core.c 186.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
122 123
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
124

125 126 127 128 129 130 131
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

132 133 134 135 136 137
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
138 139 140 141
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
142
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
143
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
144
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
145

146 147 148
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
149
static atomic_t nr_freq_events __read_mostly;
150

P
Peter Zijlstra 已提交
151 152 153 154
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

155
/*
156
 * perf event paranoia level:
157 158
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
159
 *   1 - disallow cpu events for unpriv
160
 *   2 - disallow kernel profiling for unpriv
161
 */
162
int sysctl_perf_event_paranoid __read_mostly = 1;
163

164 165
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
166 167

/*
168
 * max perf event sample rate
169
 */
170 171 172 173 174 175 176 177 178
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
179 180
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
181 182 183 184 185 186

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
187
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
188
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
189
}
P
Peter Zijlstra 已提交
190

191 192
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
193 194 195 196
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
197
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
198 199 200 201 202

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
221 222 223

	return 0;
}
224

225 226 227 228 229 230 231
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
232
static DEFINE_PER_CPU(u64, running_sample_length);
233

234
static void perf_duration_warn(struct irq_work *w)
235
{
236
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
237
	u64 avg_local_sample_len;
238
	u64 local_samples_len;
239 240 241 242 243 244 245

	local_samples_len = __get_cpu_var(running_sample_length);
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
246
			avg_local_sample_len, allowed_ns >> 1,
247 248 249 250 251 252 253
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
254
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
255 256
	u64 avg_local_sample_len;
	u64 local_samples_len;
257

P
Peter Zijlstra 已提交
258
	if (allowed_ns == 0)
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
274
	if (avg_local_sample_len <= allowed_ns)
275 276 277 278 279 280 281 282 283 284
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
285

286 287 288 289 290 291
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
292 293
}

294
static atomic64_t perf_event_id;
295

296 297 298 299
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
300 301 302 303 304
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
305

306
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
307

308
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
309
{
310
	return "pmu";
T
Thomas Gleixner 已提交
311 312
}

313 314 315 316 317
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
318 319 320 321 322 323
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
340 341
#ifdef CONFIG_CGROUP_PERF

342 343 344 345 346 347 348 349 350 351 352
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
353
	struct perf_cgroup_info	__percpu *info;
354 355
};

356 357 358 359 360
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
361 362 363
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
364
	return container_of(task_css(task, perf_event_cgrp_id),
365
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
366 367 368 369 370 371 372 373
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
438 439
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
440
	/*
441 442
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
443
	 */
444
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
445 446
		return;

447 448 449 450 451 452
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
453 454 455
}

static inline void
456 457
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
458 459 460 461
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

462 463 464 465 466 467
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
468 469 470 471
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
472
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
505 506
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
507 508 509 510 511 512 513 514 515

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
516 517
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
518 519 520 521 522 523 524 525 526 527 528

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
529
				WARN_ON_ONCE(cpuctx->cgrp);
530 531 532 533
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
534 535 536 537
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
538 539
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
540 541 542 543 544 545 546 547
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

548 549
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
550
{
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
573 574
}

575 576
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
577
{
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
596 597 598 599 600 601 602 603
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
604 605
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
606

607
	if (!f.file)
S
Stephane Eranian 已提交
608 609
		return -EBADF;

610
	css = css_tryget_from_dir(f.file->f_dentry, &perf_event_cgrp_subsys);
611 612 613 614
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
628
out:
629
	fdput(f);
S
Stephane Eranian 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

703 704
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
705 706 707
{
}

708 709
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
710 711 712 713 714 715 716 717 718 719 720
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
721 722
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
816
	int timer;
817 818 819 820 821

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

822 823 824 825 826 827 828 829 830
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
853
void perf_pmu_disable(struct pmu *pmu)
854
{
P
Peter Zijlstra 已提交
855 856 857
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
858 859
}

P
Peter Zijlstra 已提交
860
void perf_pmu_enable(struct pmu *pmu)
861
{
P
Peter Zijlstra 已提交
862 863 864
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
865 866
}

867 868 869 870 871 872 873
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
874
static void perf_pmu_rotate_start(struct pmu *pmu)
875
{
P
Peter Zijlstra 已提交
876
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
877
	struct list_head *head = &__get_cpu_var(rotation_list);
878

879
	WARN_ON(!irqs_disabled());
880

881
	if (list_empty(&cpuctx->rotation_list))
882
		list_add(&cpuctx->rotation_list, head);
883 884
}

885
static void get_ctx(struct perf_event_context *ctx)
886
{
887
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
888 889
}

890
static void put_ctx(struct perf_event_context *ctx)
891
{
892 893 894
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
895 896
		if (ctx->task)
			put_task_struct(ctx->task);
897
		kfree_rcu(ctx, rcu_head);
898
	}
899 900
}

901
static void unclone_ctx(struct perf_event_context *ctx)
902 903 904 905 906
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
907
	ctx->generation++;
908 909
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

932
/*
933
 * If we inherit events we want to return the parent event id
934 935
 * to userspace.
 */
936
static u64 primary_event_id(struct perf_event *event)
937
{
938
	u64 id = event->id;
939

940 941
	if (event->parent)
		id = event->parent->id;
942 943 944 945

	return id;
}

946
/*
947
 * Get the perf_event_context for a task and lock it.
948 949 950
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
951
static struct perf_event_context *
P
Peter Zijlstra 已提交
952
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
953
{
954
	struct perf_event_context *ctx;
955

P
Peter Zijlstra 已提交
956
retry:
957 958 959 960 961 962 963 964 965 966 967
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
968
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
969 970 971 972
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
973
		 * perf_event_task_sched_out, though the
974 975 976 977 978 979
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
980
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
981
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
982
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
983 984
			rcu_read_unlock();
			preempt_enable();
985 986
			goto retry;
		}
987 988

		if (!atomic_inc_not_zero(&ctx->refcount)) {
989
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
990 991
			ctx = NULL;
		}
992 993
	}
	rcu_read_unlock();
994
	preempt_enable();
995 996 997 998 999 1000 1001 1002
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1003 1004
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1005
{
1006
	struct perf_event_context *ctx;
1007 1008
	unsigned long flags;

P
Peter Zijlstra 已提交
1009
	ctx = perf_lock_task_context(task, ctxn, &flags);
1010 1011
	if (ctx) {
		++ctx->pin_count;
1012
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1013 1014 1015 1016
	}
	return ctx;
}

1017
static void perf_unpin_context(struct perf_event_context *ctx)
1018 1019 1020
{
	unsigned long flags;

1021
	raw_spin_lock_irqsave(&ctx->lock, flags);
1022
	--ctx->pin_count;
1023
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1024 1025
}

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1037 1038 1039
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1040 1041 1042 1043

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1044 1045 1046
	return ctx ? ctx->time : 0;
}

1047 1048
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1049
 * The caller of this function needs to hold the ctx->lock.
1050 1051 1052 1053 1054 1055 1056 1057 1058
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1070
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1071 1072
	else if (ctx->is_active)
		run_end = ctx->time;
1073 1074 1075 1076
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1077 1078 1079 1080

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1081
		run_end = perf_event_time(event);
1082 1083

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1084

1085 1086
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1099 1100 1101 1102 1103 1104 1105 1106 1107
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1108
/*
1109
 * Add a event from the lists for its context.
1110 1111
 * Must be called with ctx->mutex and ctx->lock held.
 */
1112
static void
1113
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1114
{
1115 1116
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1117 1118

	/*
1119 1120 1121
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1122
	 */
1123
	if (event->group_leader == event) {
1124 1125
		struct list_head *list;

1126 1127 1128
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1129 1130
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1131
	}
P
Peter Zijlstra 已提交
1132

1133
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1134 1135
		ctx->nr_cgroups++;

1136 1137 1138
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1139
	list_add_rcu(&event->event_entry, &ctx->event_list);
1140
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1141
		perf_pmu_rotate_start(ctx->pmu);
1142 1143
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1144
		ctx->nr_stat++;
1145 1146

	ctx->generation++;
1147 1148
}

J
Jiri Olsa 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1197 1198 1199 1200 1201 1202
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1203 1204 1205
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1206 1207 1208
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1209 1210 1211
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1212 1213 1214
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1215 1216 1217 1218 1219 1220 1221 1222 1223
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1224 1225 1226 1227 1228 1229
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1230 1231 1232
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1233 1234 1235 1236 1237 1238 1239 1240 1241
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1242
	event->id_header_size = size;
1243 1244
}

1245 1246
static void perf_group_attach(struct perf_event *event)
{
1247
	struct perf_event *group_leader = event->group_leader, *pos;
1248

P
Peter Zijlstra 已提交
1249 1250 1251 1252 1253 1254
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1266 1267 1268 1269 1270

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1271 1272
}

1273
/*
1274
 * Remove a event from the lists for its context.
1275
 * Must be called with ctx->mutex and ctx->lock held.
1276
 */
1277
static void
1278
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1279
{
1280
	struct perf_cpu_context *cpuctx;
1281 1282 1283 1284
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1285
		return;
1286 1287 1288

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1289
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1290
		ctx->nr_cgroups--;
1291 1292 1293 1294 1295 1296 1297 1298 1299
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1300

1301 1302 1303
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1304 1305
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1306
		ctx->nr_stat--;
1307

1308
	list_del_rcu(&event->event_entry);
1309

1310 1311
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1312

1313
	update_group_times(event);
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1324 1325

	ctx->generation++;
1326 1327
}

1328
static void perf_group_detach(struct perf_event *event)
1329 1330
{
	struct perf_event *sibling, *tmp;
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1347
		goto out;
1348 1349 1350 1351
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1352

1353
	/*
1354 1355
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1356
	 * to whatever list we are on.
1357
	 */
1358
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1359 1360
		if (list)
			list_move_tail(&sibling->group_entry, list);
1361
		sibling->group_leader = sibling;
1362 1363 1364

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1365
	}
1366 1367 1368 1369 1370 1371

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1372 1373
}

1374 1375 1376
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1377 1378
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1379 1380
}

1381 1382
static void
event_sched_out(struct perf_event *event,
1383
		  struct perf_cpu_context *cpuctx,
1384
		  struct perf_event_context *ctx)
1385
{
1386
	u64 tstamp = perf_event_time(event);
1387 1388 1389 1390 1391 1392 1393 1394 1395
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1396
		delta = tstamp - event->tstamp_stopped;
1397
		event->tstamp_running += delta;
1398
		event->tstamp_stopped = tstamp;
1399 1400
	}

1401
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1402
		return;
1403

1404 1405
	perf_pmu_disable(event->pmu);

1406 1407 1408 1409
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1410
	}
1411
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1412
	event->pmu->del(event, 0);
1413
	event->oncpu = -1;
1414

1415
	if (!is_software_event(event))
1416 1417
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1418 1419
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1420
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1421
		cpuctx->exclusive = 0;
1422 1423

	perf_pmu_enable(event->pmu);
1424 1425
}

1426
static void
1427
group_sched_out(struct perf_event *group_event,
1428
		struct perf_cpu_context *cpuctx,
1429
		struct perf_event_context *ctx)
1430
{
1431
	struct perf_event *event;
1432
	int state = group_event->state;
1433

1434
	event_sched_out(group_event, cpuctx, ctx);
1435 1436 1437 1438

	/*
	 * Schedule out siblings (if any):
	 */
1439 1440
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1441

1442
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1443 1444 1445
		cpuctx->exclusive = 0;
}

1446 1447 1448 1449 1450
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1451
/*
1452
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1453
 *
1454
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1455 1456
 * remove it from the context list.
 */
1457
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1458
{
1459 1460
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1461
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1462
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1463

1464
	raw_spin_lock(&ctx->lock);
1465
	event_sched_out(event, cpuctx, ctx);
1466 1467
	if (re->detach_group)
		perf_group_detach(event);
1468
	list_del_event(event, ctx);
1469 1470 1471 1472
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1473
	raw_spin_unlock(&ctx->lock);
1474 1475

	return 0;
T
Thomas Gleixner 已提交
1476 1477 1478 1479
}


/*
1480
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1481
 *
1482
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1483
 * call when the task is on a CPU.
1484
 *
1485 1486
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1487 1488
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1489
 * When called from perf_event_exit_task, it's OK because the
1490
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1491
 */
1492
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1493
{
1494
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1495
	struct task_struct *task = ctx->task;
1496 1497 1498 1499
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1500

1501 1502
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1503 1504
	if (!task) {
		/*
1505
		 * Per cpu events are removed via an smp call and
1506
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1507
		 */
1508
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1509 1510 1511 1512
		return;
	}

retry:
1513
	if (!task_function_call(task, __perf_remove_from_context, &re))
1514
		return;
T
Thomas Gleixner 已提交
1515

1516
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1517
	/*
1518 1519
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1520
	 */
1521
	if (ctx->is_active) {
1522
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1523 1524 1525 1526
		goto retry;
	}

	/*
1527 1528
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1529
	 */
1530 1531
	if (detach_group)
		perf_group_detach(event);
1532
	list_del_event(event, ctx);
1533
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1534 1535
}

1536
/*
1537
 * Cross CPU call to disable a performance event
1538
 */
1539
int __perf_event_disable(void *info)
1540
{
1541 1542
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1543
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1544 1545

	/*
1546 1547
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1548 1549 1550
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1551
	 */
1552
	if (ctx->task && cpuctx->task_ctx != ctx)
1553
		return -EINVAL;
1554

1555
	raw_spin_lock(&ctx->lock);
1556 1557

	/*
1558
	 * If the event is on, turn it off.
1559 1560
	 * If it is in error state, leave it in error state.
	 */
1561
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1562
		update_context_time(ctx);
S
Stephane Eranian 已提交
1563
		update_cgrp_time_from_event(event);
1564 1565 1566
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1567
		else
1568 1569
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1570 1571
	}

1572
	raw_spin_unlock(&ctx->lock);
1573 1574

	return 0;
1575 1576 1577
}

/*
1578
 * Disable a event.
1579
 *
1580 1581
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1582
 * remains valid.  This condition is satisifed when called through
1583 1584 1585 1586
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1587
 * is the current context on this CPU and preemption is disabled,
1588
 * hence we can't get into perf_event_task_sched_out for this context.
1589
 */
1590
void perf_event_disable(struct perf_event *event)
1591
{
1592
	struct perf_event_context *ctx = event->ctx;
1593 1594 1595 1596
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1597
		 * Disable the event on the cpu that it's on
1598
		 */
1599
		cpu_function_call(event->cpu, __perf_event_disable, event);
1600 1601 1602
		return;
	}

P
Peter Zijlstra 已提交
1603
retry:
1604 1605
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1606

1607
	raw_spin_lock_irq(&ctx->lock);
1608
	/*
1609
	 * If the event is still active, we need to retry the cross-call.
1610
	 */
1611
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1612
		raw_spin_unlock_irq(&ctx->lock);
1613 1614 1615 1616 1617
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1618 1619 1620 1621 1622 1623 1624
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1625 1626 1627
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1628
	}
1629
	raw_spin_unlock_irq(&ctx->lock);
1630
}
1631
EXPORT_SYMBOL_GPL(perf_event_disable);
1632

S
Stephane Eranian 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1668 1669 1670 1671
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1672
static int
1673
event_sched_in(struct perf_event *event,
1674
		 struct perf_cpu_context *cpuctx,
1675
		 struct perf_event_context *ctx)
1676
{
1677
	u64 tstamp = perf_event_time(event);
1678
	int ret = 0;
1679

1680
	if (event->state <= PERF_EVENT_STATE_OFF)
1681 1682
		return 0;

1683
	event->state = PERF_EVENT_STATE_ACTIVE;
1684
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1696 1697 1698 1699 1700
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1701 1702
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1703
	if (event->pmu->add(event, PERF_EF_START)) {
1704 1705
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1706 1707
		ret = -EAGAIN;
		goto out;
1708 1709
	}

1710
	event->tstamp_running += tstamp - event->tstamp_stopped;
1711

S
Stephane Eranian 已提交
1712
	perf_set_shadow_time(event, ctx, tstamp);
1713

1714
	if (!is_software_event(event))
1715
		cpuctx->active_oncpu++;
1716
	ctx->nr_active++;
1717 1718
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1719

1720
	if (event->attr.exclusive)
1721 1722
		cpuctx->exclusive = 1;

1723 1724 1725 1726
out:
	perf_pmu_enable(event->pmu);

	return ret;
1727 1728
}

1729
static int
1730
group_sched_in(struct perf_event *group_event,
1731
	       struct perf_cpu_context *cpuctx,
1732
	       struct perf_event_context *ctx)
1733
{
1734
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1735
	struct pmu *pmu = ctx->pmu;
1736 1737
	u64 now = ctx->time;
	bool simulate = false;
1738

1739
	if (group_event->state == PERF_EVENT_STATE_OFF)
1740 1741
		return 0;

P
Peter Zijlstra 已提交
1742
	pmu->start_txn(pmu);
1743

1744
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1745
		pmu->cancel_txn(pmu);
1746
		perf_cpu_hrtimer_restart(cpuctx);
1747
		return -EAGAIN;
1748
	}
1749 1750 1751 1752

	/*
	 * Schedule in siblings as one group (if any):
	 */
1753
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1754
		if (event_sched_in(event, cpuctx, ctx)) {
1755
			partial_group = event;
1756 1757 1758 1759
			goto group_error;
		}
	}

1760
	if (!pmu->commit_txn(pmu))
1761
		return 0;
1762

1763 1764 1765 1766
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1777
	 */
1778 1779
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1780 1781 1782 1783 1784 1785 1786 1787
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1788
	}
1789
	event_sched_out(group_event, cpuctx, ctx);
1790

P
Peter Zijlstra 已提交
1791
	pmu->cancel_txn(pmu);
1792

1793 1794
	perf_cpu_hrtimer_restart(cpuctx);

1795 1796 1797
	return -EAGAIN;
}

1798
/*
1799
 * Work out whether we can put this event group on the CPU now.
1800
 */
1801
static int group_can_go_on(struct perf_event *event,
1802 1803 1804 1805
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1806
	 * Groups consisting entirely of software events can always go on.
1807
	 */
1808
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1809 1810 1811
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1812
	 * events can go on.
1813 1814 1815 1816 1817
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1818
	 * events on the CPU, it can't go on.
1819
	 */
1820
	if (event->attr.exclusive && cpuctx->active_oncpu)
1821 1822 1823 1824 1825 1826 1827 1828
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1829 1830
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1831
{
1832 1833
	u64 tstamp = perf_event_time(event);

1834
	list_add_event(event, ctx);
1835
	perf_group_attach(event);
1836 1837 1838
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1839 1840
}

1841 1842 1843 1844 1845 1846
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1847

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1860
/*
1861
 * Cross CPU call to install and enable a performance event
1862 1863
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1864
 */
1865
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1866
{
1867 1868
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1869
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1870 1871 1872
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1873
	perf_ctx_lock(cpuctx, task_ctx);
1874
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1875 1876

	/*
1877
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1878
	 */
1879
	if (task_ctx)
1880
		task_ctx_sched_out(task_ctx);
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1895 1896
		task = task_ctx->task;
	}
1897

1898
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1899

1900
	update_context_time(ctx);
S
Stephane Eranian 已提交
1901 1902 1903 1904 1905 1906
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1907

1908
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1909

1910
	/*
1911
	 * Schedule everything back in
1912
	 */
1913
	perf_event_sched_in(cpuctx, task_ctx, task);
1914 1915 1916

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1917 1918

	return 0;
T
Thomas Gleixner 已提交
1919 1920 1921
}

/*
1922
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1923
 *
1924 1925
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1926
 *
1927
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1928 1929 1930 1931
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1932 1933
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1934 1935 1936 1937
			int cpu)
{
	struct task_struct *task = ctx->task;

1938 1939
	lockdep_assert_held(&ctx->mutex);

1940
	event->ctx = ctx;
1941 1942
	if (event->cpu != -1)
		event->cpu = cpu;
1943

T
Thomas Gleixner 已提交
1944 1945
	if (!task) {
		/*
1946
		 * Per cpu events are installed via an smp call and
1947
		 * the install is always successful.
T
Thomas Gleixner 已提交
1948
		 */
1949
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1950 1951 1952 1953
		return;
	}

retry:
1954 1955
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1956

1957
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1958
	/*
1959 1960
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1961
	 */
1962
	if (ctx->is_active) {
1963
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1964 1965 1966 1967
		goto retry;
	}

	/*
1968 1969
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1970
	 */
1971
	add_event_to_ctx(event, ctx);
1972
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1973 1974
}

1975
/*
1976
 * Put a event into inactive state and update time fields.
1977 1978 1979 1980 1981 1982
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1983
static void __perf_event_mark_enabled(struct perf_event *event)
1984
{
1985
	struct perf_event *sub;
1986
	u64 tstamp = perf_event_time(event);
1987

1988
	event->state = PERF_EVENT_STATE_INACTIVE;
1989
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1990
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1991 1992
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1993
	}
1994 1995
}

1996
/*
1997
 * Cross CPU call to enable a performance event
1998
 */
1999
static int __perf_event_enable(void *info)
2000
{
2001 2002 2003
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2004
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2005
	int err;
2006

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2017
		return -EINVAL;
2018

2019
	raw_spin_lock(&ctx->lock);
2020
	update_context_time(ctx);
2021

2022
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2023
		goto unlock;
S
Stephane Eranian 已提交
2024 2025 2026 2027

	/*
	 * set current task's cgroup time reference point
	 */
2028
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2029

2030
	__perf_event_mark_enabled(event);
2031

S
Stephane Eranian 已提交
2032 2033 2034
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2035
		goto unlock;
S
Stephane Eranian 已提交
2036
	}
2037

2038
	/*
2039
	 * If the event is in a group and isn't the group leader,
2040
	 * then don't put it on unless the group is on.
2041
	 */
2042
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2043
		goto unlock;
2044

2045
	if (!group_can_go_on(event, cpuctx, 1)) {
2046
		err = -EEXIST;
2047
	} else {
2048
		if (event == leader)
2049
			err = group_sched_in(event, cpuctx, ctx);
2050
		else
2051
			err = event_sched_in(event, cpuctx, ctx);
2052
	}
2053 2054 2055

	if (err) {
		/*
2056
		 * If this event can't go on and it's part of a
2057 2058
		 * group, then the whole group has to come off.
		 */
2059
		if (leader != event) {
2060
			group_sched_out(leader, cpuctx, ctx);
2061 2062
			perf_cpu_hrtimer_restart(cpuctx);
		}
2063
		if (leader->attr.pinned) {
2064
			update_group_times(leader);
2065
			leader->state = PERF_EVENT_STATE_ERROR;
2066
		}
2067 2068
	}

P
Peter Zijlstra 已提交
2069
unlock:
2070
	raw_spin_unlock(&ctx->lock);
2071 2072

	return 0;
2073 2074 2075
}

/*
2076
 * Enable a event.
2077
 *
2078 2079
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2080
 * remains valid.  This condition is satisfied when called through
2081 2082
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2083
 */
2084
void perf_event_enable(struct perf_event *event)
2085
{
2086
	struct perf_event_context *ctx = event->ctx;
2087 2088 2089 2090
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2091
		 * Enable the event on the cpu that it's on
2092
		 */
2093
		cpu_function_call(event->cpu, __perf_event_enable, event);
2094 2095 2096
		return;
	}

2097
	raw_spin_lock_irq(&ctx->lock);
2098
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2099 2100 2101
		goto out;

	/*
2102 2103
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2104 2105 2106 2107
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2108 2109
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2110

P
Peter Zijlstra 已提交
2111
retry:
2112
	if (!ctx->is_active) {
2113
		__perf_event_mark_enabled(event);
2114 2115 2116
		goto out;
	}

2117
	raw_spin_unlock_irq(&ctx->lock);
2118 2119 2120

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2121

2122
	raw_spin_lock_irq(&ctx->lock);
2123 2124

	/*
2125
	 * If the context is active and the event is still off,
2126 2127
	 * we need to retry the cross-call.
	 */
2128 2129 2130 2131 2132 2133
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2134
		goto retry;
2135
	}
2136

P
Peter Zijlstra 已提交
2137
out:
2138
	raw_spin_unlock_irq(&ctx->lock);
2139
}
2140
EXPORT_SYMBOL_GPL(perf_event_enable);
2141

2142
int perf_event_refresh(struct perf_event *event, int refresh)
2143
{
2144
	/*
2145
	 * not supported on inherited events
2146
	 */
2147
	if (event->attr.inherit || !is_sampling_event(event))
2148 2149
		return -EINVAL;

2150 2151
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2152 2153

	return 0;
2154
}
2155
EXPORT_SYMBOL_GPL(perf_event_refresh);
2156

2157 2158 2159
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2160
{
2161
	struct perf_event *event;
2162
	int is_active = ctx->is_active;
2163

2164
	ctx->is_active &= ~event_type;
2165
	if (likely(!ctx->nr_events))
2166 2167
		return;

2168
	update_context_time(ctx);
S
Stephane Eranian 已提交
2169
	update_cgrp_time_from_cpuctx(cpuctx);
2170
	if (!ctx->nr_active)
2171
		return;
2172

P
Peter Zijlstra 已提交
2173
	perf_pmu_disable(ctx->pmu);
2174
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2175 2176
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2177
	}
2178

2179
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2180
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2181
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2182
	}
P
Peter Zijlstra 已提交
2183
	perf_pmu_enable(ctx->pmu);
2184 2185
}

2186
/*
2187 2188 2189 2190 2191 2192
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2193
 */
2194 2195
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2196
{
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2219 2220
}

2221 2222
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2223 2224 2225
{
	u64 value;

2226
	if (!event->attr.inherit_stat)
2227 2228 2229
		return;

	/*
2230
	 * Update the event value, we cannot use perf_event_read()
2231 2232
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2233
	 * we know the event must be on the current CPU, therefore we
2234 2235
	 * don't need to use it.
	 */
2236 2237
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2238 2239
		event->pmu->read(event);
		/* fall-through */
2240

2241 2242
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2243 2244 2245 2246 2247 2248 2249
		break;

	default:
		break;
	}

	/*
2250
	 * In order to keep per-task stats reliable we need to flip the event
2251 2252
	 * values when we flip the contexts.
	 */
2253 2254 2255
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2256

2257 2258
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2259

2260
	/*
2261
	 * Since we swizzled the values, update the user visible data too.
2262
	 */
2263 2264
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2265 2266
}

2267 2268
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2269
{
2270
	struct perf_event *event, *next_event;
2271 2272 2273 2274

	if (!ctx->nr_stat)
		return;

2275 2276
	update_context_time(ctx);

2277 2278
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2279

2280 2281
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2282

2283 2284
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2285

2286
		__perf_event_sync_stat(event, next_event);
2287

2288 2289
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2290 2291 2292
	}
}

2293 2294
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2295
{
P
Peter Zijlstra 已提交
2296
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2297
	struct perf_event_context *next_ctx;
2298
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2299
	struct perf_cpu_context *cpuctx;
2300
	int do_switch = 1;
T
Thomas Gleixner 已提交
2301

P
Peter Zijlstra 已提交
2302 2303
	if (likely(!ctx))
		return;
2304

P
Peter Zijlstra 已提交
2305 2306
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2307 2308
		return;

2309
	rcu_read_lock();
P
Peter Zijlstra 已提交
2310
	next_ctx = next->perf_event_ctxp[ctxn];
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
	if (!parent && !next_parent)
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2322 2323 2324 2325 2326 2327 2328 2329 2330
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2331 2332
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2333
		if (context_equiv(ctx, next_ctx)) {
2334 2335
			/*
			 * XXX do we need a memory barrier of sorts
2336
			 * wrt to rcu_dereference() of perf_event_ctxp
2337
			 */
P
Peter Zijlstra 已提交
2338 2339
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2340 2341 2342
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2343

2344
			perf_event_sync_stat(ctx, next_ctx);
2345
		}
2346 2347
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2348
	}
2349
unlock:
2350
	rcu_read_unlock();
2351

2352
	if (do_switch) {
2353
		raw_spin_lock(&ctx->lock);
2354
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2355
		cpuctx->task_ctx = NULL;
2356
		raw_spin_unlock(&ctx->lock);
2357
	}
T
Thomas Gleixner 已提交
2358 2359
}

P
Peter Zijlstra 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2374 2375
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2376 2377 2378 2379 2380
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2381 2382 2383 2384 2385 2386 2387

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2388
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2389 2390
}

2391
static void task_ctx_sched_out(struct perf_event_context *ctx)
2392
{
P
Peter Zijlstra 已提交
2393
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2394

2395 2396
	if (!cpuctx->task_ctx)
		return;
2397 2398 2399 2400

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2401
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2402 2403 2404
	cpuctx->task_ctx = NULL;
}

2405 2406 2407 2408 2409 2410 2411
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2412 2413
}

2414
static void
2415
ctx_pinned_sched_in(struct perf_event_context *ctx,
2416
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2417
{
2418
	struct perf_event *event;
T
Thomas Gleixner 已提交
2419

2420 2421
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2422
			continue;
2423
		if (!event_filter_match(event))
2424 2425
			continue;

S
Stephane Eranian 已提交
2426 2427 2428 2429
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2430
		if (group_can_go_on(event, cpuctx, 1))
2431
			group_sched_in(event, cpuctx, ctx);
2432 2433 2434 2435 2436

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2437 2438 2439
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2440
		}
2441
	}
2442 2443 2444 2445
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2446
		      struct perf_cpu_context *cpuctx)
2447 2448 2449
{
	struct perf_event *event;
	int can_add_hw = 1;
2450

2451 2452 2453
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2454
			continue;
2455 2456
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2457
		 * of events:
2458
		 */
2459
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2460 2461
			continue;

S
Stephane Eranian 已提交
2462 2463 2464 2465
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2466
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2467
			if (group_sched_in(event, cpuctx, ctx))
2468
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2469
		}
T
Thomas Gleixner 已提交
2470
	}
2471 2472 2473 2474 2475
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2476 2477
	     enum event_type_t event_type,
	     struct task_struct *task)
2478
{
S
Stephane Eranian 已提交
2479
	u64 now;
2480
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2481

2482
	ctx->is_active |= event_type;
2483
	if (likely(!ctx->nr_events))
2484
		return;
2485

S
Stephane Eranian 已提交
2486 2487
	now = perf_clock();
	ctx->timestamp = now;
2488
	perf_cgroup_set_timestamp(task, ctx);
2489 2490 2491 2492
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2493
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2494
		ctx_pinned_sched_in(ctx, cpuctx);
2495 2496

	/* Then walk through the lower prio flexible groups */
2497
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2498
		ctx_flexible_sched_in(ctx, cpuctx);
2499 2500
}

2501
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2502 2503
			     enum event_type_t event_type,
			     struct task_struct *task)
2504 2505 2506
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2507
	ctx_sched_in(ctx, cpuctx, event_type, task);
2508 2509
}

S
Stephane Eranian 已提交
2510 2511
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2512
{
P
Peter Zijlstra 已提交
2513
	struct perf_cpu_context *cpuctx;
2514

P
Peter Zijlstra 已提交
2515
	cpuctx = __get_cpu_context(ctx);
2516 2517 2518
	if (cpuctx->task_ctx == ctx)
		return;

2519
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2520
	perf_pmu_disable(ctx->pmu);
2521 2522 2523 2524 2525 2526 2527
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2528 2529
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2530

2531 2532
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2533 2534 2535
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2536 2537 2538 2539
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2540
	perf_pmu_rotate_start(ctx->pmu);
2541 2542
}

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2612 2613
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2614 2615 2616 2617 2618 2619 2620 2621 2622
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2623
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2624
	}
S
Stephane Eranian 已提交
2625 2626 2627 2628 2629 2630
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2631
		perf_cgroup_sched_in(prev, task);
2632 2633 2634 2635

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2636 2637
}

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2665
#define REDUCE_FLS(a, b)		\
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2705 2706 2707
	if (!divisor)
		return dividend;

2708 2709 2710
	return div64_u64(dividend, divisor);
}

2711 2712 2713
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2714
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2715
{
2716
	struct hw_perf_event *hwc = &event->hw;
2717
	s64 period, sample_period;
2718 2719
	s64 delta;

2720
	period = perf_calculate_period(event, nsec, count);
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2731

2732
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2733 2734 2735
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2736
		local64_set(&hwc->period_left, 0);
2737 2738 2739

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2740
	}
2741 2742
}

2743 2744 2745 2746 2747 2748 2749
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2750
{
2751 2752
	struct perf_event *event;
	struct hw_perf_event *hwc;
2753
	u64 now, period = TICK_NSEC;
2754
	s64 delta;
2755

2756 2757 2758 2759 2760 2761
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2762 2763
		return;

2764
	raw_spin_lock(&ctx->lock);
2765
	perf_pmu_disable(ctx->pmu);
2766

2767
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2768
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2769 2770
			continue;

2771
		if (!event_filter_match(event))
2772 2773
			continue;

2774 2775
		perf_pmu_disable(event->pmu);

2776
		hwc = &event->hw;
2777

2778
		if (hwc->interrupts == MAX_INTERRUPTS) {
2779
			hwc->interrupts = 0;
2780
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2781
			event->pmu->start(event, 0);
2782 2783
		}

2784
		if (!event->attr.freq || !event->attr.sample_freq)
2785
			goto next;
2786

2787 2788 2789 2790 2791
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2792
		now = local64_read(&event->count);
2793 2794
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2795

2796 2797 2798
		/*
		 * restart the event
		 * reload only if value has changed
2799 2800 2801
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2802
		 */
2803
		if (delta > 0)
2804
			perf_adjust_period(event, period, delta, false);
2805 2806

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2807 2808
	next:
		perf_pmu_enable(event->pmu);
2809
	}
2810

2811
	perf_pmu_enable(ctx->pmu);
2812
	raw_spin_unlock(&ctx->lock);
2813 2814
}

2815
/*
2816
 * Round-robin a context's events:
2817
 */
2818
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2819
{
2820 2821 2822 2823 2824 2825
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2826 2827
}

2828
/*
2829 2830 2831
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2832
 */
2833
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2834
{
P
Peter Zijlstra 已提交
2835
	struct perf_event_context *ctx = NULL;
2836
	int rotate = 0, remove = 1;
2837

2838
	if (cpuctx->ctx.nr_events) {
2839
		remove = 0;
2840 2841 2842
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2843

P
Peter Zijlstra 已提交
2844
	ctx = cpuctx->task_ctx;
2845
	if (ctx && ctx->nr_events) {
2846
		remove = 0;
2847 2848 2849
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2850

2851
	if (!rotate)
2852 2853
		goto done;

2854
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2855
	perf_pmu_disable(cpuctx->ctx.pmu);
2856

2857 2858 2859
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2860

2861 2862 2863
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2864

2865
	perf_event_sched_in(cpuctx, ctx, current);
2866

2867 2868
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2869
done:
2870 2871
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2872 2873

	return rotate;
2874 2875
}

2876 2877 2878
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2879
	if (atomic_read(&nr_freq_events) ||
2880
	    __this_cpu_read(perf_throttled_count))
2881
		return false;
2882 2883
	else
		return true;
2884 2885 2886
}
#endif

2887 2888 2889 2890
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2891 2892
	struct perf_event_context *ctx;
	int throttled;
2893

2894 2895
	WARN_ON(!irqs_disabled());

2896 2897 2898
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2899
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2900 2901 2902 2903 2904 2905
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2906
	}
T
Thomas Gleixner 已提交
2907 2908
}

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2919
	__perf_event_mark_enabled(event);
2920 2921 2922 2923

	return 1;
}

2924
/*
2925
 * Enable all of a task's events that have been marked enable-on-exec.
2926 2927
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2928
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2929
{
2930
	struct perf_event *event;
2931 2932
	unsigned long flags;
	int enabled = 0;
2933
	int ret;
2934 2935

	local_irq_save(flags);
2936
	if (!ctx || !ctx->nr_events)
2937 2938
		goto out;

2939 2940 2941 2942 2943 2944 2945
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2946
	perf_cgroup_sched_out(current, NULL);
2947

2948
	raw_spin_lock(&ctx->lock);
2949
	task_ctx_sched_out(ctx);
2950

2951
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2952 2953 2954
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2955 2956 2957
	}

	/*
2958
	 * Unclone this context if we enabled any event.
2959
	 */
2960 2961
	if (enabled)
		unclone_ctx(ctx);
2962

2963
	raw_spin_unlock(&ctx->lock);
2964

2965 2966 2967
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2968
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2969
out:
2970 2971 2972
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2973
/*
2974
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2975
 */
2976
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2977
{
2978 2979
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2980
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2981

2982 2983 2984 2985
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2986 2987
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2988 2989 2990 2991
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2992
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2993
	if (ctx->is_active) {
2994
		update_context_time(ctx);
S
Stephane Eranian 已提交
2995 2996
		update_cgrp_time_from_event(event);
	}
2997
	update_event_times(event);
2998 2999
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3000
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3001 3002
}

P
Peter Zijlstra 已提交
3003 3004
static inline u64 perf_event_count(struct perf_event *event)
{
3005
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3006 3007
}

3008
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3009 3010
{
	/*
3011 3012
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3013
	 */
3014 3015 3016 3017
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3018 3019 3020
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3021
		raw_spin_lock_irqsave(&ctx->lock, flags);
3022 3023 3024 3025 3026
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3027
		if (ctx->is_active) {
3028
			update_context_time(ctx);
S
Stephane Eranian 已提交
3029 3030
			update_cgrp_time_from_event(event);
		}
3031
		update_event_times(event);
3032
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3033 3034
	}

P
Peter Zijlstra 已提交
3035
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3036 3037
}

3038
/*
3039
 * Initialize the perf_event context in a task_struct:
3040
 */
3041
static void __perf_event_init_context(struct perf_event_context *ctx)
3042
{
3043
	raw_spin_lock_init(&ctx->lock);
3044
	mutex_init(&ctx->mutex);
3045 3046
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3047 3048
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3064
	}
3065 3066 3067
	ctx->pmu = pmu;

	return ctx;
3068 3069
}

3070 3071 3072 3073 3074
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3075 3076

	rcu_read_lock();
3077
	if (!vpid)
T
Thomas Gleixner 已提交
3078 3079
		task = current;
	else
3080
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3081 3082 3083 3084 3085 3086 3087 3088
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3089 3090 3091 3092
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3093 3094 3095 3096 3097 3098 3099
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3100 3101 3102
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3103
static struct perf_event_context *
M
Matt Helsley 已提交
3104
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3105
{
3106
	struct perf_event_context *ctx;
3107
	struct perf_cpu_context *cpuctx;
3108
	unsigned long flags;
P
Peter Zijlstra 已提交
3109
	int ctxn, err;
T
Thomas Gleixner 已提交
3110

3111
	if (!task) {
3112
		/* Must be root to operate on a CPU event: */
3113
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3114 3115 3116
			return ERR_PTR(-EACCES);

		/*
3117
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3118 3119 3120
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3121
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3122 3123
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3124
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3125
		ctx = &cpuctx->ctx;
3126
		get_ctx(ctx);
3127
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3128 3129 3130 3131

		return ctx;
	}

P
Peter Zijlstra 已提交
3132 3133 3134 3135 3136
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3137
retry:
P
Peter Zijlstra 已提交
3138
	ctx = perf_lock_task_context(task, ctxn, &flags);
3139
	if (ctx) {
3140
		unclone_ctx(ctx);
3141
		++ctx->pin_count;
3142
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3143
	} else {
3144
		ctx = alloc_perf_context(pmu, task);
3145 3146 3147
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3148

3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3159
		else {
3160
			get_ctx(ctx);
3161
			++ctx->pin_count;
3162
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3163
		}
3164 3165 3166
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3167
			put_ctx(ctx);
3168 3169 3170 3171

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3172 3173 3174
		}
	}

T
Thomas Gleixner 已提交
3175
	return ctx;
3176

P
Peter Zijlstra 已提交
3177
errout:
3178
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3179 3180
}

L
Li Zefan 已提交
3181 3182
static void perf_event_free_filter(struct perf_event *event);

3183
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3184
{
3185
	struct perf_event *event;
P
Peter Zijlstra 已提交
3186

3187 3188 3189
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3190
	perf_event_free_filter(event);
3191
	kfree(event);
P
Peter Zijlstra 已提交
3192 3193
}

3194
static void ring_buffer_put(struct ring_buffer *rb);
3195 3196
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3197

3198
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3199
{
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3210

3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3224 3225
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3226 3227 3228 3229 3230 3231 3232
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3233

3234 3235
static void __free_event(struct perf_event *event)
{
3236
	if (!event->parent) {
3237 3238
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3239
	}
3240

3241 3242 3243 3244 3245 3246 3247 3248
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	call_rcu(&event->rcu_head, free_event_rcu);
}
3249
static void free_event(struct perf_event *event)
3250
{
3251
	irq_work_sync(&event->pending);
3252

3253
	unaccount_event(event);
3254

3255
	if (event->rb) {
3256 3257 3258 3259 3260 3261 3262
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3263
		ring_buffer_attach(event, NULL);
3264
		mutex_unlock(&event->mmap_mutex);
3265 3266
	}

S
Stephane Eranian 已提交
3267 3268 3269
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3270

3271
	__free_event(event);
3272 3273
}

3274
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3275
{
3276
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3277

3278
	WARN_ON_ONCE(ctx->parent_ctx);
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3292
	perf_remove_from_context(event, true);
3293
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3294

3295
	free_event(event);
T
Thomas Gleixner 已提交
3296 3297 3298

	return 0;
}
3299
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3300

3301 3302 3303
/*
 * Called when the last reference to the file is gone.
 */
3304
static void put_event(struct perf_event *event)
3305
{
P
Peter Zijlstra 已提交
3306
	struct task_struct *owner;
3307

3308 3309
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3310

P
Peter Zijlstra 已提交
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3344 3345 3346 3347 3348 3349 3350
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3351 3352
}

3353
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3354
{
3355
	struct perf_event *child;
3356 3357
	u64 total = 0;

3358 3359 3360
	*enabled = 0;
	*running = 0;

3361
	mutex_lock(&event->child_mutex);
3362
	total += perf_event_read(event);
3363 3364 3365 3366 3367 3368
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3369
		total += perf_event_read(child);
3370 3371 3372
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3373
	mutex_unlock(&event->child_mutex);
3374 3375 3376

	return total;
}
3377
EXPORT_SYMBOL_GPL(perf_event_read_value);
3378

3379
static int perf_event_read_group(struct perf_event *event,
3380 3381
				   u64 read_format, char __user *buf)
{
3382
	struct perf_event *leader = event->group_leader, *sub;
3383 3384
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3385
	u64 values[5];
3386
	u64 count, enabled, running;
3387

3388
	mutex_lock(&ctx->mutex);
3389
	count = perf_event_read_value(leader, &enabled, &running);
3390 3391

	values[n++] = 1 + leader->nr_siblings;
3392 3393 3394 3395
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3396 3397 3398
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3399 3400 3401 3402

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3403
		goto unlock;
3404

3405
	ret = size;
3406

3407
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3408
		n = 0;
3409

3410
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3411 3412 3413 3414 3415
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3416
		if (copy_to_user(buf + ret, values, size)) {
3417 3418 3419
			ret = -EFAULT;
			goto unlock;
		}
3420 3421

		ret += size;
3422
	}
3423 3424
unlock:
	mutex_unlock(&ctx->mutex);
3425

3426
	return ret;
3427 3428
}

3429
static int perf_event_read_one(struct perf_event *event,
3430 3431
				 u64 read_format, char __user *buf)
{
3432
	u64 enabled, running;
3433 3434 3435
	u64 values[4];
	int n = 0;

3436 3437 3438 3439 3440
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3441
	if (read_format & PERF_FORMAT_ID)
3442
		values[n++] = primary_event_id(event);
3443 3444 3445 3446 3447 3448 3449

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3450
/*
3451
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3452 3453
 */
static ssize_t
3454
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3455
{
3456
	u64 read_format = event->attr.read_format;
3457
	int ret;
T
Thomas Gleixner 已提交
3458

3459
	/*
3460
	 * Return end-of-file for a read on a event that is in
3461 3462 3463
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3464
	if (event->state == PERF_EVENT_STATE_ERROR)
3465 3466
		return 0;

3467
	if (count < event->read_size)
3468 3469
		return -ENOSPC;

3470
	WARN_ON_ONCE(event->ctx->parent_ctx);
3471
	if (read_format & PERF_FORMAT_GROUP)
3472
		ret = perf_event_read_group(event, read_format, buf);
3473
	else
3474
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3475

3476
	return ret;
T
Thomas Gleixner 已提交
3477 3478 3479 3480 3481
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3482
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3483

3484
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3485 3486 3487 3488
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3489
	struct perf_event *event = file->private_data;
3490
	struct ring_buffer *rb;
3491
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3492

3493
	/*
3494 3495
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3496 3497
	 */
	mutex_lock(&event->mmap_mutex);
3498 3499
	rb = event->rb;
	if (rb)
3500
		events = atomic_xchg(&rb->poll, 0);
3501 3502
	mutex_unlock(&event->mmap_mutex);

3503
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3504 3505 3506 3507

	return events;
}

3508
static void perf_event_reset(struct perf_event *event)
3509
{
3510
	(void)perf_event_read(event);
3511
	local64_set(&event->count, 0);
3512
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3513 3514
}

3515
/*
3516 3517 3518 3519
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3520
 */
3521 3522
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3523
{
3524
	struct perf_event *child;
P
Peter Zijlstra 已提交
3525

3526 3527 3528 3529
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3530
		func(child);
3531
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3532 3533
}

3534 3535
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3536
{
3537 3538
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3539

3540 3541
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3542
	event = event->group_leader;
3543

3544 3545
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3546
		perf_event_for_each_child(sibling, func);
3547
	mutex_unlock(&ctx->mutex);
3548 3549
}

3550
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3551
{
3552
	struct perf_event_context *ctx = event->ctx;
3553
	int ret = 0, active;
3554 3555
	u64 value;

3556
	if (!is_sampling_event(event))
3557 3558
		return -EINVAL;

3559
	if (copy_from_user(&value, arg, sizeof(value)))
3560 3561 3562 3563 3564
		return -EFAULT;

	if (!value)
		return -EINVAL;

3565
	raw_spin_lock_irq(&ctx->lock);
3566 3567
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3568 3569 3570 3571
			ret = -EINVAL;
			goto unlock;
		}

3572
		event->attr.sample_freq = value;
3573
	} else {
3574 3575
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3576
	}
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3591
unlock:
3592
	raw_spin_unlock_irq(&ctx->lock);
3593 3594 3595 3596

	return ret;
}

3597 3598
static const struct file_operations perf_fops;

3599
static inline int perf_fget_light(int fd, struct fd *p)
3600
{
3601 3602 3603
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3604

3605 3606 3607
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3608
	}
3609 3610
	*p = f;
	return 0;
3611 3612 3613 3614
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3615
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3616

3617 3618
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3619 3620
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3621
	u32 flags = arg;
3622 3623

	switch (cmd) {
3624 3625
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3626
		break;
3627 3628
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3629
		break;
3630 3631
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3632
		break;
P
Peter Zijlstra 已提交
3633

3634 3635
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3636

3637 3638
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3639

3640 3641 3642 3643 3644 3645 3646 3647 3648
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3649
	case PERF_EVENT_IOC_SET_OUTPUT:
3650 3651 3652
	{
		int ret;
		if (arg != -1) {
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3663 3664 3665
		}
		return ret;
	}
3666

L
Li Zefan 已提交
3667 3668 3669
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3670
	default:
P
Peter Zijlstra 已提交
3671
		return -ENOTTY;
3672
	}
P
Peter Zijlstra 已提交
3673 3674

	if (flags & PERF_IOC_FLAG_GROUP)
3675
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3676
	else
3677
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3678 3679

	return 0;
3680 3681
}

3682
int perf_event_task_enable(void)
3683
{
3684
	struct perf_event *event;
3685

3686 3687 3688 3689
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3690 3691 3692 3693

	return 0;
}

3694
int perf_event_task_disable(void)
3695
{
3696
	struct perf_event *event;
3697

3698 3699 3700 3701
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3702 3703 3704 3705

	return 0;
}

3706
static int perf_event_index(struct perf_event *event)
3707
{
P
Peter Zijlstra 已提交
3708 3709 3710
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3711
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3712 3713
		return 0;

3714
	return event->pmu->event_idx(event);
3715 3716
}

3717
static void calc_timer_values(struct perf_event *event,
3718
				u64 *now,
3719 3720
				u64 *enabled,
				u64 *running)
3721
{
3722
	u64 ctx_time;
3723

3724 3725
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3726 3727 3728 3729
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

3750
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3751 3752 3753
{
}

3754 3755 3756 3757 3758
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3759
void perf_event_update_userpage(struct perf_event *event)
3760
{
3761
	struct perf_event_mmap_page *userpg;
3762
	struct ring_buffer *rb;
3763
	u64 enabled, running, now;
3764 3765

	rcu_read_lock();
3766 3767 3768 3769
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3770 3771 3772 3773 3774 3775 3776 3777 3778
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3779
	calc_timer_values(event, &now, &enabled, &running);
3780

3781
	userpg = rb->user_page;
3782 3783 3784 3785 3786
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3787
	++userpg->lock;
3788
	barrier();
3789
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3790
	userpg->offset = perf_event_count(event);
3791
	if (userpg->index)
3792
		userpg->offset -= local64_read(&event->hw.prev_count);
3793

3794
	userpg->time_enabled = enabled +
3795
			atomic64_read(&event->child_total_time_enabled);
3796

3797
	userpg->time_running = running +
3798
			atomic64_read(&event->child_total_time_running);
3799

3800
	arch_perf_update_userpage(userpg, now);
3801

3802
	barrier();
3803
	++userpg->lock;
3804
	preempt_enable();
3805
unlock:
3806
	rcu_read_unlock();
3807 3808
}

3809 3810 3811
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3812
	struct ring_buffer *rb;
3813 3814 3815 3816 3817 3818 3819 3820 3821
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3822 3823
	rb = rcu_dereference(event->rb);
	if (!rb)
3824 3825 3826 3827 3828
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3829
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3844 3845 3846
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
3847
	struct ring_buffer *old_rb = NULL;
3848 3849
	unsigned long flags;

3850 3851 3852 3853 3854 3855
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
3856

3857 3858 3859
		old_rb = event->rb;
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
3860

3861 3862 3863 3864
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
	}
3865

3866 3867 3868 3869
	if (event->rcu_pending && rb) {
		cond_synchronize_rcu(event->rcu_batches);
		event->rcu_pending = 0;
	}
3870

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
	if (rb) {
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
3888 3889 3890 3891 3892 3893 3894 3895
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3896 3897 3898 3899
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3900 3901 3902
	rcu_read_unlock();
}

3903
static void rb_free_rcu(struct rcu_head *rcu_head)
3904
{
3905
	struct ring_buffer *rb;
3906

3907 3908
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3909 3910
}

3911
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3912
{
3913
	struct ring_buffer *rb;
3914

3915
	rcu_read_lock();
3916 3917 3918 3919
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3920 3921 3922
	}
	rcu_read_unlock();

3923
	return rb;
3924 3925
}

3926
static void ring_buffer_put(struct ring_buffer *rb)
3927
{
3928
	if (!atomic_dec_and_test(&rb->refcount))
3929
		return;
3930

3931
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3932

3933
	call_rcu(&rb->rcu_head, rb_free_rcu);
3934 3935 3936 3937
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3938
	struct perf_event *event = vma->vm_file->private_data;
3939

3940
	atomic_inc(&event->mmap_count);
3941
	atomic_inc(&event->rb->mmap_count);
3942 3943
}

3944 3945 3946 3947 3948 3949 3950 3951
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3952 3953
static void perf_mmap_close(struct vm_area_struct *vma)
{
3954
	struct perf_event *event = vma->vm_file->private_data;
3955

3956
	struct ring_buffer *rb = ring_buffer_get(event);
3957 3958 3959
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3960

3961 3962 3963
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3964
		goto out_put;
3965

3966
	ring_buffer_attach(event, NULL);
3967 3968 3969
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
3970 3971
	if (atomic_read(&rb->mmap_count))
		goto out_put;
3972

3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3989

3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4001 4002 4003
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4004
		mutex_unlock(&event->mmap_mutex);
4005
		put_event(event);
4006

4007 4008 4009 4010 4011
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4012
	}
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4028
out_put:
4029
	ring_buffer_put(rb); /* could be last */
4030 4031
}

4032
static const struct vm_operations_struct perf_mmap_vmops = {
4033 4034 4035 4036
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4037 4038 4039 4040
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4041
	struct perf_event *event = file->private_data;
4042
	unsigned long user_locked, user_lock_limit;
4043
	struct user_struct *user = current_user();
4044
	unsigned long locked, lock_limit;
4045
	struct ring_buffer *rb;
4046 4047
	unsigned long vma_size;
	unsigned long nr_pages;
4048
	long user_extra, extra;
4049
	int ret = 0, flags = 0;
4050

4051 4052 4053
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4054
	 * same rb.
4055 4056 4057 4058
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4059
	if (!(vma->vm_flags & VM_SHARED))
4060
		return -EINVAL;
4061 4062 4063 4064

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4065
	/*
4066
	 * If we have rb pages ensure they're a power-of-two number, so we
4067 4068 4069
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4070 4071
		return -EINVAL;

4072
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4073 4074
		return -EINVAL;

4075 4076
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4077

4078
	WARN_ON_ONCE(event->ctx->parent_ctx);
4079
again:
4080
	mutex_lock(&event->mmap_mutex);
4081
	if (event->rb) {
4082
		if (event->rb->nr_pages != nr_pages) {
4083
			ret = -EINVAL;
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4097 4098 4099
		goto unlock;
	}

4100
	user_extra = nr_pages + 1;
4101
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4102 4103 4104 4105 4106 4107

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4108
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4109

4110 4111 4112
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4113

4114
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4115
	lock_limit >>= PAGE_SHIFT;
4116
	locked = vma->vm_mm->pinned_vm + extra;
4117

4118 4119
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4120 4121 4122
		ret = -EPERM;
		goto unlock;
	}
4123

4124
	WARN_ON(event->rb);
4125

4126
	if (vma->vm_flags & VM_WRITE)
4127
		flags |= RING_BUFFER_WRITABLE;
4128

4129 4130 4131 4132
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4133
	if (!rb) {
4134
		ret = -ENOMEM;
4135
		goto unlock;
4136
	}
P
Peter Zijlstra 已提交
4137

4138
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4139 4140
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4141

4142
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4143 4144
	vma->vm_mm->pinned_vm += extra;

4145
	ring_buffer_attach(event, rb);
4146

4147
	perf_event_init_userpage(event);
4148 4149
	perf_event_update_userpage(event);

4150
unlock:
4151 4152
	if (!ret)
		atomic_inc(&event->mmap_count);
4153
	mutex_unlock(&event->mmap_mutex);
4154

4155 4156 4157 4158
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4159
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4160
	vma->vm_ops = &perf_mmap_vmops;
4161 4162

	return ret;
4163 4164
}

P
Peter Zijlstra 已提交
4165 4166
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4167
	struct inode *inode = file_inode(filp);
4168
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4169 4170 4171
	int retval;

	mutex_lock(&inode->i_mutex);
4172
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4173 4174 4175 4176 4177 4178 4179 4180
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4181
static const struct file_operations perf_fops = {
4182
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4183 4184 4185
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4186 4187
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4188
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4189
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4190 4191
};

4192
/*
4193
 * Perf event wakeup
4194 4195 4196 4197 4198
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4199
void perf_event_wakeup(struct perf_event *event)
4200
{
4201
	ring_buffer_wakeup(event);
4202

4203 4204 4205
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4206
	}
4207 4208
}

4209
static void perf_pending_event(struct irq_work *entry)
4210
{
4211 4212
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4213

4214 4215 4216
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4217 4218
	}

4219 4220 4221
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4222 4223 4224
	}
}

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4372 4373 4374
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4390
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4402 4403 4404
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4429 4430 4431

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4432 4433
}

4434 4435 4436
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4437 4438 4439 4440 4441
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4442
static void perf_output_read_one(struct perf_output_handle *handle,
4443 4444
				 struct perf_event *event,
				 u64 enabled, u64 running)
4445
{
4446
	u64 read_format = event->attr.read_format;
4447 4448 4449
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4450
	values[n++] = perf_event_count(event);
4451
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4452
		values[n++] = enabled +
4453
			atomic64_read(&event->child_total_time_enabled);
4454 4455
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4456
		values[n++] = running +
4457
			atomic64_read(&event->child_total_time_running);
4458 4459
	}
	if (read_format & PERF_FORMAT_ID)
4460
		values[n++] = primary_event_id(event);
4461

4462
	__output_copy(handle, values, n * sizeof(u64));
4463 4464 4465
}

/*
4466
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4467 4468
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4469 4470
			    struct perf_event *event,
			    u64 enabled, u64 running)
4471
{
4472 4473
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4474 4475 4476 4477 4478 4479
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4480
		values[n++] = enabled;
4481 4482

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4483
		values[n++] = running;
4484

4485
	if (leader != event)
4486 4487
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4488
	values[n++] = perf_event_count(leader);
4489
	if (read_format & PERF_FORMAT_ID)
4490
		values[n++] = primary_event_id(leader);
4491

4492
	__output_copy(handle, values, n * sizeof(u64));
4493

4494
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4495 4496
		n = 0;

4497 4498
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4499 4500
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4501
		values[n++] = perf_event_count(sub);
4502
		if (read_format & PERF_FORMAT_ID)
4503
			values[n++] = primary_event_id(sub);
4504

4505
		__output_copy(handle, values, n * sizeof(u64));
4506 4507 4508
	}
}

4509 4510 4511
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4512
static void perf_output_read(struct perf_output_handle *handle,
4513
			     struct perf_event *event)
4514
{
4515
	u64 enabled = 0, running = 0, now;
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4527
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4528
		calc_timer_values(event, &now, &enabled, &running);
4529

4530
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4531
		perf_output_read_group(handle, event, enabled, running);
4532
	else
4533
		perf_output_read_one(handle, event, enabled, running);
4534 4535
}

4536 4537 4538
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4539
			struct perf_event *event)
4540 4541 4542 4543 4544
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4545 4546 4547
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4573
		perf_output_read(handle, event);
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4584
			__output_copy(handle, data->callchain, size);
4585 4586 4587 4588 4589 4590 4591 4592 4593
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4594 4595
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4607

4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4642

4643
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4644 4645 4646
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4647
	}
A
Andi Kleen 已提交
4648 4649 4650

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4651 4652 4653

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4654

A
Andi Kleen 已提交
4655 4656 4657
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4671 4672 4673 4674
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4675
			 struct perf_event *event,
4676
			 struct pt_regs *regs)
4677
{
4678
	u64 sample_type = event->attr.sample_type;
4679

4680
	header->type = PERF_RECORD_SAMPLE;
4681
	header->size = sizeof(*header) + event->header_size;
4682 4683 4684

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4685

4686
	__perf_event_header__init_id(header, data, event);
4687

4688
	if (sample_type & PERF_SAMPLE_IP)
4689 4690
		data->ip = perf_instruction_pointer(regs);

4691
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4692
		int size = 1;
4693

4694
		data->callchain = perf_callchain(event, regs);
4695 4696 4697 4698 4699

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4700 4701
	}

4702
	if (sample_type & PERF_SAMPLE_RAW) {
4703 4704 4705 4706 4707 4708 4709 4710
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4711
		header->size += size;
4712
	}
4713 4714 4715 4716 4717 4718 4719 4720 4721

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4765
}
4766

4767
static void perf_event_output(struct perf_event *event,
4768 4769 4770 4771 4772
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4773

4774 4775 4776
	/* protect the callchain buffers */
	rcu_read_lock();

4777
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4778

4779
	if (perf_output_begin(&handle, event, header.size))
4780
		goto exit;
4781

4782
	perf_output_sample(&handle, &header, data, event);
4783

4784
	perf_output_end(&handle);
4785 4786 4787

exit:
	rcu_read_unlock();
4788 4789
}

4790
/*
4791
 * read event_id
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4802
perf_event_read_event(struct perf_event *event,
4803 4804 4805
			struct task_struct *task)
{
	struct perf_output_handle handle;
4806
	struct perf_sample_data sample;
4807
	struct perf_read_event read_event = {
4808
		.header = {
4809
			.type = PERF_RECORD_READ,
4810
			.misc = 0,
4811
			.size = sizeof(read_event) + event->read_size,
4812
		},
4813 4814
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4815
	};
4816
	int ret;
4817

4818
	perf_event_header__init_id(&read_event.header, &sample, event);
4819
	ret = perf_output_begin(&handle, event, read_event.header.size);
4820 4821 4822
	if (ret)
		return;

4823
	perf_output_put(&handle, read_event);
4824
	perf_output_read(&handle, event);
4825
	perf_event__output_id_sample(event, &handle, &sample);
4826

4827 4828 4829
	perf_output_end(&handle);
}

4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4844
		output(event, data);
4845 4846 4847 4848
	}
}

static void
4849
perf_event_aux(perf_event_aux_output_cb output, void *data,
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4862
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4863 4864 4865 4866 4867 4868 4869
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4870
			perf_event_aux_ctx(ctx, output, data);
4871 4872 4873 4874 4875 4876
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4877
		perf_event_aux_ctx(task_ctx, output, data);
4878 4879 4880 4881 4882
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4883
/*
P
Peter Zijlstra 已提交
4884 4885
 * task tracking -- fork/exit
 *
4886
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4887 4888
 */

P
Peter Zijlstra 已提交
4889
struct perf_task_event {
4890
	struct task_struct		*task;
4891
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4892 4893 4894 4895 4896 4897

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4898 4899
		u32				tid;
		u32				ptid;
4900
		u64				time;
4901
	} event_id;
P
Peter Zijlstra 已提交
4902 4903
};

4904 4905
static int perf_event_task_match(struct perf_event *event)
{
4906 4907 4908
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
4909 4910
}

4911
static void perf_event_task_output(struct perf_event *event,
4912
				   void *data)
P
Peter Zijlstra 已提交
4913
{
4914
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4915
	struct perf_output_handle handle;
4916
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4917
	struct task_struct *task = task_event->task;
4918
	int ret, size = task_event->event_id.header.size;
4919

4920 4921 4922
	if (!perf_event_task_match(event))
		return;

4923
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4924

4925
	ret = perf_output_begin(&handle, event,
4926
				task_event->event_id.header.size);
4927
	if (ret)
4928
		goto out;
P
Peter Zijlstra 已提交
4929

4930 4931
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4932

4933 4934
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4935

4936
	perf_output_put(&handle, task_event->event_id);
4937

4938 4939
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4940
	perf_output_end(&handle);
4941 4942
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4943 4944
}

4945 4946
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4947
			      int new)
P
Peter Zijlstra 已提交
4948
{
P
Peter Zijlstra 已提交
4949
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4950

4951 4952 4953
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4954 4955
		return;

P
Peter Zijlstra 已提交
4956
	task_event = (struct perf_task_event){
4957 4958
		.task	  = task,
		.task_ctx = task_ctx,
4959
		.event_id    = {
P
Peter Zijlstra 已提交
4960
			.header = {
4961
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4962
				.misc = 0,
4963
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4964
			},
4965 4966
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4967 4968
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4969
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4970 4971 4972
		},
	};

4973
	perf_event_aux(perf_event_task_output,
4974 4975
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4976 4977
}

4978
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4979
{
4980
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4981 4982
}

4983 4984 4985 4986 4987
/*
 * comm tracking
 */

struct perf_comm_event {
4988 4989
	struct task_struct	*task;
	char			*comm;
4990 4991 4992 4993 4994 4995 4996
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4997
	} event_id;
4998 4999
};

5000 5001 5002 5003 5004
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5005
static void perf_event_comm_output(struct perf_event *event,
5006
				   void *data)
5007
{
5008
	struct perf_comm_event *comm_event = data;
5009
	struct perf_output_handle handle;
5010
	struct perf_sample_data sample;
5011
	int size = comm_event->event_id.header.size;
5012 5013
	int ret;

5014 5015 5016
	if (!perf_event_comm_match(event))
		return;

5017 5018
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5019
				comm_event->event_id.header.size);
5020 5021

	if (ret)
5022
		goto out;
5023

5024 5025
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5026

5027
	perf_output_put(&handle, comm_event->event_id);
5028
	__output_copy(&handle, comm_event->comm,
5029
				   comm_event->comm_size);
5030 5031 5032

	perf_event__output_id_sample(event, &handle, &sample);

5033
	perf_output_end(&handle);
5034 5035
out:
	comm_event->event_id.header.size = size;
5036 5037
}

5038
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5039
{
5040
	char comm[TASK_COMM_LEN];
5041 5042
	unsigned int size;

5043
	memset(comm, 0, sizeof(comm));
5044
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5045
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5046 5047 5048 5049

	comm_event->comm = comm;
	comm_event->comm_size = size;

5050
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5051

5052
	perf_event_aux(perf_event_comm_output,
5053 5054
		       comm_event,
		       NULL);
5055 5056
}

5057
void perf_event_comm(struct task_struct *task)
5058
{
5059
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
5060 5061
	struct perf_event_context *ctx;
	int ctxn;
5062

5063
	rcu_read_lock();
P
Peter Zijlstra 已提交
5064 5065 5066 5067
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5068

P
Peter Zijlstra 已提交
5069 5070
		perf_event_enable_on_exec(ctx);
	}
5071
	rcu_read_unlock();
5072

5073
	if (!atomic_read(&nr_comm_events))
5074
		return;
5075

5076
	comm_event = (struct perf_comm_event){
5077
		.task	= task,
5078 5079
		/* .comm      */
		/* .comm_size */
5080
		.event_id  = {
5081
			.header = {
5082
				.type = PERF_RECORD_COMM,
5083 5084 5085 5086 5087
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
5088 5089 5090
		},
	};

5091
	perf_event_comm_event(&comm_event);
5092 5093
}

5094 5095 5096 5097 5098
/*
 * mmap tracking
 */

struct perf_mmap_event {
5099 5100 5101 5102
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5103 5104 5105
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5106 5107 5108 5109 5110 5111 5112 5113 5114

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5115
	} event_id;
5116 5117
};

5118 5119 5120 5121 5122 5123 5124 5125
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5126
	       (executable && (event->attr.mmap || event->attr.mmap2));
5127 5128
}

5129
static void perf_event_mmap_output(struct perf_event *event,
5130
				   void *data)
5131
{
5132
	struct perf_mmap_event *mmap_event = data;
5133
	struct perf_output_handle handle;
5134
	struct perf_sample_data sample;
5135
	int size = mmap_event->event_id.header.size;
5136
	int ret;
5137

5138 5139 5140
	if (!perf_event_mmap_match(event, data))
		return;

5141 5142 5143 5144 5145
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5146
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5147 5148
	}

5149 5150
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5151
				mmap_event->event_id.header.size);
5152
	if (ret)
5153
		goto out;
5154

5155 5156
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5157

5158
	perf_output_put(&handle, mmap_event->event_id);
5159 5160 5161 5162 5163 5164 5165 5166

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
	}

5167
	__output_copy(&handle, mmap_event->file_name,
5168
				   mmap_event->file_size);
5169 5170 5171

	perf_event__output_id_sample(event, &handle, &sample);

5172
	perf_output_end(&handle);
5173 5174
out:
	mmap_event->event_id.header.size = size;
5175 5176
}

5177
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5178
{
5179 5180
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5181 5182
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5183 5184 5185
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5186
	char *name;
5187

5188
	if (file) {
5189 5190
		struct inode *inode;
		dev_t dev;
5191

5192
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5193
		if (!buf) {
5194 5195
			name = "//enomem";
			goto cpy_name;
5196
		}
5197
		/*
5198
		 * d_path() works from the end of the rb backwards, so we
5199 5200 5201
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5202
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5203
		if (IS_ERR(name)) {
5204 5205
			name = "//toolong";
			goto cpy_name;
5206
		}
5207 5208 5209 5210 5211 5212
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5213
		goto got_name;
5214
	} else {
5215
		name = (char *)arch_vma_name(vma);
5216 5217
		if (name)
			goto cpy_name;
5218

5219
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5220
				vma->vm_end >= vma->vm_mm->brk) {
5221 5222
			name = "[heap]";
			goto cpy_name;
5223 5224
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5225
				vma->vm_end >= vma->vm_mm->start_stack) {
5226 5227
			name = "[stack]";
			goto cpy_name;
5228 5229
		}

5230 5231
		name = "//anon";
		goto cpy_name;
5232 5233
	}

5234 5235 5236
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5237
got_name:
5238 5239 5240 5241 5242 5243 5244 5245
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5246 5247 5248

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5249 5250 5251 5252
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5253

5254 5255 5256
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5257
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5258

5259
	perf_event_aux(perf_event_mmap_output,
5260 5261
		       mmap_event,
		       NULL);
5262

5263 5264 5265
	kfree(buf);
}

5266
void perf_event_mmap(struct vm_area_struct *vma)
5267
{
5268 5269
	struct perf_mmap_event mmap_event;

5270
	if (!atomic_read(&nr_mmap_events))
5271 5272 5273
		return;

	mmap_event = (struct perf_mmap_event){
5274
		.vma	= vma,
5275 5276
		/* .file_name */
		/* .file_size */
5277
		.event_id  = {
5278
			.header = {
5279
				.type = PERF_RECORD_MMAP,
5280
				.misc = PERF_RECORD_MISC_USER,
5281 5282 5283 5284
				/* .size */
			},
			/* .pid */
			/* .tid */
5285 5286
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5287
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5288
		},
5289 5290 5291 5292
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5293 5294
	};

5295
	perf_event_mmap_event(&mmap_event);
5296 5297
}

5298 5299 5300 5301
/*
 * IRQ throttle logging
 */

5302
static void perf_log_throttle(struct perf_event *event, int enable)
5303 5304
{
	struct perf_output_handle handle;
5305
	struct perf_sample_data sample;
5306 5307 5308 5309 5310
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5311
		u64				id;
5312
		u64				stream_id;
5313 5314
	} throttle_event = {
		.header = {
5315
			.type = PERF_RECORD_THROTTLE,
5316 5317 5318
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5319
		.time		= perf_clock(),
5320 5321
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5322 5323
	};

5324
	if (enable)
5325
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5326

5327 5328 5329
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5330
				throttle_event.header.size);
5331 5332 5333 5334
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5335
	perf_event__output_id_sample(event, &handle, &sample);
5336 5337 5338
	perf_output_end(&handle);
}

5339
/*
5340
 * Generic event overflow handling, sampling.
5341 5342
 */

5343
static int __perf_event_overflow(struct perf_event *event,
5344 5345
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5346
{
5347 5348
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5349
	u64 seq;
5350 5351
	int ret = 0;

5352 5353 5354 5355 5356 5357 5358
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5359 5360 5361 5362 5363 5364 5365 5366 5367
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5368 5369
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5370
			tick_nohz_full_kick();
5371 5372
			ret = 1;
		}
5373
	}
5374

5375
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5376
		u64 now = perf_clock();
5377
		s64 delta = now - hwc->freq_time_stamp;
5378

5379
		hwc->freq_time_stamp = now;
5380

5381
		if (delta > 0 && delta < 2*TICK_NSEC)
5382
			perf_adjust_period(event, delta, hwc->last_period, true);
5383 5384
	}

5385 5386
	/*
	 * XXX event_limit might not quite work as expected on inherited
5387
	 * events
5388 5389
	 */

5390 5391
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5392
		ret = 1;
5393
		event->pending_kill = POLL_HUP;
5394 5395
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5396 5397
	}

5398
	if (event->overflow_handler)
5399
		event->overflow_handler(event, data, regs);
5400
	else
5401
		perf_event_output(event, data, regs);
5402

P
Peter Zijlstra 已提交
5403
	if (event->fasync && event->pending_kill) {
5404 5405
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5406 5407
	}

5408
	return ret;
5409 5410
}

5411
int perf_event_overflow(struct perf_event *event,
5412 5413
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5414
{
5415
	return __perf_event_overflow(event, 1, data, regs);
5416 5417
}

5418
/*
5419
 * Generic software event infrastructure
5420 5421
 */

5422 5423 5424 5425 5426 5427 5428
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
5429 5430 5431

	/* Keeps track of cpu being initialized/exited */
	bool				online;
5432 5433 5434 5435
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5436
/*
5437 5438
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5439 5440 5441 5442
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5443
u64 perf_swevent_set_period(struct perf_event *event)
5444
{
5445
	struct hw_perf_event *hwc = &event->hw;
5446 5447 5448 5449 5450
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5451 5452

again:
5453
	old = val = local64_read(&hwc->period_left);
5454 5455
	if (val < 0)
		return 0;
5456

5457 5458 5459
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5460
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5461
		goto again;
5462

5463
	return nr;
5464 5465
}

5466
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5467
				    struct perf_sample_data *data,
5468
				    struct pt_regs *regs)
5469
{
5470
	struct hw_perf_event *hwc = &event->hw;
5471
	int throttle = 0;
5472

5473 5474
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5475

5476 5477
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5478

5479
	for (; overflow; overflow--) {
5480
		if (__perf_event_overflow(event, throttle,
5481
					    data, regs)) {
5482 5483 5484 5485 5486 5487
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5488
		throttle = 1;
5489
	}
5490 5491
}

P
Peter Zijlstra 已提交
5492
static void perf_swevent_event(struct perf_event *event, u64 nr,
5493
			       struct perf_sample_data *data,
5494
			       struct pt_regs *regs)
5495
{
5496
	struct hw_perf_event *hwc = &event->hw;
5497

5498
	local64_add(nr, &event->count);
5499

5500 5501 5502
	if (!regs)
		return;

5503
	if (!is_sampling_event(event))
5504
		return;
5505

5506 5507 5508 5509 5510 5511
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5512
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5513
		return perf_swevent_overflow(event, 1, data, regs);
5514

5515
	if (local64_add_negative(nr, &hwc->period_left))
5516
		return;
5517

5518
	perf_swevent_overflow(event, 0, data, regs);
5519 5520
}

5521 5522 5523
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5524
	if (event->hw.state & PERF_HES_STOPPED)
5525
		return 1;
P
Peter Zijlstra 已提交
5526

5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5538
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5539
				enum perf_type_id type,
L
Li Zefan 已提交
5540 5541 5542
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5543
{
5544
	if (event->attr.type != type)
5545
		return 0;
5546

5547
	if (event->attr.config != event_id)
5548 5549
		return 0;

5550 5551
	if (perf_exclude_event(event, regs))
		return 0;
5552 5553 5554 5555

	return 1;
}

5556 5557 5558 5559 5560 5561 5562
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5563 5564
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5565
{
5566 5567 5568 5569
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5570

5571 5572
/* For the read side: events when they trigger */
static inline struct hlist_head *
5573
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5574 5575
{
	struct swevent_hlist *hlist;
5576

5577
	hlist = rcu_dereference(swhash->swevent_hlist);
5578 5579 5580
	if (!hlist)
		return NULL;

5581 5582 5583 5584 5585
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5586
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5597
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5598 5599 5600 5601 5602
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5603 5604 5605
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5606
				    u64 nr,
5607 5608
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5609
{
5610
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5611
	struct perf_event *event;
5612
	struct hlist_head *head;
5613

5614
	rcu_read_lock();
5615
	head = find_swevent_head_rcu(swhash, type, event_id);
5616 5617 5618
	if (!head)
		goto end;

5619
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5620
		if (perf_swevent_match(event, type, event_id, data, regs))
5621
			perf_swevent_event(event, nr, data, regs);
5622
	}
5623 5624
end:
	rcu_read_unlock();
5625 5626
}

5627
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5628
{
5629
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5630

5631
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5632
}
I
Ingo Molnar 已提交
5633
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5634

5635
inline void perf_swevent_put_recursion_context(int rctx)
5636
{
5637
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5638

5639
	put_recursion_context(swhash->recursion, rctx);
5640
}
5641

5642
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5643
{
5644
	struct perf_sample_data data;
5645 5646
	int rctx;

5647
	preempt_disable_notrace();
5648 5649 5650
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5651

5652
	perf_sample_data_init(&data, addr, 0);
5653

5654
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5655 5656

	perf_swevent_put_recursion_context(rctx);
5657
	preempt_enable_notrace();
5658 5659
}

5660
static void perf_swevent_read(struct perf_event *event)
5661 5662 5663
{
}

P
Peter Zijlstra 已提交
5664
static int perf_swevent_add(struct perf_event *event, int flags)
5665
{
5666
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5667
	struct hw_perf_event *hwc = &event->hw;
5668 5669
	struct hlist_head *head;

5670
	if (is_sampling_event(event)) {
5671
		hwc->last_period = hwc->sample_period;
5672
		perf_swevent_set_period(event);
5673
	}
5674

P
Peter Zijlstra 已提交
5675 5676
	hwc->state = !(flags & PERF_EF_START);

5677
	head = find_swevent_head(swhash, event);
5678 5679 5680 5681 5682 5683
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
5684
		return -EINVAL;
5685
	}
5686 5687 5688

	hlist_add_head_rcu(&event->hlist_entry, head);

5689 5690 5691
	return 0;
}

P
Peter Zijlstra 已提交
5692
static void perf_swevent_del(struct perf_event *event, int flags)
5693
{
5694
	hlist_del_rcu(&event->hlist_entry);
5695 5696
}

P
Peter Zijlstra 已提交
5697
static void perf_swevent_start(struct perf_event *event, int flags)
5698
{
P
Peter Zijlstra 已提交
5699
	event->hw.state = 0;
5700
}
I
Ingo Molnar 已提交
5701

P
Peter Zijlstra 已提交
5702
static void perf_swevent_stop(struct perf_event *event, int flags)
5703
{
P
Peter Zijlstra 已提交
5704
	event->hw.state = PERF_HES_STOPPED;
5705 5706
}

5707 5708
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5709
swevent_hlist_deref(struct swevent_htable *swhash)
5710
{
5711 5712
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5713 5714
}

5715
static void swevent_hlist_release(struct swevent_htable *swhash)
5716
{
5717
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5718

5719
	if (!hlist)
5720 5721
		return;

5722
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5723
	kfree_rcu(hlist, rcu_head);
5724 5725 5726 5727
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5728
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5729

5730
	mutex_lock(&swhash->hlist_mutex);
5731

5732 5733
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5734

5735
	mutex_unlock(&swhash->hlist_mutex);
5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5748
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5749 5750
	int err = 0;

5751
	mutex_lock(&swhash->hlist_mutex);
5752

5753
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5754 5755 5756 5757 5758 5759 5760
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5761
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5762
	}
5763
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5764
exit:
5765
	mutex_unlock(&swhash->hlist_mutex);
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5786
fail:
5787 5788 5789 5790 5791 5792 5793 5794 5795 5796
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5797
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5798

5799 5800 5801
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5802

5803 5804
	WARN_ON(event->parent);

5805
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5806 5807 5808 5809 5810
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5811
	u64 event_id = event->attr.config;
5812 5813 5814 5815

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5816 5817 5818 5819 5820 5821
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5822 5823 5824 5825 5826 5827 5828 5829 5830
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5831
	if (event_id >= PERF_COUNT_SW_MAX)
5832 5833 5834 5835 5836 5837 5838 5839 5840
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5841
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5842 5843 5844 5845 5846 5847
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5848 5849 5850 5851 5852
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5853
static struct pmu perf_swevent = {
5854
	.task_ctx_nr	= perf_sw_context,
5855

5856
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5857 5858 5859 5860
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5861
	.read		= perf_swevent_read,
5862 5863

	.event_idx	= perf_swevent_event_idx,
5864 5865
};

5866 5867
#ifdef CONFIG_EVENT_TRACING

5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5882 5883
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5884 5885 5886 5887
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5888 5889 5890 5891 5892 5893 5894 5895 5896
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5897 5898
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5899 5900
{
	struct perf_sample_data data;
5901 5902
	struct perf_event *event;

5903 5904 5905 5906 5907
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5908
	perf_sample_data_init(&data, addr, 0);
5909 5910
	data.raw = &raw;

5911
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5912
		if (perf_tp_event_match(event, &data, regs))
5913
			perf_swevent_event(event, count, &data, regs);
5914
	}
5915

5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5941
	perf_swevent_put_recursion_context(rctx);
5942 5943 5944
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5945
static void tp_perf_event_destroy(struct perf_event *event)
5946
{
5947
	perf_trace_destroy(event);
5948 5949
}

5950
static int perf_tp_event_init(struct perf_event *event)
5951
{
5952 5953
	int err;

5954 5955 5956
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5957 5958 5959 5960 5961 5962
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5963 5964
	err = perf_trace_init(event);
	if (err)
5965
		return err;
5966

5967
	event->destroy = tp_perf_event_destroy;
5968

5969 5970 5971 5972
	return 0;
}

static struct pmu perf_tracepoint = {
5973 5974
	.task_ctx_nr	= perf_sw_context,

5975
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5976 5977 5978 5979
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5980
	.read		= perf_swevent_read,
5981 5982

	.event_idx	= perf_swevent_event_idx,
5983 5984 5985 5986
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5987
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5988
}
L
Li Zefan 已提交
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6013
#else
L
Li Zefan 已提交
6014

6015
static inline void perf_tp_register(void)
6016 6017
{
}
L
Li Zefan 已提交
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6028
#endif /* CONFIG_EVENT_TRACING */
6029

6030
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6031
void perf_bp_event(struct perf_event *bp, void *data)
6032
{
6033 6034 6035
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6036
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6037

P
Peter Zijlstra 已提交
6038
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6039
		perf_swevent_event(bp, 1, &sample, regs);
6040 6041 6042
}
#endif

6043 6044 6045
/*
 * hrtimer based swevent callback
 */
6046

6047
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6048
{
6049 6050 6051 6052 6053
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6054

6055
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6056 6057 6058 6059

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6060
	event->pmu->read(event);
6061

6062
	perf_sample_data_init(&data, 0, event->hw.last_period);
6063 6064 6065
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6066
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6067
			if (__perf_event_overflow(event, 1, &data, regs))
6068 6069
				ret = HRTIMER_NORESTART;
	}
6070

6071 6072
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6073

6074
	return ret;
6075 6076
}

6077
static void perf_swevent_start_hrtimer(struct perf_event *event)
6078
{
6079
	struct hw_perf_event *hwc = &event->hw;
6080 6081 6082 6083
	s64 period;

	if (!is_sampling_event(event))
		return;
6084

6085 6086 6087 6088
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6089

6090 6091 6092 6093 6094
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6095
				ns_to_ktime(period), 0,
6096
				HRTIMER_MODE_REL_PINNED, 0);
6097
}
6098 6099

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6100
{
6101 6102
	struct hw_perf_event *hwc = &event->hw;

6103
	if (is_sampling_event(event)) {
6104
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6105
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6106 6107 6108

		hrtimer_cancel(&hwc->hrtimer);
	}
6109 6110
}

P
Peter Zijlstra 已提交
6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6131
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6132 6133 6134 6135
		event->attr.freq = 0;
	}
}

6136 6137 6138 6139 6140
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6141
{
6142 6143 6144
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6145
	now = local_clock();
6146 6147
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6148 6149
}

P
Peter Zijlstra 已提交
6150
static void cpu_clock_event_start(struct perf_event *event, int flags)
6151
{
P
Peter Zijlstra 已提交
6152
	local64_set(&event->hw.prev_count, local_clock());
6153 6154 6155
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6156
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6157
{
6158 6159 6160
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6161

P
Peter Zijlstra 已提交
6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6175 6176 6177 6178
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6179

6180 6181 6182 6183 6184 6185 6186 6187
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6188 6189 6190 6191 6192 6193
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6194 6195
	perf_swevent_init_hrtimer(event);

6196
	return 0;
6197 6198
}

6199
static struct pmu perf_cpu_clock = {
6200 6201
	.task_ctx_nr	= perf_sw_context,

6202
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6203 6204 6205 6206
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6207
	.read		= cpu_clock_event_read,
6208 6209

	.event_idx	= perf_swevent_event_idx,
6210 6211 6212 6213 6214 6215 6216
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6217
{
6218 6219
	u64 prev;
	s64 delta;
6220

6221 6222 6223 6224
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6225

P
Peter Zijlstra 已提交
6226
static void task_clock_event_start(struct perf_event *event, int flags)
6227
{
P
Peter Zijlstra 已提交
6228
	local64_set(&event->hw.prev_count, event->ctx->time);
6229 6230 6231
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6232
static void task_clock_event_stop(struct perf_event *event, int flags)
6233 6234 6235
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6236 6237 6238 6239 6240 6241
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6242

P
Peter Zijlstra 已提交
6243 6244 6245 6246 6247 6248
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6249 6250 6251 6252
}

static void task_clock_event_read(struct perf_event *event)
{
6253 6254 6255
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6256 6257 6258 6259 6260

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6261
{
6262 6263 6264 6265 6266 6267
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6268 6269 6270 6271 6272 6273
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6274 6275
	perf_swevent_init_hrtimer(event);

6276
	return 0;
L
Li Zefan 已提交
6277 6278
}

6279
static struct pmu perf_task_clock = {
6280 6281
	.task_ctx_nr	= perf_sw_context,

6282
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6283 6284 6285 6286
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6287
	.read		= task_clock_event_read,
6288 6289

	.event_idx	= perf_swevent_event_idx,
6290
};
L
Li Zefan 已提交
6291

P
Peter Zijlstra 已提交
6292
static void perf_pmu_nop_void(struct pmu *pmu)
6293 6294
{
}
L
Li Zefan 已提交
6295

P
Peter Zijlstra 已提交
6296
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6297
{
P
Peter Zijlstra 已提交
6298
	return 0;
L
Li Zefan 已提交
6299 6300
}

P
Peter Zijlstra 已提交
6301
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6302
{
P
Peter Zijlstra 已提交
6303
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6304 6305
}

P
Peter Zijlstra 已提交
6306 6307 6308 6309 6310
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6311

P
Peter Zijlstra 已提交
6312
static void perf_pmu_cancel_txn(struct pmu *pmu)
6313
{
P
Peter Zijlstra 已提交
6314
	perf_pmu_enable(pmu);
6315 6316
}

6317 6318 6319 6320 6321
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6322 6323 6324 6325
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6326
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6327
{
P
Peter Zijlstra 已提交
6328
	struct pmu *pmu;
6329

P
Peter Zijlstra 已提交
6330 6331
	if (ctxn < 0)
		return NULL;
6332

P
Peter Zijlstra 已提交
6333 6334 6335 6336
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6337

P
Peter Zijlstra 已提交
6338
	return NULL;
6339 6340
}

6341
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6342
{
6343 6344 6345 6346 6347 6348 6349
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6350 6351
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6352 6353 6354 6355 6356 6357
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6358

P
Peter Zijlstra 已提交
6359
	mutex_lock(&pmus_lock);
6360
	/*
P
Peter Zijlstra 已提交
6361
	 * Like a real lame refcount.
6362
	 */
6363 6364 6365
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6366
			goto out;
6367
		}
P
Peter Zijlstra 已提交
6368
	}
6369

6370
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6371 6372
out:
	mutex_unlock(&pmus_lock);
6373
}
P
Peter Zijlstra 已提交
6374
static struct idr pmu_idr;
6375

P
Peter Zijlstra 已提交
6376 6377 6378 6379 6380 6381 6382
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6383
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6384

6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6428
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6429

6430 6431 6432 6433
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6434
};
6435
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6436 6437 6438 6439

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6440
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6456
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6477
static struct lock_class_key cpuctx_mutex;
6478
static struct lock_class_key cpuctx_lock;
6479

6480
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6481
{
P
Peter Zijlstra 已提交
6482
	int cpu, ret;
6483

6484
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6485 6486 6487 6488
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6489

P
Peter Zijlstra 已提交
6490 6491 6492 6493 6494 6495
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6496 6497 6498
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6499 6500 6501 6502 6503
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6504 6505 6506 6507 6508 6509
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6510
skip_type:
P
Peter Zijlstra 已提交
6511 6512 6513
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6514

W
Wei Yongjun 已提交
6515
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6516 6517
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6518
		goto free_dev;
6519

P
Peter Zijlstra 已提交
6520 6521 6522 6523
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6524
		__perf_event_init_context(&cpuctx->ctx);
6525
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6526
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6527
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6528
		cpuctx->ctx.pmu = pmu;
6529 6530 6531

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6532
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6533
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6534
	}
6535

P
Peter Zijlstra 已提交
6536
got_cpu_context:
P
Peter Zijlstra 已提交
6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6551
		}
6552
	}
6553

P
Peter Zijlstra 已提交
6554 6555 6556 6557 6558
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6559 6560 6561
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6562
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6563 6564
	ret = 0;
unlock:
6565 6566
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6567
	return ret;
P
Peter Zijlstra 已提交
6568

P
Peter Zijlstra 已提交
6569 6570 6571 6572
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6573 6574 6575 6576
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6577 6578 6579
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6580 6581
}

6582
void perf_pmu_unregister(struct pmu *pmu)
6583
{
6584 6585 6586
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6587

6588
	/*
P
Peter Zijlstra 已提交
6589 6590
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6591
	 */
6592
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6593
	synchronize_rcu();
6594

P
Peter Zijlstra 已提交
6595
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6596 6597
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6598 6599
	device_del(pmu->dev);
	put_device(pmu->dev);
6600
	free_pmu_context(pmu);
6601
}
6602

6603 6604 6605 6606
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6607
	int ret;
6608 6609

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6610 6611 6612 6613

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6614
	if (pmu) {
6615
		event->pmu = pmu;
6616 6617 6618
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6619
		goto unlock;
6620
	}
P
Peter Zijlstra 已提交
6621

6622
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6623
		event->pmu = pmu;
6624
		ret = pmu->event_init(event);
6625
		if (!ret)
P
Peter Zijlstra 已提交
6626
			goto unlock;
6627

6628 6629
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6630
			goto unlock;
6631
		}
6632
	}
P
Peter Zijlstra 已提交
6633 6634
	pmu = ERR_PTR(-ENOENT);
unlock:
6635
	srcu_read_unlock(&pmus_srcu, idx);
6636

6637
	return pmu;
6638 6639
}

6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6653 6654
static void account_event(struct perf_event *event)
{
6655 6656 6657
	if (event->parent)
		return;

6658 6659 6660 6661 6662 6663 6664 6665
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6666 6667 6668 6669
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6670
	if (has_branch_stack(event))
6671
		static_key_slow_inc(&perf_sched_events.key);
6672
	if (is_cgroup_event(event))
6673
		static_key_slow_inc(&perf_sched_events.key);
6674 6675

	account_event_cpu(event, event->cpu);
6676 6677
}

T
Thomas Gleixner 已提交
6678
/*
6679
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6680
 */
6681
static struct perf_event *
6682
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6683 6684 6685
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6686 6687
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6688
{
P
Peter Zijlstra 已提交
6689
	struct pmu *pmu;
6690 6691
	struct perf_event *event;
	struct hw_perf_event *hwc;
6692
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6693

6694 6695 6696 6697 6698
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6699
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6700
	if (!event)
6701
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6702

6703
	/*
6704
	 * Single events are their own group leaders, with an
6705 6706 6707
	 * empty sibling list:
	 */
	if (!group_leader)
6708
		group_leader = event;
6709

6710 6711
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6712

6713 6714 6715
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6716
	INIT_LIST_HEAD(&event->rb_entry);
6717
	INIT_LIST_HEAD(&event->active_entry);
6718 6719
	INIT_HLIST_NODE(&event->hlist_entry);

6720

6721
	init_waitqueue_head(&event->waitq);
6722
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6723

6724
	mutex_init(&event->mmap_mutex);
6725

6726
	atomic_long_set(&event->refcount, 1);
6727 6728 6729 6730 6731
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6732

6733
	event->parent		= parent_event;
6734

6735
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6736
	event->id		= atomic64_inc_return(&perf_event_id);
6737

6738
	event->state		= PERF_EVENT_STATE_INACTIVE;
6739

6740 6741
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6742 6743 6744

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6745 6746 6747 6748
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6749
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6750 6751 6752 6753
			event->hw.bp_target = task;
#endif
	}

6754
	if (!overflow_handler && parent_event) {
6755
		overflow_handler = parent_event->overflow_handler;
6756 6757
		context = parent_event->overflow_handler_context;
	}
6758

6759
	event->overflow_handler	= overflow_handler;
6760
	event->overflow_handler_context = context;
6761

J
Jiri Olsa 已提交
6762
	perf_event__state_init(event);
6763

6764
	pmu = NULL;
6765

6766
	hwc = &event->hw;
6767
	hwc->sample_period = attr->sample_period;
6768
	if (attr->freq && attr->sample_freq)
6769
		hwc->sample_period = 1;
6770
	hwc->last_period = hwc->sample_period;
6771

6772
	local64_set(&hwc->period_left, hwc->sample_period);
6773

6774
	/*
6775
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6776
	 */
6777
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6778
		goto err_ns;
6779

6780
	pmu = perf_init_event(event);
6781
	if (!pmu)
6782 6783
		goto err_ns;
	else if (IS_ERR(pmu)) {
6784
		err = PTR_ERR(pmu);
6785
		goto err_ns;
I
Ingo Molnar 已提交
6786
	}
6787

6788
	if (!event->parent) {
6789 6790
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
6791 6792
			if (err)
				goto err_pmu;
6793
		}
6794
	}
6795

6796
	return event;
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806

err_pmu:
	if (event->destroy)
		event->destroy(event);
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6807 6808
}

6809 6810
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6811 6812
{
	u32 size;
6813
	int ret;
6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6838 6839 6840
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6841 6842
	 */
	if (size > sizeof(*attr)) {
6843 6844 6845
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6846

6847 6848
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6849

6850
		for (; addr < end; addr++) {
6851 6852 6853 6854 6855 6856
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6857
		size = sizeof(*attr);
6858 6859 6860 6861 6862 6863
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6864 6865 6866 6867
	/* disabled for now */
	if (attr->mmap2)
		return -EINVAL;

6868
	if (attr->__reserved_1)
6869 6870 6871 6872 6873 6874 6875 6876
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6905 6906
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6907 6908
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6909
	}
6910

6911
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6912
		ret = perf_reg_validate(attr->sample_regs_user);
6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6931

6932 6933 6934 6935 6936 6937 6938 6939 6940
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6941 6942
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6943
{
6944
	struct ring_buffer *rb = NULL;
6945 6946
	int ret = -EINVAL;

6947
	if (!output_event)
6948 6949
		goto set;

6950 6951
	/* don't allow circular references */
	if (event == output_event)
6952 6953
		goto out;

6954 6955 6956 6957 6958 6959 6960
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6961
	 * If its not a per-cpu rb, it must be the same task.
6962 6963 6964 6965
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6966
set:
6967
	mutex_lock(&event->mmap_mutex);
6968 6969 6970
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6971

6972
	if (output_event) {
6973 6974 6975
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6976
			goto unlock;
6977 6978
	}

6979
	ring_buffer_attach(event, rb);
6980

6981
	ret = 0;
6982 6983 6984
unlock:
	mutex_unlock(&event->mmap_mutex);

6985 6986 6987 6988
out:
	return ret;
}

T
Thomas Gleixner 已提交
6989
/**
6990
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6991
 *
6992
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6993
 * @pid:		target pid
I
Ingo Molnar 已提交
6994
 * @cpu:		target cpu
6995
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6996
 */
6997 6998
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6999
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7000
{
7001 7002
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7003 7004 7005
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
7006
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7007
	struct task_struct *task = NULL;
7008
	struct pmu *pmu;
7009
	int event_fd;
7010
	int move_group = 0;
7011
	int err;
7012
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7013

7014
	/* for future expandability... */
S
Stephane Eranian 已提交
7015
	if (flags & ~PERF_FLAG_ALL)
7016 7017
		return -EINVAL;

7018 7019 7020
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7021

7022 7023 7024 7025 7026
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7027
	if (attr.freq) {
7028
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7029
			return -EINVAL;
7030 7031 7032
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7033 7034
	}

S
Stephane Eranian 已提交
7035 7036 7037 7038 7039 7040 7041 7042 7043
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7044 7045 7046 7047
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7048 7049 7050
	if (event_fd < 0)
		return event_fd;

7051
	if (group_fd != -1) {
7052 7053
		err = perf_fget_light(group_fd, &group);
		if (err)
7054
			goto err_fd;
7055
		group_leader = group.file->private_data;
7056 7057 7058 7059 7060 7061
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7062
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7063 7064 7065 7066 7067 7068 7069
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7070 7071
	get_online_cpus();

7072 7073
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7074 7075
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7076
		goto err_task;
7077 7078
	}

S
Stephane Eranian 已提交
7079 7080
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7081 7082 7083 7084
		if (err) {
			__free_event(event);
			goto err_task;
		}
S
Stephane Eranian 已提交
7085 7086
	}

7087 7088
	account_event(event);

7089 7090 7091 7092 7093
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7117 7118 7119 7120

	/*
	 * Get the target context (task or percpu):
	 */
7121
	ctx = find_get_context(pmu, task, event->cpu);
7122 7123
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7124
		goto err_alloc;
7125 7126
	}

7127 7128 7129 7130 7131
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7132
	/*
7133
	 * Look up the group leader (we will attach this event to it):
7134
	 */
7135
	if (group_leader) {
7136
		err = -EINVAL;
7137 7138

		/*
I
Ingo Molnar 已提交
7139 7140 7141 7142
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7143
			goto err_context;
I
Ingo Molnar 已提交
7144 7145 7146
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7147
		 */
7148 7149 7150 7151 7152 7153 7154 7155
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7156 7157 7158
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7159
		if (attr.exclusive || attr.pinned)
7160
			goto err_context;
7161 7162 7163 7164 7165
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7166
			goto err_context;
7167
	}
T
Thomas Gleixner 已提交
7168

7169 7170
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7171 7172
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7173
		goto err_context;
7174
	}
7175

7176 7177 7178 7179
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7180
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
7181 7182 7183 7184 7185 7186 7187

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7188 7189
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7190
			perf_remove_from_context(sibling, false);
J
Jiri Olsa 已提交
7191
			perf_event__state_init(sibling);
7192 7193 7194 7195
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7196
	}
7197

7198
	WARN_ON_ONCE(ctx->parent_ctx);
7199
	mutex_lock(&ctx->mutex);
7200 7201

	if (move_group) {
7202
		synchronize_rcu();
7203
		perf_install_in_context(ctx, group_leader, event->cpu);
7204 7205 7206
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7207
			perf_install_in_context(ctx, sibling, event->cpu);
7208 7209 7210 7211
			get_ctx(ctx);
		}
	}

7212
	perf_install_in_context(ctx, event, event->cpu);
7213
	perf_unpin_context(ctx);
7214
	mutex_unlock(&ctx->mutex);
7215

7216 7217
	put_online_cpus();

7218
	event->owner = current;
P
Peter Zijlstra 已提交
7219

7220 7221 7222
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7223

7224 7225 7226 7227
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7228
	perf_event__id_header_size(event);
7229

7230 7231 7232 7233 7234 7235
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7236
	fdput(group);
7237 7238
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7239

7240
err_context:
7241
	perf_unpin_context(ctx);
7242
	put_ctx(ctx);
7243
err_alloc:
7244
	free_event(event);
P
Peter Zijlstra 已提交
7245
err_task:
7246
	put_online_cpus();
P
Peter Zijlstra 已提交
7247 7248
	if (task)
		put_task_struct(task);
7249
err_group_fd:
7250
	fdput(group);
7251 7252
err_fd:
	put_unused_fd(event_fd);
7253
	return err;
T
Thomas Gleixner 已提交
7254 7255
}

7256 7257 7258 7259 7260
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7261
 * @task: task to profile (NULL for percpu)
7262 7263 7264
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7265
				 struct task_struct *task,
7266 7267
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7268 7269
{
	struct perf_event_context *ctx;
7270
	struct perf_event *event;
7271
	int err;
7272

7273 7274 7275
	/*
	 * Get the target context (task or percpu):
	 */
7276

7277 7278
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7279 7280 7281 7282
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7283

7284 7285
	account_event(event);

M
Matt Helsley 已提交
7286
	ctx = find_get_context(event->pmu, task, cpu);
7287 7288
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7289
		goto err_free;
7290
	}
7291 7292 7293 7294

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7295
	perf_unpin_context(ctx);
7296 7297 7298 7299
	mutex_unlock(&ctx->mutex);

	return event;

7300 7301 7302
err_free:
	free_event(event);
err:
7303
	return ERR_PTR(err);
7304
}
7305
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7306

7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
7320
		perf_remove_from_context(event, false);
7321
		unaccount_event_cpu(event, src_cpu);
7322
		put_ctx(src_ctx);
7323
		list_add(&event->migrate_entry, &events);
7324 7325 7326 7327 7328 7329
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
7330 7331
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7332 7333
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7334
		account_event_cpu(event, dst_cpu);
7335 7336 7337 7338 7339 7340 7341
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7342
static void sync_child_event(struct perf_event *child_event,
7343
			       struct task_struct *child)
7344
{
7345
	struct perf_event *parent_event = child_event->parent;
7346
	u64 child_val;
7347

7348 7349
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7350

P
Peter Zijlstra 已提交
7351
	child_val = perf_event_count(child_event);
7352 7353 7354 7355

	/*
	 * Add back the child's count to the parent's count:
	 */
7356
	atomic64_add(child_val, &parent_event->child_count);
7357 7358 7359 7360
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7361 7362

	/*
7363
	 * Remove this event from the parent's list
7364
	 */
7365 7366 7367 7368
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7369 7370

	/*
7371
	 * Release the parent event, if this was the last
7372 7373
	 * reference to it.
	 */
7374
	put_event(parent_event);
7375 7376
}

7377
static void
7378 7379
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7380
			 struct task_struct *child)
7381
{
7382
	perf_remove_from_context(child_event, !!child_event->parent);
7383

7384
	/*
7385
	 * It can happen that the parent exits first, and has events
7386
	 * that are still around due to the child reference. These
7387
	 * events need to be zapped.
7388
	 */
7389
	if (child_event->parent) {
7390 7391
		sync_child_event(child_event, child);
		free_event(child_event);
7392
	}
7393 7394
}

P
Peter Zijlstra 已提交
7395
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7396
{
7397 7398
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7399
	unsigned long flags;
7400

P
Peter Zijlstra 已提交
7401
	if (likely(!child->perf_event_ctxp[ctxn])) {
7402
		perf_event_task(child, NULL, 0);
7403
		return;
P
Peter Zijlstra 已提交
7404
	}
7405

7406
	local_irq_save(flags);
7407 7408 7409 7410 7411 7412
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7413
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7414 7415 7416

	/*
	 * Take the context lock here so that if find_get_context is
7417
	 * reading child->perf_event_ctxp, we wait until it has
7418 7419
	 * incremented the context's refcount before we do put_ctx below.
	 */
7420
	raw_spin_lock(&child_ctx->lock);
7421
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7422
	child->perf_event_ctxp[ctxn] = NULL;
7423 7424 7425
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7426
	 * the events from it.
7427 7428
	 */
	unclone_ctx(child_ctx);
7429
	update_context_time(child_ctx);
7430
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7431 7432

	/*
7433 7434 7435
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7436
	 */
7437
	perf_event_task(child, child_ctx, 0);
7438

7439 7440 7441
	/*
	 * We can recurse on the same lock type through:
	 *
7442 7443
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7444 7445
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7446 7447 7448
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7449
	mutex_lock(&child_ctx->mutex);
7450

7451
again:
7452 7453 7454 7455 7456
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7457
				 group_entry)
7458
		__perf_event_exit_task(child_event, child_ctx, child);
7459 7460

	/*
7461
	 * If the last event was a group event, it will have appended all
7462 7463 7464
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7465 7466
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7467
		goto again;
7468 7469 7470 7471

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7472 7473
}

P
Peter Zijlstra 已提交
7474 7475 7476 7477 7478
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7479
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7480 7481
	int ctxn;

P
Peter Zijlstra 已提交
7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7497 7498 7499 7500
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7513
	put_event(parent);
7514

7515
	perf_group_detach(event);
7516 7517 7518 7519
	list_del_event(event, ctx);
	free_event(event);
}

7520 7521
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7522
 * perf_event_init_task below, used by fork() in case of fail.
7523
 */
7524
void perf_event_free_task(struct task_struct *task)
7525
{
P
Peter Zijlstra 已提交
7526
	struct perf_event_context *ctx;
7527
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7528
	int ctxn;
7529

P
Peter Zijlstra 已提交
7530 7531 7532 7533
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7534

P
Peter Zijlstra 已提交
7535
		mutex_lock(&ctx->mutex);
7536
again:
P
Peter Zijlstra 已提交
7537 7538 7539
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7540

P
Peter Zijlstra 已提交
7541 7542 7543
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7544

P
Peter Zijlstra 已提交
7545 7546 7547
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7548

P
Peter Zijlstra 已提交
7549
		mutex_unlock(&ctx->mutex);
7550

P
Peter Zijlstra 已提交
7551 7552
		put_ctx(ctx);
	}
7553 7554
}

7555 7556 7557 7558 7559 7560 7561 7562
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7575
	unsigned long flags;
P
Peter Zijlstra 已提交
7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7588
					   child,
P
Peter Zijlstra 已提交
7589
					   group_leader, parent_event,
7590
				           NULL, NULL);
P
Peter Zijlstra 已提交
7591 7592
	if (IS_ERR(child_event))
		return child_event;
7593 7594 7595 7596 7597 7598

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7623 7624
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7625

7626 7627 7628 7629
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7630
	perf_event__id_header_size(child_event);
7631

P
Peter Zijlstra 已提交
7632 7633 7634
	/*
	 * Link it up in the child's context:
	 */
7635
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7636
	add_event_to_ctx(child_event, child_ctx);
7637
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7671 7672 7673 7674 7675
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7676
		   struct task_struct *child, int ctxn,
7677 7678 7679
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7680
	struct perf_event_context *child_ctx;
7681 7682 7683 7684

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7685 7686
	}

7687
	child_ctx = child->perf_event_ctxp[ctxn];
7688 7689 7690 7691 7692 7693 7694
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7695

7696
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7697 7698
		if (!child_ctx)
			return -ENOMEM;
7699

P
Peter Zijlstra 已提交
7700
		child->perf_event_ctxp[ctxn] = child_ctx;
7701 7702 7703 7704 7705 7706 7707 7708 7709
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7710 7711
}

7712
/*
7713
 * Initialize the perf_event context in task_struct
7714
 */
P
Peter Zijlstra 已提交
7715
int perf_event_init_context(struct task_struct *child, int ctxn)
7716
{
7717
	struct perf_event_context *child_ctx, *parent_ctx;
7718 7719
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7720
	struct task_struct *parent = current;
7721
	int inherited_all = 1;
7722
	unsigned long flags;
7723
	int ret = 0;
7724

P
Peter Zijlstra 已提交
7725
	if (likely(!parent->perf_event_ctxp[ctxn]))
7726 7727
		return 0;

7728
	/*
7729 7730
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7731
	 */
P
Peter Zijlstra 已提交
7732
	parent_ctx = perf_pin_task_context(parent, ctxn);
7733 7734
	if (!parent_ctx)
		return 0;
7735

7736 7737 7738 7739 7740 7741 7742
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7743 7744 7745 7746
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7747
	mutex_lock(&parent_ctx->mutex);
7748 7749 7750 7751 7752

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7753
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7754 7755
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7756 7757 7758
		if (ret)
			break;
	}
7759

7760 7761 7762 7763 7764 7765 7766 7767 7768
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7769
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7770 7771
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7772
		if (ret)
7773
			break;
7774 7775
	}

7776 7777 7778
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7779
	child_ctx = child->perf_event_ctxp[ctxn];
7780

7781
	if (child_ctx && inherited_all) {
7782 7783 7784
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7785 7786 7787
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7788
		 */
P
Peter Zijlstra 已提交
7789
		cloned_ctx = parent_ctx->parent_ctx;
7790 7791
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7792
			child_ctx->parent_gen = parent_ctx->parent_gen;
7793 7794 7795 7796 7797
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7798 7799
	}

P
Peter Zijlstra 已提交
7800
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7801
	mutex_unlock(&parent_ctx->mutex);
7802

7803
	perf_unpin_context(parent_ctx);
7804
	put_ctx(parent_ctx);
7805

7806
	return ret;
7807 7808
}

P
Peter Zijlstra 已提交
7809 7810 7811 7812 7813 7814 7815
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7816 7817 7818 7819
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7820 7821 7822 7823 7824 7825 7826 7827 7828
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7829 7830
static void __init perf_event_init_all_cpus(void)
{
7831
	struct swevent_htable *swhash;
7832 7833 7834
	int cpu;

	for_each_possible_cpu(cpu) {
7835 7836
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7837
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7838 7839 7840
	}
}

7841
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7842
{
P
Peter Zijlstra 已提交
7843
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7844

7845
	mutex_lock(&swhash->hlist_mutex);
7846
	swhash->online = true;
7847
	if (swhash->hlist_refcount > 0) {
7848 7849
		struct swevent_hlist *hlist;

7850 7851 7852
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7853
	}
7854
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7855 7856
}

P
Peter Zijlstra 已提交
7857
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7858
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7859
{
7860 7861 7862 7863 7864 7865 7866
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7867
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7868
{
7869
	struct remove_event re = { .detach_group = false };
P
Peter Zijlstra 已提交
7870
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
7871

P
Peter Zijlstra 已提交
7872
	perf_pmu_rotate_stop(ctx->pmu);
7873

P
Peter Zijlstra 已提交
7874
	rcu_read_lock();
7875 7876
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
7877
	rcu_read_unlock();
T
Thomas Gleixner 已提交
7878
}
P
Peter Zijlstra 已提交
7879 7880 7881 7882 7883 7884 7885 7886 7887

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7888
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7889 7890 7891 7892 7893 7894 7895 7896

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7897
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7898
{
7899
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7900

P
Peter Zijlstra 已提交
7901 7902
	perf_event_exit_cpu_context(cpu);

7903
	mutex_lock(&swhash->hlist_mutex);
7904
	swhash->online = false;
7905 7906
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7907 7908
}
#else
7909
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7910 7911
#endif

P
Peter Zijlstra 已提交
7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

7932
static int
T
Thomas Gleixner 已提交
7933 7934 7935 7936
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7937
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7938 7939

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7940
	case CPU_DOWN_FAILED:
7941
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7942 7943
		break;

P
Peter Zijlstra 已提交
7944
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7945
	case CPU_DOWN_PREPARE:
7946
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7947 7948 7949 7950 7951 7952 7953 7954
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7955
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7956
{
7957 7958
	int ret;

P
Peter Zijlstra 已提交
7959 7960
	idr_init(&pmu_idr);

7961
	perf_event_init_all_cpus();
7962
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7963 7964 7965
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7966 7967
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7968
	register_reboot_notifier(&perf_reboot_notifier);
7969 7970 7971

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7972 7973 7974

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7975 7976 7977 7978 7979 7980 7981

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7982
}
P
Peter Zijlstra 已提交
7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8011 8012

#ifdef CONFIG_CGROUP_PERF
8013 8014
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8015 8016 8017
{
	struct perf_cgroup *jc;

8018
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8031
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8032
{
8033 8034
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8046 8047
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8048
{
8049 8050
	struct task_struct *task;

8051
	cgroup_taskset_for_each(task, tset)
8052
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8053 8054
}

8055 8056
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8057
			     struct task_struct *task)
S
Stephane Eranian 已提交
8058 8059 8060 8061 8062 8063 8064 8065 8066
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8067
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8068 8069
}

8070
struct cgroup_subsys perf_event_cgrp_subsys = {
8071 8072
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8073
	.exit		= perf_cgroup_exit,
8074
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8075 8076
};
#endif /* CONFIG_CGROUP_PERF */