ret;
5595

5596
	perf_event_header__init_id(&read_event.header, &sample, event);
5597
	ret = perf_output_begin(&handle, event, read_event.header.size);
5598 5599 5600
	if (ret)
		return;

5601
	perf_output_put(&handle, read_event);
5602
	perf_output_read(&handle, event);
5603
	perf_event__output_id_sample(event, &handle, &sample);
5604

5605 5606 5607
	perf_output_end(&handle);
}

5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5622
		output(event, data);
5623 5624 5625
	}
}

J
Jiri Olsa 已提交
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5637
static void
5638
perf_event_aux(perf_event_aux_output_cb output, void *data,
5639 5640 5641 5642 5643 5644 5645
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5657 5658 5659 5660 5661
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5662
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5663 5664 5665 5666 5667
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5668
			perf_event_aux_ctx(ctx, output, data);
5669 5670 5671 5672 5673 5674
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5675
/*
P
Peter Zijlstra 已提交
5676 5677
 * task tracking -- fork/exit
 *
5678
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5679 5680
 */

P
Peter Zijlstra 已提交
5681
struct perf_task_event {
5682
	struct task_struct		*task;
5683
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5684 5685 5686 5687 5688 5689

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5690 5691
		u32				tid;
		u32				ptid;
5692
		u64				time;
5693
	} event_id;
P
Peter Zijlstra 已提交
5694 5695
};

5696 5697
static int perf_event_task_match(struct perf_event *event)
{
5698 5699 5700
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5701 5702
}

5703
static void perf_event_task_output(struct perf_event *event,
5704
				   void *data)
P
Peter Zijlstra 已提交
5705
{
5706
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5707
	struct perf_output_handle handle;
5708
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5709
	struct task_struct *task = task_event->task;
5710
	int ret, size = task_event->event_id.header.size;
5711

5712 5713 5714
	if (!perf_event_task_match(event))
		return;

5715
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5716

5717
	ret = perf_output_begin(&handle, event,
5718
				task_event->event_id.header.size);
5719
	if (ret)
5720
		goto out;
P
Peter Zijlstra 已提交
5721

5722 5723
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5724

5725 5726
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5727

5728 5729
	task_event->event_id.time = perf_event_clock(event);

5730
	perf_output_put(&handle, task_event->event_id);
5731

5732 5733
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5734
	perf_output_end(&handle);
5735 5736
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5737 5738
}

5739 5740
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5741
			      int new)
P
Peter Zijlstra 已提交
5742
{
P
Peter Zijlstra 已提交
5743
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5744

5745 5746 5747
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5748 5749
		return;

P
Peter Zijlstra 已提交
5750
	task_event = (struct perf_task_event){
5751 5752
		.task	  = task,
		.task_ctx = task_ctx,
5753
		.event_id    = {
P
Peter Zijlstra 已提交
5754
			.header = {
5755
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5756
				.misc = 0,
5757
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5758
			},
5759 5760
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5761 5762
			/* .tid  */
			/* .ptid */
5763
			/* .time */
P
Peter Zijlstra 已提交
5764 5765 5766
		},
	};

5767
	perf_event_aux(perf_event_task_output,
5768 5769
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5770 5771
}

5772
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5773
{
5774
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5775 5776
}

5777 5778 5779 5780 5781
/*
 * comm tracking
 */

struct perf_comm_event {
5782 5783
	struct task_struct	*task;
	char			*comm;
5784 5785 5786 5787 5788 5789 5790
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5791
	} event_id;
5792 5793
};

5794 5795 5796 5797 5798
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5799
static void perf_event_comm_output(struct perf_event *event,
5800
				   void *data)
5801
{
5802
	struct perf_comm_event *comm_event = data;
5803
	struct perf_output_handle handle;
5804
	struct perf_sample_data sample;
5805
	int size = comm_event->event_id.header.size;
5806 5807
	int ret;

5808 5809 5810
	if (!perf_event_comm_match(event))
		return;

5811 5812
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5813
				comm_event->event_id.header.size);
5814 5815

	if (ret)
5816
		goto out;
5817

5818 5819
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5820

5821
	perf_output_put(&handle, comm_event->event_id);
5822
	__output_copy(&handle, comm_event->comm,
5823
				   comm_event->comm_size);
5824 5825 5826

	perf_event__output_id_sample(event, &handle, &sample);

5827
	perf_output_end(&handle);
5828 5829
out:
	comm_event->event_id.header.size = size;
5830 5831
}

5832
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5833
{
5834
	char comm[TASK_COMM_LEN];
5835 5836
	unsigned int size;

5837
	memset(comm, 0, sizeof(comm));
5838
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5839
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5840 5841 5842 5843

	comm_event->comm = comm;
	comm_event->comm_size = size;

5844
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5845

5846
	perf_event_aux(perf_event_comm_output,
5847 5848
		       comm_event,
		       NULL);
5849 5850
}

5851
void perf_event_comm(struct task_struct *task, bool exec)
5852
{
5853 5854
	struct perf_comm_event comm_event;

5855
	if (!atomic_read(&nr_comm_events))
5856
		return;
5857

5858
	comm_event = (struct perf_comm_event){
5859
		.task	= task,
5860 5861
		/* .comm      */
		/* .comm_size */
5862
		.event_id  = {
5863
			.header = {
5864
				.type = PERF_RECORD_COMM,
5865
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5866 5867 5868 5869
				/* .size */
			},
			/* .pid */
			/* .tid */
5870 5871 5872
		},
	};

5873
	perf_event_comm_event(&comm_event);
5874 5875
}

5876 5877 5878 5879 5880
/*
 * mmap tracking
 */

struct perf_mmap_event {
5881 5882 5883 5884
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5885 5886 5887
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5888
	u32			prot, flags;
5889 5890 5891 5892 5893 5894 5895 5896 5897

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5898
	} event_id;
5899 5900
};

5901 5902 5903 5904 5905 5906 5907 5908
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5909
	       (executable && (event->attr.mmap || event->attr.mmap2));
5910 5911
}

5912
static void perf_event_mmap_output(struct perf_event *event,
5913
				   void *data)
5914
{
5915
	struct perf_mmap_event *mmap_event = data;
5916
	struct perf_output_handle handle;
5917
	struct perf_sample_data sample;
5918
	int size = mmap_event->event_id.header.size;
5919
	int ret;
5920

5921 5922 5923
	if (!perf_event_mmap_match(event, data))
		return;

5924 5925 5926 5927 5928
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5929
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5930 5931
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5932 5933
	}

5934 5935
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5936
				mmap_event->event_id.header.size);
5937
	if (ret)
5938
		goto out;
5939

5940 5941
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5942

5943
	perf_output_put(&handle, mmap_event->event_id);
5944 5945 5946 5947 5948 5949

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5950 5951
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5952 5953
	}

5954
	__output_copy(&handle, mmap_event->file_name,
5955
				   mmap_event->file_size);
5956 5957 5958

	perf_event__output_id_sample(event, &handle, &sample);

5959
	perf_output_end(&handle);
5960 5961
out:
	mmap_event->event_id.header.size = size;
5962 5963
}

5964
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5965
{
5966 5967
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5968 5969
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5970
	u32 prot = 0, flags = 0;
5971 5972 5973
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5974
	char *name;
5975

5976
	if (file) {
5977 5978
		struct inode *inode;
		dev_t dev;
5979

5980
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5981
		if (!buf) {
5982 5983
			name = "//enomem";
			goto cpy_name;
5984
		}
5985
		/*
5986
		 * d_path() works from the end of the rb backwards, so we
5987 5988 5989
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5990
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5991
		if (IS_ERR(name)) {
5992 5993
			name = "//toolong";
			goto cpy_name;
5994
		}
5995 5996 5997 5998 5999 6000
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6023
		goto got_name;
6024
	} else {
6025 6026 6027 6028 6029 6030
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6031
		name = (char *)arch_vma_name(vma);
6032 6033
		if (name)
			goto cpy_name;
6034

6035
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6036
				vma->vm_end >= vma->vm_mm->brk) {
6037 6038
			name = "[heap]";
			goto cpy_name;
6039 6040
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6041
				vma->vm_end >= vma->vm_mm->start_stack) {
6042 6043
			name = "[stack]";
			goto cpy_name;
6044 6045
		}

6046 6047
		name = "//anon";
		goto cpy_name;
6048 6049
	}

6050 6051 6052
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6053
got_name:
6054 6055 6056 6057 6058 6059 6060 6061
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6062 6063 6064

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6065 6066 6067 6068
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6069 6070
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6071

6072 6073 6074
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6075
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6076

6077
	perf_event_aux(perf_event_mmap_output,
6078 6079
		       mmap_event,
		       NULL);
6080

6081 6082 6083
	kfree(buf);
}

6084
void perf_event_mmap(struct vm_area_struct *vma)
6085
{
6086 6087
	struct perf_mmap_event mmap_event;

6088
	if (!atomic_read(&nr_mmap_events))
6089 6090 6091
		return;

	mmap_event = (struct perf_mmap_event){
6092
		.vma	= vma,
6093 6094
		/* .file_name */
		/* .file_size */
6095
		.event_id  = {
6096
			.header = {
6097
				.type = PERF_RECORD_MMAP,
6098
				.misc = PERF_RECORD_MISC_USER,
6099 6100 6101 6102
				/* .size */
			},
			/* .pid */
			/* .tid */
6103 6104
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6105
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6106
		},
6107 6108 6109 6110
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6111 6112
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6113 6114
	};

6115
	perf_event_mmap_event(&mmap_event);
6116 6117
}

A
Alexander Shishkin 已提交
6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6270 6271 6272 6273
/*
 * IRQ throttle logging
 */

6274
static void perf_log_throttle(struct perf_event *event, int enable)
6275 6276
{
	struct perf_output_handle handle;
6277
	struct perf_sample_data sample;
6278 6279 6280 6281 6282
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6283
		u64				id;
6284
		u64				stream_id;
6285 6286
	} throttle_event = {
		.header = {
6287
			.type = PERF_RECORD_THROTTLE,
6288 6289 6290
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6291
		.time		= perf_event_clock(event),
6292 6293
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6294 6295
	};

6296
	if (enable)
6297
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6298

6299 6300 6301
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6302
				throttle_event.header.size);
6303 6304 6305 6306
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6307
	perf_event__output_id_sample(event, &handle, &sample);
6308 6309 6310
	perf_output_end(&handle);
}

6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6347
/*
6348
 * Generic event overflow handling, sampling.
6349 6350
 */

6351
static int __perf_event_overflow(struct perf_event *event,
6352 6353
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6354
{
6355 6356
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6357
	u64 seq;
6358 6359
	int ret = 0;

6360 6361 6362 6363 6364 6365 6366
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6367 6368 6369 6370 6371 6372 6373 6374 6375
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6376 6377
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6378
			tick_nohz_full_kick();
6379 6380
			ret = 1;
		}
6381
	}
6382

6383
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6384
		u64 now = perf_clock();
6385
		s64 delta = now - hwc->freq_time_stamp;
6386

6387
		hwc->freq_time_stamp = now;
6388

6389
		if (delta > 0 && delta < 2*TICK_NSEC)
6390
			perf_adjust_period(event, delta, hwc->last_period, true);
6391 6392
	}

6393 6394
	/*
	 * XXX event_limit might not quite work as expected on inherited
6395
	 * events
6396 6397
	 */

6398 6399
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6400
		ret = 1;
6401
		event->pending_kill = POLL_HUP;
6402 6403
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6404 6405
	}

6406
	if (event->overflow_handler)
6407
		event->overflow_handler(event, data, regs);
6408
	else
6409
		perf_event_output(event, data, regs);
6410

6411
	if (*perf_event_fasync(event) && event->pending_kill) {
6412 6413
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6414 6415
	}

6416
	return ret;
6417 6418
}

6419
int perf_event_overflow(struct perf_event *event,
6420 6421
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6422
{
6423
	return __perf_event_overflow(event, 1, data, regs);
6424 6425
}

6426
/*
6427
 * Generic software event infrastructure
6428 6429
 */

6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6441
/*
6442 6443
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6444 6445 6446 6447
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6448
u64 perf_swevent_set_period(struct perf_event *event)
6449
{
6450
	struct hw_perf_event *hwc = &event->hw;
6451 6452 6453 6454 6455
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6456 6457

again:
6458
	old = val = local64_read(&hwc->period_left);
6459 6460
	if (val < 0)
		return 0;
6461

6462 6463 6464
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6465
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6466
		goto again;
6467

6468
	return nr;
6469 6470
}

6471
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6472
				    struct perf_sample_data *data,
6473
				    struct pt_regs *regs)
6474
{
6475
	struct hw_perf_event *hwc = &event->hw;
6476
	int throttle = 0;
6477

6478 6479
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6480

6481 6482
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6483

6484
	for (; overflow; overflow--) {
6485
		if (__perf_event_overflow(event, throttle,
6486
					    data, regs)) {
6487 6488 6489 6490 6491 6492
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6493
		throttle = 1;
6494
	}
6495 6496
}

P
Peter Zijlstra 已提交
6497
static void perf_swevent_event(struct perf_event *event, u64 nr,
6498
			       struct perf_sample_data *data,
6499
			       struct pt_regs *regs)
6500
{
6501
	struct hw_perf_event *hwc = &event->hw;
6502

6503
	local64_add(nr, &event->count);
6504

6505 6506 6507
	if (!regs)
		return;

6508
	if (!is_sampling_event(event))
6509
		return;
6510

6511 6512 6513 6514 6515 6516
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6517
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6518
		return perf_swevent_overflow(event, 1, data, regs);
6519

6520
	if (local64_add_negative(nr, &hwc->period_left))
6521
		return;
6522

6523
	perf_swevent_overflow(event, 0, data, regs);
6524 6525
}

6526 6527 6528
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6529
	if (event->hw.state & PERF_HES_STOPPED)
6530
		return 1;
P
Peter Zijlstra 已提交
6531

6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6543
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6544
				enum perf_type_id type,
L
Li Zefan 已提交
6545 6546 6547
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6548
{
6549
	if (event->attr.type != type)
6550
		return 0;
6551

6552
	if (event->attr.config != event_id)
6553 6554
		return 0;

6555 6556
	if (perf_exclude_event(event, regs))
		return 0;
6557 6558 6559 6560

	return 1;
}

6561 6562 6563 6564 6565 6566 6567
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6568 6569
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6570
{
6571 6572 6573 6574
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6575

6576 6577
/* For the read side: events when they trigger */
static inline struct hlist_head *
6578
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6579 6580
{
	struct swevent_hlist *hlist;
6581

6582
	hlist = rcu_dereference(swhash->swevent_hlist);
6583 6584 6585
	if (!hlist)
		return NULL;

6586 6587 6588 6589 6590
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6591
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6602
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6603 6604 6605 6606 6607
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6608 6609 6610
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6611
				    u64 nr,
6612 6613
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6614
{
6615
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6616
	struct perf_event *event;
6617
	struct hlist_head *head;
6618

6619
	rcu_read_lock();
6620
	head = find_swevent_head_rcu(swhash, type, event_id);
6621 6622 6623
	if (!head)
		goto end;

6624
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6625
		if (perf_swevent_match(event, type, event_id, data, regs))
6626
			perf_swevent_event(event, nr, data, regs);
6627
	}
6628 6629
end:
	rcu_read_unlock();
6630 6631
}

6632 6633
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6634
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6635
{
6636
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6637

6638
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6639
}
I
Ingo Molnar 已提交
6640
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6641

6642
inline void perf_swevent_put_recursion_context(int rctx)
6643
{
6644
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6645

6646
	put_recursion_context(swhash->recursion, rctx);
6647
}
6648

6649
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6650
{
6651
	struct perf_sample_data data;
6652

6653
	if (WARN_ON_ONCE(!regs))
6654
		return;
6655

6656
	perf_sample_data_init(&data, addr, 0);
6657
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6670 6671

	perf_swevent_put_recursion_context(rctx);
6672
fail:
6673
	preempt_enable_notrace();
6674 6675
}

6676
static void perf_swevent_read(struct perf_event *event)
6677 6678 6679
{
}

P
Peter Zijlstra 已提交
6680
static int perf_swevent_add(struct perf_event *event, int flags)
6681
{
6682
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6683
	struct hw_perf_event *hwc = &event->hw;
6684 6685
	struct hlist_head *head;

6686
	if (is_sampling_event(event)) {
6687
		hwc->last_period = hwc->sample_period;
6688
		perf_swevent_set_period(event);
6689
	}
6690

P
Peter Zijlstra 已提交
6691 6692
	hwc->state = !(flags & PERF_EF_START);

6693
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6694
	if (WARN_ON_ONCE(!head))
6695 6696 6697
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6698
	perf_event_update_userpage(event);
6699

6700 6701 6702
	return 0;
}

P
Peter Zijlstra 已提交
6703
static void perf_swevent_del(struct perf_event *event, int flags)
6704
{
6705
	hlist_del_rcu(&event->hlist_entry);
6706 6707
}

P
Peter Zijlstra 已提交
6708
static void perf_swevent_start(struct perf_event *event, int flags)
6709
{
P
Peter Zijlstra 已提交
6710
	event->hw.state = 0;
6711
}
I
Ingo Molnar 已提交
6712

P
Peter Zijlstra 已提交
6713
static void perf_swevent_stop(struct perf_event *event, int flags)
6714
{
P
Peter Zijlstra 已提交
6715
	event->hw.state = PERF_HES_STOPPED;
6716 6717
}

6718 6719
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6720
swevent_hlist_deref(struct swevent_htable *swhash)
6721
{
6722 6723
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6724 6725
}

6726
static void swevent_hlist_release(struct swevent_htable *swhash)
6727
{
6728
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6729

6730
	if (!hlist)
6731 6732
		return;

6733
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6734
	kfree_rcu(hlist, rcu_head);
6735 6736 6737 6738
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6739
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6740

6741
	mutex_lock(&swhash->hlist_mutex);
6742

6743 6744
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6745

6746
	mutex_unlock(&swhash->hlist_mutex);
6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6759
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6760 6761
	int err = 0;

6762 6763
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6764 6765 6766 6767 6768 6769 6770
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6771
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6772
	}
6773
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6774
exit:
6775
	mutex_unlock(&swhash->hlist_mutex);
6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6796
fail:
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6807
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6808

6809 6810 6811
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6812

6813 6814
	WARN_ON(event->parent);

6815
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6816 6817 6818 6819 6820
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6821
	u64 event_id = event->attr.config;
6822 6823 6824 6825

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6826 6827 6828 6829 6830 6831
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6832 6833 6834 6835 6836 6837 6838 6839 6840
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6841
	if (event_id >= PERF_COUNT_SW_MAX)
6842 6843 6844 6845 6846 6847 6848 6849 6850
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6851
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6852 6853 6854 6855 6856 6857 6858
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6859
	.task_ctx_nr	= perf_sw_context,
6860

6861 6862
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6863
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6864 6865 6866 6867
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6868 6869 6870
	.read		= perf_swevent_read,
};

6871 6872
#ifdef CONFIG_EVENT_TRACING

6873 6874 6875 6876 6877
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6878 6879 6880 6881
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6882 6883 6884 6885 6886 6887 6888 6889 6890
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6891 6892
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6893 6894 6895 6896
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6897 6898 6899 6900 6901 6902 6903 6904 6905
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6906 6907
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6908 6909
{
	struct perf_sample_data data;
6910 6911
	struct perf_event *event;

6912 6913 6914 6915 6916
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6917
	perf_sample_data_init(&data, addr, 0);
6918 6919
	data.raw = &raw;

6920
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6921
		if (perf_tp_event_match(event, &data, regs))
6922
			perf_swevent_event(event, count, &data, regs);
6923
	}
6924

6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6950
	perf_swevent_put_recursion_context(rctx);
6951 6952 6953
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6954
static void tp_perf_event_destroy(struct perf_event *event)
6955
{
6956
	perf_trace_destroy(event);
6957 6958
}

6959
static int perf_tp_event_init(struct perf_event *event)
6960
{
6961 6962
	int err;

6963 6964 6965
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6966 6967 6968 6969 6970 6971
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6972 6973
	err = perf_trace_init(event);
	if (err)
6974
		return err;
6975

6976
	event->destroy = tp_perf_event_destroy;
6977

6978 6979 6980 6981
	return 0;
}

static struct pmu perf_tracepoint = {
6982 6983
	.task_ctx_nr	= perf_sw_context,

6984
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6985 6986 6987 6988
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6989 6990 6991 6992 6993
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6994
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6995
}
L
Li Zefan 已提交
6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7020 7021 7022 7023 7024 7025 7026 7027 7028 7029
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7030 7031
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7032 7033 7034 7035 7036 7037
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7038
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7063
#else
L
Li Zefan 已提交
7064

7065
static inline void perf_tp_register(void)
7066 7067
{
}
L
Li Zefan 已提交
7068 7069 7070 7071 7072 7073 7074 7075 7076 7077

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7078 7079 7080 7081 7082 7083 7084 7085
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7086
#endif /* CONFIG_EVENT_TRACING */
7087

7088
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7089
void perf_bp_event(struct perf_event *bp, void *data)
7090
{
7091 7092 7093
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7094
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7095

P
Peter Zijlstra 已提交
7096
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7097
		perf_swevent_event(bp, 1, &sample, regs);
7098 7099 7100
}
#endif

7101 7102 7103
/*
 * hrtimer based swevent callback
 */
7104

7105
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7106
{
7107 7108 7109 7110 7111
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7112

7113
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7114 7115 7116 7117

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7118
	event->pmu->read(event);
7119

7120
	perf_sample_data_init(&data, 0, event->hw.last_period);
7121 7122 7123
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7124
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7125
			if (__perf_event_overflow(event, 1, &data, regs))
7126 7127
				ret = HRTIMER_NORESTART;
	}
7128

7129 7130
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7131

7132
	return ret;
7133 7134
}

7135
static void perf_swevent_start_hrtimer(struct perf_event *event)
7136
{
7137
	struct hw_perf_event *hwc = &event->hw;
7138 7139 7140 7141
	s64 period;

	if (!is_sampling_event(event))
		return;
7142

7143 7144 7145 7146
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7147

7148 7149 7150 7151
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7152 7153
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7154
}
7155 7156

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7157
{
7158 7159
	struct hw_perf_event *hwc = &event->hw;

7160
	if (is_sampling_event(event)) {
7161
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7162
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7163 7164 7165

		hrtimer_cancel(&hwc->hrtimer);
	}
7166 7167
}

P
Peter Zijlstra 已提交
7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7188
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7189 7190 7191 7192
		event->attr.freq = 0;
	}
}

7193 7194 7195 7196 7197
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7198
{
7199 7200 7201
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7202
	now = local_clock();
7203 7204
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7205 7206
}

P
Peter Zijlstra 已提交
7207
static void cpu_clock_event_start(struct perf_event *event, int flags)
7208
{
P
Peter Zijlstra 已提交
7209
	local64_set(&event->hw.prev_count, local_clock());
7210 7211 7212
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7213
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7214
{
7215 7216 7217
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7218

P
Peter Zijlstra 已提交
7219 7220 7221 7222
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7223
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7224 7225 7226 7227 7228 7229 7230 7231 7232

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7233 7234 7235 7236
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7237

7238 7239 7240 7241 7242 7243 7244 7245
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7246 7247 7248 7249 7250 7251
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7252 7253
	perf_swevent_init_hrtimer(event);

7254
	return 0;
7255 7256
}

7257
static struct pmu perf_cpu_clock = {
7258 7259
	.task_ctx_nr	= perf_sw_context,

7260 7261
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7262
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7263 7264 7265 7266
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7267 7268 7269 7270 7271 7272 7273 7274
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7275
{
7276 7277
	u64 prev;
	s64 delta;
7278

7279 7280 7281 7282
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7283

P
Peter Zijlstra 已提交
7284
static void task_clock_event_start(struct perf_event *event, int flags)
7285
{
P
Peter Zijlstra 已提交
7286
	local64_set(&event->hw.prev_count, event->ctx->time);
7287 7288 7289
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7290
static void task_clock_event_stop(struct perf_event *event, int flags)
7291 7292 7293
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7294 7295 7296 7297 7298 7299
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7300
	perf_event_update_userpage(event);
7301

P
Peter Zijlstra 已提交
7302 7303 7304 7305 7306 7307
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7308 7309 7310 7311
}

static void task_clock_event_read(struct perf_event *event)
{
7312 7313 7314
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7315 7316 7317 7318 7319

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7320
{
7321 7322 7323 7324 7325 7326
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7327 7328 7329 7330 7331 7332
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7333 7334
	perf_swevent_init_hrtimer(event);

7335
	return 0;
L
Li Zefan 已提交
7336 7337
}

7338
static struct pmu perf_task_clock = {
7339 7340
	.task_ctx_nr	= perf_sw_context,

7341 7342
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7343
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7344 7345 7346 7347
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7348 7349
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7350

P
Peter Zijlstra 已提交
7351
static void perf_pmu_nop_void(struct pmu *pmu)
7352 7353
{
}
L
Li Zefan 已提交
7354

7355 7356 7357 7358
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7359
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7360
{
P
Peter Zijlstra 已提交
7361
	return 0;
L
Li Zefan 已提交
7362 7363
}

7364
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7365 7366

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7367
{
7368 7369 7370 7371 7372
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7373
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7374 7375
}

P
Peter Zijlstra 已提交
7376 7377
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7378 7379 7380 7381 7382 7383 7384
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7385 7386 7387
	perf_pmu_enable(pmu);
	return 0;
}
7388

P
Peter Zijlstra 已提交
7389
static void perf_pmu_cancel_txn(struct pmu *pmu)
7390
{
7391 7392 7393 7394 7395 7396 7397
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7398
	perf_pmu_enable(pmu);
7399 7400
}

7401 7402
static int perf_event_idx_default(struct perf_event *event)
{
7403
	return 0;
7404 7405
}

P
Peter Zijlstra 已提交
7406 7407 7408 7409
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7410
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7411
{
P
Peter Zijlstra 已提交
7412
	struct pmu *pmu;
7413

P
Peter Zijlstra 已提交
7414 7415
	if (ctxn < 0)
		return NULL;
7416

P
Peter Zijlstra 已提交
7417 7418 7419 7420
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7421

P
Peter Zijlstra 已提交
7422
	return NULL;
7423 7424
}

7425
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7426
{
7427 7428 7429 7430 7431 7432 7433
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7434 7435
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7436 7437 7438 7439 7440 7441
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7442

P
Peter Zijlstra 已提交
7443
	mutex_lock(&pmus_lock);
7444
	/*
P
Peter Zijlstra 已提交
7445
	 * Like a real lame refcount.
7446
	 */
7447 7448 7449
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7450
			goto out;
7451
		}
P
Peter Zijlstra 已提交
7452
	}
7453

7454
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7455 7456
out:
	mutex_unlock(&pmus_lock);
7457
}
P
Peter Zijlstra 已提交
7458
static struct idr pmu_idr;
7459

P
Peter Zijlstra 已提交
7460 7461 7462 7463 7464 7465 7466
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7467
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7468

7469 7470 7471 7472 7473 7474 7475 7476 7477 7478
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7479 7480
static DEFINE_MUTEX(mux_interval_mutex);

7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7500
	mutex_lock(&mux_interval_mutex);
7501 7502 7503
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7504 7505
	get_online_cpus();
	for_each_online_cpu(cpu) {
7506 7507 7508 7509
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7510 7511
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7512
	}
7513 7514
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7515 7516 7517

	return count;
}
7518
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7519

7520 7521 7522 7523
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7524
};
7525
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7526 7527 7528 7529

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7530
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7546
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7567
static struct lock_class_key cpuctx_mutex;
7568
static struct lock_class_key cpuctx_lock;
7569

7570
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7571
{
P
Peter Zijlstra 已提交
7572
	int cpu, ret;
7573

7574
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7575 7576 7577 7578
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7579

P
Peter Zijlstra 已提交
7580 7581 7582 7583 7584 7585
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7586 7587 7588
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7589 7590 7591 7592 7593
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7594 7595 7596 7597 7598 7599
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7600
skip_type:
P
Peter Zijlstra 已提交
7601 7602 7603
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7604

W
Wei Yongjun 已提交
7605
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7606 7607
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7608
		goto free_dev;
7609

P
Peter Zijlstra 已提交
7610 7611 7612 7613
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7614
		__perf_event_init_context(&cpuctx->ctx);
7615
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7616
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7617
		cpuctx->ctx.pmu = pmu;
7618

7619
		__perf_mux_hrtimer_init(cpuctx, cpu);
7620

7621
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7622
	}
7623

P
Peter Zijlstra 已提交
7624
got_cpu_context:
P
Peter Zijlstra 已提交
7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7636
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7637 7638
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7639
		}
7640
	}
7641

P
Peter Zijlstra 已提交
7642 7643 7644 7645 7646
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7647 7648 7649
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7650
	list_add_rcu(&pmu->entry, &pmus);
7651
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7652 7653
	ret = 0;
unlock:
7654 7655
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7656
	return ret;
P
Peter Zijlstra 已提交
7657

P
Peter Zijlstra 已提交
7658 7659 7660 7661
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7662 7663 7664 7665
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7666 7667 7668
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7669
}
7670
EXPORT_SYMBOL_GPL(perf_pmu_register);
7671

7672
void perf_pmu_unregister(struct pmu *pmu)
7673
{
7674 7675 7676
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7677

7678
	/*
P
Peter Zijlstra 已提交
7679 7680
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7681
	 */
7682
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7683
	synchronize_rcu();
7684

P
Peter Zijlstra 已提交
7685
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7686 7687
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7688 7689
	device_del(pmu->dev);
	put_device(pmu->dev);
7690
	free_pmu_context(pmu);
7691
}
7692
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7693

7694 7695
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7696
	struct perf_event_context *ctx = NULL;
7697 7698 7699 7700
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7701 7702

	if (event->group_leader != event) {
7703 7704 7705 7706 7707 7708
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7709 7710 7711
		BUG_ON(!ctx);
	}

7712 7713
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7714 7715 7716 7717

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7718 7719 7720 7721 7722 7723
	if (ret)
		module_put(pmu->module);

	return ret;
}

7724
static struct pmu *perf_init_event(struct perf_event *event)
7725 7726 7727
{
	struct pmu *pmu = NULL;
	int idx;
7728
	int ret;
7729 7730

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7731 7732 7733 7734

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7735
	if (pmu) {
7736
		ret = perf_try_init_event(pmu, event);
7737 7738
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7739
		goto unlock;
7740
	}
P
Peter Zijlstra 已提交
7741

7742
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7743
		ret = perf_try_init_event(pmu, event);
7744
		if (!ret)
P
Peter Zijlstra 已提交
7745
			goto unlock;
7746

7747 7748
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7749
			goto unlock;
7750
		}
7751
	}
P
Peter Zijlstra 已提交
7752 7753
	pmu = ERR_PTR(-ENOENT);
unlock:
7754
	srcu_read_unlock(&pmus_srcu, idx);
7755

7756
	return pmu;
7757 7758
}

7759 7760 7761 7762 7763 7764 7765 7766 7767
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7768 7769
static void account_event(struct perf_event *event)
{
7770 7771
	bool inc = false;

7772 7773 7774
	if (event->parent)
		return;

7775
	if (event->attach_state & PERF_ATTACH_TASK)
7776
		inc = true;
7777 7778 7779 7780 7781 7782
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7783 7784 7785 7786
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7787 7788
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
7789
		inc = true;
7790
	}
7791
	if (has_branch_stack(event))
7792
		inc = true;
7793
	if (is_cgroup_event(event))
7794 7795 7796
		inc = true;

	if (inc)
7797
		static_key_slow_inc(&perf_sched_events.key);
7798 7799

	account_event_cpu(event, event->cpu);
7800 7801
}

T
Thomas Gleixner 已提交
7802
/*
7803
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7804
 */
7805
static struct perf_event *
7806
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7807 7808 7809
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7810
		 perf_overflow_handler_t overflow_handler,
7811
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7812
{
P
Peter Zijlstra 已提交
7813
	struct pmu *pmu;
7814 7815
	struct perf_event *event;
	struct hw_perf_event *hwc;
7816
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7817

7818 7819 7820 7821 7822
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7823
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7824
	if (!event)
7825
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7826

7827
	/*
7828
	 * Single events are their own group leaders, with an
7829 7830 7831
	 * empty sibling list:
	 */
	if (!group_leader)
7832
		group_leader = event;
7833

7834 7835
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7836

7837 7838 7839
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7840
	INIT_LIST_HEAD(&event->rb_entry);
7841
	INIT_LIST_HEAD(&event->active_entry);
7842 7843
	INIT_HLIST_NODE(&event->hlist_entry);

7844

7845
	init_waitqueue_head(&event->waitq);
7846
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7847

7848
	mutex_init(&event->mmap_mutex);
7849

7850
	atomic_long_set(&event->refcount, 1);
7851 7852 7853 7854 7855
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7856

7857
	event->parent		= parent_event;
7858

7859
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7860
	event->id		= atomic64_inc_return(&perf_event_id);
7861

7862
	event->state		= PERF_EVENT_STATE_INACTIVE;
7863

7864 7865 7866
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7867 7868 7869
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7870
		 */
7871
		event->hw.target = task;
7872 7873
	}

7874 7875 7876 7877
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7878
	if (!overflow_handler && parent_event) {
7879
		overflow_handler = parent_event->overflow_handler;
7880 7881
		context = parent_event->overflow_handler_context;
	}
7882

7883
	event->overflow_handler	= overflow_handler;
7884
	event->overflow_handler_context = context;
7885

J
Jiri Olsa 已提交
7886
	perf_event__state_init(event);
7887

7888
	pmu = NULL;
7889

7890
	hwc = &event->hw;
7891
	hwc->sample_period = attr->sample_period;
7892
	if (attr->freq && attr->sample_freq)
7893
		hwc->sample_period = 1;
7894
	hwc->last_period = hwc->sample_period;
7895

7896
	local64_set(&hwc->period_left, hwc->sample_period);
7897

7898
	/*
7899
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7900
	 */
7901
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7902
		goto err_ns;
7903 7904 7905

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7906

7907 7908 7909 7910 7911 7912
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7913
	pmu = perf_init_event(event);
7914
	if (!pmu)
7915 7916
		goto err_ns;
	else if (IS_ERR(pmu)) {
7917
		err = PTR_ERR(pmu);
7918
		goto err_ns;
I
Ingo Molnar 已提交
7919
	}
7920

7921 7922 7923 7924
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7925
	if (!event->parent) {
7926 7927
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7928
			if (err)
7929
				goto err_per_task;
7930
		}
7931
	}
7932

7933
	return event;
7934

7935 7936 7937
err_per_task:
	exclusive_event_destroy(event);

7938 7939 7940
err_pmu:
	if (event->destroy)
		event->destroy(event);
7941
	module_put(pmu->module);
7942
err_ns:
7943 7944
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7945 7946 7947 7948 7949
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7950 7951
}

7952 7953
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7954 7955
{
	u32 size;
7956
	int ret;
7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7981 7982 7983
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7984 7985
	 */
	if (size > sizeof(*attr)) {
7986 7987 7988
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7989

7990 7991
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7992

7993
		for (; addr < end; addr++) {
7994 7995 7996 7997 7998 7999
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
8000
		size = sizeof(*attr);
8001 8002 8003 8004 8005 8006
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

8007
	if (attr->__reserved_1)
8008 8009 8010 8011 8012 8013 8014 8015
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8044 8045
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8046 8047
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8048
	}
8049

8050
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8051
		ret = perf_reg_validate(attr->sample_regs_user);
8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8070

8071 8072
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8073 8074 8075 8076 8077 8078 8079 8080 8081
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8082 8083
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8084
{
8085
	struct ring_buffer *rb = NULL;
8086 8087
	int ret = -EINVAL;

8088
	if (!output_event)
8089 8090
		goto set;

8091 8092
	/* don't allow circular references */
	if (event == output_event)
8093 8094
		goto out;

8095 8096 8097 8098 8099 8100 8101
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8102
	 * If its not a per-cpu rb, it must be the same task.
8103 8104 8105 8106
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8107 8108 8109 8110 8111 8112
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8113 8114 8115 8116 8117 8118 8119
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8120
set:
8121
	mutex_lock(&event->mmap_mutex);
8122 8123 8124
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8125

8126
	if (output_event) {
8127 8128 8129
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8130
			goto unlock;
8131 8132
	}

8133
	ring_buffer_attach(event, rb);
8134

8135
	ret = 0;
8136 8137 8138
unlock:
	mutex_unlock(&event->mmap_mutex);

8139 8140 8141 8142
out:
	return ret;
}

P
Peter Zijlstra 已提交
8143 8144 8145 8146 8147 8148 8149 8150 8151
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8189
/**
8190
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8191
 *
8192
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8193
 * @pid:		target pid
I
Ingo Molnar 已提交
8194
 * @cpu:		target cpu
8195
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8196
 */
8197 8198
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8199
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8200
{
8201 8202
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8203
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8204
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8205
	struct file *event_file = NULL;
8206
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8207
	struct task_struct *task = NULL;
8208
	struct pmu *pmu;
8209
	int event_fd;
8210
	int move_group = 0;
8211
	int err;
8212
	int f_flags = O_RDWR;
8213
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8214

8215
	/* for future expandability... */
S
Stephane Eranian 已提交
8216
	if (flags & ~PERF_FLAG_ALL)
8217 8218
		return -EINVAL;

8219 8220 8221
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8222

8223 8224 8225 8226 8227
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8228
	if (attr.freq) {
8229
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8230
			return -EINVAL;
8231 8232 8233
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8234 8235
	}

S
Stephane Eranian 已提交
8236 8237 8238 8239 8240 8241 8242 8243 8244
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8245 8246 8247 8248
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8249 8250 8251
	if (event_fd < 0)
		return event_fd;

8252
	if (group_fd != -1) {
8253 8254
		err = perf_fget_light(group_fd, &group);
		if (err)
8255
			goto err_fd;
8256
		group_leader = group.file->private_data;
8257 8258 8259 8260 8261 8262
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8263
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8264 8265 8266 8267 8268 8269 8270
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8271 8272 8273 8274 8275 8276
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8277 8278
	get_online_cpus();

8279 8280 8281
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8282
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8283
				 NULL, NULL, cgroup_fd);
8284 8285
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8286
		goto err_cpus;
8287 8288
	}

8289 8290 8291 8292 8293 8294 8295
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8296 8297
	account_event(event);

8298 8299 8300 8301 8302
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8303

8304 8305 8306 8307 8308 8309
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8332 8333 8334 8335

	/*
	 * Get the target context (task or percpu):
	 */
8336
	ctx = find_get_context(pmu, task, event);
8337 8338
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8339
		goto err_alloc;
8340 8341
	}

8342 8343 8344 8345 8346
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8347 8348 8349 8350 8351
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8352
	/*
8353
	 * Look up the group leader (we will attach this event to it):
8354
	 */
8355
	if (group_leader) {
8356
		err = -EINVAL;
8357 8358

		/*
I
Ingo Molnar 已提交
8359 8360 8361 8362
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8363
			goto err_context;
8364 8365 8366 8367 8368

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8369 8370 8371
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8372
		 */
8373
		if (move_group) {
8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8387 8388 8389 8390 8391 8392
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8393 8394 8395
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8396
		if (attr.exclusive || attr.pinned)
8397
			goto err_context;
8398 8399 8400 8401 8402
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8403
			goto err_context;
8404
	}
T
Thomas Gleixner 已提交
8405

8406 8407
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8408 8409
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8410
		goto err_context;
8411
	}
8412

8413
	if (move_group) {
P
Peter Zijlstra 已提交
8414
		gctx = group_leader->ctx;
8415 8416 8417 8418 8419
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8420 8421 8422 8423 8424
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8425 8426 8427 8428 8429 8430 8431
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8432

8433 8434 8435
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8436

8437 8438 8439
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8440 8441 8442 8443
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8444
		perf_remove_from_context(group_leader, 0);
J
Jiri Olsa 已提交
8445

8446 8447
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8448
			perf_remove_from_context(sibling, 0);
8449 8450 8451
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8452 8453 8454 8455
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8456
		synchronize_rcu();
P
Peter Zijlstra 已提交
8457

8458 8459 8460 8461 8462 8463 8464 8465 8466 8467
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8468 8469
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8470
			perf_event__state_init(sibling);
8471
			perf_install_in_context(ctx, sibling, sibling->cpu);
8472 8473
			get_ctx(ctx);
		}
8474 8475 8476 8477 8478 8479 8480 8481 8482

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8483

8484 8485 8486 8487 8488 8489
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8490 8491
	}

8492 8493 8494 8495 8496 8497 8498 8499 8500
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
8501 8502
	event->owner = current;

8503
	perf_install_in_context(ctx, event, event->cpu);
8504
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8505

8506
	if (move_group)
P
Peter Zijlstra 已提交
8507
		mutex_unlock(&gctx->mutex);
8508
	mutex_unlock(&ctx->mutex);
8509

8510 8511
	put_online_cpus();

8512 8513 8514
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8515

8516 8517 8518 8519 8520 8521
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8522
	fdput(group);
8523 8524
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8525

8526 8527 8528 8529 8530 8531
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8532
err_context:
8533
	perf_unpin_context(ctx);
8534
	put_ctx(ctx);
8535
err_alloc:
8536
	free_event(event);
8537
err_cpus:
8538
	put_online_cpus();
8539
err_task:
P
Peter Zijlstra 已提交
8540 8541
	if (task)
		put_task_struct(task);
8542
err_group_fd:
8543
	fdput(group);
8544 8545
err_fd:
	put_unused_fd(event_fd);
8546
	return err;
T
Thomas Gleixner 已提交
8547 8548
}

8549 8550 8551 8552 8553
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8554
 * @task: task to profile (NULL for percpu)
8555 8556 8557
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8558
				 struct task_struct *task,
8559 8560
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8561 8562
{
	struct perf_event_context *ctx;
8563
	struct perf_event *event;
8564
	int err;
8565

8566 8567 8568
	/*
	 * Get the target context (task or percpu):
	 */
8569

8570
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8571
				 overflow_handler, context, -1);
8572 8573 8574 8575
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8576

8577
	/* Mark owner so we could distinguish it from user events. */
8578
	event->owner = TASK_TOMBSTONE;
8579

8580 8581
	account_event(event);

8582
	ctx = find_get_context(event->pmu, task, event);
8583 8584
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8585
		goto err_free;
8586
	}
8587 8588 8589

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8590 8591 8592 8593 8594 8595 8596 8597
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8598
	perf_install_in_context(ctx, event, cpu);
8599
	perf_unpin_context(ctx);
8600 8601 8602 8603
	mutex_unlock(&ctx->mutex);

	return event;

8604 8605 8606
err_free:
	free_event(event);
err:
8607
	return ERR_PTR(err);
8608
}
8609
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8610

8611 8612 8613 8614 8615 8616 8617 8618 8619 8620
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8621 8622 8623 8624 8625
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8626 8627
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8628
		perf_remove_from_context(event, 0);
8629
		unaccount_event_cpu(event, src_cpu);
8630
		put_ctx(src_ctx);
8631
		list_add(&event->migrate_entry, &events);
8632 8633
	}

8634 8635 8636
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8637 8638
	synchronize_rcu();

8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8663 8664
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8665 8666
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8667
		account_event_cpu(event, dst_cpu);
8668 8669 8670 8671
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8672
	mutex_unlock(&src_ctx->mutex);
8673 8674 8675
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8676
static void sync_child_event(struct perf_event *child_event,
8677
			       struct task_struct *child)
8678
{
8679
	struct perf_event *parent_event = child_event->parent;
8680
	u64 child_val;
8681

8682 8683
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8684

P
Peter Zijlstra 已提交
8685
	child_val = perf_event_count(child_event);
8686 8687 8688 8689

	/*
	 * Add back the child's count to the parent's count:
	 */
8690
	atomic64_add(child_val, &parent_event->child_count);
8691 8692 8693 8694
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8695 8696
}

8697
static void
8698 8699 8700
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
8701
{
8702 8703
	struct perf_event *parent_event = child_event->parent;

8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
8716 8717 8718
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

8719
	if (parent_event)
8720 8721
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
8722
	child_event->state = PERF_EVENT_STATE_EXIT;
8723
	raw_spin_unlock_irq(&child_ctx->lock);
8724

8725
	/*
8726
	 * Parent events are governed by their filedesc, retain them.
8727
	 */
8728
	if (!parent_event) {
8729
		perf_event_wakeup(child_event);
8730
		return;
8731
	}
8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
8752 8753
}

P
Peter Zijlstra 已提交
8754
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8755
{
8756
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8757 8758 8759
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
8760

8761
	child_ctx = perf_pin_task_context(child, ctxn);
8762
	if (!child_ctx)
8763 8764
		return;

8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776
	/*
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
	 *
	 * We can recurse on the same lock type through:
	 *
8777 8778 8779
	 *   perf_event_exit_event()
	 *     put_event()
	 *       mutex_lock(&ctx->mutex)
8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock(&child_ctx->mutex);

	/*
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
	 */
	raw_spin_lock_irq(&child_ctx->lock);
8791
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8792 8793

	/*
8794 8795
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
8796
	 */
8797 8798 8799 8800
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
8801

8802
	clone_ctx = unclone_ctx(child_ctx);
8803
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
8804

8805 8806
	if (clone_ctx)
		put_ctx(clone_ctx);
8807

P
Peter Zijlstra 已提交
8808
	/*
8809 8810 8811
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8812
	 */
8813
	perf_event_task(child, child_ctx, 0);
8814

8815
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8816
		perf_event_exit_event(child_event, child_ctx, child);
8817

8818 8819 8820
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8821 8822
}

P
Peter Zijlstra 已提交
8823 8824 8825 8826 8827
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8828
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8829 8830
	int ctxn;

P
Peter Zijlstra 已提交
8831 8832 8833 8834 8835 8836 8837 8838 8839 8840
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
8841
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
8842 8843 8844
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8845 8846
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8847 8848 8849 8850 8851 8852 8853 8854

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8855 8856
}

8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8869
	put_event(parent);
8870

P
Peter Zijlstra 已提交
8871
	raw_spin_lock_irq(&ctx->lock);
8872
	perf_group_detach(event);
8873
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8874
	raw_spin_unlock_irq(&ctx->lock);
8875 8876 8877
	free_event(event);
}

8878
/*
P
Peter Zijlstra 已提交
8879
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8880
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8881 8882 8883
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8884
 */
8885
void perf_event_free_task(struct task_struct *task)
8886
{
P
Peter Zijlstra 已提交
8887
	struct perf_event_context *ctx;
8888
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8889
	int ctxn;
8890

P
Peter Zijlstra 已提交
8891 8892 8893 8894
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8895

P
Peter Zijlstra 已提交
8896
		mutex_lock(&ctx->mutex);
8897
again:
P
Peter Zijlstra 已提交
8898 8899 8900
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8901

P
Peter Zijlstra 已提交
8902 8903 8904
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8905

P
Peter Zijlstra 已提交
8906 8907 8908
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8909

P
Peter Zijlstra 已提交
8910
		mutex_unlock(&ctx->mutex);
8911

P
Peter Zijlstra 已提交
8912 8913
		put_ctx(ctx);
	}
8914 8915
}

8916 8917 8918 8919 8920 8921 8922 8923
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8924
struct file *perf_event_get(unsigned int fd)
8925
{
8926
	struct file *file;
8927

8928 8929 8930
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
8931

8932 8933 8934 8935
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
8936

8937
	return file;
8938 8939 8940 8941 8942 8943 8944 8945 8946 8947
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8959
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8960
	struct perf_event *child_event;
8961
	unsigned long flags;
P
Peter Zijlstra 已提交
8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8974
					   child,
P
Peter Zijlstra 已提交
8975
					   group_leader, parent_event,
8976
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8977 8978
	if (IS_ERR(child_event))
		return child_event;
8979

8980 8981
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8982 8983 8984 8985
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8986 8987 8988 8989 8990 8991 8992
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8993
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9010 9011
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9012

9013 9014 9015 9016
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9017
	perf_event__id_header_size(child_event);
9018

P
Peter Zijlstra 已提交
9019 9020 9021
	/*
	 * Link it up in the child's context:
	 */
9022
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9023
	add_event_to_ctx(child_event, child_ctx);
9024
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9058 9059 9060 9061 9062
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9063
		   struct task_struct *child, int ctxn,
9064 9065 9066
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9067
	struct perf_event_context *child_ctx;
9068 9069 9070 9071

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9072 9073
	}

9074
	child_ctx = child->perf_event_ctxp[ctxn];
9075 9076 9077 9078 9079 9080 9081
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9082

9083
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9084 9085
		if (!child_ctx)
			return -ENOMEM;
9086

P
Peter Zijlstra 已提交
9087
		child->perf_event_ctxp[ctxn] = child_ctx;
9088 9089 9090 9091 9092 9093 9094 9095 9096
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9097 9098
}

9099
/*
9100
 * Initialize the perf_event context in task_struct
9101
 */
9102
static int perf_event_init_context(struct task_struct *child, int ctxn)
9103
{
9104
	struct perf_event_context *child_ctx, *parent_ctx;
9105 9106
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9107
	struct task_struct *parent = current;
9108
	int inherited_all = 1;
9109
	unsigned long flags;
9110
	int ret = 0;
9111

P
Peter Zijlstra 已提交
9112
	if (likely(!parent->perf_event_ctxp[ctxn]))
9113 9114
		return 0;

9115
	/*
9116 9117
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9118
	 */
P
Peter Zijlstra 已提交
9119
	parent_ctx = perf_pin_task_context(parent, ctxn);
9120 9121
	if (!parent_ctx)
		return 0;
9122

9123 9124 9125 9126 9127 9128 9129
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9130 9131 9132 9133
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9134
	mutex_lock(&parent_ctx->mutex);
9135 9136 9137 9138 9139

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9140
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9141 9142
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9143 9144 9145
		if (ret)
			break;
	}
9146

9147 9148 9149 9150 9151 9152 9153 9154 9155
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9156
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9157 9158
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9159
		if (ret)
9160
			break;
9161 9162
	}

9163 9164 9165
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9166
	child_ctx = child->perf_event_ctxp[ctxn];
9167

9168
	if (child_ctx && inherited_all) {
9169 9170 9171
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9172 9173 9174
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9175
		 */
P
Peter Zijlstra 已提交
9176
		cloned_ctx = parent_ctx->parent_ctx;
9177 9178
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9179
			child_ctx->parent_gen = parent_ctx->parent_gen;
9180 9181 9182 9183 9184
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9185 9186
	}

P
Peter Zijlstra 已提交
9187
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9188
	mutex_unlock(&parent_ctx->mutex);
9189

9190
	perf_unpin_context(parent_ctx);
9191
	put_ctx(parent_ctx);
9192

9193
	return ret;
9194 9195
}

P
Peter Zijlstra 已提交
9196 9197 9198 9199 9200 9201 9202
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9203 9204 9205 9206
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9207 9208
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9209 9210
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9211
			return ret;
P
Peter Zijlstra 已提交
9212
		}
P
Peter Zijlstra 已提交
9213 9214 9215 9216 9217
	}

	return 0;
}

9218 9219
static void __init perf_event_init_all_cpus(void)
{
9220
	struct swevent_htable *swhash;
9221 9222 9223
	int cpu;

	for_each_possible_cpu(cpu) {
9224 9225
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9226
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9227 9228 9229
	}
}

9230
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9231
{
P
Peter Zijlstra 已提交
9232
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9233

9234
	mutex_lock(&swhash->hlist_mutex);
9235
	if (swhash->hlist_refcount > 0) {
9236 9237
		struct swevent_hlist *hlist;

9238 9239 9240
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9241
	}
9242
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9243 9244
}

9245
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9246
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9247
{
P
Peter Zijlstra 已提交
9248
	struct perf_event_context *ctx = __info;
9249 9250
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
9251

9252 9253
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
9254
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9255
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
9256
}
P
Peter Zijlstra 已提交
9257 9258 9259 9260 9261 9262 9263 9264 9265

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9266
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9267 9268 9269 9270 9271 9272 9273 9274

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9275
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9276
{
P
Peter Zijlstra 已提交
9277
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9278 9279
}
#else
9280
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9281 9282
#endif

P
Peter Zijlstra 已提交
9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9303
static int
T
Thomas Gleixner 已提交
9304 9305 9306 9307
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9308
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9309 9310

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9311
	case CPU_DOWN_FAILED:
9312
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9313 9314
		break;

P
Peter Zijlstra 已提交
9315
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9316
	case CPU_DOWN_PREPARE:
9317
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9318 9319 9320 9321 9322 9323 9324 9325
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9326
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9327
{
9328 9329
	int ret;

P
Peter Zijlstra 已提交
9330 9331
	idr_init(&pmu_idr);

9332
	perf_event_init_all_cpus();
9333
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9334 9335 9336
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9337 9338
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9339
	register_reboot_notifier(&perf_reboot_notifier);
9340 9341 9342

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9343 9344 9345

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9346 9347 9348 9349 9350 9351 9352

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9353
}
P
Peter Zijlstra 已提交
9354

9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9394 9395

#ifdef CONFIG_CGROUP_PERF
9396 9397
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9398 9399 9400
{
	struct perf_cgroup *jc;

9401
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9414
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9415
{
9416 9417
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9418 9419 9420 9421 9422 9423 9424
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9425
	rcu_read_lock();
S
Stephane Eranian 已提交
9426
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9427
	rcu_read_unlock();
S
Stephane Eranian 已提交
9428 9429 9430
	return 0;
}

9431
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9432
{
9433
	struct task_struct *task;
9434
	struct cgroup_subsys_state *css;
9435

9436
	cgroup_taskset_for_each(task, css, tset)
9437
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9438 9439
}

9440
struct cgroup_subsys perf_event_cgrp_subsys = {
9441 9442
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9443
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9444 9445
};
#endif /* CONFIG_CGROUP_PERF */