core.c 222.1 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
typedef int (*remote_function_f)(void *);

54
struct remote_function_call {
55
	struct task_struct	*p;
56
	remote_function_f	func;
57 58
	void			*info;
	int			ret;
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
89
task_function_call(struct task_struct *p, remote_function_f func, void *info)
90 91
{
	struct remote_function_call data = {
92 93 94 95
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
113
static int cpu_function_call(int cpu, remote_function_f func, void *info)
114 115
{
	struct remote_function_call data = {
116 117 118 119
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
120 121 122 123 124 125 126
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

127 128 129 130 131 132 133 134
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
135
{
136 137 138 139 140 141 142 143 144 145 146 147 148
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

149 150 151 152
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
153
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
154 155
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * This is because we need a ctx->lock serialized variable (ctx->is_active)
 * to reliably determine if a particular task/context is scheduled in. The
 * task_curr() use in task_function_call() is racy in that a remote context
 * switch is not a single atomic operation.
 *
 * As is, the situation is 'safe' because we set rq->curr before we do the
 * actual context switch. This means that task_curr() will fail early, but
 * we'll continue spinning on ctx->is_active until we've passed
 * perf_event_task_sched_out().
 *
 * Without this ctx->lock serialized variable we could have race where we find
 * the task (and hence the context) would not be active while in fact they are.
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

188 189 190 191 192 193 194 195 196 197 198 199 200
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
201
	struct perf_event_context *ctx = event->ctx;
202 203
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
204
	int ret = 0;
205 206 207

	WARN_ON_ONCE(!irqs_disabled());

208
	perf_ctx_lock(cpuctx, task_ctx);
209 210 211 212 213
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
214 215 216 217
		if (ctx->task != current) {
			ret = -EAGAIN;
			goto unlock;
		}
218 219 220 221 222 223 224 225 226 227 228 229 230

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
231 232 233
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
234
	}
235

236
	efs->func(event, cpuctx, ctx, efs->data);
237
unlock:
238 239
	perf_ctx_unlock(cpuctx, task_ctx);

240
	return ret;
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
}

static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};

	int ret = event_function(&efs);
	WARN_ON_ONCE(ret);
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
256 257
{
	struct perf_event_context *ctx = event->ctx;
258
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 260 261 262 263
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
264

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
273 274

	if (!task) {
275
		cpu_function_call(event->cpu, event_function, &efs);
276 277 278 279
		return;
	}

again:
280 281 282
	if (task == TASK_TOMBSTONE)
		return;

283
	if (!task_function_call(task, event_function, &efs))
284 285 286
		return;

	raw_spin_lock_irq(&ctx->lock);
287 288 289 290 291 292 293 294 295 296 297
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
	if (task != TASK_TOMBSTONE) {
		if (ctx->is_active) {
			raw_spin_unlock_irq(&ctx->lock);
			goto again;
		}
		func(event, NULL, ctx, data);
298 299 300 301
	}
	raw_spin_unlock_irq(&ctx->lock);
}

S
Stephane Eranian 已提交
302 303
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
304 305
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
306

307 308 309 310 311 312 313
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

314 315 316
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
317
	EVENT_TIME = 0x4,
318 319 320
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
321 322 323 324
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
325 326 327 328 329 330 331

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
332
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
333
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
334

335 336 337
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
338
static atomic_t nr_freq_events __read_mostly;
339
static atomic_t nr_switch_events __read_mostly;
340

P
Peter Zijlstra 已提交
341 342 343 344
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

345
/*
346
 * perf event paranoia level:
347 348
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
349
 *   1 - disallow cpu events for unpriv
350
 *   2 - disallow kernel profiling for unpriv
351
 */
352
int sysctl_perf_event_paranoid __read_mostly = 1;
353

354 355
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
356 357

/*
358
 * max perf event sample rate
359
 */
360 361 362 363 364 365 366 367 368
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
369 370
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
371

372
static void update_perf_cpu_limits(void)
373 374 375 376
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
377
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
378
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
379
}
P
Peter Zijlstra 已提交
380

381 382
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
383 384 385 386
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
387
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
388 389 390 391 392

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
411 412 413

	return 0;
}
414

415 416 417 418 419 420 421
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
422
static DEFINE_PER_CPU(u64, running_sample_length);
423

424
static void perf_duration_warn(struct irq_work *w)
425
{
426
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
427
	u64 avg_local_sample_len;
428
	u64 local_samples_len;
429

430
	local_samples_len = __this_cpu_read(running_sample_length);
431 432 433 434 435
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
436
			avg_local_sample_len, allowed_ns >> 1,
437 438 439 440 441 442 443
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
444
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
445 446
	u64 avg_local_sample_len;
	u64 local_samples_len;
447

P
Peter Zijlstra 已提交
448
	if (allowed_ns == 0)
449 450 451
		return;

	/* decay the counter by 1 average sample */
452
	local_samples_len = __this_cpu_read(running_sample_length);
453 454
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
455
	__this_cpu_write(running_sample_length, local_samples_len);
456 457 458 459 460 461 462 463

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
464
	if (avg_local_sample_len <= allowed_ns)
465 466 467 468 469 470 471 472 473 474
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
475

476 477 478 479 480 481
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
482 483
}

484
static atomic64_t perf_event_id;
485

486 487 488 489
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
490 491 492 493 494
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
495

496
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
497

498
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
499
{
500
	return "pmu";
T
Thomas Gleixner 已提交
501 502
}

503 504 505 506 507
static inline u64 perf_clock(void)
{
	return local_clock();
}

508 509 510 511 512
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
513 514 515 516 517 518 519 520
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
537 538 539 540
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
541
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
580 581
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
582
	/*
583 584
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
585
	 */
586
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
587 588
		return;

589
	cgrp = perf_cgroup_from_task(current, event->ctx);
590 591 592 593 594
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
595 596 597
}

static inline void
598 599
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
600 601 602 603
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

604 605 606 607 608 609
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
610 611
		return;

612
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
613
	info = this_cpu_ptr(cgrp->info);
614
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
615 616 617 618 619 620 621 622 623 624 625
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
626
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
646 647
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
648 649 650 651 652 653 654 655 656

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
657 658
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
659 660 661 662 663 664 665 666 667 668 669

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
670
				WARN_ON_ONCE(cpuctx->cgrp);
671 672 673 674
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
675 676
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
677
				 */
678
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
679 680
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
681 682
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
683 684 685 686 687 688
		}
	}

	local_irq_restore(flags);
}

689 690
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
691
{
692 693 694
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

695
	rcu_read_lock();
696 697
	/*
	 * we come here when we know perf_cgroup_events > 0
698 699
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
700
	 */
701
	cgrp1 = perf_cgroup_from_task(task, NULL);
702
	cgrp2 = perf_cgroup_from_task(next, NULL);
703 704 705 706 707 708 709 710

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
711 712

	rcu_read_unlock();
S
Stephane Eranian 已提交
713 714
}

715 716
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
717
{
718 719 720
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

721
	rcu_read_lock();
722 723
	/*
	 * we come here when we know perf_cgroup_events > 0
724 725
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
726
	 */
727 728
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
729 730 731 732 733 734 735 736

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
737 738

	rcu_read_unlock();
S
Stephane Eranian 已提交
739 740 741 742 743 744 745 746
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
747 748
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
749

750
	if (!f.file)
S
Stephane Eranian 已提交
751 752
		return -EBADF;

A
Al Viro 已提交
753
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
754
					 &perf_event_cgrp_subsys);
755 756 757 758
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
772
out:
773
	fdput(f);
S
Stephane Eranian 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

847 848
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
849 850 851
{
}

852 853
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
854 855 856 857 858 859 860 861 862 863 864
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
865 866
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

897 898 899 900 901 902 903 904
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
905
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
906 907 908 909 910 911 912 913 914
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
915 916
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
917
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
918 919 920
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
921

P
Peter Zijlstra 已提交
922
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
923 924
}

925
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
926
{
927
	struct hrtimer *timer = &cpuctx->hrtimer;
928
	struct pmu *pmu = cpuctx->ctx.pmu;
929
	u64 interval;
930 931 932 933 934

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

935 936 937 938
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
939 940 941
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
942

943
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
944

P
Peter Zijlstra 已提交
945 946
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
947
	timer->function = perf_mux_hrtimer_handler;
948 949
}

950
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
951
{
952
	struct hrtimer *timer = &cpuctx->hrtimer;
953
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
954
	unsigned long flags;
955 956 957

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
958
		return 0;
959

P
Peter Zijlstra 已提交
960 961 962 963 964 965 966
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
967

968
	return 0;
969 970
}

P
Peter Zijlstra 已提交
971
void perf_pmu_disable(struct pmu *pmu)
972
{
P
Peter Zijlstra 已提交
973 974 975
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
976 977
}

P
Peter Zijlstra 已提交
978
void perf_pmu_enable(struct pmu *pmu)
979
{
P
Peter Zijlstra 已提交
980 981 982
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
983 984
}

985
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
986 987

/*
988 989 990 991
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
992
 */
993
static void perf_event_ctx_activate(struct perf_event_context *ctx)
994
{
995
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
996

997
	WARN_ON(!irqs_disabled());
998

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1011 1012
}

1013
static void get_ctx(struct perf_event_context *ctx)
1014
{
1015
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1016 1017
}

1018 1019 1020 1021 1022 1023 1024 1025 1026
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1027
static void put_ctx(struct perf_event_context *ctx)
1028
{
1029 1030 1031
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1032
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1033
			put_task_struct(ctx->task);
1034
		call_rcu(&ctx->rcu_head, free_ctx);
1035
	}
1036 1037
}

P
Peter Zijlstra 已提交
1038 1039 1040 1041 1042 1043 1044
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1045 1046 1047 1048
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1049 1050
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1094
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1095 1096 1097
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1098 1099
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1112
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1122 1123 1124 1125 1126 1127
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1128 1129 1130 1131 1132 1133 1134
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1135 1136 1137 1138 1139 1140 1141
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1142
{
1143 1144 1145 1146 1147
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1148
		ctx->parent_ctx = NULL;
1149
	ctx->generation++;
1150 1151

	return parent_ctx;
1152 1153
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1176
/*
1177
 * If we inherit events we want to return the parent event id
1178 1179
 * to userspace.
 */
1180
static u64 primary_event_id(struct perf_event *event)
1181
{
1182
	u64 id = event->id;
1183

1184 1185
	if (event->parent)
		id = event->parent->id;
1186 1187 1188 1189

	return id;
}

1190
/*
1191
 * Get the perf_event_context for a task and lock it.
1192
 *
1193 1194 1195
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1196
static struct perf_event_context *
P
Peter Zijlstra 已提交
1197
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1198
{
1199
	struct perf_event_context *ctx;
1200

P
Peter Zijlstra 已提交
1201
retry:
1202 1203 1204
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1205
	 * part of the read side critical section was irqs-enabled -- see
1206 1207 1208
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1209
	 * side critical section has interrupts disabled.
1210
	 */
1211
	local_irq_save(*flags);
1212
	rcu_read_lock();
P
Peter Zijlstra 已提交
1213
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1214 1215 1216 1217
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1218
		 * perf_event_task_sched_out, though the
1219 1220 1221 1222 1223 1224
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1225
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1226
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1227
			raw_spin_unlock(&ctx->lock);
1228
			rcu_read_unlock();
1229
			local_irq_restore(*flags);
1230 1231
			goto retry;
		}
1232

1233 1234
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1235
			raw_spin_unlock(&ctx->lock);
1236
			ctx = NULL;
P
Peter Zijlstra 已提交
1237 1238
		} else {
			WARN_ON_ONCE(ctx->task != task);
1239
		}
1240 1241
	}
	rcu_read_unlock();
1242 1243
	if (!ctx)
		local_irq_restore(*flags);
1244 1245 1246 1247 1248 1249 1250 1251
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1252 1253
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1254
{
1255
	struct perf_event_context *ctx;
1256 1257
	unsigned long flags;

P
Peter Zijlstra 已提交
1258
	ctx = perf_lock_task_context(task, ctxn, &flags);
1259 1260
	if (ctx) {
		++ctx->pin_count;
1261
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1262 1263 1264 1265
	}
	return ctx;
}

1266
static void perf_unpin_context(struct perf_event_context *ctx)
1267 1268 1269
{
	unsigned long flags;

1270
	raw_spin_lock_irqsave(&ctx->lock, flags);
1271
	--ctx->pin_count;
1272
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1273 1274
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1286 1287 1288
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1289 1290 1291 1292

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1293 1294 1295
	return ctx ? ctx->time : 0;
}

1296 1297 1298 1299 1300 1301 1302 1303
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1304 1305
	lockdep_assert_held(&ctx->lock);

1306 1307 1308
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1309

S
Stephane Eranian 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1321
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1322 1323
	else if (ctx->is_active)
		run_end = ctx->time;
1324 1325 1326 1327
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1328 1329 1330 1331

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1332
		run_end = perf_event_time(event);
1333 1334

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1335

1336 1337
}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1350 1351 1352 1353 1354 1355 1356 1357 1358
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1359
/*
1360
 * Add a event from the lists for its context.
1361 1362
 * Must be called with ctx->mutex and ctx->lock held.
 */
1363
static void
1364
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1365
{
P
Peter Zijlstra 已提交
1366 1367
	lockdep_assert_held(&ctx->lock);

1368 1369
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1370 1371

	/*
1372 1373 1374
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1375
	 */
1376
	if (event->group_leader == event) {
1377 1378
		struct list_head *list;

1379 1380 1381
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1382 1383
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1384
	}
P
Peter Zijlstra 已提交
1385

1386
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1387 1388
		ctx->nr_cgroups++;

1389 1390 1391
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1392
		ctx->nr_stat++;
1393 1394

	ctx->generation++;
1395 1396
}

J
Jiri Olsa 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1406
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1422
		nr += nr_siblings;
1423 1424 1425 1426 1427 1428 1429
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1430
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1431 1432 1433 1434 1435 1436 1437
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1438 1439 1440 1441 1442 1443
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1444 1445 1446
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1447 1448 1449
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1450 1451 1452
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1453 1454 1455
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1456 1457 1458
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1470 1471 1472 1473 1474 1475
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1476 1477 1478 1479 1480 1481
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1482 1483 1484
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1485 1486 1487 1488 1489 1490 1491 1492 1493
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1494
	event->id_header_size = size;
1495 1496
}

P
Peter Zijlstra 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1518 1519
static void perf_group_attach(struct perf_event *event)
{
1520
	struct perf_event *group_leader = event->group_leader, *pos;
1521

P
Peter Zijlstra 已提交
1522 1523 1524 1525 1526 1527
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1528 1529 1530 1531 1532
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1533 1534
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1535 1536 1537 1538 1539 1540
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1541 1542 1543 1544 1545

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1546 1547
}

1548
/*
1549
 * Remove a event from the lists for its context.
1550
 * Must be called with ctx->mutex and ctx->lock held.
1551
 */
1552
static void
1553
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1554
{
1555
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1556 1557 1558 1559

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1560 1561 1562 1563
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1564
		return;
1565 1566 1567

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1568
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1569
		ctx->nr_cgroups--;
1570 1571 1572 1573
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1574 1575
		cpuctx = __get_cpu_context(ctx);
		/*
1576 1577
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1578 1579 1580 1581
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1582

1583 1584
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1585
		ctx->nr_stat--;
1586

1587
	list_del_rcu(&event->event_entry);
1588

1589 1590
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1591

1592
	update_group_times(event);
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1603 1604

	ctx->generation++;
1605 1606
}

1607
static void perf_group_detach(struct perf_event *event)
1608 1609
{
	struct perf_event *sibling, *tmp;
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1626
		goto out;
1627 1628 1629 1630
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1631

1632
	/*
1633 1634
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1635
	 * to whatever list we are on.
1636
	 */
1637
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1638 1639
		if (list)
			list_move_tail(&sibling->group_entry, list);
1640
		sibling->group_leader = sibling;
1641 1642 1643

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1644 1645

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1646
	}
1647 1648 1649 1650 1651 1652

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1653 1654
}

1655 1656
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1657
	return event->state == PERF_EVENT_STATE_DEAD;
1658 1659
}

1660 1661 1662 1663 1664 1665
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1666 1667 1668
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1669
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1670
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1671 1672
}

1673 1674
static void
event_sched_out(struct perf_event *event,
1675
		  struct perf_cpu_context *cpuctx,
1676
		  struct perf_event_context *ctx)
1677
{
1678
	u64 tstamp = perf_event_time(event);
1679
	u64 delta;
P
Peter Zijlstra 已提交
1680 1681 1682 1683

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1684 1685 1686 1687 1688 1689 1690 1691
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1692
		delta = tstamp - event->tstamp_stopped;
1693
		event->tstamp_running += delta;
1694
		event->tstamp_stopped = tstamp;
1695 1696
	}

1697
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1698
		return;
1699

1700 1701
	perf_pmu_disable(event->pmu);

1702 1703 1704
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1705 1706 1707 1708
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1709
	}
1710

1711
	if (!is_software_event(event))
1712
		cpuctx->active_oncpu--;
1713 1714
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1715 1716
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1717
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1718
		cpuctx->exclusive = 0;
1719 1720

	perf_pmu_enable(event->pmu);
1721 1722
}

1723
static void
1724
group_sched_out(struct perf_event *group_event,
1725
		struct perf_cpu_context *cpuctx,
1726
		struct perf_event_context *ctx)
1727
{
1728
	struct perf_event *event;
1729
	int state = group_event->state;
1730

1731
	event_sched_out(group_event, cpuctx, ctx);
1732 1733 1734 1735

	/*
	 * Schedule out siblings (if any):
	 */
1736 1737
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1738

1739
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1740 1741 1742
		cpuctx->exclusive = 0;
}

1743
#define DETACH_GROUP	0x01UL
1744

T
Thomas Gleixner 已提交
1745
/*
1746
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1747
 *
1748
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1749 1750
 * remove it from the context list.
 */
1751 1752 1753 1754 1755
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1756
{
1757
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1758

1759
	event_sched_out(event, cpuctx, ctx);
1760
	if (flags & DETACH_GROUP)
1761
		perf_group_detach(event);
1762
	list_del_event(event, ctx);
1763 1764

	if (!ctx->nr_events && ctx->is_active) {
1765
		ctx->is_active = 0;
1766 1767 1768 1769
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1770
	}
T
Thomas Gleixner 已提交
1771 1772 1773
}

/*
1774
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1775
 *
1776 1777
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1778 1779
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1780
 * When called from perf_event_exit_task, it's OK because the
1781
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1782
 */
1783
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1784
{
1785
	lockdep_assert_held(&event->ctx->mutex);
T
Thomas Gleixner 已提交
1786

1787
	event_function_call(event, __perf_remove_from_context, (void *)flags);
T
Thomas Gleixner 已提交
1788 1789
}

1790
/*
1791
 * Cross CPU call to disable a performance event
1792
 */
1793 1794 1795 1796
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1797
{
1798 1799
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1800

1801 1802 1803 1804 1805 1806 1807 1808
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1809 1810
}

1811
/*
1812
 * Disable a event.
1813
 *
1814 1815
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1816
 * remains valid.  This condition is satisifed when called through
1817 1818
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1819 1820
 * goes to exit will block in perf_event_exit_event().
 *
1821
 * When called from perf_pending_event it's OK because event->ctx
1822
 * is the current context on this CPU and preemption is disabled,
1823
 * hence we can't get into perf_event_task_sched_out for this context.
1824
 */
P
Peter Zijlstra 已提交
1825
static void _perf_event_disable(struct perf_event *event)
1826
{
1827
	struct perf_event_context *ctx = event->ctx;
1828

1829
	raw_spin_lock_irq(&ctx->lock);
1830
	if (event->state <= PERF_EVENT_STATE_OFF) {
1831
		raw_spin_unlock_irq(&ctx->lock);
1832
		return;
1833
	}
1834
	raw_spin_unlock_irq(&ctx->lock);
1835

1836 1837 1838 1839 1840 1841
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1842
}
P
Peter Zijlstra 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1856
EXPORT_SYMBOL_GPL(perf_event_disable);
1857

S
Stephane Eranian 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1893 1894 1895
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1896
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1897

1898
static int
1899
event_sched_in(struct perf_event *event,
1900
		 struct perf_cpu_context *cpuctx,
1901
		 struct perf_event_context *ctx)
1902
{
1903
	u64 tstamp = perf_event_time(event);
1904
	int ret = 0;
1905

1906 1907
	lockdep_assert_held(&ctx->lock);

1908
	if (event->state <= PERF_EVENT_STATE_OFF)
1909 1910
		return 0;

1911
	event->state = PERF_EVENT_STATE_ACTIVE;
1912
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1924 1925 1926 1927 1928
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1929 1930
	perf_pmu_disable(event->pmu);

1931 1932
	perf_set_shadow_time(event, ctx, tstamp);

1933 1934
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1935
	if (event->pmu->add(event, PERF_EF_START)) {
1936 1937
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1938 1939
		ret = -EAGAIN;
		goto out;
1940 1941
	}

1942 1943
	event->tstamp_running += tstamp - event->tstamp_stopped;

1944
	if (!is_software_event(event))
1945
		cpuctx->active_oncpu++;
1946 1947
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1948 1949
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1950

1951
	if (event->attr.exclusive)
1952 1953
		cpuctx->exclusive = 1;

1954 1955 1956 1957
out:
	perf_pmu_enable(event->pmu);

	return ret;
1958 1959
}

1960
static int
1961
group_sched_in(struct perf_event *group_event,
1962
	       struct perf_cpu_context *cpuctx,
1963
	       struct perf_event_context *ctx)
1964
{
1965
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1966
	struct pmu *pmu = ctx->pmu;
1967 1968
	u64 now = ctx->time;
	bool simulate = false;
1969

1970
	if (group_event->state == PERF_EVENT_STATE_OFF)
1971 1972
		return 0;

1973
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1974

1975
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1976
		pmu->cancel_txn(pmu);
1977
		perf_mux_hrtimer_restart(cpuctx);
1978
		return -EAGAIN;
1979
	}
1980 1981 1982 1983

	/*
	 * Schedule in siblings as one group (if any):
	 */
1984
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1985
		if (event_sched_in(event, cpuctx, ctx)) {
1986
			partial_group = event;
1987 1988 1989 1990
			goto group_error;
		}
	}

1991
	if (!pmu->commit_txn(pmu))
1992
		return 0;
1993

1994 1995 1996 1997
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2008
	 */
2009 2010
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2011 2012 2013 2014 2015 2016 2017 2018
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2019
	}
2020
	event_sched_out(group_event, cpuctx, ctx);
2021

P
Peter Zijlstra 已提交
2022
	pmu->cancel_txn(pmu);
2023

2024
	perf_mux_hrtimer_restart(cpuctx);
2025

2026 2027 2028
	return -EAGAIN;
}

2029
/*
2030
 * Work out whether we can put this event group on the CPU now.
2031
 */
2032
static int group_can_go_on(struct perf_event *event,
2033 2034 2035 2036
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2037
	 * Groups consisting entirely of software events can always go on.
2038
	 */
2039
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2040 2041 2042
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2043
	 * events can go on.
2044 2045 2046 2047 2048
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2049
	 * events on the CPU, it can't go on.
2050
	 */
2051
	if (event->attr.exclusive && cpuctx->active_oncpu)
2052 2053 2054 2055 2056 2057 2058 2059
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2060 2061
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2062
{
2063 2064
	u64 tstamp = perf_event_time(event);

2065
	list_add_event(event, ctx);
2066
	perf_group_attach(event);
2067 2068 2069
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2070 2071
}

2072 2073
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx);
2074 2075 2076 2077 2078
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2079

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2092 2093
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
2094
{
2095 2096 2097 2098 2099 2100
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2101 2102
}

T
Thomas Gleixner 已提交
2103
/*
2104
 * Cross CPU call to install and enable a performance event
2105 2106
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2107
 */
2108
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2109
{
2110
	struct perf_event_context *ctx = info;
P
Peter Zijlstra 已提交
2111
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2112
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
T
Thomas Gleixner 已提交
2113

2114
	raw_spin_lock(&cpuctx->ctx.lock);
2115
	if (ctx->task) {
2116
		raw_spin_lock(&ctx->lock);
2117 2118 2119 2120
		/*
		 * If we hit the 'wrong' task, we've since scheduled and
		 * everything should be sorted, nothing to do!
		 */
2121
		task_ctx = ctx;
2122
		if (ctx->task != current)
2123
			goto unlock;
2124

2125 2126 2127 2128
		/*
		 * If task_ctx is set, it had better be to us.
		 */
		WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
2129 2130
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2131
	}
2132

2133
	ctx_resched(cpuctx, task_ctx);
2134
unlock:
2135
	perf_ctx_unlock(cpuctx, task_ctx);
2136 2137

	return 0;
T
Thomas Gleixner 已提交
2138 2139 2140
}

/*
2141
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2142 2143
 */
static void
2144 2145
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2146 2147
			int cpu)
{
2148 2149
	struct task_struct *task = NULL;

2150 2151
	lockdep_assert_held(&ctx->mutex);

2152
	event->ctx = ctx;
2153 2154
	if (event->cpu != -1)
		event->cpu = cpu;
2155

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 *
	 * So what we do is we add the event to the list here, which will allow
	 * a future context switch to DTRT and then send a racy IPI. If the IPI
	 * fails to hit the right task, this means a context switch must have
	 * happened and that will have taken care of business.
	 */
	raw_spin_lock_irq(&ctx->lock);
2166
	task = ctx->task;
2167

2168
	/*
2169 2170 2171 2172 2173
	 * If between ctx = find_get_context() and mutex_lock(&ctx->mutex) the
	 * ctx gets destroyed, we must not install an event into it.
	 *
	 * This is normally tested for after we acquire the mutex, so this is
	 * a sanity check.
2174
	 */
2175
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2176 2177 2178
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2179 2180 2181 2182 2183 2184

	if (ctx->is_active) {
		update_context_time(ctx);
		update_cgrp_time_from_event(event);
	}

2185 2186 2187 2188 2189 2190 2191
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);

	if (task)
		task_function_call(task, __perf_install_in_context, ctx);
	else
		cpu_function_call(cpu, __perf_install_in_context, ctx);
T
Thomas Gleixner 已提交
2192 2193
}

2194
/*
2195
 * Put a event into inactive state and update time fields.
2196 2197 2198 2199 2200 2201
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2202
static void __perf_event_mark_enabled(struct perf_event *event)
2203
{
2204
	struct perf_event *sub;
2205
	u64 tstamp = perf_event_time(event);
2206

2207
	event->state = PERF_EVENT_STATE_INACTIVE;
2208
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2209
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2210 2211
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2212
	}
2213 2214
}

2215
/*
2216
 * Cross CPU call to enable a performance event
2217
 */
2218 2219 2220 2221
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2222
{
2223
	struct perf_event *leader = event->group_leader;
2224
	struct perf_event_context *task_ctx;
2225

P
Peter Zijlstra 已提交
2226 2227
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2228
		return;
2229

2230
	update_context_time(ctx);
2231
	__perf_event_mark_enabled(event);
2232

2233 2234 2235
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2236
	if (!event_filter_match(event)) {
2237 2238
		if (is_cgroup_event(event)) {
			perf_cgroup_set_timestamp(current, ctx); // XXX ?
S
Stephane Eranian 已提交
2239
			perf_cgroup_defer_enabled(event);
2240 2241
		}
		return;
S
Stephane Eranian 已提交
2242
	}
2243

2244
	/*
2245
	 * If the event is in a group and isn't the group leader,
2246
	 * then don't put it on unless the group is on.
2247
	 */
2248
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2249
		return;
2250

2251 2252 2253
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2254

2255
	ctx_resched(cpuctx, task_ctx);
2256 2257
}

2258
/*
2259
 * Enable a event.
2260
 *
2261 2262
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2263
 * remains valid.  This condition is satisfied when called through
2264 2265
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2266
 */
P
Peter Zijlstra 已提交
2267
static void _perf_event_enable(struct perf_event *event)
2268
{
2269
	struct perf_event_context *ctx = event->ctx;
2270

2271
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2272 2273
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2274
		raw_spin_unlock_irq(&ctx->lock);
2275 2276 2277 2278
		return;
	}

	/*
2279
	 * If the event is in error state, clear that first.
2280 2281 2282 2283
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2284
	 */
2285 2286
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2287
	raw_spin_unlock_irq(&ctx->lock);
2288

2289
	event_function_call(event, __perf_event_enable, NULL);
2290
}
P
Peter Zijlstra 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2303
EXPORT_SYMBOL_GPL(perf_event_enable);
2304

P
Peter Zijlstra 已提交
2305
static int _perf_event_refresh(struct perf_event *event, int refresh)
2306
{
2307
	/*
2308
	 * not supported on inherited events
2309
	 */
2310
	if (event->attr.inherit || !is_sampling_event(event))
2311 2312
		return -EINVAL;

2313
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2314
	_perf_event_enable(event);
2315 2316

	return 0;
2317
}
P
Peter Zijlstra 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2333
EXPORT_SYMBOL_GPL(perf_event_refresh);
2334

2335 2336 2337
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2338
{
2339
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2340
	struct perf_event *event;
2341

P
Peter Zijlstra 已提交
2342
	lockdep_assert_held(&ctx->lock);
2343

2344 2345 2346 2347 2348 2349 2350
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2351
		return;
2352 2353
	}

2354
	ctx->is_active &= ~event_type;
2355 2356 2357
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2358 2359 2360 2361 2362
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2363

2364 2365 2366 2367 2368 2369 2370 2371 2372
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2373
		return;
2374

P
Peter Zijlstra 已提交
2375
	perf_pmu_disable(ctx->pmu);
2376
	if (is_active & EVENT_PINNED) {
2377 2378
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2379
	}
2380

2381
	if (is_active & EVENT_FLEXIBLE) {
2382
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2383
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2384
	}
P
Peter Zijlstra 已提交
2385
	perf_pmu_enable(ctx->pmu);
2386 2387
}

2388
/*
2389 2390 2391 2392 2393 2394
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2395
 */
2396 2397
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2398
{
2399 2400 2401
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2424 2425
}

2426 2427
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2428 2429 2430
{
	u64 value;

2431
	if (!event->attr.inherit_stat)
2432 2433 2434
		return;

	/*
2435
	 * Update the event value, we cannot use perf_event_read()
2436 2437
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2438
	 * we know the event must be on the current CPU, therefore we
2439 2440
	 * don't need to use it.
	 */
2441 2442
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2443 2444
		event->pmu->read(event);
		/* fall-through */
2445

2446 2447
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2448 2449 2450 2451 2452 2453 2454
		break;

	default:
		break;
	}

	/*
2455
	 * In order to keep per-task stats reliable we need to flip the event
2456 2457
	 * values when we flip the contexts.
	 */
2458 2459 2460
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2461

2462 2463
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2464

2465
	/*
2466
	 * Since we swizzled the values, update the user visible data too.
2467
	 */
2468 2469
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2470 2471
}

2472 2473
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2474
{
2475
	struct perf_event *event, *next_event;
2476 2477 2478 2479

	if (!ctx->nr_stat)
		return;

2480 2481
	update_context_time(ctx);

2482 2483
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2484

2485 2486
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2487

2488 2489
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2490

2491
		__perf_event_sync_stat(event, next_event);
2492

2493 2494
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2495 2496 2497
	}
}

2498 2499
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2500
{
P
Peter Zijlstra 已提交
2501
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2502
	struct perf_event_context *next_ctx;
2503
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2504
	struct perf_cpu_context *cpuctx;
2505
	int do_switch = 1;
T
Thomas Gleixner 已提交
2506

P
Peter Zijlstra 已提交
2507 2508
	if (likely(!ctx))
		return;
2509

P
Peter Zijlstra 已提交
2510 2511
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2512 2513
		return;

2514
	rcu_read_lock();
P
Peter Zijlstra 已提交
2515
	next_ctx = next->perf_event_ctxp[ctxn];
2516 2517 2518 2519 2520 2521 2522
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2523
	if (!parent && !next_parent)
2524 2525 2526
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2527 2528 2529 2530 2531 2532 2533 2534 2535
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2536 2537
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2538
		if (context_equiv(ctx, next_ctx)) {
2539 2540
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2541 2542 2543

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2554
			do_switch = 0;
2555

2556
			perf_event_sync_stat(ctx, next_ctx);
2557
		}
2558 2559
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2560
	}
2561
unlock:
2562
	rcu_read_unlock();
2563

2564
	if (do_switch) {
2565
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2566
		task_ctx_sched_out(cpuctx, ctx);
2567
		raw_spin_unlock(&ctx->lock);
2568
	}
T
Thomas Gleixner 已提交
2569 2570
}

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2621 2622 2623
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2638 2639
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2640 2641 2642
{
	int ctxn;

2643 2644 2645
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2646 2647 2648
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2649 2650
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2651 2652 2653 2654 2655 2656

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2657
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2658
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2659 2660
}

2661 2662
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
2663
{
2664 2665
	if (!cpuctx->task_ctx)
		return;
2666 2667 2668 2669

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2670
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2671 2672
}

2673 2674 2675 2676 2677 2678 2679
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2680 2681
}

2682
static void
2683
ctx_pinned_sched_in(struct perf_event_context *ctx,
2684
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2685
{
2686
	struct perf_event *event;
T
Thomas Gleixner 已提交
2687

2688 2689
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2690
			continue;
2691
		if (!event_filter_match(event))
2692 2693
			continue;

S
Stephane Eranian 已提交
2694 2695 2696 2697
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2698
		if (group_can_go_on(event, cpuctx, 1))
2699
			group_sched_in(event, cpuctx, ctx);
2700 2701 2702 2703 2704

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2705 2706 2707
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2708
		}
2709
	}
2710 2711 2712 2713
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2714
		      struct perf_cpu_context *cpuctx)
2715 2716 2717
{
	struct perf_event *event;
	int can_add_hw = 1;
2718

2719 2720 2721
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2722
			continue;
2723 2724
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2725
		 * of events:
2726
		 */
2727
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2728 2729
			continue;

S
Stephane Eranian 已提交
2730 2731 2732 2733
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2734
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2735
			if (group_sched_in(event, cpuctx, ctx))
2736
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2737
		}
T
Thomas Gleixner 已提交
2738
	}
2739 2740 2741 2742 2743
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2744 2745
	     enum event_type_t event_type,
	     struct task_struct *task)
2746
{
2747
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2748 2749 2750
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2751

2752
	if (likely(!ctx->nr_events))
2753
		return;
2754

2755
	ctx->is_active |= (event_type | EVENT_TIME);
2756 2757 2758 2759 2760 2761 2762
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

2763 2764 2765 2766 2767 2768 2769 2770 2771
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

2772 2773 2774 2775
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2776
	if (is_active & EVENT_PINNED)
2777
		ctx_pinned_sched_in(ctx, cpuctx);
2778 2779

	/* Then walk through the lower prio flexible groups */
2780
	if (is_active & EVENT_FLEXIBLE)
2781
		ctx_flexible_sched_in(ctx, cpuctx);
2782 2783
}

2784
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2785 2786
			     enum event_type_t event_type,
			     struct task_struct *task)
2787 2788 2789
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2790
	ctx_sched_in(ctx, cpuctx, event_type, task);
2791 2792
}

S
Stephane Eranian 已提交
2793 2794
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2795
{
P
Peter Zijlstra 已提交
2796
	struct perf_cpu_context *cpuctx;
2797

P
Peter Zijlstra 已提交
2798
	cpuctx = __get_cpu_context(ctx);
2799 2800 2801
	if (cpuctx->task_ctx == ctx)
		return;

2802
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2803
	perf_pmu_disable(ctx->pmu);
2804 2805 2806 2807 2808 2809
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2810
	perf_event_sched_in(cpuctx, ctx, task);
2811 2812
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2813 2814
}

P
Peter Zijlstra 已提交
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2826 2827
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2828 2829 2830 2831
{
	struct perf_event_context *ctx;
	int ctxn;

2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2842 2843 2844 2845 2846
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2847
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2848
	}
2849

2850 2851 2852
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2853 2854
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2855 2856
}

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2884
#define REDUCE_FLS(a, b)		\
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2924 2925 2926
	if (!divisor)
		return dividend;

2927 2928 2929
	return div64_u64(dividend, divisor);
}

2930 2931 2932
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2933
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2934
{
2935
	struct hw_perf_event *hwc = &event->hw;
2936
	s64 period, sample_period;
2937 2938
	s64 delta;

2939
	period = perf_calculate_period(event, nsec, count);
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2950

2951
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2952 2953 2954
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2955
		local64_set(&hwc->period_left, 0);
2956 2957 2958

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2959
	}
2960 2961
}

2962 2963 2964 2965 2966 2967 2968
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2969
{
2970 2971
	struct perf_event *event;
	struct hw_perf_event *hwc;
2972
	u64 now, period = TICK_NSEC;
2973
	s64 delta;
2974

2975 2976 2977 2978 2979 2980
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2981 2982
		return;

2983
	raw_spin_lock(&ctx->lock);
2984
	perf_pmu_disable(ctx->pmu);
2985

2986
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2987
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2988 2989
			continue;

2990
		if (!event_filter_match(event))
2991 2992
			continue;

2993 2994
		perf_pmu_disable(event->pmu);

2995
		hwc = &event->hw;
2996

2997
		if (hwc->interrupts == MAX_INTERRUPTS) {
2998
			hwc->interrupts = 0;
2999
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3000
			event->pmu->start(event, 0);
3001 3002
		}

3003
		if (!event->attr.freq || !event->attr.sample_freq)
3004
			goto next;
3005

3006 3007 3008 3009 3010
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3011
		now = local64_read(&event->count);
3012 3013
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3014

3015 3016 3017
		/*
		 * restart the event
		 * reload only if value has changed
3018 3019 3020
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3021
		 */
3022
		if (delta > 0)
3023
			perf_adjust_period(event, period, delta, false);
3024 3025

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3026 3027
	next:
		perf_pmu_enable(event->pmu);
3028
	}
3029

3030
	perf_pmu_enable(ctx->pmu);
3031
	raw_spin_unlock(&ctx->lock);
3032 3033
}

3034
/*
3035
 * Round-robin a context's events:
3036
 */
3037
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3038
{
3039 3040 3041 3042 3043 3044
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3045 3046
}

3047
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3048
{
P
Peter Zijlstra 已提交
3049
	struct perf_event_context *ctx = NULL;
3050
	int rotate = 0;
3051

3052 3053 3054 3055
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3056

P
Peter Zijlstra 已提交
3057
	ctx = cpuctx->task_ctx;
3058 3059 3060 3061
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3062

3063
	if (!rotate)
3064 3065
		goto done;

3066
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3067
	perf_pmu_disable(cpuctx->ctx.pmu);
3068

3069 3070 3071
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3072

3073 3074 3075
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3076

3077
	perf_event_sched_in(cpuctx, ctx, current);
3078

3079 3080
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3081
done:
3082 3083

	return rotate;
3084 3085
}

3086 3087 3088
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3089
	if (atomic_read(&nr_freq_events) ||
3090
	    __this_cpu_read(perf_throttled_count))
3091
		return false;
3092 3093
	else
		return true;
3094 3095 3096
}
#endif

3097 3098
void perf_event_task_tick(void)
{
3099 3100
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3101
	int throttled;
3102

3103 3104
	WARN_ON(!irqs_disabled());

3105 3106 3107
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3108
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3109
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3110 3111
}

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3122
	__perf_event_mark_enabled(event);
3123 3124 3125 3126

	return 1;
}

3127
/*
3128
 * Enable all of a task's events that have been marked enable-on-exec.
3129 3130
 * This expects task == current.
 */
3131
static void perf_event_enable_on_exec(int ctxn)
3132
{
3133
	struct perf_event_context *ctx, *clone_ctx = NULL;
3134
	struct perf_cpu_context *cpuctx;
3135
	struct perf_event *event;
3136 3137 3138 3139
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3140
	ctx = current->perf_event_ctxp[ctxn];
3141
	if (!ctx || !ctx->nr_events)
3142 3143
		goto out;

3144 3145 3146 3147
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3148 3149

	/*
3150
	 * Unclone and reschedule this context if we enabled any event.
3151
	 */
3152
	if (enabled) {
3153
		clone_ctx = unclone_ctx(ctx);
3154 3155 3156
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3157

P
Peter Zijlstra 已提交
3158
out:
3159
	local_irq_restore(flags);
3160 3161 3162

	if (clone_ctx)
		put_ctx(clone_ctx);
3163 3164
}

3165 3166 3167 3168 3169
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3170 3171
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3172 3173 3174
	rcu_read_unlock();
}

3175 3176 3177
struct perf_read_data {
	struct perf_event *event;
	bool group;
3178
	int ret;
3179 3180
};

T
Thomas Gleixner 已提交
3181
/*
3182
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3183
 */
3184
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3185
{
3186 3187
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3188
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3189
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3190
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3191

3192 3193 3194 3195
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3196 3197
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3198 3199 3200 3201
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3202
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3203
	if (ctx->is_active) {
3204
		update_context_time(ctx);
S
Stephane Eranian 已提交
3205 3206
		update_cgrp_time_from_event(event);
	}
3207

3208
	update_event_times(event);
3209 3210
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3211

3212 3213 3214
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3215
		goto unlock;
3216 3217 3218 3219 3220
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3221 3222 3223

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3224 3225 3226 3227 3228
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3229
			sub->pmu->read(sub);
3230
		}
3231
	}
3232 3233

	data->ret = pmu->commit_txn(pmu);
3234 3235

unlock:
3236
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3237 3238
}

P
Peter Zijlstra 已提交
3239 3240
static inline u64 perf_event_count(struct perf_event *event)
{
3241 3242 3243 3244
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3245 3246
}

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3300
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3301
{
3302 3303
	int ret = 0;

T
Thomas Gleixner 已提交
3304
	/*
3305 3306
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3307
	 */
3308
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3309 3310 3311
		struct perf_read_data data = {
			.event = event,
			.group = group,
3312
			.ret = 0,
3313
		};
3314
		smp_call_function_single(event->oncpu,
3315
					 __perf_event_read, &data, 1);
3316
		ret = data.ret;
3317
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3318 3319 3320
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3321
		raw_spin_lock_irqsave(&ctx->lock, flags);
3322 3323 3324 3325 3326
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3327
		if (ctx->is_active) {
3328
			update_context_time(ctx);
S
Stephane Eranian 已提交
3329 3330
			update_cgrp_time_from_event(event);
		}
3331 3332 3333 3334
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3335
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3336
	}
3337 3338

	return ret;
T
Thomas Gleixner 已提交
3339 3340
}

3341
/*
3342
 * Initialize the perf_event context in a task_struct:
3343
 */
3344
static void __perf_event_init_context(struct perf_event_context *ctx)
3345
{
3346
	raw_spin_lock_init(&ctx->lock);
3347
	mutex_init(&ctx->mutex);
3348
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3349 3350
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3351 3352
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3368
	}
3369 3370 3371
	ctx->pmu = pmu;

	return ctx;
3372 3373
}

3374 3375 3376 3377 3378
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3379 3380

	rcu_read_lock();
3381
	if (!vpid)
T
Thomas Gleixner 已提交
3382 3383
		task = current;
	else
3384
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3385 3386 3387 3388 3389 3390 3391 3392
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3393
	err = -EACCES;
3394
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3395 3396
		goto errout;

3397 3398 3399 3400 3401 3402 3403
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3404 3405 3406
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3407
static struct perf_event_context *
3408 3409
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3410
{
3411
	struct perf_event_context *ctx, *clone_ctx = NULL;
3412
	struct perf_cpu_context *cpuctx;
3413
	void *task_ctx_data = NULL;
3414
	unsigned long flags;
P
Peter Zijlstra 已提交
3415
	int ctxn, err;
3416
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3417

3418
	if (!task) {
3419
		/* Must be root to operate on a CPU event: */
3420
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3421 3422 3423
			return ERR_PTR(-EACCES);

		/*
3424
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3425 3426 3427
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3428
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3429 3430
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3431
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3432
		ctx = &cpuctx->ctx;
3433
		get_ctx(ctx);
3434
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3435 3436 3437 3438

		return ctx;
	}

P
Peter Zijlstra 已提交
3439 3440 3441 3442 3443
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3444 3445 3446 3447 3448 3449 3450 3451
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3452
retry:
P
Peter Zijlstra 已提交
3453
	ctx = perf_lock_task_context(task, ctxn, &flags);
3454
	if (ctx) {
3455
		clone_ctx = unclone_ctx(ctx);
3456
		++ctx->pin_count;
3457 3458 3459 3460 3461

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3462
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3463 3464 3465

		if (clone_ctx)
			put_ctx(clone_ctx);
3466
	} else {
3467
		ctx = alloc_perf_context(pmu, task);
3468 3469 3470
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3471

3472 3473 3474 3475 3476
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3487
		else {
3488
			get_ctx(ctx);
3489
			++ctx->pin_count;
3490
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3491
		}
3492 3493 3494
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3495
			put_ctx(ctx);
3496 3497 3498 3499

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3500 3501 3502
		}
	}

3503
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3504
	return ctx;
3505

P
Peter Zijlstra 已提交
3506
errout:
3507
	kfree(task_ctx_data);
3508
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3509 3510
}

L
Li Zefan 已提交
3511
static void perf_event_free_filter(struct perf_event *event);
3512
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3513

3514
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3515
{
3516
	struct perf_event *event;
P
Peter Zijlstra 已提交
3517

3518 3519 3520
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3521
	perf_event_free_filter(event);
3522
	kfree(event);
P
Peter Zijlstra 已提交
3523 3524
}

3525 3526
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3527

3528
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3529
{
3530 3531 3532 3533 3534 3535
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3536

3537 3538
static void unaccount_event(struct perf_event *event)
{
3539 3540
	bool dec = false;

3541 3542 3543 3544
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3545
		dec = true;
3546 3547 3548 3549 3550 3551
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3552 3553
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3554
	if (event->attr.context_switch) {
3555
		dec = true;
3556 3557
		atomic_dec(&nr_switch_events);
	}
3558
	if (is_cgroup_event(event))
3559
		dec = true;
3560
	if (has_branch_stack(event))
3561 3562
		dec = true;

3563 3564 3565 3566
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
3567 3568 3569

	unaccount_event_cpu(event, event->cpu);
}
3570

3571 3572 3573 3574 3575 3576 3577 3578
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3589
 * _free_event()), the latter -- before the first perf_install_in_context().
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

P
Peter Zijlstra 已提交
3664
static void _free_event(struct perf_event *event)
3665
{
3666
	irq_work_sync(&event->pending);
3667

3668
	unaccount_event(event);
3669

3670
	if (event->rb) {
3671 3672 3673 3674 3675 3676 3677
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3678
		ring_buffer_attach(event, NULL);
3679
		mutex_unlock(&event->mmap_mutex);
3680 3681
	}

S
Stephane Eranian 已提交
3682 3683 3684
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	if (event->pmu) {
		exclusive_event_destroy(event);
		module_put(event->pmu->module);
	}

	call_rcu(&event->rcu_head, free_event_rcu);
3704 3705
}

P
Peter Zijlstra 已提交
3706 3707 3708 3709 3710
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3711
{
P
Peter Zijlstra 已提交
3712 3713 3714 3715 3716 3717
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3718

P
Peter Zijlstra 已提交
3719
	_free_event(event);
T
Thomas Gleixner 已提交
3720 3721
}

3722
/*
3723
 * Remove user event from the owner task.
3724
 */
3725
static void perf_remove_from_owner(struct perf_event *event)
3726
{
P
Peter Zijlstra 已提交
3727
	struct task_struct *owner;
3728

P
Peter Zijlstra 已提交
3729 3730
	rcu_read_lock();
	/*
3731 3732 3733
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
3734 3735
	 * owner->perf_event_mutex.
	 */
3736
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3758 3759 3760 3761 3762 3763
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
3764
		if (event->owner) {
P
Peter Zijlstra 已提交
3765
			list_del_init(&event->owner_entry);
3766 3767
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
3768 3769 3770
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3771 3772 3773 3774 3775 3776 3777
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
3788
	struct perf_event_context *ctx = event->ctx;
3789 3790
	struct perf_event *child, *tmp;

3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

3801 3802
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3803

3804
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
3805
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3806
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
3807

P
Peter Zijlstra 已提交
3808
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
3809
	/*
P
Peter Zijlstra 已提交
3810 3811
	 * Mark this even as STATE_DEAD, there is no external reference to it
	 * anymore.
P
Peter Zijlstra 已提交
3812
	 *
P
Peter Zijlstra 已提交
3813 3814 3815
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
3816
	 *
3817 3818
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
3819
	 */
P
Peter Zijlstra 已提交
3820 3821 3822 3823
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3824

3825 3826 3827
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
3828

3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

3878 3879
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
3880 3881 3882 3883
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3884 3885 3886
/*
 * Called when the last reference to the file is gone.
 */
3887 3888
static int perf_release(struct inode *inode, struct file *file)
{
3889
	perf_event_release_kernel(file->private_data);
3890
	return 0;
3891 3892
}

3893
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3894
{
3895
	struct perf_event *child;
3896 3897
	u64 total = 0;

3898 3899 3900
	*enabled = 0;
	*running = 0;

3901
	mutex_lock(&event->child_mutex);
3902

3903
	(void)perf_event_read(event, false);
3904 3905
	total += perf_event_count(event);

3906 3907 3908 3909 3910 3911
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3912
		(void)perf_event_read(child, false);
3913
		total += perf_event_count(child);
3914 3915 3916
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3917
	mutex_unlock(&event->child_mutex);
3918 3919 3920

	return total;
}
3921
EXPORT_SYMBOL_GPL(perf_event_read_value);
3922

3923
static int __perf_read_group_add(struct perf_event *leader,
3924
					u64 read_format, u64 *values)
3925
{
3926 3927
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3928
	int ret;
P
Peter Zijlstra 已提交
3929

3930 3931 3932
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3933

3934 3935 3936 3937 3938 3939 3940 3941 3942
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3943

3944 3945 3946 3947 3948 3949 3950 3951 3952
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3953 3954
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3955

3956 3957 3958 3959 3960
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3961 3962

	return 0;
3963
}
3964

3965 3966 3967 3968 3969
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3970
	int ret;
3971
	u64 *values;
3972

3973
	lockdep_assert_held(&ctx->mutex);
3974

3975 3976 3977
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3978

3979 3980 3981 3982 3983 3984 3985
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3986

3987 3988 3989 3990 3991 3992 3993 3994 3995
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3996

3997
	mutex_unlock(&leader->child_mutex);
3998

3999
	ret = event->read_size;
4000 4001
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4002
	goto out;
4003

4004 4005 4006
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4007
	kfree(values);
4008
	return ret;
4009 4010
}

4011
static int perf_read_one(struct perf_event *event,
4012 4013
				 u64 read_format, char __user *buf)
{
4014
	u64 enabled, running;
4015 4016 4017
	u64 values[4];
	int n = 0;

4018 4019 4020 4021 4022
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4023
	if (read_format & PERF_FORMAT_ID)
4024
		values[n++] = primary_event_id(event);
4025 4026 4027 4028 4029 4030 4031

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4032 4033 4034 4035
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4036
	if (event->state > PERF_EVENT_STATE_EXIT)
4037 4038 4039 4040 4041 4042 4043 4044
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4045
/*
4046
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4047 4048
 */
static ssize_t
4049
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4050
{
4051
	u64 read_format = event->attr.read_format;
4052
	int ret;
T
Thomas Gleixner 已提交
4053

4054
	/*
4055
	 * Return end-of-file for a read on a event that is in
4056 4057 4058
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4059
	if (event->state == PERF_EVENT_STATE_ERROR)
4060 4061
		return 0;

4062
	if (count < event->read_size)
4063 4064
		return -ENOSPC;

4065
	WARN_ON_ONCE(event->ctx->parent_ctx);
4066
	if (read_format & PERF_FORMAT_GROUP)
4067
		ret = perf_read_group(event, read_format, buf);
4068
	else
4069
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4070

4071
	return ret;
T
Thomas Gleixner 已提交
4072 4073 4074 4075 4076
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4077
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4078 4079
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4080

P
Peter Zijlstra 已提交
4081
	ctx = perf_event_ctx_lock(event);
4082
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4083 4084 4085
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4086 4087 4088 4089
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4090
	struct perf_event *event = file->private_data;
4091
	struct ring_buffer *rb;
4092
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4093

4094
	poll_wait(file, &event->waitq, wait);
4095

4096
	if (is_event_hup(event))
4097
		return events;
P
Peter Zijlstra 已提交
4098

4099
	/*
4100 4101
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4102 4103
	 */
	mutex_lock(&event->mmap_mutex);
4104 4105
	rb = event->rb;
	if (rb)
4106
		events = atomic_xchg(&rb->poll, 0);
4107
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4108 4109 4110
	return events;
}

P
Peter Zijlstra 已提交
4111
static void _perf_event_reset(struct perf_event *event)
4112
{
4113
	(void)perf_event_read(event, false);
4114
	local64_set(&event->count, 0);
4115
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4116 4117
}

4118
/*
4119 4120
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4121
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4122
 * task existence requirements of perf_event_enable/disable.
4123
 */
4124 4125
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4126
{
4127
	struct perf_event *child;
P
Peter Zijlstra 已提交
4128

4129
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4130

4131 4132 4133
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4134
		func(child);
4135
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4136 4137
}

4138 4139
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4140
{
4141 4142
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4143

P
Peter Zijlstra 已提交
4144 4145
	lockdep_assert_held(&ctx->mutex);

4146
	event = event->group_leader;
4147

4148 4149
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4150
		perf_event_for_each_child(sibling, func);
4151 4152
}

4153 4154 4155 4156
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4157
{
4158
	u64 value = *((u64 *)info);
4159
	bool active;
4160

4161 4162
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4163
	} else {
4164 4165
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4166
	}
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4198
	event_function_call(event, __perf_event_period, &value);
4199

4200
	return 0;
4201 4202
}

4203 4204
static const struct file_operations perf_fops;

4205
static inline int perf_fget_light(int fd, struct fd *p)
4206
{
4207 4208 4209
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4210

4211 4212 4213
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4214
	}
4215 4216
	*p = f;
	return 0;
4217 4218 4219 4220
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4221
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4222
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4223

P
Peter Zijlstra 已提交
4224
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4225
{
4226
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4227
	u32 flags = arg;
4228 4229

	switch (cmd) {
4230
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4231
		func = _perf_event_enable;
4232
		break;
4233
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4234
		func = _perf_event_disable;
4235
		break;
4236
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4237
		func = _perf_event_reset;
4238
		break;
P
Peter Zijlstra 已提交
4239

4240
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4241
		return _perf_event_refresh(event, arg);
4242

4243 4244
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4245

4246 4247 4248 4249 4250 4251 4252 4253 4254
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4255
	case PERF_EVENT_IOC_SET_OUTPUT:
4256 4257 4258
	{
		int ret;
		if (arg != -1) {
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4269 4270 4271
		}
		return ret;
	}
4272

L
Li Zefan 已提交
4273 4274 4275
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4276 4277 4278
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4279
	default:
P
Peter Zijlstra 已提交
4280
		return -ENOTTY;
4281
	}
P
Peter Zijlstra 已提交
4282 4283

	if (flags & PERF_IOC_FLAG_GROUP)
4284
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4285
	else
4286
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4287 4288

	return 0;
4289 4290
}

P
Peter Zijlstra 已提交
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4324
int perf_event_task_enable(void)
4325
{
P
Peter Zijlstra 已提交
4326
	struct perf_event_context *ctx;
4327
	struct perf_event *event;
4328

4329
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4330 4331 4332 4333 4334
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4335
	mutex_unlock(&current->perf_event_mutex);
4336 4337 4338 4339

	return 0;
}

4340
int perf_event_task_disable(void)
4341
{
P
Peter Zijlstra 已提交
4342
	struct perf_event_context *ctx;
4343
	struct perf_event *event;
4344

4345
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4346 4347 4348 4349 4350
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4351
	mutex_unlock(&current->perf_event_mutex);
4352 4353 4354 4355

	return 0;
}

4356
static int perf_event_index(struct perf_event *event)
4357
{
P
Peter Zijlstra 已提交
4358 4359 4360
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4361
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4362 4363
		return 0;

4364
	return event->pmu->event_idx(event);
4365 4366
}

4367
static void calc_timer_values(struct perf_event *event,
4368
				u64 *now,
4369 4370
				u64 *enabled,
				u64 *running)
4371
{
4372
	u64 ctx_time;
4373

4374 4375
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4376 4377 4378 4379
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4395 4396
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4397 4398 4399 4400 4401

unlock:
	rcu_read_unlock();
}

4402 4403
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4404 4405 4406
{
}

4407 4408 4409 4410 4411
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4412
void perf_event_update_userpage(struct perf_event *event)
4413
{
4414
	struct perf_event_mmap_page *userpg;
4415
	struct ring_buffer *rb;
4416
	u64 enabled, running, now;
4417 4418

	rcu_read_lock();
4419 4420 4421 4422
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4423 4424 4425 4426 4427 4428 4429 4430 4431
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4432
	calc_timer_values(event, &now, &enabled, &running);
4433

4434
	userpg = rb->user_page;
4435 4436 4437 4438 4439
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4440
	++userpg->lock;
4441
	barrier();
4442
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4443
	userpg->offset = perf_event_count(event);
4444
	if (userpg->index)
4445
		userpg->offset -= local64_read(&event->hw.prev_count);
4446

4447
	userpg->time_enabled = enabled +
4448
			atomic64_read(&event->child_total_time_enabled);
4449

4450
	userpg->time_running = running +
4451
			atomic64_read(&event->child_total_time_running);
4452

4453
	arch_perf_update_userpage(event, userpg, now);
4454

4455
	barrier();
4456
	++userpg->lock;
4457
	preempt_enable();
4458
unlock:
4459
	rcu_read_unlock();
4460 4461
}

4462 4463 4464
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4465
	struct ring_buffer *rb;
4466 4467 4468 4469 4470 4471 4472 4473 4474
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4475 4476
	rb = rcu_dereference(event->rb);
	if (!rb)
4477 4478 4479 4480 4481
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4482
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4497 4498 4499
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4500
	struct ring_buffer *old_rb = NULL;
4501 4502
	unsigned long flags;

4503 4504 4505 4506 4507 4508
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4509

4510 4511 4512 4513
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4514

4515 4516
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4517
	}
4518

4519
	if (rb) {
4520 4521 4522 4523 4524
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4541 4542 4543 4544 4545 4546 4547 4548
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4549 4550 4551 4552
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4553 4554 4555
	rcu_read_unlock();
}

4556
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4557
{
4558
	struct ring_buffer *rb;
4559

4560
	rcu_read_lock();
4561 4562 4563 4564
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4565 4566 4567
	}
	rcu_read_unlock();

4568
	return rb;
4569 4570
}

4571
void ring_buffer_put(struct ring_buffer *rb)
4572
{
4573
	if (!atomic_dec_and_test(&rb->refcount))
4574
		return;
4575

4576
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4577

4578
	call_rcu(&rb->rcu_head, rb_free_rcu);
4579 4580 4581 4582
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4583
	struct perf_event *event = vma->vm_file->private_data;
4584

4585
	atomic_inc(&event->mmap_count);
4586
	atomic_inc(&event->rb->mmap_count);
4587

4588 4589 4590
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4591 4592
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4593 4594
}

4595 4596 4597 4598 4599 4600 4601 4602
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4603 4604
static void perf_mmap_close(struct vm_area_struct *vma)
{
4605
	struct perf_event *event = vma->vm_file->private_data;
4606

4607
	struct ring_buffer *rb = ring_buffer_get(event);
4608 4609 4610
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4611

4612 4613 4614
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4629 4630 4631
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4632
		goto out_put;
4633

4634
	ring_buffer_attach(event, NULL);
4635 4636 4637
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4638 4639
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4640

4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4657

4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4669 4670 4671
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4672
		mutex_unlock(&event->mmap_mutex);
4673
		put_event(event);
4674

4675 4676 4677 4678 4679
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4680
	}
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4696
out_put:
4697
	ring_buffer_put(rb); /* could be last */
4698 4699
}

4700
static const struct vm_operations_struct perf_mmap_vmops = {
4701
	.open		= perf_mmap_open,
4702
	.close		= perf_mmap_close, /* non mergable */
4703 4704
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4705 4706 4707 4708
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4709
	struct perf_event *event = file->private_data;
4710
	unsigned long user_locked, user_lock_limit;
4711
	struct user_struct *user = current_user();
4712
	unsigned long locked, lock_limit;
4713
	struct ring_buffer *rb = NULL;
4714 4715
	unsigned long vma_size;
	unsigned long nr_pages;
4716
	long user_extra = 0, extra = 0;
4717
	int ret = 0, flags = 0;
4718

4719 4720 4721
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4722
	 * same rb.
4723 4724 4725 4726
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4727
	if (!(vma->vm_flags & VM_SHARED))
4728
		return -EINVAL;
4729 4730

	vma_size = vma->vm_end - vma->vm_start;
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4791

4792
	/*
4793
	 * If we have rb pages ensure they're a power-of-two number, so we
4794 4795
	 * can do bitmasks instead of modulo.
	 */
4796
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4797 4798
		return -EINVAL;

4799
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4800 4801
		return -EINVAL;

4802
	WARN_ON_ONCE(event->ctx->parent_ctx);
4803
again:
4804
	mutex_lock(&event->mmap_mutex);
4805
	if (event->rb) {
4806
		if (event->rb->nr_pages != nr_pages) {
4807
			ret = -EINVAL;
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4821 4822 4823
		goto unlock;
	}

4824
	user_extra = nr_pages + 1;
4825 4826

accounting:
4827
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4828 4829 4830 4831 4832 4833

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4834
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4835

4836 4837
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4838

4839
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4840
	lock_limit >>= PAGE_SHIFT;
4841
	locked = vma->vm_mm->pinned_vm + extra;
4842

4843 4844
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4845 4846 4847
		ret = -EPERM;
		goto unlock;
	}
4848

4849
	WARN_ON(!rb && event->rb);
4850

4851
	if (vma->vm_flags & VM_WRITE)
4852
		flags |= RING_BUFFER_WRITABLE;
4853

4854
	if (!rb) {
4855 4856 4857
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4858

4859 4860 4861 4862
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4863

4864 4865 4866
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4867

4868
		ring_buffer_attach(event, rb);
4869

4870 4871 4872
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4873 4874
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4875 4876 4877
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4878

4879
unlock:
4880 4881 4882 4883
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4884
		atomic_inc(&event->mmap_count);
4885 4886 4887 4888
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4889
	mutex_unlock(&event->mmap_mutex);
4890

4891 4892 4893 4894
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4895
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4896
	vma->vm_ops = &perf_mmap_vmops;
4897

4898 4899 4900
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4901
	return ret;
4902 4903
}

P
Peter Zijlstra 已提交
4904 4905
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4906
	struct inode *inode = file_inode(filp);
4907
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4908 4909
	int retval;

A
Al Viro 已提交
4910
	inode_lock(inode);
4911
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
4912
	inode_unlock(inode);
P
Peter Zijlstra 已提交
4913 4914 4915 4916 4917 4918 4919

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4920
static const struct file_operations perf_fops = {
4921
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4922 4923 4924
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4925
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4926
	.compat_ioctl		= perf_compat_ioctl,
4927
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4928
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4929 4930
};

4931
/*
4932
 * Perf event wakeup
4933 4934 4935 4936 4937
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4938 4939 4940 4941 4942 4943 4944 4945
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4946
void perf_event_wakeup(struct perf_event *event)
4947
{
4948
	ring_buffer_wakeup(event);
4949

4950
	if (event->pending_kill) {
4951
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4952
		event->pending_kill = 0;
4953
	}
4954 4955
}

4956
static void perf_pending_event(struct irq_work *entry)
4957
{
4958 4959
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4960 4961 4962 4963 4964 4965 4966
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4967

4968 4969
	if (event->pending_disable) {
		event->pending_disable = 0;
4970
		perf_event_disable_local(event);
4971 4972
	}

4973 4974 4975
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4976
	}
4977 4978 4979

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4980 4981
}

4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5018
static void perf_sample_regs_user(struct perf_regs *regs_user,
5019 5020
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5021
{
5022 5023
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5024
		regs_user->regs = regs;
5025 5026
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5027 5028 5029
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5030 5031 5032
	}
}

5033 5034 5035 5036 5037 5038 5039 5040
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5136 5137 5138
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5152
		data->time = perf_event_clock(event);
5153

5154
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5166 5167 5168
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5193 5194 5195

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5196 5197
}

5198 5199 5200
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5201 5202 5203 5204 5205
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5206
static void perf_output_read_one(struct perf_output_handle *handle,
5207 5208
				 struct perf_event *event,
				 u64 enabled, u64 running)
5209
{
5210
	u64 read_format = event->attr.read_format;
5211 5212 5213
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5214
	values[n++] = perf_event_count(event);
5215
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5216
		values[n++] = enabled +
5217
			atomic64_read(&event->child_total_time_enabled);
5218 5219
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5220
		values[n++] = running +
5221
			atomic64_read(&event->child_total_time_running);
5222 5223
	}
	if (read_format & PERF_FORMAT_ID)
5224
		values[n++] = primary_event_id(event);
5225

5226
	__output_copy(handle, values, n * sizeof(u64));
5227 5228 5229
}

/*
5230
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5231 5232
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5233 5234
			    struct perf_event *event,
			    u64 enabled, u64 running)
5235
{
5236 5237
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5238 5239 5240 5241 5242 5243
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5244
		values[n++] = enabled;
5245 5246

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5247
		values[n++] = running;
5248

5249
	if (leader != event)
5250 5251
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5252
	values[n++] = perf_event_count(leader);
5253
	if (read_format & PERF_FORMAT_ID)
5254
		values[n++] = primary_event_id(leader);
5255

5256
	__output_copy(handle, values, n * sizeof(u64));
5257

5258
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5259 5260
		n = 0;

5261 5262
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5263 5264
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5265
		values[n++] = perf_event_count(sub);
5266
		if (read_format & PERF_FORMAT_ID)
5267
			values[n++] = primary_event_id(sub);
5268

5269
		__output_copy(handle, values, n * sizeof(u64));
5270 5271 5272
	}
}

5273 5274 5275
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5276
static void perf_output_read(struct perf_output_handle *handle,
5277
			     struct perf_event *event)
5278
{
5279
	u64 enabled = 0, running = 0, now;
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5291
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5292
		calc_timer_values(event, &now, &enabled, &running);
5293

5294
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5295
		perf_output_read_group(handle, event, enabled, running);
5296
	else
5297
		perf_output_read_one(handle, event, enabled, running);
5298 5299
}

5300 5301 5302
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5303
			struct perf_event *event)
5304 5305 5306 5307 5308
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5309 5310 5311
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5337
		perf_output_read(handle, event);
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5348
			__output_copy(handle, data->callchain, size);
5349 5350 5351 5352 5353 5354 5355 5356
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5357 5358 5359 5360 5361 5362 5363 5364 5365
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5377

5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5412

5413
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5414 5415 5416
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5417
	}
A
Andi Kleen 已提交
5418 5419 5420

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5421 5422 5423

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5424

A
Andi Kleen 已提交
5425 5426 5427
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5458 5459 5460 5461
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5462
			 struct perf_event *event,
5463
			 struct pt_regs *regs)
5464
{
5465
	u64 sample_type = event->attr.sample_type;
5466

5467
	header->type = PERF_RECORD_SAMPLE;
5468
	header->size = sizeof(*header) + event->header_size;
5469 5470 5471

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5472

5473
	__perf_event_header__init_id(header, data, event);
5474

5475
	if (sample_type & PERF_SAMPLE_IP)
5476 5477
		data->ip = perf_instruction_pointer(regs);

5478
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5479
		int size = 1;
5480

5481
		data->callchain = perf_callchain(event, regs);
5482 5483 5484 5485 5486

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5487 5488
	}

5489
	if (sample_type & PERF_SAMPLE_RAW) {
5490 5491 5492 5493 5494 5495 5496
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5497
		header->size += round_up(size, sizeof(u64));
5498
	}
5499 5500 5501 5502 5503 5504 5505 5506 5507

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5508

5509
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5510 5511
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5512

5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5536
						     data->regs_user.regs);
5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5564
}
5565

5566 5567 5568
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5569 5570 5571
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5572

5573 5574 5575
	/* protect the callchain buffers */
	rcu_read_lock();

5576
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5577

5578
	if (perf_output_begin(&handle, event, header.size))
5579
		goto exit;
5580

5581
	perf_output_sample(&handle, &header, data, event);
5582

5583
	perf_output_end(&handle);
5584 5585 5586

exit:
	rcu_read_unlock();
5587 5588
}

5589
/*
5590
 * read event_id
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5601
perf_event_read_event(struct perf_event *event,
5602 5603 5604
			struct task_struct *task)
{
	struct perf_output_handle handle;
5605
	struct perf_sample_data sample;
5606
	struct perf_read_event read_event = {
5607
		.header = {
5608
			.type = PERF_RECORD_READ,
5609
			.misc = 0,
5610
			.size = sizeof(read_event) + event->read_size,
5611
		},
5612 5613
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5614
	};
5615
	int ret;
5616

5617
	perf_event_header__init_id(&read_event.header, &sample, event);
5618
	ret = perf_output_begin(&handle, event, read_event.header.size);
5619 5620 5621
	if (ret)
		return;

5622
	perf_output_put(&handle, read_event);
5623
	perf_output_read(&handle, event);
5624
	perf_event__output_id_sample(event, &handle, &sample);
5625

5626 5627 5628
	perf_output_end(&handle);
}

5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5643
		output(event, data);
5644 5645 5646
	}
}

J
Jiri Olsa 已提交
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5658
static void
5659
perf_event_aux(perf_event_aux_output_cb output, void *data,
5660 5661 5662 5663 5664 5665 5666
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5678 5679 5680 5681 5682
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5683
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5684 5685 5686 5687 5688
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5689
			perf_event_aux_ctx(ctx, output, data);
5690 5691 5692 5693 5694 5695
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5696
/*
P
Peter Zijlstra 已提交
5697 5698
 * task tracking -- fork/exit
 *
5699
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5700 5701
 */

P
Peter Zijlstra 已提交
5702
struct perf_task_event {
5703
	struct task_struct		*task;
5704
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5705 5706 5707 5708 5709 5710

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5711 5712
		u32				tid;
		u32				ptid;
5713
		u64				time;
5714
	} event_id;
P
Peter Zijlstra 已提交
5715 5716
};

5717 5718
static int perf_event_task_match(struct perf_event *event)
{
5719 5720 5721
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5722 5723
}

5724
static void perf_event_task_output(struct perf_event *event,
5725
				   void *data)
P
Peter Zijlstra 已提交
5726
{
5727
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5728
	struct perf_output_handle handle;
5729
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5730
	struct task_struct *task = task_event->task;
5731
	int ret, size = task_event->event_id.header.size;
5732

5733 5734 5735
	if (!perf_event_task_match(event))
		return;

5736
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5737

5738
	ret = perf_output_begin(&handle, event,
5739
				task_event->event_id.header.size);
5740
	if (ret)
5741
		goto out;
P
Peter Zijlstra 已提交
5742

5743 5744
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5745

5746 5747
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5748

5749 5750
	task_event->event_id.time = perf_event_clock(event);

5751
	perf_output_put(&handle, task_event->event_id);
5752

5753 5754
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5755
	perf_output_end(&handle);
5756 5757
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5758 5759
}

5760 5761
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5762
			      int new)
P
Peter Zijlstra 已提交
5763
{
P
Peter Zijlstra 已提交
5764
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5765

5766 5767 5768
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5769 5770
		return;

P
Peter Zijlstra 已提交
5771
	task_event = (struct perf_task_event){
5772 5773
		.task	  = task,
		.task_ctx = task_ctx,
5774
		.event_id    = {
P
Peter Zijlstra 已提交
5775
			.header = {
5776
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5777
				.misc = 0,
5778
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5779
			},
5780 5781
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5782 5783
			/* .tid  */
			/* .ptid */
5784
			/* .time */
P
Peter Zijlstra 已提交
5785 5786 5787
		},
	};

5788
	perf_event_aux(perf_event_task_output,
5789 5790
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5791 5792
}

5793
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5794
{
5795
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5796 5797
}

5798 5799 5800 5801 5802
/*
 * comm tracking
 */

struct perf_comm_event {
5803 5804
	struct task_struct	*task;
	char			*comm;
5805 5806 5807 5808 5809 5810 5811
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5812
	} event_id;
5813 5814
};

5815 5816 5817 5818 5819
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5820
static void perf_event_comm_output(struct perf_event *event,
5821
				   void *data)
5822
{
5823
	struct perf_comm_event *comm_event = data;
5824
	struct perf_output_handle handle;
5825
	struct perf_sample_data sample;
5826
	int size = comm_event->event_id.header.size;
5827 5828
	int ret;

5829 5830 5831
	if (!perf_event_comm_match(event))
		return;

5832 5833
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5834
				comm_event->event_id.header.size);
5835 5836

	if (ret)
5837
		goto out;
5838

5839 5840
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5841

5842
	perf_output_put(&handle, comm_event->event_id);
5843
	__output_copy(&handle, comm_event->comm,
5844
				   comm_event->comm_size);
5845 5846 5847

	perf_event__output_id_sample(event, &handle, &sample);

5848
	perf_output_end(&handle);
5849 5850
out:
	comm_event->event_id.header.size = size;
5851 5852
}

5853
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5854
{
5855
	char comm[TASK_COMM_LEN];
5856 5857
	unsigned int size;

5858
	memset(comm, 0, sizeof(comm));
5859
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5860
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5861 5862 5863 5864

	comm_event->comm = comm;
	comm_event->comm_size = size;

5865
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5866

5867
	perf_event_aux(perf_event_comm_output,
5868 5869
		       comm_event,
		       NULL);
5870 5871
}

5872
void perf_event_comm(struct task_struct *task, bool exec)
5873
{
5874 5875
	struct perf_comm_event comm_event;

5876
	if (!atomic_read(&nr_comm_events))
5877
		return;
5878

5879
	comm_event = (struct perf_comm_event){
5880
		.task	= task,
5881 5882
		/* .comm      */
		/* .comm_size */
5883
		.event_id  = {
5884
			.header = {
5885
				.type = PERF_RECORD_COMM,
5886
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5887 5888 5889 5890
				/* .size */
			},
			/* .pid */
			/* .tid */
5891 5892 5893
		},
	};

5894
	perf_event_comm_event(&comm_event);
5895 5896
}

5897 5898 5899 5900 5901
/*
 * mmap tracking
 */

struct perf_mmap_event {
5902 5903 5904 5905
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5906 5907 5908
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5909
	u32			prot, flags;
5910 5911 5912 5913 5914 5915 5916 5917 5918

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5919
	} event_id;
5920 5921
};

5922 5923 5924 5925 5926 5927 5928 5929
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5930
	       (executable && (event->attr.mmap || event->attr.mmap2));
5931 5932
}

5933
static void perf_event_mmap_output(struct perf_event *event,
5934
				   void *data)
5935
{
5936
	struct perf_mmap_event *mmap_event = data;
5937
	struct perf_output_handle handle;
5938
	struct perf_sample_data sample;
5939
	int size = mmap_event->event_id.header.size;
5940
	int ret;
5941

5942 5943 5944
	if (!perf_event_mmap_match(event, data))
		return;

5945 5946 5947 5948 5949
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5950
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5951 5952
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5953 5954
	}

5955 5956
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5957
				mmap_event->event_id.header.size);
5958
	if (ret)
5959
		goto out;
5960

5961 5962
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5963

5964
	perf_output_put(&handle, mmap_event->event_id);
5965 5966 5967 5968 5969 5970

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5971 5972
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5973 5974
	}

5975
	__output_copy(&handle, mmap_event->file_name,
5976
				   mmap_event->file_size);
5977 5978 5979

	perf_event__output_id_sample(event, &handle, &sample);

5980
	perf_output_end(&handle);
5981 5982
out:
	mmap_event->event_id.header.size = size;
5983 5984
}

5985
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5986
{
5987 5988
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5989 5990
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5991
	u32 prot = 0, flags = 0;
5992 5993 5994
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5995
	char *name;
5996

5997
	if (file) {
5998 5999
		struct inode *inode;
		dev_t dev;
6000

6001
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6002
		if (!buf) {
6003 6004
			name = "//enomem";
			goto cpy_name;
6005
		}
6006
		/*
6007
		 * d_path() works from the end of the rb backwards, so we
6008 6009 6010
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6011
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6012
		if (IS_ERR(name)) {
6013 6014
			name = "//toolong";
			goto cpy_name;
6015
		}
6016 6017 6018 6019 6020 6021
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6044
		goto got_name;
6045
	} else {
6046 6047 6048 6049 6050 6051
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6052
		name = (char *)arch_vma_name(vma);
6053 6054
		if (name)
			goto cpy_name;
6055

6056
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6057
				vma->vm_end >= vma->vm_mm->brk) {
6058 6059
			name = "[heap]";
			goto cpy_name;
6060 6061
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6062
				vma->vm_end >= vma->vm_mm->start_stack) {
6063 6064
			name = "[stack]";
			goto cpy_name;
6065 6066
		}

6067 6068
		name = "//anon";
		goto cpy_name;
6069 6070
	}

6071 6072 6073
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6074
got_name:
6075 6076 6077 6078 6079 6080 6081 6082
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6083 6084 6085

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6086 6087 6088 6089
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6090 6091
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6092

6093 6094 6095
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6096
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6097

6098
	perf_event_aux(perf_event_mmap_output,
6099 6100
		       mmap_event,
		       NULL);
6101

6102 6103 6104
	kfree(buf);
}

6105
void perf_event_mmap(struct vm_area_struct *vma)
6106
{
6107 6108
	struct perf_mmap_event mmap_event;

6109
	if (!atomic_read(&nr_mmap_events))
6110 6111 6112
		return;

	mmap_event = (struct perf_mmap_event){
6113
		.vma	= vma,
6114 6115
		/* .file_name */
		/* .file_size */
6116
		.event_id  = {
6117
			.header = {
6118
				.type = PERF_RECORD_MMAP,
6119
				.misc = PERF_RECORD_MISC_USER,
6120 6121 6122 6123
				/* .size */
			},
			/* .pid */
			/* .tid */
6124 6125
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6126
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6127
		},
6128 6129 6130 6131
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6132 6133
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6134 6135
	};

6136
	perf_event_mmap_event(&mmap_event);
6137 6138
}

A
Alexander Shishkin 已提交
6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6291 6292 6293 6294
/*
 * IRQ throttle logging
 */

6295
static void perf_log_throttle(struct perf_event *event, int enable)
6296 6297
{
	struct perf_output_handle handle;
6298
	struct perf_sample_data sample;
6299 6300 6301 6302 6303
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6304
		u64				id;
6305
		u64				stream_id;
6306 6307
	} throttle_event = {
		.header = {
6308
			.type = PERF_RECORD_THROTTLE,
6309 6310 6311
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6312
		.time		= perf_event_clock(event),
6313 6314
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6315 6316
	};

6317
	if (enable)
6318
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6319

6320 6321 6322
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6323
				throttle_event.header.size);
6324 6325 6326 6327
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6328
	perf_event__output_id_sample(event, &handle, &sample);
6329 6330 6331
	perf_output_end(&handle);
}

6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6368
/*
6369
 * Generic event overflow handling, sampling.
6370 6371
 */

6372
static int __perf_event_overflow(struct perf_event *event,
6373 6374
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6375
{
6376 6377
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6378
	u64 seq;
6379 6380
	int ret = 0;

6381 6382 6383 6384 6385 6386 6387
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6388 6389 6390 6391 6392 6393 6394 6395 6396
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6397 6398
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6399
			tick_nohz_full_kick();
6400 6401
			ret = 1;
		}
6402
	}
6403

6404
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6405
		u64 now = perf_clock();
6406
		s64 delta = now - hwc->freq_time_stamp;
6407

6408
		hwc->freq_time_stamp = now;
6409

6410
		if (delta > 0 && delta < 2*TICK_NSEC)
6411
			perf_adjust_period(event, delta, hwc->last_period, true);
6412 6413
	}

6414 6415
	/*
	 * XXX event_limit might not quite work as expected on inherited
6416
	 * events
6417 6418
	 */

6419 6420
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6421
		ret = 1;
6422
		event->pending_kill = POLL_HUP;
6423 6424
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6425 6426
	}

6427
	if (event->overflow_handler)
6428
		event->overflow_handler(event, data, regs);
6429
	else
6430
		perf_event_output(event, data, regs);
6431

6432
	if (*perf_event_fasync(event) && event->pending_kill) {
6433 6434
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6435 6436
	}

6437
	return ret;
6438 6439
}

6440
int perf_event_overflow(struct perf_event *event,
6441 6442
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6443
{
6444
	return __perf_event_overflow(event, 1, data, regs);
6445 6446
}

6447
/*
6448
 * Generic software event infrastructure
6449 6450
 */

6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6462
/*
6463 6464
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6465 6466 6467 6468
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6469
u64 perf_swevent_set_period(struct perf_event *event)
6470
{
6471
	struct hw_perf_event *hwc = &event->hw;
6472 6473 6474 6475 6476
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6477 6478

again:
6479
	old = val = local64_read(&hwc->period_left);
6480 6481
	if (val < 0)
		return 0;
6482

6483 6484 6485
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6486
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6487
		goto again;
6488

6489
	return nr;
6490 6491
}

6492
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6493
				    struct perf_sample_data *data,
6494
				    struct pt_regs *regs)
6495
{
6496
	struct hw_perf_event *hwc = &event->hw;
6497
	int throttle = 0;
6498

6499 6500
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6501

6502 6503
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6504

6505
	for (; overflow; overflow--) {
6506
		if (__perf_event_overflow(event, throttle,
6507
					    data, regs)) {
6508 6509 6510 6511 6512 6513
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6514
		throttle = 1;
6515
	}
6516 6517
}

P
Peter Zijlstra 已提交
6518
static void perf_swevent_event(struct perf_event *event, u64 nr,
6519
			       struct perf_sample_data *data,
6520
			       struct pt_regs *regs)
6521
{
6522
	struct hw_perf_event *hwc = &event->hw;
6523

6524
	local64_add(nr, &event->count);
6525

6526 6527 6528
	if (!regs)
		return;

6529
	if (!is_sampling_event(event))
6530
		return;
6531

6532 6533 6534 6535 6536 6537
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6538
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6539
		return perf_swevent_overflow(event, 1, data, regs);
6540

6541
	if (local64_add_negative(nr, &hwc->period_left))
6542
		return;
6543

6544
	perf_swevent_overflow(event, 0, data, regs);
6545 6546
}

6547 6548 6549
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6550
	if (event->hw.state & PERF_HES_STOPPED)
6551
		return 1;
P
Peter Zijlstra 已提交
6552

6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6564
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6565
				enum perf_type_id type,
L
Li Zefan 已提交
6566 6567 6568
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6569
{
6570
	if (event->attr.type != type)
6571
		return 0;
6572

6573
	if (event->attr.config != event_id)
6574 6575
		return 0;

6576 6577
	if (perf_exclude_event(event, regs))
		return 0;
6578 6579 6580 6581

	return 1;
}

6582 6583 6584 6585 6586 6587 6588
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6589 6590
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6591
{
6592 6593 6594 6595
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6596

6597 6598
/* For the read side: events when they trigger */
static inline struct hlist_head *
6599
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6600 6601
{
	struct swevent_hlist *hlist;
6602

6603
	hlist = rcu_dereference(swhash->swevent_hlist);
6604 6605 6606
	if (!hlist)
		return NULL;

6607 6608 6609 6610 6611
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6612
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6613 6614 6615 6616 6617 6618 6619 6620 6621 6622
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6623
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6624 6625 6626 6627 6628
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6629 6630 6631
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6632
				    u64 nr,
6633 6634
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6635
{
6636
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6637
	struct perf_event *event;
6638
	struct hlist_head *head;
6639

6640
	rcu_read_lock();
6641
	head = find_swevent_head_rcu(swhash, type, event_id);
6642 6643 6644
	if (!head)
		goto end;

6645
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6646
		if (perf_swevent_match(event, type, event_id, data, regs))
6647
			perf_swevent_event(event, nr, data, regs);
6648
	}
6649 6650
end:
	rcu_read_unlock();
6651 6652
}

6653 6654
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6655
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6656
{
6657
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6658

6659
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6660
}
I
Ingo Molnar 已提交
6661
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6662

6663
inline void perf_swevent_put_recursion_context(int rctx)
6664
{
6665
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6666

6667
	put_recursion_context(swhash->recursion, rctx);
6668
}
6669

6670
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6671
{
6672
	struct perf_sample_data data;
6673

6674
	if (WARN_ON_ONCE(!regs))
6675
		return;
6676

6677
	perf_sample_data_init(&data, addr, 0);
6678
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6691 6692

	perf_swevent_put_recursion_context(rctx);
6693
fail:
6694
	preempt_enable_notrace();
6695 6696
}

6697
static void perf_swevent_read(struct perf_event *event)
6698 6699 6700
{
}

P
Peter Zijlstra 已提交
6701
static int perf_swevent_add(struct perf_event *event, int flags)
6702
{
6703
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6704
	struct hw_perf_event *hwc = &event->hw;
6705 6706
	struct hlist_head *head;

6707
	if (is_sampling_event(event)) {
6708
		hwc->last_period = hwc->sample_period;
6709
		perf_swevent_set_period(event);
6710
	}
6711

P
Peter Zijlstra 已提交
6712 6713
	hwc->state = !(flags & PERF_EF_START);

6714
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6715
	if (WARN_ON_ONCE(!head))
6716 6717 6718
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6719
	perf_event_update_userpage(event);
6720

6721 6722 6723
	return 0;
}

P
Peter Zijlstra 已提交
6724
static void perf_swevent_del(struct perf_event *event, int flags)
6725
{
6726
	hlist_del_rcu(&event->hlist_entry);
6727 6728
}

P
Peter Zijlstra 已提交
6729
static void perf_swevent_start(struct perf_event *event, int flags)
6730
{
P
Peter Zijlstra 已提交
6731
	event->hw.state = 0;
6732
}
I
Ingo Molnar 已提交
6733

P
Peter Zijlstra 已提交
6734
static void perf_swevent_stop(struct perf_event *event, int flags)
6735
{
P
Peter Zijlstra 已提交
6736
	event->hw.state = PERF_HES_STOPPED;
6737 6738
}

6739 6740
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6741
swevent_hlist_deref(struct swevent_htable *swhash)
6742
{
6743 6744
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6745 6746
}

6747
static void swevent_hlist_release(struct swevent_htable *swhash)
6748
{
6749
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6750

6751
	if (!hlist)
6752 6753
		return;

6754
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6755
	kfree_rcu(hlist, rcu_head);
6756 6757 6758 6759
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6760
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6761

6762
	mutex_lock(&swhash->hlist_mutex);
6763

6764 6765
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6766

6767
	mutex_unlock(&swhash->hlist_mutex);
6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6780
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6781 6782
	int err = 0;

6783 6784
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6785 6786 6787 6788 6789 6790 6791
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6792
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6793
	}
6794
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6795
exit:
6796
	mutex_unlock(&swhash->hlist_mutex);
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6817
fail:
6818 6819 6820 6821 6822 6823 6824 6825 6826 6827
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6828
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6829

6830 6831 6832
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6833

6834 6835
	WARN_ON(event->parent);

6836
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6837 6838 6839 6840 6841
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6842
	u64 event_id = event->attr.config;
6843 6844 6845 6846

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6847 6848 6849 6850 6851 6852
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6853 6854 6855 6856 6857 6858 6859 6860 6861
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6862
	if (event_id >= PERF_COUNT_SW_MAX)
6863 6864 6865 6866 6867 6868 6869 6870 6871
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6872
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6873 6874 6875 6876 6877 6878 6879
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6880
	.task_ctx_nr	= perf_sw_context,
6881

6882 6883
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6884
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6885 6886 6887 6888
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6889 6890 6891
	.read		= perf_swevent_read,
};

6892 6893
#ifdef CONFIG_EVENT_TRACING

6894 6895 6896 6897 6898
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6899 6900 6901 6902
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6903 6904 6905 6906 6907 6908 6909 6910 6911
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6912 6913
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6914 6915 6916 6917
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6918 6919 6920 6921 6922 6923 6924 6925 6926
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6927 6928
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6929 6930
{
	struct perf_sample_data data;
6931 6932
	struct perf_event *event;

6933 6934 6935 6936 6937
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6938
	perf_sample_data_init(&data, addr, 0);
6939 6940
	data.raw = &raw;

6941
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6942
		if (perf_tp_event_match(event, &data, regs))
6943
			perf_swevent_event(event, count, &data, regs);
6944
	}
6945

6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6971
	perf_swevent_put_recursion_context(rctx);
6972 6973 6974
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6975
static void tp_perf_event_destroy(struct perf_event *event)
6976
{
6977
	perf_trace_destroy(event);
6978 6979
}

6980
static int perf_tp_event_init(struct perf_event *event)
6981
{
6982 6983
	int err;

6984 6985 6986
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6987 6988 6989 6990 6991 6992
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6993 6994
	err = perf_trace_init(event);
	if (err)
6995
		return err;
6996

6997
	event->destroy = tp_perf_event_destroy;
6998

6999 7000 7001 7002
	return 0;
}

static struct pmu perf_tracepoint = {
7003 7004
	.task_ctx_nr	= perf_sw_context,

7005
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7006 7007 7008 7009
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7010 7011 7012 7013 7014
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7015
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7016
}
L
Li Zefan 已提交
7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7051 7052
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7053 7054 7055 7056 7057 7058
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7059
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7084
#else
L
Li Zefan 已提交
7085

7086
static inline void perf_tp_register(void)
7087 7088
{
}
L
Li Zefan 已提交
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7099 7100 7101 7102 7103 7104 7105 7106
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7107
#endif /* CONFIG_EVENT_TRACING */
7108

7109
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7110
void perf_bp_event(struct perf_event *bp, void *data)
7111
{
7112 7113 7114
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7115
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7116

P
Peter Zijlstra 已提交
7117
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7118
		perf_swevent_event(bp, 1, &sample, regs);
7119 7120 7121
}
#endif

7122 7123 7124
/*
 * hrtimer based swevent callback
 */
7125

7126
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7127
{
7128 7129 7130 7131 7132
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7133

7134
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7135 7136 7137 7138

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7139
	event->pmu->read(event);
7140

7141
	perf_sample_data_init(&data, 0, event->hw.last_period);
7142 7143 7144
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7145
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7146
			if (__perf_event_overflow(event, 1, &data, regs))
7147 7148
				ret = HRTIMER_NORESTART;
	}
7149

7150 7151
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7152

7153
	return ret;
7154 7155
}

7156
static void perf_swevent_start_hrtimer(struct perf_event *event)
7157
{
7158
	struct hw_perf_event *hwc = &event->hw;
7159 7160 7161 7162
	s64 period;

	if (!is_sampling_event(event))
		return;
7163

7164 7165 7166 7167
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7168

7169 7170 7171 7172
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7173 7174
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7175
}
7176 7177

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7178
{
7179 7180
	struct hw_perf_event *hwc = &event->hw;

7181
	if (is_sampling_event(event)) {
7182
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7183
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7184 7185 7186

		hrtimer_cancel(&hwc->hrtimer);
	}
7187 7188
}

P
Peter Zijlstra 已提交
7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7209
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7210 7211 7212 7213
		event->attr.freq = 0;
	}
}

7214 7215 7216 7217 7218
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7219
{
7220 7221 7222
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7223
	now = local_clock();
7224 7225
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7226 7227
}

P
Peter Zijlstra 已提交
7228
static void cpu_clock_event_start(struct perf_event *event, int flags)
7229
{
P
Peter Zijlstra 已提交
7230
	local64_set(&event->hw.prev_count, local_clock());
7231 7232 7233
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7234
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7235
{
7236 7237 7238
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7239

P
Peter Zijlstra 已提交
7240 7241 7242 7243
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7244
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7245 7246 7247 7248 7249 7250 7251 7252 7253

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7254 7255 7256 7257
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7258

7259 7260 7261 7262 7263 7264 7265 7266
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7267 7268 7269 7270 7271 7272
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7273 7274
	perf_swevent_init_hrtimer(event);

7275
	return 0;
7276 7277
}

7278
static struct pmu perf_cpu_clock = {
7279 7280
	.task_ctx_nr	= perf_sw_context,

7281 7282
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7283
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7284 7285 7286 7287
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7288 7289 7290 7291 7292 7293 7294 7295
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7296
{
7297 7298
	u64 prev;
	s64 delta;
7299

7300 7301 7302 7303
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7304

P
Peter Zijlstra 已提交
7305
static void task_clock_event_start(struct perf_event *event, int flags)
7306
{
P
Peter Zijlstra 已提交
7307
	local64_set(&event->hw.prev_count, event->ctx->time);
7308 7309 7310
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7311
static void task_clock_event_stop(struct perf_event *event, int flags)
7312 7313 7314
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7315 7316 7317 7318 7319 7320
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7321
	perf_event_update_userpage(event);
7322

P
Peter Zijlstra 已提交
7323 7324 7325 7326 7327 7328
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7329 7330 7331 7332
}

static void task_clock_event_read(struct perf_event *event)
{
7333 7334 7335
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7336 7337 7338 7339 7340

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7341
{
7342 7343 7344 7345 7346 7347
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7348 7349 7350 7351 7352 7353
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7354 7355
	perf_swevent_init_hrtimer(event);

7356
	return 0;
L
Li Zefan 已提交
7357 7358
}

7359
static struct pmu perf_task_clock = {
7360 7361
	.task_ctx_nr	= perf_sw_context,

7362 7363
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7364
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7365 7366 7367 7368
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7369 7370
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7371

P
Peter Zijlstra 已提交
7372
static void perf_pmu_nop_void(struct pmu *pmu)
7373 7374
{
}
L
Li Zefan 已提交
7375

7376 7377 7378 7379
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7380
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7381
{
P
Peter Zijlstra 已提交
7382
	return 0;
L
Li Zefan 已提交
7383 7384
}

7385
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7386 7387

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7388
{
7389 7390 7391 7392 7393
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7394
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7395 7396
}

P
Peter Zijlstra 已提交
7397 7398
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7399 7400 7401 7402 7403 7404 7405
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7406 7407 7408
	perf_pmu_enable(pmu);
	return 0;
}
7409

P
Peter Zijlstra 已提交
7410
static void perf_pmu_cancel_txn(struct pmu *pmu)
7411
{
7412 7413 7414 7415 7416 7417 7418
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7419
	perf_pmu_enable(pmu);
7420 7421
}

7422 7423
static int perf_event_idx_default(struct perf_event *event)
{
7424
	return 0;
7425 7426
}

P
Peter Zijlstra 已提交
7427 7428 7429 7430
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7431
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7432
{
P
Peter Zijlstra 已提交
7433
	struct pmu *pmu;
7434

P
Peter Zijlstra 已提交
7435 7436
	if (ctxn < 0)
		return NULL;
7437

P
Peter Zijlstra 已提交
7438 7439 7440 7441
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7442

P
Peter Zijlstra 已提交
7443
	return NULL;
7444 7445
}

7446
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7447
{
7448 7449 7450 7451 7452 7453 7454
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7455 7456
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7457 7458 7459 7460 7461 7462
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7463

P
Peter Zijlstra 已提交
7464
	mutex_lock(&pmus_lock);
7465
	/*
P
Peter Zijlstra 已提交
7466
	 * Like a real lame refcount.
7467
	 */
7468 7469 7470
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7471
			goto out;
7472
		}
P
Peter Zijlstra 已提交
7473
	}
7474

7475
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7476 7477
out:
	mutex_unlock(&pmus_lock);
7478
}
P
Peter Zijlstra 已提交
7479
static struct idr pmu_idr;
7480

P
Peter Zijlstra 已提交
7481 7482 7483 7484 7485 7486 7487
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7488
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7489

7490 7491 7492 7493 7494 7495 7496 7497 7498 7499
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7500 7501
static DEFINE_MUTEX(mux_interval_mutex);

7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7521
	mutex_lock(&mux_interval_mutex);
7522 7523 7524
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7525 7526
	get_online_cpus();
	for_each_online_cpu(cpu) {
7527 7528 7529 7530
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7531 7532
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7533
	}
7534 7535
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7536 7537 7538

	return count;
}
7539
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7540

7541 7542 7543 7544
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7545
};
7546
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7547 7548 7549 7550

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7551
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7567
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7588
static struct lock_class_key cpuctx_mutex;
7589
static struct lock_class_key cpuctx_lock;
7590

7591
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7592
{
P
Peter Zijlstra 已提交
7593
	int cpu, ret;
7594

7595
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7596 7597 7598 7599
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7600

P
Peter Zijlstra 已提交
7601 7602 7603 7604 7605 7606
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7607 7608 7609
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7610 7611 7612 7613 7614
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7615 7616 7617 7618 7619 7620
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7621
skip_type:
P
Peter Zijlstra 已提交
7622 7623 7624
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7625

W
Wei Yongjun 已提交
7626
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7627 7628
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7629
		goto free_dev;
7630

P
Peter Zijlstra 已提交
7631 7632 7633 7634
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7635
		__perf_event_init_context(&cpuctx->ctx);
7636
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7637
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7638
		cpuctx->ctx.pmu = pmu;
7639

7640
		__perf_mux_hrtimer_init(cpuctx, cpu);
7641

7642
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7643
	}
7644

P
Peter Zijlstra 已提交
7645
got_cpu_context:
P
Peter Zijlstra 已提交
7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7657
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7658 7659
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7660
		}
7661
	}
7662

P
Peter Zijlstra 已提交
7663 7664 7665 7666 7667
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7668 7669 7670
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7671
	list_add_rcu(&pmu->entry, &pmus);
7672
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7673 7674
	ret = 0;
unlock:
7675 7676
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7677
	return ret;
P
Peter Zijlstra 已提交
7678

P
Peter Zijlstra 已提交
7679 7680 7681 7682
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7683 7684 7685 7686
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7687 7688 7689
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7690
}
7691
EXPORT_SYMBOL_GPL(perf_pmu_register);
7692

7693
void perf_pmu_unregister(struct pmu *pmu)
7694
{
7695 7696 7697
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7698

7699
	/*
P
Peter Zijlstra 已提交
7700 7701
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7702
	 */
7703
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7704
	synchronize_rcu();
7705

P
Peter Zijlstra 已提交
7706
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7707 7708
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7709 7710
	device_del(pmu->dev);
	put_device(pmu->dev);
7711
	free_pmu_context(pmu);
7712
}
7713
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7714

7715 7716
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7717
	struct perf_event_context *ctx = NULL;
7718 7719 7720 7721
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7722 7723

	if (event->group_leader != event) {
7724 7725 7726 7727 7728 7729
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7730 7731 7732
		BUG_ON(!ctx);
	}

7733 7734
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7735 7736 7737 7738

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7739 7740 7741 7742 7743 7744
	if (ret)
		module_put(pmu->module);

	return ret;
}

7745
static struct pmu *perf_init_event(struct perf_event *event)
7746 7747 7748
{
	struct pmu *pmu = NULL;
	int idx;
7749
	int ret;
7750 7751

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7752 7753 7754 7755

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7756
	if (pmu) {
7757
		ret = perf_try_init_event(pmu, event);
7758 7759
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7760
		goto unlock;
7761
	}
P
Peter Zijlstra 已提交
7762

7763
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7764
		ret = perf_try_init_event(pmu, event);
7765
		if (!ret)
P
Peter Zijlstra 已提交
7766
			goto unlock;
7767

7768 7769
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7770
			goto unlock;
7771
		}
7772
	}
P
Peter Zijlstra 已提交
7773 7774
	pmu = ERR_PTR(-ENOENT);
unlock:
7775
	srcu_read_unlock(&pmus_srcu, idx);
7776

7777
	return pmu;
7778 7779
}

7780 7781 7782 7783 7784 7785 7786 7787 7788
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7789 7790
static void account_event(struct perf_event *event)
{
7791 7792
	bool inc = false;

7793 7794 7795
	if (event->parent)
		return;

7796
	if (event->attach_state & PERF_ATTACH_TASK)
7797
		inc = true;
7798 7799 7800 7801 7802 7803
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7804 7805 7806 7807
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7808 7809
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
7810
		inc = true;
7811
	}
7812
	if (has_branch_stack(event))
7813
		inc = true;
7814
	if (is_cgroup_event(event))
7815 7816
		inc = true;

7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
7839 7840

	account_event_cpu(event, event->cpu);
7841 7842
}

T
Thomas Gleixner 已提交
7843
/*
7844
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7845
 */
7846
static struct perf_event *
7847
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7848 7849 7850
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7851
		 perf_overflow_handler_t overflow_handler,
7852
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7853
{
P
Peter Zijlstra 已提交
7854
	struct pmu *pmu;
7855 7856
	struct perf_event *event;
	struct hw_perf_event *hwc;
7857
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7858

7859 7860 7861 7862 7863
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7864
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7865
	if (!event)
7866
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7867

7868
	/*
7869
	 * Single events are their own group leaders, with an
7870 7871 7872
	 * empty sibling list:
	 */
	if (!group_leader)
7873
		group_leader = event;
7874

7875 7876
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7877

7878 7879 7880
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7881
	INIT_LIST_HEAD(&event->rb_entry);
7882
	INIT_LIST_HEAD(&event->active_entry);
7883 7884
	INIT_HLIST_NODE(&event->hlist_entry);

7885

7886
	init_waitqueue_head(&event->waitq);
7887
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7888

7889
	mutex_init(&event->mmap_mutex);
7890

7891
	atomic_long_set(&event->refcount, 1);
7892 7893 7894 7895 7896
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7897

7898
	event->parent		= parent_event;
7899

7900
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7901
	event->id		= atomic64_inc_return(&perf_event_id);
7902

7903
	event->state		= PERF_EVENT_STATE_INACTIVE;
7904

7905 7906 7907
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7908 7909 7910
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7911
		 */
7912
		event->hw.target = task;
7913 7914
	}

7915 7916 7917 7918
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7919
	if (!overflow_handler && parent_event) {
7920
		overflow_handler = parent_event->overflow_handler;
7921 7922
		context = parent_event->overflow_handler_context;
	}
7923

7924
	event->overflow_handler	= overflow_handler;
7925
	event->overflow_handler_context = context;
7926

J
Jiri Olsa 已提交
7927
	perf_event__state_init(event);
7928

7929
	pmu = NULL;
7930

7931
	hwc = &event->hw;
7932
	hwc->sample_period = attr->sample_period;
7933
	if (attr->freq && attr->sample_freq)
7934
		hwc->sample_period = 1;
7935
	hwc->last_period = hwc->sample_period;
7936

7937
	local64_set(&hwc->period_left, hwc->sample_period);
7938

7939
	/*
7940
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7941
	 */
7942
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7943
		goto err_ns;
7944 7945 7946

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7947

7948 7949 7950 7951 7952 7953
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7954
	pmu = perf_init_event(event);
7955
	if (!pmu)
7956 7957
		goto err_ns;
	else if (IS_ERR(pmu)) {
7958
		err = PTR_ERR(pmu);
7959
		goto err_ns;
I
Ingo Molnar 已提交
7960
	}
7961

7962 7963 7964 7965
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7966
	if (!event->parent) {
7967 7968
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7969
			if (err)
7970
				goto err_per_task;
7971
		}
7972
	}
7973

7974
	return event;
7975

7976 7977 7978
err_per_task:
	exclusive_event_destroy(event);

7979 7980 7981
err_pmu:
	if (event->destroy)
		event->destroy(event);
7982
	module_put(pmu->module);
7983
err_ns:
7984 7985
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7986 7987 7988 7989 7990
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7991 7992
}

7993 7994
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7995 7996
{
	u32 size;
7997
	int ret;
7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
8022 8023 8024
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
8025 8026
	 */
	if (size > sizeof(*attr)) {
8027 8028 8029
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
8030

8031 8032
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
8033

8034
		for (; addr < end; addr++) {
8035 8036 8037 8038 8039 8040
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
8041
		size = sizeof(*attr);
8042 8043 8044 8045 8046 8047
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

8048
	if (attr->__reserved_1)
8049 8050 8051 8052 8053 8054 8055 8056
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8085 8086
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8087 8088
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8089
	}
8090

8091
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8092
		ret = perf_reg_validate(attr->sample_regs_user);
8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8111

8112 8113
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8114 8115 8116 8117 8118 8119 8120 8121 8122
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8123 8124
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8125
{
8126
	struct ring_buffer *rb = NULL;
8127 8128
	int ret = -EINVAL;

8129
	if (!output_event)
8130 8131
		goto set;

8132 8133
	/* don't allow circular references */
	if (event == output_event)
8134 8135
		goto out;

8136 8137 8138 8139 8140 8141 8142
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8143
	 * If its not a per-cpu rb, it must be the same task.
8144 8145 8146 8147
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8148 8149 8150 8151 8152 8153
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8154 8155 8156 8157 8158 8159 8160
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8161
set:
8162
	mutex_lock(&event->mmap_mutex);
8163 8164 8165
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8166

8167
	if (output_event) {
8168 8169 8170
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8171
			goto unlock;
8172 8173
	}

8174
	ring_buffer_attach(event, rb);
8175

8176
	ret = 0;
8177 8178 8179
unlock:
	mutex_unlock(&event->mmap_mutex);

8180 8181 8182 8183
out:
	return ret;
}

P
Peter Zijlstra 已提交
8184 8185 8186 8187 8188 8189 8190 8191 8192
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8230
/**
8231
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8232
 *
8233
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8234
 * @pid:		target pid
I
Ingo Molnar 已提交
8235
 * @cpu:		target cpu
8236
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8237
 */
8238 8239
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8240
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8241
{
8242 8243
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8244
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8245
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8246
	struct file *event_file = NULL;
8247
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8248
	struct task_struct *task = NULL;
8249
	struct pmu *pmu;
8250
	int event_fd;
8251
	int move_group = 0;
8252
	int err;
8253
	int f_flags = O_RDWR;
8254
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8255

8256
	/* for future expandability... */
S
Stephane Eranian 已提交
8257
	if (flags & ~PERF_FLAG_ALL)
8258 8259
		return -EINVAL;

8260 8261 8262
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8263

8264 8265 8266 8267 8268
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8269
	if (attr.freq) {
8270
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8271
			return -EINVAL;
8272 8273 8274
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8275 8276
	}

S
Stephane Eranian 已提交
8277 8278 8279 8280 8281 8282 8283 8284 8285
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8286 8287 8288 8289
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8290 8291 8292
	if (event_fd < 0)
		return event_fd;

8293
	if (group_fd != -1) {
8294 8295
		err = perf_fget_light(group_fd, &group);
		if (err)
8296
			goto err_fd;
8297
		group_leader = group.file->private_data;
8298 8299 8300 8301 8302 8303
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8304
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8305 8306 8307 8308 8309 8310 8311
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8312 8313 8314 8315 8316 8317
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8318 8319
	get_online_cpus();

8320 8321 8322
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8323
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8324
				 NULL, NULL, cgroup_fd);
8325 8326
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8327
		goto err_cpus;
8328 8329
	}

8330 8331 8332 8333 8334 8335 8336
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8337 8338
	account_event(event);

8339 8340 8341 8342 8343
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8344

8345 8346 8347 8348 8349 8350
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8373 8374 8375 8376

	/*
	 * Get the target context (task or percpu):
	 */
8377
	ctx = find_get_context(pmu, task, event);
8378 8379
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8380
		goto err_alloc;
8381 8382
	}

8383 8384 8385 8386 8387
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8388 8389 8390 8391 8392
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8393
	/*
8394
	 * Look up the group leader (we will attach this event to it):
8395
	 */
8396
	if (group_leader) {
8397
		err = -EINVAL;
8398 8399

		/*
I
Ingo Molnar 已提交
8400 8401 8402 8403
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8404
			goto err_context;
8405 8406 8407 8408 8409

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8410 8411 8412
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8413
		 */
8414
		if (move_group) {
8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8428 8429 8430 8431 8432 8433
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8434 8435 8436
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8437
		if (attr.exclusive || attr.pinned)
8438
			goto err_context;
8439 8440 8441 8442 8443
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8444
			goto err_context;
8445
	}
T
Thomas Gleixner 已提交
8446

8447 8448
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8449 8450
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8451
		goto err_context;
8452
	}
8453

8454
	if (move_group) {
P
Peter Zijlstra 已提交
8455
		gctx = group_leader->ctx;
8456
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8457 8458 8459 8460
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
8461 8462 8463 8464
	} else {
		mutex_lock(&ctx->mutex);
	}

8465 8466 8467 8468 8469
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
8470 8471 8472 8473 8474
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8475 8476 8477 8478 8479 8480 8481
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8482

8483 8484 8485
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8486

8487 8488 8489
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8490 8491 8492 8493
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8494
		perf_remove_from_context(group_leader, 0);
J
Jiri Olsa 已提交
8495

8496 8497
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8498
			perf_remove_from_context(sibling, 0);
8499 8500 8501
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8502 8503 8504 8505
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8506
		synchronize_rcu();
P
Peter Zijlstra 已提交
8507

8508 8509 8510 8511 8512 8513 8514 8515 8516 8517
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8518 8519
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8520
			perf_event__state_init(sibling);
8521
			perf_install_in_context(ctx, sibling, sibling->cpu);
8522 8523
			get_ctx(ctx);
		}
8524 8525 8526 8527 8528 8529 8530 8531 8532

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8533

8534 8535 8536 8537 8538 8539
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8540 8541
	}

8542 8543 8544 8545 8546 8547 8548 8549 8550
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
8551 8552
	event->owner = current;

8553
	perf_install_in_context(ctx, event, event->cpu);
8554
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8555

8556
	if (move_group)
P
Peter Zijlstra 已提交
8557
		mutex_unlock(&gctx->mutex);
8558
	mutex_unlock(&ctx->mutex);
8559

8560 8561
	put_online_cpus();

8562 8563 8564
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8565

8566 8567 8568 8569 8570 8571
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8572
	fdput(group);
8573 8574
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8575

8576 8577 8578 8579 8580 8581
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8582
err_context:
8583
	perf_unpin_context(ctx);
8584
	put_ctx(ctx);
8585
err_alloc:
P
Peter Zijlstra 已提交
8586 8587 8588 8589 8590 8591
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
8592
err_cpus:
8593
	put_online_cpus();
8594
err_task:
P
Peter Zijlstra 已提交
8595 8596
	if (task)
		put_task_struct(task);
8597
err_group_fd:
8598
	fdput(group);
8599 8600
err_fd:
	put_unused_fd(event_fd);
8601
	return err;
T
Thomas Gleixner 已提交
8602 8603
}

8604 8605 8606 8607 8608
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8609
 * @task: task to profile (NULL for percpu)
8610 8611 8612
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8613
				 struct task_struct *task,
8614 8615
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8616 8617
{
	struct perf_event_context *ctx;
8618
	struct perf_event *event;
8619
	int err;
8620

8621 8622 8623
	/*
	 * Get the target context (task or percpu):
	 */
8624

8625
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8626
				 overflow_handler, context, -1);
8627 8628 8629 8630
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8631

8632
	/* Mark owner so we could distinguish it from user events. */
8633
	event->owner = TASK_TOMBSTONE;
8634

8635 8636
	account_event(event);

8637
	ctx = find_get_context(event->pmu, task, event);
8638 8639
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8640
		goto err_free;
8641
	}
8642 8643 8644

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8645 8646 8647 8648 8649
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

8650 8651
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
8652
		goto err_unlock;
8653 8654
	}

8655
	perf_install_in_context(ctx, event, cpu);
8656
	perf_unpin_context(ctx);
8657 8658 8659 8660
	mutex_unlock(&ctx->mutex);

	return event;

8661 8662 8663 8664
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
8665 8666 8667
err_free:
	free_event(event);
err:
8668
	return ERR_PTR(err);
8669
}
8670
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8671

8672 8673 8674 8675 8676 8677 8678 8679 8680 8681
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8682 8683 8684 8685 8686
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8687 8688
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8689
		perf_remove_from_context(event, 0);
8690
		unaccount_event_cpu(event, src_cpu);
8691
		put_ctx(src_ctx);
8692
		list_add(&event->migrate_entry, &events);
8693 8694
	}

8695 8696 8697
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8698 8699
	synchronize_rcu();

8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8724 8725
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8726 8727
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8728
		account_event_cpu(event, dst_cpu);
8729 8730 8731 8732
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8733
	mutex_unlock(&src_ctx->mutex);
8734 8735 8736
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8737
static void sync_child_event(struct perf_event *child_event,
8738
			       struct task_struct *child)
8739
{
8740
	struct perf_event *parent_event = child_event->parent;
8741
	u64 child_val;
8742

8743 8744
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8745

P
Peter Zijlstra 已提交
8746
	child_val = perf_event_count(child_event);
8747 8748 8749 8750

	/*
	 * Add back the child's count to the parent's count:
	 */
8751
	atomic64_add(child_val, &parent_event->child_count);
8752 8753 8754 8755
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8756 8757
}

8758
static void
8759 8760 8761
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
8762
{
8763 8764
	struct perf_event *parent_event = child_event->parent;

8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
8777 8778 8779
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

8780
	if (parent_event)
8781 8782
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
8783
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
8784
	raw_spin_unlock_irq(&child_ctx->lock);
8785

8786
	/*
8787
	 * Parent events are governed by their filedesc, retain them.
8788
	 */
8789
	if (!parent_event) {
8790
		perf_event_wakeup(child_event);
8791
		return;
8792
	}
8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
8813 8814
}

P
Peter Zijlstra 已提交
8815
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8816
{
8817
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8818 8819 8820
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
8821

8822
	child_ctx = perf_pin_task_context(child, ctxn);
8823
	if (!child_ctx)
8824 8825
		return;

8826
	/*
8827 8828 8829 8830 8831 8832 8833 8834
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
8835
	 */
8836
	mutex_lock(&child_ctx->mutex);
8837 8838

	/*
8839 8840 8841
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
8842
	 */
8843
	raw_spin_lock_irq(&child_ctx->lock);
8844
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8845

8846
	/*
8847 8848
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
8849
	 */
8850 8851 8852 8853
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
8854

8855
	clone_ctx = unclone_ctx(child_ctx);
8856
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
8857

8858 8859
	if (clone_ctx)
		put_ctx(clone_ctx);
8860

P
Peter Zijlstra 已提交
8861
	/*
8862 8863 8864
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8865
	 */
8866
	perf_event_task(child, child_ctx, 0);
8867

8868
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8869
		perf_event_exit_event(child_event, child_ctx, child);
8870

8871 8872 8873
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8874 8875
}

P
Peter Zijlstra 已提交
8876 8877 8878 8879 8880
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8881
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8882 8883
	int ctxn;

P
Peter Zijlstra 已提交
8884 8885 8886 8887 8888 8889 8890 8891 8892 8893
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
8894
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
8895 8896 8897
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8898 8899
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8900 8901 8902 8903 8904 8905 8906 8907

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8908 8909
}

8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8922
	put_event(parent);
8923

P
Peter Zijlstra 已提交
8924
	raw_spin_lock_irq(&ctx->lock);
8925
	perf_group_detach(event);
8926
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8927
	raw_spin_unlock_irq(&ctx->lock);
8928 8929 8930
	free_event(event);
}

8931
/*
P
Peter Zijlstra 已提交
8932
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8933
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8934 8935 8936
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8937
 */
8938
void perf_event_free_task(struct task_struct *task)
8939
{
P
Peter Zijlstra 已提交
8940
	struct perf_event_context *ctx;
8941
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8942
	int ctxn;
8943

P
Peter Zijlstra 已提交
8944 8945 8946 8947
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8948

P
Peter Zijlstra 已提交
8949
		mutex_lock(&ctx->mutex);
8950
again:
P
Peter Zijlstra 已提交
8951 8952 8953
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8954

P
Peter Zijlstra 已提交
8955 8956 8957
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8958

P
Peter Zijlstra 已提交
8959 8960 8961
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8962

P
Peter Zijlstra 已提交
8963
		mutex_unlock(&ctx->mutex);
8964

P
Peter Zijlstra 已提交
8965 8966
		put_ctx(ctx);
	}
8967 8968
}

8969 8970 8971 8972 8973 8974 8975 8976
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8977
struct file *perf_event_get(unsigned int fd)
8978
{
8979
	struct file *file;
8980

8981 8982 8983
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
8984

8985 8986 8987 8988
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
8989

8990
	return file;
8991 8992 8993 8994 8995 8996 8997 8998 8999 9000
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
9012
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
9013
	struct perf_event *child_event;
9014
	unsigned long flags;
P
Peter Zijlstra 已提交
9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
9027
					   child,
P
Peter Zijlstra 已提交
9028
					   group_leader, parent_event,
9029
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
9030 9031
	if (IS_ERR(child_event))
		return child_event;
9032

9033 9034 9035 9036 9037 9038 9039
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
9040 9041
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9042
		mutex_unlock(&parent_event->child_mutex);
9043 9044 9045 9046
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
9047 9048 9049 9050 9051 9052 9053
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
9054
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9071 9072
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9073

9074 9075 9076 9077
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9078
	perf_event__id_header_size(child_event);
9079

P
Peter Zijlstra 已提交
9080 9081 9082
	/*
	 * Link it up in the child's context:
	 */
9083
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9084
	add_event_to_ctx(child_event, child_ctx);
9085
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9117 9118 9119 9120 9121
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9122
		   struct task_struct *child, int ctxn,
9123 9124 9125
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9126
	struct perf_event_context *child_ctx;
9127 9128 9129 9130

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9131 9132
	}

9133
	child_ctx = child->perf_event_ctxp[ctxn];
9134 9135 9136 9137 9138 9139 9140
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9141

9142
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9143 9144
		if (!child_ctx)
			return -ENOMEM;
9145

P
Peter Zijlstra 已提交
9146
		child->perf_event_ctxp[ctxn] = child_ctx;
9147 9148 9149 9150 9151 9152 9153 9154 9155
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9156 9157
}

9158
/*
9159
 * Initialize the perf_event context in task_struct
9160
 */
9161
static int perf_event_init_context(struct task_struct *child, int ctxn)
9162
{
9163
	struct perf_event_context *child_ctx, *parent_ctx;
9164 9165
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9166
	struct task_struct *parent = current;
9167
	int inherited_all = 1;
9168
	unsigned long flags;
9169
	int ret = 0;
9170

P
Peter Zijlstra 已提交
9171
	if (likely(!parent->perf_event_ctxp[ctxn]))
9172 9173
		return 0;

9174
	/*
9175 9176
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9177
	 */
P
Peter Zijlstra 已提交
9178
	parent_ctx = perf_pin_task_context(parent, ctxn);
9179 9180
	if (!parent_ctx)
		return 0;
9181

9182 9183 9184 9185 9186 9187 9188
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9189 9190 9191 9192
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9193
	mutex_lock(&parent_ctx->mutex);
9194 9195 9196 9197 9198

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9199
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9200 9201
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9202 9203 9204
		if (ret)
			break;
	}
9205

9206 9207 9208 9209 9210 9211 9212 9213 9214
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9215
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9216 9217
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9218
		if (ret)
9219
			break;
9220 9221
	}

9222 9223 9224
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9225
	child_ctx = child->perf_event_ctxp[ctxn];
9226

9227
	if (child_ctx && inherited_all) {
9228 9229 9230
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9231 9232 9233
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9234
		 */
P
Peter Zijlstra 已提交
9235
		cloned_ctx = parent_ctx->parent_ctx;
9236 9237
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9238
			child_ctx->parent_gen = parent_ctx->parent_gen;
9239 9240 9241 9242 9243
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9244 9245
	}

P
Peter Zijlstra 已提交
9246
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9247
	mutex_unlock(&parent_ctx->mutex);
9248

9249
	perf_unpin_context(parent_ctx);
9250
	put_ctx(parent_ctx);
9251

9252
	return ret;
9253 9254
}

P
Peter Zijlstra 已提交
9255 9256 9257 9258 9259 9260 9261
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9262 9263 9264 9265
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9266 9267
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9268 9269
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9270
			return ret;
P
Peter Zijlstra 已提交
9271
		}
P
Peter Zijlstra 已提交
9272 9273 9274 9275 9276
	}

	return 0;
}

9277 9278
static void __init perf_event_init_all_cpus(void)
{
9279
	struct swevent_htable *swhash;
9280 9281 9282
	int cpu;

	for_each_possible_cpu(cpu) {
9283 9284
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9285
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9286 9287 9288
	}
}

9289
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9290
{
P
Peter Zijlstra 已提交
9291
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9292

9293
	mutex_lock(&swhash->hlist_mutex);
9294
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
9295 9296
		struct swevent_hlist *hlist;

9297 9298 9299
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9300
	}
9301
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9302 9303
}

9304
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9305
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9306
{
P
Peter Zijlstra 已提交
9307
	struct perf_event_context *ctx = __info;
9308 9309
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
9310

9311 9312
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
9313
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9314
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
9315
}
P
Peter Zijlstra 已提交
9316 9317 9318 9319 9320 9321 9322 9323 9324

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9325
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9326 9327 9328 9329 9330 9331 9332 9333

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9334
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9335
{
P
Peter Zijlstra 已提交
9336
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9337 9338
}
#else
9339
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9340 9341
#endif

P
Peter Zijlstra 已提交
9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9362
static int
T
Thomas Gleixner 已提交
9363 9364 9365 9366
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9367
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9368 9369

	case CPU_UP_PREPARE:
9370
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9371 9372 9373
		break;

	case CPU_DOWN_PREPARE:
9374
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9375 9376 9377 9378 9379 9380 9381 9382
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9383
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9384
{
9385 9386
	int ret;

P
Peter Zijlstra 已提交
9387 9388
	idr_init(&pmu_idr);

9389
	perf_event_init_all_cpus();
9390
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9391 9392 9393
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9394 9395
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9396
	register_reboot_notifier(&perf_reboot_notifier);
9397 9398 9399

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9400

9401 9402 9403 9404 9405 9406
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9407
}
P
Peter Zijlstra 已提交
9408

9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9448 9449

#ifdef CONFIG_CGROUP_PERF
9450 9451
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9452 9453 9454
{
	struct perf_cgroup *jc;

9455
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9468
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9469
{
9470 9471
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9472 9473 9474 9475 9476 9477 9478
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9479
	rcu_read_lock();
S
Stephane Eranian 已提交
9480
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9481
	rcu_read_unlock();
S
Stephane Eranian 已提交
9482 9483 9484
	return 0;
}

9485
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9486
{
9487
	struct task_struct *task;
9488
	struct cgroup_subsys_state *css;
9489

9490
	cgroup_taskset_for_each(task, css, tset)
9491
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9492 9493
}

9494
struct cgroup_subsys perf_event_cgrp_subsys = {
9495 9496
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9497
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9498 9499
};
#endif /* CONFIG_CGROUP_PERF */