core.c 173.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121 122 123
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

124 125 126 127 128 129 130
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

131 132 133 134 135 136
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
137 138 139 140
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
141
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
142
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
144

145 146 147
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
148

P
Peter Zijlstra 已提交
149 150 151 152
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

153
/*
154
 * perf event paranoia level:
155 156
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
157
 *   1 - disallow cpu events for unpriv
158
 *   2 - disallow kernel profiling for unpriv
159
 */
160
int sysctl_perf_event_paranoid __read_mostly = 1;
161

162 163
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
164 165

/*
166
 * max perf event sample rate
167
 */
P
Peter Zijlstra 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
186

187
static atomic64_t perf_event_id;
188

189 190 191 192
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
193 194 195 196 197
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
198

199 200 201
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

202
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
203

204
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
205
{
206
	return "pmu";
T
Thomas Gleixner 已提交
207 208
}

209 210 211 212 213
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
214 215 216 217 218 219
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
236 237
#ifdef CONFIG_CGROUP_PERF

238 239 240 241 242 243 244 245 246 247 248
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
249
	struct perf_cgroup_info	__percpu *info;
250 251
};

252 253 254 255 256
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
286 287
}

288
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
289
{
290
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
339 340
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
341
	/*
342 343
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
344
	 */
345
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
346 347
		return;

348 349 350 351 352 353
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
354 355 356
}

static inline void
357 358
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
359 360 361 362
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

363 364 365 366 367 368
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
369 370 371 372
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
373
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
406 407
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
408 409 410 411 412 413 414 415 416

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
417 418
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
419 420 421 422 423 424 425 426 427 428 429

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
430
				WARN_ON_ONCE(cpuctx->cgrp);
431 432 433 434
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
435 436 437 438
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
439 440
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
441 442 443 444 445 446 447 448
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

449 450
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
451
{
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
474 475
}

476 477
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
478
{
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
497 498 499 500 501 502 503 504
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
505 506
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
507

508
	if (!f.file)
S
Stephane Eranian 已提交
509 510
		return -EBADF;

511
	css = cgroup_css_from_dir(f.file, perf_subsys_id);
512 513 514 515
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
516 517 518 519

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

520
	/* must be done before we fput() the file */
521 522 523 524 525
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
526

S
Stephane Eranian 已提交
527 528 529 530 531 532 533 534 535
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
536
out:
537
	fdput(f);
S
Stephane Eranian 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

611 612
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
613 614 615
{
}

616 617
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
618 619 620 621 622 623 624 625 626 627 628
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
629 630
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
661
void perf_pmu_disable(struct pmu *pmu)
662
{
P
Peter Zijlstra 已提交
663 664 665
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
666 667
}

P
Peter Zijlstra 已提交
668
void perf_pmu_enable(struct pmu *pmu)
669
{
P
Peter Zijlstra 已提交
670 671 672
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
673 674
}

675 676 677 678 679 680 681
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
682
static void perf_pmu_rotate_start(struct pmu *pmu)
683
{
P
Peter Zijlstra 已提交
684
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
685
	struct list_head *head = &__get_cpu_var(rotation_list);
686

687
	WARN_ON(!irqs_disabled());
688

689 690
	if (list_empty(&cpuctx->rotation_list)) {
		int was_empty = list_empty(head);
691
		list_add(&cpuctx->rotation_list, head);
692 693 694
		if (was_empty)
			tick_nohz_full_kick();
	}
695 696
}

697
static void get_ctx(struct perf_event_context *ctx)
698
{
699
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
700 701
}

702
static void put_ctx(struct perf_event_context *ctx)
703
{
704 705 706
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
707 708
		if (ctx->task)
			put_task_struct(ctx->task);
709
		kfree_rcu(ctx, rcu_head);
710
	}
711 712
}

713
static void unclone_ctx(struct perf_event_context *ctx)
714 715 716 717 718 719 720
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

743
/*
744
 * If we inherit events we want to return the parent event id
745 746
 * to userspace.
 */
747
static u64 primary_event_id(struct perf_event *event)
748
{
749
	u64 id = event->id;
750

751 752
	if (event->parent)
		id = event->parent->id;
753 754 755 756

	return id;
}

757
/*
758
 * Get the perf_event_context for a task and lock it.
759 760 761
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
762
static struct perf_event_context *
P
Peter Zijlstra 已提交
763
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
764
{
765
	struct perf_event_context *ctx;
766 767

	rcu_read_lock();
P
Peter Zijlstra 已提交
768
retry:
P
Peter Zijlstra 已提交
769
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
770 771 772 773
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
774
		 * perf_event_task_sched_out, though the
775 776 777 778 779 780
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
781
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
782
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
783
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
784 785
			goto retry;
		}
786 787

		if (!atomic_inc_not_zero(&ctx->refcount)) {
788
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
789 790
			ctx = NULL;
		}
791 792 793 794 795 796 797 798 799 800
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
801 802
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
803
{
804
	struct perf_event_context *ctx;
805 806
	unsigned long flags;

P
Peter Zijlstra 已提交
807
	ctx = perf_lock_task_context(task, ctxn, &flags);
808 809
	if (ctx) {
		++ctx->pin_count;
810
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
811 812 813 814
	}
	return ctx;
}

815
static void perf_unpin_context(struct perf_event_context *ctx)
816 817 818
{
	unsigned long flags;

819
	raw_spin_lock_irqsave(&ctx->lock, flags);
820
	--ctx->pin_count;
821
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
822 823
}

824 825 826 827 828 829 830 831 832 833 834
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

835 836 837
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
838 839 840 841

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

842 843 844
	return ctx ? ctx->time : 0;
}

845 846
/*
 * Update the total_time_enabled and total_time_running fields for a event.
847
 * The caller of this function needs to hold the ctx->lock.
848 849 850 851 852 853 854 855 856
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
857 858 859 860 861 862 863 864 865 866 867
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
868
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
869 870
	else if (ctx->is_active)
		run_end = ctx->time;
871 872 873 874
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
875 876 877 878

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
879
		run_end = perf_event_time(event);
880 881

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
882

883 884
}

885 886 887 888 889 890 891 892 893 894 895 896
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

897 898 899 900 901 902 903 904 905
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

906
/*
907
 * Add a event from the lists for its context.
908 909
 * Must be called with ctx->mutex and ctx->lock held.
 */
910
static void
911
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
912
{
913 914
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
915 916

	/*
917 918 919
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
920
	 */
921
	if (event->group_leader == event) {
922 923
		struct list_head *list;

924 925 926
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

927 928
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
929
	}
P
Peter Zijlstra 已提交
930

931
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
932 933
		ctx->nr_cgroups++;

934 935 936
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

937
	list_add_rcu(&event->event_entry, &ctx->event_list);
938
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
939
		perf_pmu_rotate_start(ctx->pmu);
940 941
	ctx->nr_events++;
	if (event->attr.inherit_stat)
942
		ctx->nr_stat++;
943 944
}

J
Jiri Olsa 已提交
945 946 947 948 949 950 951 952 953
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

993 994 995 996 997 998
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
999 1000 1001
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1002 1003 1004
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1005 1006 1007
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

1008 1009 1010 1011 1012 1013 1014 1015 1016
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1032
	event->id_header_size = size;
1033 1034
}

1035 1036
static void perf_group_attach(struct perf_event *event)
{
1037
	struct perf_event *group_leader = event->group_leader, *pos;
1038

P
Peter Zijlstra 已提交
1039 1040 1041 1042 1043 1044
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1056 1057 1058 1059 1060

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1061 1062
}

1063
/*
1064
 * Remove a event from the lists for its context.
1065
 * Must be called with ctx->mutex and ctx->lock held.
1066
 */
1067
static void
1068
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1069
{
1070
	struct perf_cpu_context *cpuctx;
1071 1072 1073 1074
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1075
		return;
1076 1077 1078

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1079
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1080
		ctx->nr_cgroups--;
1081 1082 1083 1084 1085 1086 1087 1088 1089
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1090

1091 1092 1093
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1094 1095
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1096
		ctx->nr_stat--;
1097

1098
	list_del_rcu(&event->event_entry);
1099

1100 1101
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1102

1103
	update_group_times(event);
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1114 1115
}

1116
static void perf_group_detach(struct perf_event *event)
1117 1118
{
	struct perf_event *sibling, *tmp;
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1135
		goto out;
1136 1137 1138 1139
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1140

1141
	/*
1142 1143
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1144
	 * to whatever list we are on.
1145
	 */
1146
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1147 1148
		if (list)
			list_move_tail(&sibling->group_entry, list);
1149
		sibling->group_leader = sibling;
1150 1151 1152

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1153
	}
1154 1155 1156 1157 1158 1159

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1160 1161
}

1162 1163 1164
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1165 1166
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1167 1168
}

1169 1170
static void
event_sched_out(struct perf_event *event,
1171
		  struct perf_cpu_context *cpuctx,
1172
		  struct perf_event_context *ctx)
1173
{
1174
	u64 tstamp = perf_event_time(event);
1175 1176 1177 1178 1179 1180 1181 1182 1183
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1184
		delta = tstamp - event->tstamp_stopped;
1185
		event->tstamp_running += delta;
1186
		event->tstamp_stopped = tstamp;
1187 1188
	}

1189
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1190
		return;
1191

1192 1193 1194 1195
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1196
	}
1197
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1198
	event->pmu->del(event, 0);
1199
	event->oncpu = -1;
1200

1201
	if (!is_software_event(event))
1202 1203
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1204 1205
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1206
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1207 1208 1209
		cpuctx->exclusive = 0;
}

1210
static void
1211
group_sched_out(struct perf_event *group_event,
1212
		struct perf_cpu_context *cpuctx,
1213
		struct perf_event_context *ctx)
1214
{
1215
	struct perf_event *event;
1216
	int state = group_event->state;
1217

1218
	event_sched_out(group_event, cpuctx, ctx);
1219 1220 1221 1222

	/*
	 * Schedule out siblings (if any):
	 */
1223 1224
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1225

1226
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1227 1228 1229
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1230
/*
1231
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1232
 *
1233
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1234 1235
 * remove it from the context list.
 */
1236
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1237
{
1238 1239
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1240
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1241

1242
	raw_spin_lock(&ctx->lock);
1243 1244
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1245 1246 1247 1248
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1249
	raw_spin_unlock(&ctx->lock);
1250 1251

	return 0;
T
Thomas Gleixner 已提交
1252 1253 1254 1255
}


/*
1256
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1257
 *
1258
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1259
 * call when the task is on a CPU.
1260
 *
1261 1262
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1263 1264
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1265
 * When called from perf_event_exit_task, it's OK because the
1266
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1267
 */
1268
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1269
{
1270
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1271 1272
	struct task_struct *task = ctx->task;

1273 1274
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1275 1276
	if (!task) {
		/*
1277
		 * Per cpu events are removed via an smp call and
1278
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1279
		 */
1280
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1281 1282 1283 1284
		return;
	}

retry:
1285 1286
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1287

1288
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1289
	/*
1290 1291
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1292
	 */
1293
	if (ctx->is_active) {
1294
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1295 1296 1297 1298
		goto retry;
	}

	/*
1299 1300
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1301
	 */
1302
	list_del_event(event, ctx);
1303
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1304 1305
}

1306
/*
1307
 * Cross CPU call to disable a performance event
1308
 */
1309
int __perf_event_disable(void *info)
1310
{
1311 1312
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1313
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1314 1315

	/*
1316 1317
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1318 1319 1320
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1321
	 */
1322
	if (ctx->task && cpuctx->task_ctx != ctx)
1323
		return -EINVAL;
1324

1325
	raw_spin_lock(&ctx->lock);
1326 1327

	/*
1328
	 * If the event is on, turn it off.
1329 1330
	 * If it is in error state, leave it in error state.
	 */
1331
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1332
		update_context_time(ctx);
S
Stephane Eranian 已提交
1333
		update_cgrp_time_from_event(event);
1334 1335 1336
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1337
		else
1338 1339
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1340 1341
	}

1342
	raw_spin_unlock(&ctx->lock);
1343 1344

	return 0;
1345 1346 1347
}

/*
1348
 * Disable a event.
1349
 *
1350 1351
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1352
 * remains valid.  This condition is satisifed when called through
1353 1354 1355 1356
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1357
 * is the current context on this CPU and preemption is disabled,
1358
 * hence we can't get into perf_event_task_sched_out for this context.
1359
 */
1360
void perf_event_disable(struct perf_event *event)
1361
{
1362
	struct perf_event_context *ctx = event->ctx;
1363 1364 1365 1366
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1367
		 * Disable the event on the cpu that it's on
1368
		 */
1369
		cpu_function_call(event->cpu, __perf_event_disable, event);
1370 1371 1372
		return;
	}

P
Peter Zijlstra 已提交
1373
retry:
1374 1375
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1376

1377
	raw_spin_lock_irq(&ctx->lock);
1378
	/*
1379
	 * If the event is still active, we need to retry the cross-call.
1380
	 */
1381
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1382
		raw_spin_unlock_irq(&ctx->lock);
1383 1384 1385 1386 1387
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1388 1389 1390 1391 1392 1393 1394
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1395 1396 1397
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1398
	}
1399
	raw_spin_unlock_irq(&ctx->lock);
1400
}
1401
EXPORT_SYMBOL_GPL(perf_event_disable);
1402

S
Stephane Eranian 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1438 1439 1440 1441
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1442
static int
1443
event_sched_in(struct perf_event *event,
1444
		 struct perf_cpu_context *cpuctx,
1445
		 struct perf_event_context *ctx)
1446
{
1447 1448
	u64 tstamp = perf_event_time(event);

1449
	if (event->state <= PERF_EVENT_STATE_OFF)
1450 1451
		return 0;

1452
	event->state = PERF_EVENT_STATE_ACTIVE;
1453
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1465 1466 1467 1468 1469
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1470
	if (event->pmu->add(event, PERF_EF_START)) {
1471 1472
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1473 1474 1475
		return -EAGAIN;
	}

1476
	event->tstamp_running += tstamp - event->tstamp_stopped;
1477

S
Stephane Eranian 已提交
1478
	perf_set_shadow_time(event, ctx, tstamp);
1479

1480
	if (!is_software_event(event))
1481
		cpuctx->active_oncpu++;
1482
	ctx->nr_active++;
1483 1484
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1485

1486
	if (event->attr.exclusive)
1487 1488
		cpuctx->exclusive = 1;

1489 1490 1491
	return 0;
}

1492
static int
1493
group_sched_in(struct perf_event *group_event,
1494
	       struct perf_cpu_context *cpuctx,
1495
	       struct perf_event_context *ctx)
1496
{
1497
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1498
	struct pmu *pmu = group_event->pmu;
1499 1500
	u64 now = ctx->time;
	bool simulate = false;
1501

1502
	if (group_event->state == PERF_EVENT_STATE_OFF)
1503 1504
		return 0;

P
Peter Zijlstra 已提交
1505
	pmu->start_txn(pmu);
1506

1507
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1508
		pmu->cancel_txn(pmu);
1509
		return -EAGAIN;
1510
	}
1511 1512 1513 1514

	/*
	 * Schedule in siblings as one group (if any):
	 */
1515
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1516
		if (event_sched_in(event, cpuctx, ctx)) {
1517
			partial_group = event;
1518 1519 1520 1521
			goto group_error;
		}
	}

1522
	if (!pmu->commit_txn(pmu))
1523
		return 0;
1524

1525 1526 1527 1528
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1539
	 */
1540 1541
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1542 1543 1544 1545 1546 1547 1548 1549
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1550
	}
1551
	event_sched_out(group_event, cpuctx, ctx);
1552

P
Peter Zijlstra 已提交
1553
	pmu->cancel_txn(pmu);
1554

1555 1556 1557
	return -EAGAIN;
}

1558
/*
1559
 * Work out whether we can put this event group on the CPU now.
1560
 */
1561
static int group_can_go_on(struct perf_event *event,
1562 1563 1564 1565
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1566
	 * Groups consisting entirely of software events can always go on.
1567
	 */
1568
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1569 1570 1571
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1572
	 * events can go on.
1573 1574 1575 1576 1577
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1578
	 * events on the CPU, it can't go on.
1579
	 */
1580
	if (event->attr.exclusive && cpuctx->active_oncpu)
1581 1582 1583 1584 1585 1586 1587 1588
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1589 1590
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1591
{
1592 1593
	u64 tstamp = perf_event_time(event);

1594
	list_add_event(event, ctx);
1595
	perf_group_attach(event);
1596 1597 1598
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1599 1600
}

1601 1602 1603 1604 1605 1606
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1607

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1620
/*
1621
 * Cross CPU call to install and enable a performance event
1622 1623
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1624
 */
1625
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1626
{
1627 1628
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1629
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1630 1631 1632
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1633
	perf_ctx_lock(cpuctx, task_ctx);
1634
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1635 1636

	/*
1637
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1638
	 */
1639
	if (task_ctx)
1640
		task_ctx_sched_out(task_ctx);
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1655 1656
		task = task_ctx->task;
	}
1657

1658
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1659

1660
	update_context_time(ctx);
S
Stephane Eranian 已提交
1661 1662 1663 1664 1665 1666
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1667

1668
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1669

1670
	/*
1671
	 * Schedule everything back in
1672
	 */
1673
	perf_event_sched_in(cpuctx, task_ctx, task);
1674 1675 1676

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1677 1678

	return 0;
T
Thomas Gleixner 已提交
1679 1680 1681
}

/*
1682
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1683
 *
1684 1685
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1686
 *
1687
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1688 1689 1690 1691
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1692 1693
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1694 1695 1696 1697
			int cpu)
{
	struct task_struct *task = ctx->task;

1698 1699
	lockdep_assert_held(&ctx->mutex);

1700
	event->ctx = ctx;
1701 1702
	if (event->cpu != -1)
		event->cpu = cpu;
1703

T
Thomas Gleixner 已提交
1704 1705
	if (!task) {
		/*
1706
		 * Per cpu events are installed via an smp call and
1707
		 * the install is always successful.
T
Thomas Gleixner 已提交
1708
		 */
1709
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1710 1711 1712 1713
		return;
	}

retry:
1714 1715
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1716

1717
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1718
	/*
1719 1720
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1721
	 */
1722
	if (ctx->is_active) {
1723
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1724 1725 1726 1727
		goto retry;
	}

	/*
1728 1729
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1730
	 */
1731
	add_event_to_ctx(event, ctx);
1732
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1733 1734
}

1735
/*
1736
 * Put a event into inactive state and update time fields.
1737 1738 1739 1740 1741 1742
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1743
static void __perf_event_mark_enabled(struct perf_event *event)
1744
{
1745
	struct perf_event *sub;
1746
	u64 tstamp = perf_event_time(event);
1747

1748
	event->state = PERF_EVENT_STATE_INACTIVE;
1749
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1750
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1751 1752
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1753
	}
1754 1755
}

1756
/*
1757
 * Cross CPU call to enable a performance event
1758
 */
1759
static int __perf_event_enable(void *info)
1760
{
1761 1762 1763
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1764
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1765
	int err;
1766

1767 1768
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1769

1770
	raw_spin_lock(&ctx->lock);
1771
	update_context_time(ctx);
1772

1773
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1774
		goto unlock;
S
Stephane Eranian 已提交
1775 1776 1777 1778

	/*
	 * set current task's cgroup time reference point
	 */
1779
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1780

1781
	__perf_event_mark_enabled(event);
1782

S
Stephane Eranian 已提交
1783 1784 1785
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1786
		goto unlock;
S
Stephane Eranian 已提交
1787
	}
1788

1789
	/*
1790
	 * If the event is in a group and isn't the group leader,
1791
	 * then don't put it on unless the group is on.
1792
	 */
1793
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1794
		goto unlock;
1795

1796
	if (!group_can_go_on(event, cpuctx, 1)) {
1797
		err = -EEXIST;
1798
	} else {
1799
		if (event == leader)
1800
			err = group_sched_in(event, cpuctx, ctx);
1801
		else
1802
			err = event_sched_in(event, cpuctx, ctx);
1803
	}
1804 1805 1806

	if (err) {
		/*
1807
		 * If this event can't go on and it's part of a
1808 1809
		 * group, then the whole group has to come off.
		 */
1810
		if (leader != event)
1811
			group_sched_out(leader, cpuctx, ctx);
1812
		if (leader->attr.pinned) {
1813
			update_group_times(leader);
1814
			leader->state = PERF_EVENT_STATE_ERROR;
1815
		}
1816 1817
	}

P
Peter Zijlstra 已提交
1818
unlock:
1819
	raw_spin_unlock(&ctx->lock);
1820 1821

	return 0;
1822 1823 1824
}

/*
1825
 * Enable a event.
1826
 *
1827 1828
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1829
 * remains valid.  This condition is satisfied when called through
1830 1831
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1832
 */
1833
void perf_event_enable(struct perf_event *event)
1834
{
1835
	struct perf_event_context *ctx = event->ctx;
1836 1837 1838 1839
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1840
		 * Enable the event on the cpu that it's on
1841
		 */
1842
		cpu_function_call(event->cpu, __perf_event_enable, event);
1843 1844 1845
		return;
	}

1846
	raw_spin_lock_irq(&ctx->lock);
1847
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1848 1849 1850
		goto out;

	/*
1851 1852
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1853 1854 1855 1856
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1857 1858
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1859

P
Peter Zijlstra 已提交
1860
retry:
1861
	if (!ctx->is_active) {
1862
		__perf_event_mark_enabled(event);
1863 1864 1865
		goto out;
	}

1866
	raw_spin_unlock_irq(&ctx->lock);
1867 1868 1869

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1870

1871
	raw_spin_lock_irq(&ctx->lock);
1872 1873

	/*
1874
	 * If the context is active and the event is still off,
1875 1876
	 * we need to retry the cross-call.
	 */
1877 1878 1879 1880 1881 1882
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1883
		goto retry;
1884
	}
1885

P
Peter Zijlstra 已提交
1886
out:
1887
	raw_spin_unlock_irq(&ctx->lock);
1888
}
1889
EXPORT_SYMBOL_GPL(perf_event_enable);
1890

1891
int perf_event_refresh(struct perf_event *event, int refresh)
1892
{
1893
	/*
1894
	 * not supported on inherited events
1895
	 */
1896
	if (event->attr.inherit || !is_sampling_event(event))
1897 1898
		return -EINVAL;

1899 1900
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1901 1902

	return 0;
1903
}
1904
EXPORT_SYMBOL_GPL(perf_event_refresh);
1905

1906 1907 1908
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1909
{
1910
	struct perf_event *event;
1911
	int is_active = ctx->is_active;
1912

1913
	ctx->is_active &= ~event_type;
1914
	if (likely(!ctx->nr_events))
1915 1916
		return;

1917
	update_context_time(ctx);
S
Stephane Eranian 已提交
1918
	update_cgrp_time_from_cpuctx(cpuctx);
1919
	if (!ctx->nr_active)
1920
		return;
1921

P
Peter Zijlstra 已提交
1922
	perf_pmu_disable(ctx->pmu);
1923
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1924 1925
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1926
	}
1927

1928
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1929
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1930
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1931
	}
P
Peter Zijlstra 已提交
1932
	perf_pmu_enable(ctx->pmu);
1933 1934
}

1935 1936 1937
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1938 1939 1940 1941
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1942
 * in them directly with an fd; we can only enable/disable all
1943
 * events via prctl, or enable/disable all events in a family
1944 1945
 * via ioctl, which will have the same effect on both contexts.
 */
1946 1947
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1948 1949
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1950
		&& ctx1->parent_gen == ctx2->parent_gen
1951
		&& !ctx1->pin_count && !ctx2->pin_count;
1952 1953
}

1954 1955
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1956 1957 1958
{
	u64 value;

1959
	if (!event->attr.inherit_stat)
1960 1961 1962
		return;

	/*
1963
	 * Update the event value, we cannot use perf_event_read()
1964 1965
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1966
	 * we know the event must be on the current CPU, therefore we
1967 1968
	 * don't need to use it.
	 */
1969 1970
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1971 1972
		event->pmu->read(event);
		/* fall-through */
1973

1974 1975
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1976 1977 1978 1979 1980 1981 1982
		break;

	default:
		break;
	}

	/*
1983
	 * In order to keep per-task stats reliable we need to flip the event
1984 1985
	 * values when we flip the contexts.
	 */
1986 1987 1988
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1989

1990 1991
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1992

1993
	/*
1994
	 * Since we swizzled the values, update the user visible data too.
1995
	 */
1996 1997
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1998 1999 2000 2001 2002
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

2003 2004
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2005
{
2006
	struct perf_event *event, *next_event;
2007 2008 2009 2010

	if (!ctx->nr_stat)
		return;

2011 2012
	update_context_time(ctx);

2013 2014
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2015

2016 2017
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2018

2019 2020
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2021

2022
		__perf_event_sync_stat(event, next_event);
2023

2024 2025
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2026 2027 2028
	}
}

2029 2030
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2031
{
P
Peter Zijlstra 已提交
2032
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2033 2034
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
2035
	struct perf_cpu_context *cpuctx;
2036
	int do_switch = 1;
T
Thomas Gleixner 已提交
2037

P
Peter Zijlstra 已提交
2038 2039
	if (likely(!ctx))
		return;
2040

P
Peter Zijlstra 已提交
2041 2042
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2043 2044
		return;

2045 2046
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
2047
	next_ctx = next->perf_event_ctxp[ctxn];
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2059 2060
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2061
		if (context_equiv(ctx, next_ctx)) {
2062 2063
			/*
			 * XXX do we need a memory barrier of sorts
2064
			 * wrt to rcu_dereference() of perf_event_ctxp
2065
			 */
P
Peter Zijlstra 已提交
2066 2067
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2068 2069 2070
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2071

2072
			perf_event_sync_stat(ctx, next_ctx);
2073
		}
2074 2075
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2076
	}
2077
	rcu_read_unlock();
2078

2079
	if (do_switch) {
2080
		raw_spin_lock(&ctx->lock);
2081
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2082
		cpuctx->task_ctx = NULL;
2083
		raw_spin_unlock(&ctx->lock);
2084
	}
T
Thomas Gleixner 已提交
2085 2086
}

P
Peter Zijlstra 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2101 2102
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2103 2104 2105 2106 2107
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2108 2109 2110 2111 2112 2113 2114

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2115
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2116 2117
}

2118
static void task_ctx_sched_out(struct perf_event_context *ctx)
2119
{
P
Peter Zijlstra 已提交
2120
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2121

2122 2123
	if (!cpuctx->task_ctx)
		return;
2124 2125 2126 2127

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2128
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2129 2130 2131
	cpuctx->task_ctx = NULL;
}

2132 2133 2134 2135 2136 2137 2138
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2139 2140
}

2141
static void
2142
ctx_pinned_sched_in(struct perf_event_context *ctx,
2143
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2144
{
2145
	struct perf_event *event;
T
Thomas Gleixner 已提交
2146

2147 2148
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2149
			continue;
2150
		if (!event_filter_match(event))
2151 2152
			continue;

S
Stephane Eranian 已提交
2153 2154 2155 2156
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2157
		if (group_can_go_on(event, cpuctx, 1))
2158
			group_sched_in(event, cpuctx, ctx);
2159 2160 2161 2162 2163

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2164 2165 2166
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2167
		}
2168
	}
2169 2170 2171 2172
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2173
		      struct perf_cpu_context *cpuctx)
2174 2175 2176
{
	struct perf_event *event;
	int can_add_hw = 1;
2177

2178 2179 2180
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2181
			continue;
2182 2183
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2184
		 * of events:
2185
		 */
2186
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2187 2188
			continue;

S
Stephane Eranian 已提交
2189 2190 2191 2192
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2193
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2194
			if (group_sched_in(event, cpuctx, ctx))
2195
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2196
		}
T
Thomas Gleixner 已提交
2197
	}
2198 2199 2200 2201 2202
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2203 2204
	     enum event_type_t event_type,
	     struct task_struct *task)
2205
{
S
Stephane Eranian 已提交
2206
	u64 now;
2207
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2208

2209
	ctx->is_active |= event_type;
2210
	if (likely(!ctx->nr_events))
2211
		return;
2212

S
Stephane Eranian 已提交
2213 2214
	now = perf_clock();
	ctx->timestamp = now;
2215
	perf_cgroup_set_timestamp(task, ctx);
2216 2217 2218 2219
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2220
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2221
		ctx_pinned_sched_in(ctx, cpuctx);
2222 2223

	/* Then walk through the lower prio flexible groups */
2224
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2225
		ctx_flexible_sched_in(ctx, cpuctx);
2226 2227
}

2228
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2229 2230
			     enum event_type_t event_type,
			     struct task_struct *task)
2231 2232 2233
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2234
	ctx_sched_in(ctx, cpuctx, event_type, task);
2235 2236
}

S
Stephane Eranian 已提交
2237 2238
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2239
{
P
Peter Zijlstra 已提交
2240
	struct perf_cpu_context *cpuctx;
2241

P
Peter Zijlstra 已提交
2242
	cpuctx = __get_cpu_context(ctx);
2243 2244 2245
	if (cpuctx->task_ctx == ctx)
		return;

2246
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2247
	perf_pmu_disable(ctx->pmu);
2248 2249 2250 2251 2252 2253 2254
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2255 2256
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2257

2258 2259
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2260 2261 2262
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2263 2264 2265 2266
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2267
	perf_pmu_rotate_start(ctx->pmu);
2268 2269
}

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2341 2342
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2352
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2353
	}
S
Stephane Eranian 已提交
2354 2355 2356 2357 2358 2359
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2360
		perf_cgroup_sched_in(prev, task);
2361 2362 2363 2364

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2365 2366
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2394
#define REDUCE_FLS(a, b)		\
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2434 2435 2436
	if (!divisor)
		return dividend;

2437 2438 2439
	return div64_u64(dividend, divisor);
}

2440 2441 2442
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2443
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2444
{
2445
	struct hw_perf_event *hwc = &event->hw;
2446
	s64 period, sample_period;
2447 2448
	s64 delta;

2449
	period = perf_calculate_period(event, nsec, count);
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2460

2461
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2462 2463 2464
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2465
		local64_set(&hwc->period_left, 0);
2466 2467 2468

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2469
	}
2470 2471
}

2472 2473 2474 2475 2476 2477 2478
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2479
{
2480 2481
	struct perf_event *event;
	struct hw_perf_event *hwc;
2482
	u64 now, period = TICK_NSEC;
2483
	s64 delta;
2484

2485 2486 2487 2488 2489 2490
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2491 2492
		return;

2493
	raw_spin_lock(&ctx->lock);
2494
	perf_pmu_disable(ctx->pmu);
2495

2496
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2497
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2498 2499
			continue;

2500
		if (!event_filter_match(event))
2501 2502
			continue;

2503
		hwc = &event->hw;
2504

2505 2506
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2507
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2508
			event->pmu->start(event, 0);
2509 2510
		}

2511
		if (!event->attr.freq || !event->attr.sample_freq)
2512 2513
			continue;

2514 2515 2516 2517 2518
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2519
		now = local64_read(&event->count);
2520 2521
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2522

2523 2524 2525
		/*
		 * restart the event
		 * reload only if value has changed
2526 2527 2528
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2529
		 */
2530
		if (delta > 0)
2531
			perf_adjust_period(event, period, delta, false);
2532 2533

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2534
	}
2535

2536
	perf_pmu_enable(ctx->pmu);
2537
	raw_spin_unlock(&ctx->lock);
2538 2539
}

2540
/*
2541
 * Round-robin a context's events:
2542
 */
2543
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2544
{
2545 2546 2547 2548 2549 2550
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2551 2552
}

2553
/*
2554 2555 2556
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2557
 */
2558
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2559
{
P
Peter Zijlstra 已提交
2560
	struct perf_event_context *ctx = NULL;
2561
	int rotate = 0, remove = 1;
2562

2563
	if (cpuctx->ctx.nr_events) {
2564
		remove = 0;
2565 2566 2567
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2568

P
Peter Zijlstra 已提交
2569
	ctx = cpuctx->task_ctx;
2570
	if (ctx && ctx->nr_events) {
2571
		remove = 0;
2572 2573 2574
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2575

2576
	if (!rotate)
2577 2578
		goto done;

2579
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2580
	perf_pmu_disable(cpuctx->ctx.pmu);
2581

2582 2583 2584
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2585

2586 2587 2588
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2589

2590
	perf_event_sched_in(cpuctx, ctx, current);
2591

2592 2593
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2594
done:
2595 2596 2597 2598
	if (remove)
		list_del_init(&cpuctx->rotation_list);
}

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
	if (list_empty(&__get_cpu_var(rotation_list)))
		return true;
	else
		return false;
}
#endif

2609 2610 2611 2612
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2613 2614
	struct perf_event_context *ctx;
	int throttled;
2615

2616 2617
	WARN_ON(!irqs_disabled());

2618 2619 2620
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2621
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2622 2623 2624 2625 2626 2627 2628
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);

2629 2630 2631 2632
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2633 2634
}

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2645
	__perf_event_mark_enabled(event);
2646 2647 2648 2649

	return 1;
}

2650
/*
2651
 * Enable all of a task's events that have been marked enable-on-exec.
2652 2653
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2654
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2655
{
2656
	struct perf_event *event;
2657 2658
	unsigned long flags;
	int enabled = 0;
2659
	int ret;
2660 2661

	local_irq_save(flags);
2662
	if (!ctx || !ctx->nr_events)
2663 2664
		goto out;

2665 2666 2667 2668 2669 2670 2671
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2672
	perf_cgroup_sched_out(current, NULL);
2673

2674
	raw_spin_lock(&ctx->lock);
2675
	task_ctx_sched_out(ctx);
2676

2677
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2678 2679 2680
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2681 2682 2683
	}

	/*
2684
	 * Unclone this context if we enabled any event.
2685
	 */
2686 2687
	if (enabled)
		unclone_ctx(ctx);
2688

2689
	raw_spin_unlock(&ctx->lock);
2690

2691 2692 2693
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2694
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2695
out:
2696 2697 2698
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2699
/*
2700
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2701
 */
2702
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2703
{
2704 2705
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2706
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2707

2708 2709 2710 2711
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2712 2713
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2714 2715 2716 2717
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2718
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2719
	if (ctx->is_active) {
2720
		update_context_time(ctx);
S
Stephane Eranian 已提交
2721 2722
		update_cgrp_time_from_event(event);
	}
2723
	update_event_times(event);
2724 2725
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2726
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2727 2728
}

P
Peter Zijlstra 已提交
2729 2730
static inline u64 perf_event_count(struct perf_event *event)
{
2731
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2732 2733
}

2734
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2735 2736
{
	/*
2737 2738
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2739
	 */
2740 2741 2742 2743
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2744 2745 2746
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2747
		raw_spin_lock_irqsave(&ctx->lock, flags);
2748 2749 2750 2751 2752
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2753
		if (ctx->is_active) {
2754
			update_context_time(ctx);
S
Stephane Eranian 已提交
2755 2756
			update_cgrp_time_from_event(event);
		}
2757
		update_event_times(event);
2758
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2759 2760
	}

P
Peter Zijlstra 已提交
2761
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2762 2763
}

2764
/*
2765
 * Initialize the perf_event context in a task_struct:
2766
 */
2767
static void __perf_event_init_context(struct perf_event_context *ctx)
2768
{
2769
	raw_spin_lock_init(&ctx->lock);
2770
	mutex_init(&ctx->mutex);
2771 2772
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2773 2774
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2790
	}
2791 2792 2793
	ctx->pmu = pmu;

	return ctx;
2794 2795
}

2796 2797 2798 2799 2800
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2801 2802

	rcu_read_lock();
2803
	if (!vpid)
T
Thomas Gleixner 已提交
2804 2805
		task = current;
	else
2806
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2807 2808 2809 2810 2811 2812 2813 2814
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2815 2816 2817 2818
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2819 2820 2821 2822 2823 2824 2825
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2826 2827 2828
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2829
static struct perf_event_context *
M
Matt Helsley 已提交
2830
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2831
{
2832
	struct perf_event_context *ctx;
2833
	struct perf_cpu_context *cpuctx;
2834
	unsigned long flags;
P
Peter Zijlstra 已提交
2835
	int ctxn, err;
T
Thomas Gleixner 已提交
2836

2837
	if (!task) {
2838
		/* Must be root to operate on a CPU event: */
2839
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2840 2841 2842
			return ERR_PTR(-EACCES);

		/*
2843
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2844 2845 2846
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2847
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2848 2849
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2850
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2851
		ctx = &cpuctx->ctx;
2852
		get_ctx(ctx);
2853
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2854 2855 2856 2857

		return ctx;
	}

P
Peter Zijlstra 已提交
2858 2859 2860 2861 2862
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2863
retry:
P
Peter Zijlstra 已提交
2864
	ctx = perf_lock_task_context(task, ctxn, &flags);
2865
	if (ctx) {
2866
		unclone_ctx(ctx);
2867
		++ctx->pin_count;
2868
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2869
	} else {
2870
		ctx = alloc_perf_context(pmu, task);
2871 2872 2873
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2874

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2885
		else {
2886
			get_ctx(ctx);
2887
			++ctx->pin_count;
2888
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2889
		}
2890 2891 2892
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2893
			put_ctx(ctx);
2894 2895 2896 2897

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2898 2899 2900
		}
	}

T
Thomas Gleixner 已提交
2901
	return ctx;
2902

P
Peter Zijlstra 已提交
2903
errout:
2904
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2905 2906
}

L
Li Zefan 已提交
2907 2908
static void perf_event_free_filter(struct perf_event *event);

2909
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2910
{
2911
	struct perf_event *event;
P
Peter Zijlstra 已提交
2912

2913 2914 2915
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2916
	perf_event_free_filter(event);
2917
	kfree(event);
P
Peter Zijlstra 已提交
2918 2919
}

2920
static void ring_buffer_put(struct ring_buffer *rb);
2921

2922
static void free_event(struct perf_event *event)
2923
{
2924
	irq_work_sync(&event->pending);
2925

2926
	if (!event->parent) {
2927
		if (event->attach_state & PERF_ATTACH_TASK)
2928
			static_key_slow_dec_deferred(&perf_sched_events);
2929
		if (event->attr.mmap || event->attr.mmap_data)
2930 2931 2932 2933 2934
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2935 2936
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2937 2938
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2939
			static_key_slow_dec_deferred(&perf_sched_events);
2940
		}
2941 2942 2943 2944 2945 2946 2947 2948

		if (has_branch_stack(event)) {
			static_key_slow_dec_deferred(&perf_sched_events);
			/* is system-wide event */
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_dec(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
2949
	}
2950

2951 2952 2953
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2954 2955
	}

S
Stephane Eranian 已提交
2956 2957 2958
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2959 2960
	if (event->destroy)
		event->destroy(event);
2961

P
Peter Zijlstra 已提交
2962 2963 2964
	if (event->ctx)
		put_ctx(event->ctx);

2965
	call_rcu(&event->rcu_head, free_event_rcu);
2966 2967
}

2968
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2969
{
2970
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2971

2972
	WARN_ON_ONCE(ctx->parent_ctx);
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2986
	raw_spin_lock_irq(&ctx->lock);
2987
	perf_group_detach(event);
2988
	raw_spin_unlock_irq(&ctx->lock);
2989
	perf_remove_from_context(event);
2990
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2991

2992
	free_event(event);
T
Thomas Gleixner 已提交
2993 2994 2995

	return 0;
}
2996
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2997

2998 2999 3000
/*
 * Called when the last reference to the file is gone.
 */
3001
static void put_event(struct perf_event *event)
3002
{
P
Peter Zijlstra 已提交
3003
	struct task_struct *owner;
3004

3005 3006
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3007

P
Peter Zijlstra 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3041 3042 3043 3044 3045 3046 3047
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3048 3049
}

3050
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3051
{
3052
	struct perf_event *child;
3053 3054
	u64 total = 0;

3055 3056 3057
	*enabled = 0;
	*running = 0;

3058
	mutex_lock(&event->child_mutex);
3059
	total += perf_event_read(event);
3060 3061 3062 3063 3064 3065
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3066
		total += perf_event_read(child);
3067 3068 3069
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3070
	mutex_unlock(&event->child_mutex);
3071 3072 3073

	return total;
}
3074
EXPORT_SYMBOL_GPL(perf_event_read_value);
3075

3076
static int perf_event_read_group(struct perf_event *event,
3077 3078
				   u64 read_format, char __user *buf)
{
3079
	struct perf_event *leader = event->group_leader, *sub;
3080 3081
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3082
	u64 values[5];
3083
	u64 count, enabled, running;
3084

3085
	mutex_lock(&ctx->mutex);
3086
	count = perf_event_read_value(leader, &enabled, &running);
3087 3088

	values[n++] = 1 + leader->nr_siblings;
3089 3090 3091 3092
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3093 3094 3095
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3096 3097 3098 3099

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3100
		goto unlock;
3101

3102
	ret = size;
3103

3104
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3105
		n = 0;
3106

3107
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3108 3109 3110 3111 3112
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3113
		if (copy_to_user(buf + ret, values, size)) {
3114 3115 3116
			ret = -EFAULT;
			goto unlock;
		}
3117 3118

		ret += size;
3119
	}
3120 3121
unlock:
	mutex_unlock(&ctx->mutex);
3122

3123
	return ret;
3124 3125
}

3126
static int perf_event_read_one(struct perf_event *event,
3127 3128
				 u64 read_format, char __user *buf)
{
3129
	u64 enabled, running;
3130 3131 3132
	u64 values[4];
	int n = 0;

3133 3134 3135 3136 3137
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3138
	if (read_format & PERF_FORMAT_ID)
3139
		values[n++] = primary_event_id(event);
3140 3141 3142 3143 3144 3145 3146

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3147
/*
3148
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3149 3150
 */
static ssize_t
3151
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3152
{
3153
	u64 read_format = event->attr.read_format;
3154
	int ret;
T
Thomas Gleixner 已提交
3155

3156
	/*
3157
	 * Return end-of-file for a read on a event that is in
3158 3159 3160
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3161
	if (event->state == PERF_EVENT_STATE_ERROR)
3162 3163
		return 0;

3164
	if (count < event->read_size)
3165 3166
		return -ENOSPC;

3167
	WARN_ON_ONCE(event->ctx->parent_ctx);
3168
	if (read_format & PERF_FORMAT_GROUP)
3169
		ret = perf_event_read_group(event, read_format, buf);
3170
	else
3171
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3172

3173
	return ret;
T
Thomas Gleixner 已提交
3174 3175 3176 3177 3178
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3179
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3180

3181
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3182 3183 3184 3185
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3186
	struct perf_event *event = file->private_data;
3187
	struct ring_buffer *rb;
3188
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3189

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3207
	rcu_read_lock();
3208
	rb = rcu_dereference(event->rb);
3209 3210
	if (rb) {
		ring_buffer_attach(event, rb);
3211
		events = atomic_xchg(&rb->poll, 0);
3212
	}
P
Peter Zijlstra 已提交
3213
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3214

3215 3216
	mutex_unlock(&event->mmap_mutex);

3217
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3218 3219 3220 3221

	return events;
}

3222
static void perf_event_reset(struct perf_event *event)
3223
{
3224
	(void)perf_event_read(event);
3225
	local64_set(&event->count, 0);
3226
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3227 3228
}

3229
/*
3230 3231 3232 3233
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3234
 */
3235 3236
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3237
{
3238
	struct perf_event *child;
P
Peter Zijlstra 已提交
3239

3240 3241 3242 3243
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3244
		func(child);
3245
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3246 3247
}

3248 3249
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3250
{
3251 3252
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3253

3254 3255
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3256
	event = event->group_leader;
3257

3258 3259
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3260
		perf_event_for_each_child(sibling, func);
3261
	mutex_unlock(&ctx->mutex);
3262 3263
}

3264
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3265
{
3266
	struct perf_event_context *ctx = event->ctx;
3267 3268 3269
	int ret = 0;
	u64 value;

3270
	if (!is_sampling_event(event))
3271 3272
		return -EINVAL;

3273
	if (copy_from_user(&value, arg, sizeof(value)))
3274 3275 3276 3277 3278
		return -EFAULT;

	if (!value)
		return -EINVAL;

3279
	raw_spin_lock_irq(&ctx->lock);
3280 3281
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3282 3283 3284 3285
			ret = -EINVAL;
			goto unlock;
		}

3286
		event->attr.sample_freq = value;
3287
	} else {
3288 3289
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3290 3291
	}
unlock:
3292
	raw_spin_unlock_irq(&ctx->lock);
3293 3294 3295 3296

	return ret;
}

3297 3298
static const struct file_operations perf_fops;

3299
static inline int perf_fget_light(int fd, struct fd *p)
3300
{
3301 3302 3303
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3304

3305 3306 3307
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3308
	}
3309 3310
	*p = f;
	return 0;
3311 3312 3313 3314
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3315
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3316

3317 3318
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3319 3320
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3321
	u32 flags = arg;
3322 3323

	switch (cmd) {
3324 3325
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3326
		break;
3327 3328
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3329
		break;
3330 3331
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3332
		break;
P
Peter Zijlstra 已提交
3333

3334 3335
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3336

3337 3338
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3339

3340
	case PERF_EVENT_IOC_SET_OUTPUT:
3341 3342 3343
	{
		int ret;
		if (arg != -1) {
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3354 3355 3356
		}
		return ret;
	}
3357

L
Li Zefan 已提交
3358 3359 3360
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3361
	default:
P
Peter Zijlstra 已提交
3362
		return -ENOTTY;
3363
	}
P
Peter Zijlstra 已提交
3364 3365

	if (flags & PERF_IOC_FLAG_GROUP)
3366
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3367
	else
3368
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3369 3370

	return 0;
3371 3372
}

3373
int perf_event_task_enable(void)
3374
{
3375
	struct perf_event *event;
3376

3377 3378 3379 3380
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3381 3382 3383 3384

	return 0;
}

3385
int perf_event_task_disable(void)
3386
{
3387
	struct perf_event *event;
3388

3389 3390 3391 3392
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3393 3394 3395 3396

	return 0;
}

3397
static int perf_event_index(struct perf_event *event)
3398
{
P
Peter Zijlstra 已提交
3399 3400 3401
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3402
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3403 3404
		return 0;

3405
	return event->pmu->event_idx(event);
3406 3407
}

3408
static void calc_timer_values(struct perf_event *event,
3409
				u64 *now,
3410 3411
				u64 *enabled,
				u64 *running)
3412
{
3413
	u64 ctx_time;
3414

3415 3416
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3417 3418 3419 3420
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3421
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3422 3423 3424
{
}

3425 3426 3427 3428 3429
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3430
void perf_event_update_userpage(struct perf_event *event)
3431
{
3432
	struct perf_event_mmap_page *userpg;
3433
	struct ring_buffer *rb;
3434
	u64 enabled, running, now;
3435 3436

	rcu_read_lock();
3437 3438 3439 3440 3441 3442 3443 3444 3445
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3446
	calc_timer_values(event, &now, &enabled, &running);
3447 3448
	rb = rcu_dereference(event->rb);
	if (!rb)
3449 3450
		goto unlock;

3451
	userpg = rb->user_page;
3452

3453 3454 3455 3456 3457
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3458
	++userpg->lock;
3459
	barrier();
3460
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3461
	userpg->offset = perf_event_count(event);
3462
	if (userpg->index)
3463
		userpg->offset -= local64_read(&event->hw.prev_count);
3464

3465
	userpg->time_enabled = enabled +
3466
			atomic64_read(&event->child_total_time_enabled);
3467

3468
	userpg->time_running = running +
3469
			atomic64_read(&event->child_total_time_running);
3470

3471
	arch_perf_update_userpage(userpg, now);
3472

3473
	barrier();
3474
	++userpg->lock;
3475
	preempt_enable();
3476
unlock:
3477
	rcu_read_unlock();
3478 3479
}

3480 3481 3482
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3483
	struct ring_buffer *rb;
3484 3485 3486 3487 3488 3489 3490 3491 3492
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3493 3494
	rb = rcu_dereference(event->rb);
	if (!rb)
3495 3496 3497 3498 3499
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3500
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3552 3553 3554 3555
	if (!rb)
		goto unlock;

	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3556
		wake_up_all(&event->waitq);
3557 3558

unlock:
3559 3560 3561
	rcu_read_unlock();
}

3562
static void rb_free_rcu(struct rcu_head *rcu_head)
3563
{
3564
	struct ring_buffer *rb;
3565

3566 3567
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3568 3569
}

3570
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3571
{
3572
	struct ring_buffer *rb;
3573

3574
	rcu_read_lock();
3575 3576 3577 3578
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3579 3580 3581
	}
	rcu_read_unlock();

3582
	return rb;
3583 3584
}

3585
static void ring_buffer_put(struct ring_buffer *rb)
3586
{
3587 3588 3589
	struct perf_event *event, *n;
	unsigned long flags;

3590
	if (!atomic_dec_and_test(&rb->refcount))
3591
		return;
3592

3593 3594 3595 3596 3597 3598 3599
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3600
	call_rcu(&rb->rcu_head, rb_free_rcu);
3601 3602 3603 3604
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3605
	struct perf_event *event = vma->vm_file->private_data;
3606

3607
	atomic_inc(&event->mmap_count);
3608 3609 3610 3611
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3612
	struct perf_event *event = vma->vm_file->private_data;
3613

3614
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3615
		unsigned long size = perf_data_size(event->rb);
3616
		struct user_struct *user = event->mmap_user;
3617
		struct ring_buffer *rb = event->rb;
3618

3619
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3620
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3621
		rcu_assign_pointer(event->rb, NULL);
3622
		ring_buffer_detach(event, rb);
3623
		mutex_unlock(&event->mmap_mutex);
3624

3625
		ring_buffer_put(rb);
3626
		free_uid(user);
3627
	}
3628 3629
}

3630
static const struct vm_operations_struct perf_mmap_vmops = {
3631 3632 3633 3634
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3635 3636 3637 3638
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3639
	struct perf_event *event = file->private_data;
3640
	unsigned long user_locked, user_lock_limit;
3641
	struct user_struct *user = current_user();
3642
	unsigned long locked, lock_limit;
3643
	struct ring_buffer *rb;
3644 3645
	unsigned long vma_size;
	unsigned long nr_pages;
3646
	long user_extra, extra;
3647
	int ret = 0, flags = 0;
3648

3649 3650 3651
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3652
	 * same rb.
3653 3654 3655 3656
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3657
	if (!(vma->vm_flags & VM_SHARED))
3658
		return -EINVAL;
3659 3660 3661 3662

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3663
	/*
3664
	 * If we have rb pages ensure they're a power-of-two number, so we
3665 3666 3667
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3668 3669
		return -EINVAL;

3670
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3671 3672
		return -EINVAL;

3673 3674
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3675

3676 3677
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3678 3679 3680
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3681
		else
3682 3683 3684 3685
			ret = -EINVAL;
		goto unlock;
	}

3686
	user_extra = nr_pages + 1;
3687
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3688 3689 3690 3691 3692 3693

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3694
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3695

3696 3697 3698
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3699

3700
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3701
	lock_limit >>= PAGE_SHIFT;
3702
	locked = vma->vm_mm->pinned_vm + extra;
3703

3704 3705
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3706 3707 3708
		ret = -EPERM;
		goto unlock;
	}
3709

3710
	WARN_ON(event->rb);
3711

3712
	if (vma->vm_flags & VM_WRITE)
3713
		flags |= RING_BUFFER_WRITABLE;
3714

3715 3716 3717 3718
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3719
	if (!rb) {
3720
		ret = -ENOMEM;
3721
		goto unlock;
3722
	}
3723
	rcu_assign_pointer(event->rb, rb);
3724

3725 3726 3727
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3728
	vma->vm_mm->pinned_vm += event->mmap_locked;
3729

3730 3731
	perf_event_update_userpage(event);

3732
unlock:
3733 3734
	if (!ret)
		atomic_inc(&event->mmap_count);
3735
	mutex_unlock(&event->mmap_mutex);
3736

3737
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3738
	vma->vm_ops = &perf_mmap_vmops;
3739 3740

	return ret;
3741 3742
}

P
Peter Zijlstra 已提交
3743 3744
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
3745
	struct inode *inode = file_inode(filp);
3746
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3747 3748 3749
	int retval;

	mutex_lock(&inode->i_mutex);
3750
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3751 3752 3753 3754 3755 3756 3757 3758
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3759
static const struct file_operations perf_fops = {
3760
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3761 3762 3763
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3764 3765
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3766
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3767
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3768 3769
};

3770
/*
3771
 * Perf event wakeup
3772 3773 3774 3775 3776
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3777
void perf_event_wakeup(struct perf_event *event)
3778
{
3779
	ring_buffer_wakeup(event);
3780

3781 3782 3783
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3784
	}
3785 3786
}

3787
static void perf_pending_event(struct irq_work *entry)
3788
{
3789 3790
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3791

3792 3793 3794
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3795 3796
	}

3797 3798 3799
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3800 3801 3802
	}
}

3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

3950 3951 3952
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3980 3981 3982
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

4009 4010 4011
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4012 4013 4014 4015 4016
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4017
static void perf_output_read_one(struct perf_output_handle *handle,
4018 4019
				 struct perf_event *event,
				 u64 enabled, u64 running)
4020
{
4021
	u64 read_format = event->attr.read_format;
4022 4023 4024
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4025
	values[n++] = perf_event_count(event);
4026
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4027
		values[n++] = enabled +
4028
			atomic64_read(&event->child_total_time_enabled);
4029 4030
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4031
		values[n++] = running +
4032
			atomic64_read(&event->child_total_time_running);
4033 4034
	}
	if (read_format & PERF_FORMAT_ID)
4035
		values[n++] = primary_event_id(event);
4036

4037
	__output_copy(handle, values, n * sizeof(u64));
4038 4039 4040
}

/*
4041
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4042 4043
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4044 4045
			    struct perf_event *event,
			    u64 enabled, u64 running)
4046
{
4047 4048
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4049 4050 4051 4052 4053 4054
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4055
		values[n++] = enabled;
4056 4057

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4058
		values[n++] = running;
4059

4060
	if (leader != event)
4061 4062
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4063
	values[n++] = perf_event_count(leader);
4064
	if (read_format & PERF_FORMAT_ID)
4065
		values[n++] = primary_event_id(leader);
4066

4067
	__output_copy(handle, values, n * sizeof(u64));
4068

4069
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4070 4071
		n = 0;

4072
		if (sub != event)
4073 4074
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4075
		values[n++] = perf_event_count(sub);
4076
		if (read_format & PERF_FORMAT_ID)
4077
			values[n++] = primary_event_id(sub);
4078

4079
		__output_copy(handle, values, n * sizeof(u64));
4080 4081 4082
	}
}

4083 4084 4085
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4086
static void perf_output_read(struct perf_output_handle *handle,
4087
			     struct perf_event *event)
4088
{
4089
	u64 enabled = 0, running = 0, now;
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4101
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4102
		calc_timer_values(event, &now, &enabled, &running);
4103

4104
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4105
		perf_output_read_group(handle, event, enabled, running);
4106
	else
4107
		perf_output_read_one(handle, event, enabled, running);
4108 4109
}

4110 4111 4112
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4113
			struct perf_event *event)
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4144
		perf_output_read(handle, event);
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4155
			__output_copy(handle, data->callchain, size);
4156 4157 4158 4159 4160 4161 4162 4163 4164
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4165 4166
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4227 4228 4229 4230 4231

	if (sample_type & PERF_SAMPLE_STACK_USER)
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
A
Andi Kleen 已提交
4232 4233 4234

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4235 4236 4237

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4238 4239 4240 4241
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4242
			 struct perf_event *event,
4243
			 struct pt_regs *regs)
4244
{
4245
	u64 sample_type = event->attr.sample_type;
4246

4247
	header->type = PERF_RECORD_SAMPLE;
4248
	header->size = sizeof(*header) + event->header_size;
4249 4250 4251

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4252

4253
	__perf_event_header__init_id(header, data, event);
4254

4255
	if (sample_type & PERF_SAMPLE_IP)
4256 4257
		data->ip = perf_instruction_pointer(regs);

4258
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4259
		int size = 1;
4260

4261
		data->callchain = perf_callchain(event, regs);
4262 4263 4264 4265 4266

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4267 4268
	}

4269
	if (sample_type & PERF_SAMPLE_RAW) {
4270 4271 4272 4273 4274 4275 4276 4277
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4278
		header->size += size;
4279
	}
4280 4281 4282 4283 4284 4285 4286 4287 4288

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4332
}
4333

4334
static void perf_event_output(struct perf_event *event,
4335 4336 4337 4338 4339
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4340

4341 4342 4343
	/* protect the callchain buffers */
	rcu_read_lock();

4344
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4345

4346
	if (perf_output_begin(&handle, event, header.size))
4347
		goto exit;
4348

4349
	perf_output_sample(&handle, &header, data, event);
4350

4351
	perf_output_end(&handle);
4352 4353 4354

exit:
	rcu_read_unlock();
4355 4356
}

4357
/*
4358
 * read event_id
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4369
perf_event_read_event(struct perf_event *event,
4370 4371 4372
			struct task_struct *task)
{
	struct perf_output_handle handle;
4373
	struct perf_sample_data sample;
4374
	struct perf_read_event read_event = {
4375
		.header = {
4376
			.type = PERF_RECORD_READ,
4377
			.misc = 0,
4378
			.size = sizeof(read_event) + event->read_size,
4379
		},
4380 4381
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4382
	};
4383
	int ret;
4384

4385
	perf_event_header__init_id(&read_event.header, &sample, event);
4386
	ret = perf_output_begin(&handle, event, read_event.header.size);
4387 4388 4389
	if (ret)
		return;

4390
	perf_output_put(&handle, read_event);
4391
	perf_output_read(&handle, event);
4392
	perf_event__output_id_sample(event, &handle, &sample);
4393

4394 4395 4396
	perf_output_end(&handle);
}

4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
typedef int  (perf_event_aux_match_cb)(struct perf_event *event, void *data);
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_match_cb match,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		if (match(event, data))
			output(event, data);
	}
}

static void
perf_event_aux(perf_event_aux_match_cb match,
	       perf_event_aux_output_cb output,
	       void *data,
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
		perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_aux_ctx(ctx, match, output, data);
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
		perf_event_aux_ctx(task_ctx, match, output, data);
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4455
/*
P
Peter Zijlstra 已提交
4456 4457
 * task tracking -- fork/exit
 *
4458
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4459 4460
 */

P
Peter Zijlstra 已提交
4461
struct perf_task_event {
4462
	struct task_struct		*task;
4463
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4464 4465 4466 4467 4468 4469

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4470 4471
		u32				tid;
		u32				ptid;
4472
		u64				time;
4473
	} event_id;
P
Peter Zijlstra 已提交
4474 4475
};

4476
static void perf_event_task_output(struct perf_event *event,
4477
				   void *data)
P
Peter Zijlstra 已提交
4478
{
4479
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4480
	struct perf_output_handle handle;
4481
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4482
	struct task_struct *task = task_event->task;
4483
	int ret, size = task_event->event_id.header.size;
4484

4485
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4486

4487
	ret = perf_output_begin(&handle, event,
4488
				task_event->event_id.header.size);
4489
	if (ret)
4490
		goto out;
P
Peter Zijlstra 已提交
4491

4492 4493
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4494

4495 4496
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4497

4498
	perf_output_put(&handle, task_event->event_id);
4499

4500 4501
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4502
	perf_output_end(&handle);
4503 4504
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4505 4506
}

4507 4508
static int perf_event_task_match(struct perf_event *event,
				 void *data __maybe_unused)
P
Peter Zijlstra 已提交
4509
{
4510 4511
	return event->attr.comm || event->attr.mmap ||
	       event->attr.mmap_data || event->attr.task;
P
Peter Zijlstra 已提交
4512 4513
}

4514 4515
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4516
			      int new)
P
Peter Zijlstra 已提交
4517
{
P
Peter Zijlstra 已提交
4518
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4519

4520 4521 4522
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4523 4524
		return;

P
Peter Zijlstra 已提交
4525
	task_event = (struct perf_task_event){
4526 4527
		.task	  = task,
		.task_ctx = task_ctx,
4528
		.event_id    = {
P
Peter Zijlstra 已提交
4529
			.header = {
4530
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4531
				.misc = 0,
4532
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4533
			},
4534 4535
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4536 4537
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4538
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4539 4540 4541
		},
	};

4542 4543 4544 4545
	perf_event_aux(perf_event_task_match,
		       perf_event_task_output,
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4546 4547
}

4548
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4549
{
4550
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4551 4552
}

4553 4554 4555 4556 4557
/*
 * comm tracking
 */

struct perf_comm_event {
4558 4559
	struct task_struct	*task;
	char			*comm;
4560 4561 4562 4563 4564 4565 4566
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4567
	} event_id;
4568 4569
};

4570
static void perf_event_comm_output(struct perf_event *event,
4571
				   void *data)
4572
{
4573
	struct perf_comm_event *comm_event = data;
4574
	struct perf_output_handle handle;
4575
	struct perf_sample_data sample;
4576
	int size = comm_event->event_id.header.size;
4577 4578 4579 4580
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4581
				comm_event->event_id.header.size);
4582 4583

	if (ret)
4584
		goto out;
4585

4586 4587
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4588

4589
	perf_output_put(&handle, comm_event->event_id);
4590
	__output_copy(&handle, comm_event->comm,
4591
				   comm_event->comm_size);
4592 4593 4594

	perf_event__output_id_sample(event, &handle, &sample);

4595
	perf_output_end(&handle);
4596 4597
out:
	comm_event->event_id.header.size = size;
4598 4599
}

4600 4601
static int perf_event_comm_match(struct perf_event *event,
				 void *data __maybe_unused)
4602
{
4603
	return event->attr.comm;
4604 4605
}

4606
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4607
{
4608
	char comm[TASK_COMM_LEN];
4609 4610
	unsigned int size;

4611
	memset(comm, 0, sizeof(comm));
4612
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4613
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4614 4615 4616 4617

	comm_event->comm = comm;
	comm_event->comm_size = size;

4618
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
4619

4620 4621 4622 4623
	perf_event_aux(perf_event_comm_match,
		       perf_event_comm_output,
		       comm_event,
		       NULL);
4624 4625
}

4626
void perf_event_comm(struct task_struct *task)
4627
{
4628
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4629 4630
	struct perf_event_context *ctx;
	int ctxn;
4631

4632
	rcu_read_lock();
P
Peter Zijlstra 已提交
4633 4634 4635 4636
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4637

P
Peter Zijlstra 已提交
4638 4639
		perf_event_enable_on_exec(ctx);
	}
4640
	rcu_read_unlock();
4641

4642
	if (!atomic_read(&nr_comm_events))
4643
		return;
4644

4645
	comm_event = (struct perf_comm_event){
4646
		.task	= task,
4647 4648
		/* .comm      */
		/* .comm_size */
4649
		.event_id  = {
4650
			.header = {
4651
				.type = PERF_RECORD_COMM,
4652 4653 4654 4655 4656
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4657 4658 4659
		},
	};

4660
	perf_event_comm_event(&comm_event);
4661 4662
}

4663 4664 4665 4666 4667
/*
 * mmap tracking
 */

struct perf_mmap_event {
4668 4669 4670 4671
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4672 4673 4674 4675 4676 4677 4678 4679 4680

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4681
	} event_id;
4682 4683
};

4684
static void perf_event_mmap_output(struct perf_event *event,
4685
				   void *data)
4686
{
4687
	struct perf_mmap_event *mmap_event = data;
4688
	struct perf_output_handle handle;
4689
	struct perf_sample_data sample;
4690
	int size = mmap_event->event_id.header.size;
4691
	int ret;
4692

4693 4694
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4695
				mmap_event->event_id.header.size);
4696
	if (ret)
4697
		goto out;
4698

4699 4700
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4701

4702
	perf_output_put(&handle, mmap_event->event_id);
4703
	__output_copy(&handle, mmap_event->file_name,
4704
				   mmap_event->file_size);
4705 4706 4707

	perf_event__output_id_sample(event, &handle, &sample);

4708
	perf_output_end(&handle);
4709 4710
out:
	mmap_event->event_id.header.size = size;
4711 4712
}

4713
static int perf_event_mmap_match(struct perf_event *event,
4714
				 void *data)
4715
{
4716 4717 4718
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;
4719

4720 4721
	return (!executable && event->attr.mmap_data) ||
	       (executable && event->attr.mmap);
4722 4723
}

4724
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4725
{
4726 4727
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4728 4729 4730
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4731
	const char *name;
4732

4733 4734
	memset(tmp, 0, sizeof(tmp));

4735
	if (file) {
4736
		/*
4737
		 * d_path works from the end of the rb backwards, so we
4738 4739 4740 4741
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4742 4743 4744 4745
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4746
		name = d_path(&file->f_path, buf, PATH_MAX);
4747 4748 4749 4750 4751
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4752 4753
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4754 4755
				       sizeof(tmp) - 1);
			tmp[sizeof(tmp) - 1] = '\0';
4756
			goto got_name;
4757
		}
4758 4759 4760 4761

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4762 4763 4764 4765 4766 4767 4768 4769
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4770 4771
		}

4772 4773 4774 4775 4776
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4777
	size = ALIGN(strlen(name)+1, sizeof(u64));
4778 4779 4780 4781

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4782 4783 4784
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

4785
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4786

4787 4788 4789 4790
	perf_event_aux(perf_event_mmap_match,
		       perf_event_mmap_output,
		       mmap_event,
		       NULL);
4791

4792 4793 4794
	kfree(buf);
}

4795
void perf_event_mmap(struct vm_area_struct *vma)
4796
{
4797 4798
	struct perf_mmap_event mmap_event;

4799
	if (!atomic_read(&nr_mmap_events))
4800 4801 4802
		return;

	mmap_event = (struct perf_mmap_event){
4803
		.vma	= vma,
4804 4805
		/* .file_name */
		/* .file_size */
4806
		.event_id  = {
4807
			.header = {
4808
				.type = PERF_RECORD_MMAP,
4809
				.misc = PERF_RECORD_MISC_USER,
4810 4811 4812 4813
				/* .size */
			},
			/* .pid */
			/* .tid */
4814 4815
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4816
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4817 4818 4819
		},
	};

4820
	perf_event_mmap_event(&mmap_event);
4821 4822
}

4823 4824 4825 4826
/*
 * IRQ throttle logging
 */

4827
static void perf_log_throttle(struct perf_event *event, int enable)
4828 4829
{
	struct perf_output_handle handle;
4830
	struct perf_sample_data sample;
4831 4832 4833 4834 4835
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4836
		u64				id;
4837
		u64				stream_id;
4838 4839
	} throttle_event = {
		.header = {
4840
			.type = PERF_RECORD_THROTTLE,
4841 4842 4843
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4844
		.time		= perf_clock(),
4845 4846
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4847 4848
	};

4849
	if (enable)
4850
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4851

4852 4853 4854
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4855
				throttle_event.header.size);
4856 4857 4858 4859
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4860
	perf_event__output_id_sample(event, &handle, &sample);
4861 4862 4863
	perf_output_end(&handle);
}

4864
/*
4865
 * Generic event overflow handling, sampling.
4866 4867
 */

4868
static int __perf_event_overflow(struct perf_event *event,
4869 4870
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4871
{
4872 4873
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4874
	u64 seq;
4875 4876
	int ret = 0;

4877 4878 4879 4880 4881 4882 4883
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4884 4885 4886 4887 4888 4889 4890 4891 4892
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
4893 4894
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4895 4896
			ret = 1;
		}
4897
	}
4898

4899
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4900
		u64 now = perf_clock();
4901
		s64 delta = now - hwc->freq_time_stamp;
4902

4903
		hwc->freq_time_stamp = now;
4904

4905
		if (delta > 0 && delta < 2*TICK_NSEC)
4906
			perf_adjust_period(event, delta, hwc->last_period, true);
4907 4908
	}

4909 4910
	/*
	 * XXX event_limit might not quite work as expected on inherited
4911
	 * events
4912 4913
	 */

4914 4915
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4916
		ret = 1;
4917
		event->pending_kill = POLL_HUP;
4918 4919
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4920 4921
	}

4922
	if (event->overflow_handler)
4923
		event->overflow_handler(event, data, regs);
4924
	else
4925
		perf_event_output(event, data, regs);
4926

P
Peter Zijlstra 已提交
4927
	if (event->fasync && event->pending_kill) {
4928 4929
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4930 4931
	}

4932
	return ret;
4933 4934
}

4935
int perf_event_overflow(struct perf_event *event,
4936 4937
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4938
{
4939
	return __perf_event_overflow(event, 1, data, regs);
4940 4941
}

4942
/*
4943
 * Generic software event infrastructure
4944 4945
 */

4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4957
/*
4958 4959
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4960 4961 4962 4963
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4964
static u64 perf_swevent_set_period(struct perf_event *event)
4965
{
4966
	struct hw_perf_event *hwc = &event->hw;
4967 4968 4969 4970 4971
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4972 4973

again:
4974
	old = val = local64_read(&hwc->period_left);
4975 4976
	if (val < 0)
		return 0;
4977

4978 4979 4980
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4981
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4982
		goto again;
4983

4984
	return nr;
4985 4986
}

4987
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4988
				    struct perf_sample_data *data,
4989
				    struct pt_regs *regs)
4990
{
4991
	struct hw_perf_event *hwc = &event->hw;
4992
	int throttle = 0;
4993

4994 4995
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4996

4997 4998
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4999

5000
	for (; overflow; overflow--) {
5001
		if (__perf_event_overflow(event, throttle,
5002
					    data, regs)) {
5003 5004 5005 5006 5007 5008
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5009
		throttle = 1;
5010
	}
5011 5012
}

P
Peter Zijlstra 已提交
5013
static void perf_swevent_event(struct perf_event *event, u64 nr,
5014
			       struct perf_sample_data *data,
5015
			       struct pt_regs *regs)
5016
{
5017
	struct hw_perf_event *hwc = &event->hw;
5018

5019
	local64_add(nr, &event->count);
5020

5021 5022 5023
	if (!regs)
		return;

5024
	if (!is_sampling_event(event))
5025
		return;
5026

5027 5028 5029 5030 5031 5032
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5033
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5034
		return perf_swevent_overflow(event, 1, data, regs);
5035

5036
	if (local64_add_negative(nr, &hwc->period_left))
5037
		return;
5038

5039
	perf_swevent_overflow(event, 0, data, regs);
5040 5041
}

5042 5043 5044
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5045
	if (event->hw.state & PERF_HES_STOPPED)
5046
		return 1;
P
Peter Zijlstra 已提交
5047

5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5059
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5060
				enum perf_type_id type,
L
Li Zefan 已提交
5061 5062 5063
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5064
{
5065
	if (event->attr.type != type)
5066
		return 0;
5067

5068
	if (event->attr.config != event_id)
5069 5070
		return 0;

5071 5072
	if (perf_exclude_event(event, regs))
		return 0;
5073 5074 5075 5076

	return 1;
}

5077 5078 5079 5080 5081 5082 5083
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5084 5085
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5086
{
5087 5088 5089 5090
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5091

5092 5093
/* For the read side: events when they trigger */
static inline struct hlist_head *
5094
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5095 5096
{
	struct swevent_hlist *hlist;
5097

5098
	hlist = rcu_dereference(swhash->swevent_hlist);
5099 5100 5101
	if (!hlist)
		return NULL;

5102 5103 5104 5105 5106
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5107
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5118
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5119 5120 5121 5122 5123
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5124 5125 5126
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5127
				    u64 nr,
5128 5129
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5130
{
5131
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5132
	struct perf_event *event;
5133
	struct hlist_head *head;
5134

5135
	rcu_read_lock();
5136
	head = find_swevent_head_rcu(swhash, type, event_id);
5137 5138 5139
	if (!head)
		goto end;

5140
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5141
		if (perf_swevent_match(event, type, event_id, data, regs))
5142
			perf_swevent_event(event, nr, data, regs);
5143
	}
5144 5145
end:
	rcu_read_unlock();
5146 5147
}

5148
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5149
{
5150
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5151

5152
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5153
}
I
Ingo Molnar 已提交
5154
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5155

5156
inline void perf_swevent_put_recursion_context(int rctx)
5157
{
5158
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5159

5160
	put_recursion_context(swhash->recursion, rctx);
5161
}
5162

5163
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5164
{
5165
	struct perf_sample_data data;
5166 5167
	int rctx;

5168
	preempt_disable_notrace();
5169 5170 5171
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5172

5173
	perf_sample_data_init(&data, addr, 0);
5174

5175
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5176 5177

	perf_swevent_put_recursion_context(rctx);
5178
	preempt_enable_notrace();
5179 5180
}

5181
static void perf_swevent_read(struct perf_event *event)
5182 5183 5184
{
}

P
Peter Zijlstra 已提交
5185
static int perf_swevent_add(struct perf_event *event, int flags)
5186
{
5187
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5188
	struct hw_perf_event *hwc = &event->hw;
5189 5190
	struct hlist_head *head;

5191
	if (is_sampling_event(event)) {
5192
		hwc->last_period = hwc->sample_period;
5193
		perf_swevent_set_period(event);
5194
	}
5195

P
Peter Zijlstra 已提交
5196 5197
	hwc->state = !(flags & PERF_EF_START);

5198
	head = find_swevent_head(swhash, event);
5199 5200 5201 5202 5203
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5204 5205 5206
	return 0;
}

P
Peter Zijlstra 已提交
5207
static void perf_swevent_del(struct perf_event *event, int flags)
5208
{
5209
	hlist_del_rcu(&event->hlist_entry);
5210 5211
}

P
Peter Zijlstra 已提交
5212
static void perf_swevent_start(struct perf_event *event, int flags)
5213
{
P
Peter Zijlstra 已提交
5214
	event->hw.state = 0;
5215
}
I
Ingo Molnar 已提交
5216

P
Peter Zijlstra 已提交
5217
static void perf_swevent_stop(struct perf_event *event, int flags)
5218
{
P
Peter Zijlstra 已提交
5219
	event->hw.state = PERF_HES_STOPPED;
5220 5221
}

5222 5223
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5224
swevent_hlist_deref(struct swevent_htable *swhash)
5225
{
5226 5227
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5228 5229
}

5230
static void swevent_hlist_release(struct swevent_htable *swhash)
5231
{
5232
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5233

5234
	if (!hlist)
5235 5236
		return;

5237
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5238
	kfree_rcu(hlist, rcu_head);
5239 5240 5241 5242
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5243
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5244

5245
	mutex_lock(&swhash->hlist_mutex);
5246

5247 5248
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5249

5250
	mutex_unlock(&swhash->hlist_mutex);
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5268
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5269 5270
	int err = 0;

5271
	mutex_lock(&swhash->hlist_mutex);
5272

5273
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5274 5275 5276 5277 5278 5279 5280
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5281
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5282
	}
5283
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5284
exit:
5285
	mutex_unlock(&swhash->hlist_mutex);
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5309
fail:
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5320
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5321

5322 5323 5324
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5325

5326 5327
	WARN_ON(event->parent);

5328
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5329 5330 5331 5332 5333
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5334
	u64 event_id = event->attr.config;
5335 5336 5337 5338

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5339 5340 5341 5342 5343 5344
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5345 5346 5347 5348 5349 5350 5351 5352 5353
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5354
	if (event_id >= PERF_COUNT_SW_MAX)
5355 5356 5357 5358 5359 5360 5361 5362 5363
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5364
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5365 5366 5367 5368 5369 5370
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5371 5372 5373 5374 5375
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5376
static struct pmu perf_swevent = {
5377
	.task_ctx_nr	= perf_sw_context,
5378

5379
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5380 5381 5382 5383
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5384
	.read		= perf_swevent_read,
5385 5386

	.event_idx	= perf_swevent_event_idx,
5387 5388
};

5389 5390
#ifdef CONFIG_EVENT_TRACING

5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5405 5406
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5407 5408 5409 5410
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5411 5412 5413 5414 5415 5416 5417 5418 5419
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5420 5421
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5422 5423
{
	struct perf_sample_data data;
5424 5425
	struct perf_event *event;

5426 5427 5428 5429 5430
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5431
	perf_sample_data_init(&data, addr, 0);
5432 5433
	data.raw = &raw;

5434
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5435
		if (perf_tp_event_match(event, &data, regs))
5436
			perf_swevent_event(event, count, &data, regs);
5437
	}
5438

5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5464
	perf_swevent_put_recursion_context(rctx);
5465 5466 5467
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5468
static void tp_perf_event_destroy(struct perf_event *event)
5469
{
5470
	perf_trace_destroy(event);
5471 5472
}

5473
static int perf_tp_event_init(struct perf_event *event)
5474
{
5475 5476
	int err;

5477 5478 5479
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5480 5481 5482 5483 5484 5485
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5486 5487
	err = perf_trace_init(event);
	if (err)
5488
		return err;
5489

5490
	event->destroy = tp_perf_event_destroy;
5491

5492 5493 5494 5495
	return 0;
}

static struct pmu perf_tracepoint = {
5496 5497
	.task_ctx_nr	= perf_sw_context,

5498
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5499 5500 5501 5502
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5503
	.read		= perf_swevent_read,
5504 5505

	.event_idx	= perf_swevent_event_idx,
5506 5507 5508 5509
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5510
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5511
}
L
Li Zefan 已提交
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5536
#else
L
Li Zefan 已提交
5537

5538
static inline void perf_tp_register(void)
5539 5540
{
}
L
Li Zefan 已提交
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5551
#endif /* CONFIG_EVENT_TRACING */
5552

5553
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5554
void perf_bp_event(struct perf_event *bp, void *data)
5555
{
5556 5557 5558
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5559
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5560

P
Peter Zijlstra 已提交
5561
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5562
		perf_swevent_event(bp, 1, &sample, regs);
5563 5564 5565
}
#endif

5566 5567 5568
/*
 * hrtimer based swevent callback
 */
5569

5570
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5571
{
5572 5573 5574 5575 5576
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5577

5578
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5579 5580 5581 5582

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5583
	event->pmu->read(event);
5584

5585
	perf_sample_data_init(&data, 0, event->hw.last_period);
5586 5587 5588
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5589
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5590
			if (__perf_event_overflow(event, 1, &data, regs))
5591 5592
				ret = HRTIMER_NORESTART;
	}
5593

5594 5595
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5596

5597
	return ret;
5598 5599
}

5600
static void perf_swevent_start_hrtimer(struct perf_event *event)
5601
{
5602
	struct hw_perf_event *hwc = &event->hw;
5603 5604 5605 5606
	s64 period;

	if (!is_sampling_event(event))
		return;
5607

5608 5609 5610 5611
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5612

5613 5614 5615 5616 5617
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5618
				ns_to_ktime(period), 0,
5619
				HRTIMER_MODE_REL_PINNED, 0);
5620
}
5621 5622

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5623
{
5624 5625
	struct hw_perf_event *hwc = &event->hw;

5626
	if (is_sampling_event(event)) {
5627
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5628
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5629 5630 5631

		hrtimer_cancel(&hwc->hrtimer);
	}
5632 5633
}

P
Peter Zijlstra 已提交
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
5654
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
5655 5656 5657 5658
		event->attr.freq = 0;
	}
}

5659 5660 5661 5662 5663
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5664
{
5665 5666 5667
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5668
	now = local_clock();
5669 5670
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5671 5672
}

P
Peter Zijlstra 已提交
5673
static void cpu_clock_event_start(struct perf_event *event, int flags)
5674
{
P
Peter Zijlstra 已提交
5675
	local64_set(&event->hw.prev_count, local_clock());
5676 5677 5678
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5679
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5680
{
5681 5682 5683
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5684

P
Peter Zijlstra 已提交
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5698 5699 5700 5701
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5702

5703 5704 5705 5706 5707 5708 5709 5710
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

5711 5712 5713 5714 5715 5716
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5717 5718
	perf_swevent_init_hrtimer(event);

5719
	return 0;
5720 5721
}

5722
static struct pmu perf_cpu_clock = {
5723 5724
	.task_ctx_nr	= perf_sw_context,

5725
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5726 5727 5728 5729
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5730
	.read		= cpu_clock_event_read,
5731 5732

	.event_idx	= perf_swevent_event_idx,
5733 5734 5735 5736 5737 5738 5739
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5740
{
5741 5742
	u64 prev;
	s64 delta;
5743

5744 5745 5746 5747
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5748

P
Peter Zijlstra 已提交
5749
static void task_clock_event_start(struct perf_event *event, int flags)
5750
{
P
Peter Zijlstra 已提交
5751
	local64_set(&event->hw.prev_count, event->ctx->time);
5752 5753 5754
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5755
static void task_clock_event_stop(struct perf_event *event, int flags)
5756 5757 5758
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5759 5760 5761 5762 5763 5764
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5765

P
Peter Zijlstra 已提交
5766 5767 5768 5769 5770 5771
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5772 5773 5774 5775
}

static void task_clock_event_read(struct perf_event *event)
{
5776 5777 5778
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5779 5780 5781 5782 5783

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5784
{
5785 5786 5787 5788 5789 5790
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

5791 5792 5793 5794 5795 5796
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5797 5798
	perf_swevent_init_hrtimer(event);

5799
	return 0;
L
Li Zefan 已提交
5800 5801
}

5802
static struct pmu perf_task_clock = {
5803 5804
	.task_ctx_nr	= perf_sw_context,

5805
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5806 5807 5808 5809
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5810
	.read		= task_clock_event_read,
5811 5812

	.event_idx	= perf_swevent_event_idx,
5813
};
L
Li Zefan 已提交
5814

P
Peter Zijlstra 已提交
5815
static void perf_pmu_nop_void(struct pmu *pmu)
5816 5817
{
}
L
Li Zefan 已提交
5818

P
Peter Zijlstra 已提交
5819
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5820
{
P
Peter Zijlstra 已提交
5821
	return 0;
L
Li Zefan 已提交
5822 5823
}

P
Peter Zijlstra 已提交
5824
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5825
{
P
Peter Zijlstra 已提交
5826
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5827 5828
}

P
Peter Zijlstra 已提交
5829 5830 5831 5832 5833
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5834

P
Peter Zijlstra 已提交
5835
static void perf_pmu_cancel_txn(struct pmu *pmu)
5836
{
P
Peter Zijlstra 已提交
5837
	perf_pmu_enable(pmu);
5838 5839
}

5840 5841 5842 5843 5844
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
5845 5846 5847 5848 5849
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5850
{
P
Peter Zijlstra 已提交
5851
	struct pmu *pmu;
5852

P
Peter Zijlstra 已提交
5853 5854
	if (ctxn < 0)
		return NULL;
5855

P
Peter Zijlstra 已提交
5856 5857 5858 5859
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5860

P
Peter Zijlstra 已提交
5861
	return NULL;
5862 5863
}

5864
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5865
{
5866 5867 5868 5869 5870 5871 5872
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

5873 5874
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
5875 5876 5877 5878 5879 5880
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5881

P
Peter Zijlstra 已提交
5882
	mutex_lock(&pmus_lock);
5883
	/*
P
Peter Zijlstra 已提交
5884
	 * Like a real lame refcount.
5885
	 */
5886 5887 5888
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5889
			goto out;
5890
		}
P
Peter Zijlstra 已提交
5891
	}
5892

5893
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5894 5895
out:
	mutex_unlock(&pmus_lock);
5896
}
P
Peter Zijlstra 已提交
5897
static struct idr pmu_idr;
5898

P
Peter Zijlstra 已提交
5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

5931
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5952
static struct lock_class_key cpuctx_mutex;
5953
static struct lock_class_key cpuctx_lock;
5954

P
Peter Zijlstra 已提交
5955
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5956
{
P
Peter Zijlstra 已提交
5957
	int cpu, ret;
5958

5959
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5960 5961 5962 5963
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5964

P
Peter Zijlstra 已提交
5965 5966 5967 5968 5969 5970
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
5971 5972 5973
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
5974 5975 5976 5977 5978
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5979 5980 5981 5982 5983 5984
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5985
skip_type:
P
Peter Zijlstra 已提交
5986 5987 5988
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5989

W
Wei Yongjun 已提交
5990
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
5991 5992
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5993
		goto free_dev;
5994

P
Peter Zijlstra 已提交
5995 5996 5997 5998
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5999
		__perf_event_init_context(&cpuctx->ctx);
6000
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6001
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6002
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6003
		cpuctx->ctx.pmu = pmu;
6004 6005
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6006
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6007
	}
6008

P
Peter Zijlstra 已提交
6009
got_cpu_context:
P
Peter Zijlstra 已提交
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6024
		}
6025
	}
6026

P
Peter Zijlstra 已提交
6027 6028 6029 6030 6031
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6032 6033 6034
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6035
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6036 6037
	ret = 0;
unlock:
6038 6039
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6040
	return ret;
P
Peter Zijlstra 已提交
6041

P
Peter Zijlstra 已提交
6042 6043 6044 6045
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6046 6047 6048 6049
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6050 6051 6052
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6053 6054
}

6055
void perf_pmu_unregister(struct pmu *pmu)
6056
{
6057 6058 6059
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6060

6061
	/*
P
Peter Zijlstra 已提交
6062 6063
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6064
	 */
6065
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6066
	synchronize_rcu();
6067

P
Peter Zijlstra 已提交
6068
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6069 6070
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6071 6072
	device_del(pmu->dev);
	put_device(pmu->dev);
6073
	free_pmu_context(pmu);
6074
}
6075

6076 6077 6078 6079
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6080
	int ret;
6081 6082

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6083 6084 6085 6086

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6087
	if (pmu) {
6088
		event->pmu = pmu;
6089 6090 6091
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6092
		goto unlock;
6093
	}
P
Peter Zijlstra 已提交
6094

6095
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6096
		event->pmu = pmu;
6097
		ret = pmu->event_init(event);
6098
		if (!ret)
P
Peter Zijlstra 已提交
6099
			goto unlock;
6100

6101 6102
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6103
			goto unlock;
6104
		}
6105
	}
P
Peter Zijlstra 已提交
6106 6107
	pmu = ERR_PTR(-ENOENT);
unlock:
6108
	srcu_read_unlock(&pmus_srcu, idx);
6109

6110
	return pmu;
6111 6112
}

T
Thomas Gleixner 已提交
6113
/*
6114
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6115
 */
6116
static struct perf_event *
6117
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6118 6119 6120
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6121 6122
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6123
{
P
Peter Zijlstra 已提交
6124
	struct pmu *pmu;
6125 6126
	struct perf_event *event;
	struct hw_perf_event *hwc;
6127
	long err;
T
Thomas Gleixner 已提交
6128

6129 6130 6131 6132 6133
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6134
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6135
	if (!event)
6136
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6137

6138
	/*
6139
	 * Single events are their own group leaders, with an
6140 6141 6142
	 * empty sibling list:
	 */
	if (!group_leader)
6143
		group_leader = event;
6144

6145 6146
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6147

6148 6149 6150
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6151 6152
	INIT_LIST_HEAD(&event->rb_entry);

6153
	init_waitqueue_head(&event->waitq);
6154
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6155

6156
	mutex_init(&event->mmap_mutex);
6157

6158
	atomic_long_set(&event->refcount, 1);
6159 6160 6161 6162 6163
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6164

6165
	event->parent		= parent_event;
6166

6167
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6168
	event->id		= atomic64_inc_return(&perf_event_id);
6169

6170
	event->state		= PERF_EVENT_STATE_INACTIVE;
6171

6172 6173
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6174 6175 6176

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6177 6178 6179 6180
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6181
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6182 6183 6184 6185
			event->hw.bp_target = task;
#endif
	}

6186
	if (!overflow_handler && parent_event) {
6187
		overflow_handler = parent_event->overflow_handler;
6188 6189
		context = parent_event->overflow_handler_context;
	}
6190

6191
	event->overflow_handler	= overflow_handler;
6192
	event->overflow_handler_context = context;
6193

J
Jiri Olsa 已提交
6194
	perf_event__state_init(event);
6195

6196
	pmu = NULL;
6197

6198
	hwc = &event->hw;
6199
	hwc->sample_period = attr->sample_period;
6200
	if (attr->freq && attr->sample_freq)
6201
		hwc->sample_period = 1;
6202
	hwc->last_period = hwc->sample_period;
6203

6204
	local64_set(&hwc->period_left, hwc->sample_period);
6205

6206
	/*
6207
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6208
	 */
6209
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6210 6211
		goto done;

6212
	pmu = perf_init_event(event);
6213

6214 6215
done:
	err = 0;
6216
	if (!pmu)
6217
		err = -EINVAL;
6218 6219
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6220

6221
	if (err) {
6222 6223 6224
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6225
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6226
	}
6227

6228
	if (!event->parent) {
6229
		if (event->attach_state & PERF_ATTACH_TASK)
6230
			static_key_slow_inc(&perf_sched_events.key);
6231
		if (event->attr.mmap || event->attr.mmap_data)
6232 6233 6234 6235 6236
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6237 6238 6239 6240 6241 6242 6243
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6244 6245 6246 6247 6248 6249
		if (has_branch_stack(event)) {
			static_key_slow_inc(&perf_sched_events.key);
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_inc(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
6250
	}
6251

6252
	return event;
T
Thomas Gleixner 已提交
6253 6254
}

6255 6256
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6257 6258
{
	u32 size;
6259
	int ret;
6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6284 6285 6286
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6287 6288
	 */
	if (size > sizeof(*attr)) {
6289 6290 6291
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6292

6293 6294
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6295

6296
		for (; addr < end; addr++) {
6297 6298 6299 6300 6301 6302
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6303
		size = sizeof(*attr);
6304 6305 6306 6307 6308 6309
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6310
	if (attr->__reserved_1)
6311 6312 6313 6314 6315 6316 6317 6318
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* kernel level capture: check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
	}
6353

6354
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6355
		ret = perf_reg_validate(attr->sample_regs_user);
6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6374

6375 6376 6377 6378 6379 6380 6381 6382 6383
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6384 6385
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6386
{
6387
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6388 6389
	int ret = -EINVAL;

6390
	if (!output_event)
6391 6392
		goto set;

6393 6394
	/* don't allow circular references */
	if (event == output_event)
6395 6396
		goto out;

6397 6398 6399 6400 6401 6402 6403
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6404
	 * If its not a per-cpu rb, it must be the same task.
6405 6406 6407 6408
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6409
set:
6410
	mutex_lock(&event->mmap_mutex);
6411 6412 6413
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6414

6415
	if (output_event) {
6416 6417 6418
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6419
			goto unlock;
6420 6421
	}

6422 6423
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
6424 6425
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6426
	ret = 0;
6427 6428 6429
unlock:
	mutex_unlock(&event->mmap_mutex);

6430 6431
	if (old_rb)
		ring_buffer_put(old_rb);
6432 6433 6434 6435
out:
	return ret;
}

T
Thomas Gleixner 已提交
6436
/**
6437
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6438
 *
6439
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6440
 * @pid:		target pid
I
Ingo Molnar 已提交
6441
 * @cpu:		target cpu
6442
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6443
 */
6444 6445
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6446
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6447
{
6448 6449
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6450 6451 6452
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6453
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6454
	struct task_struct *task = NULL;
6455
	struct pmu *pmu;
6456
	int event_fd;
6457
	int move_group = 0;
6458
	int err;
T
Thomas Gleixner 已提交
6459

6460
	/* for future expandability... */
S
Stephane Eranian 已提交
6461
	if (flags & ~PERF_FLAG_ALL)
6462 6463
		return -EINVAL;

6464 6465 6466
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6467

6468 6469 6470 6471 6472
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6473
	if (attr.freq) {
6474
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6475 6476 6477
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6478 6479 6480 6481 6482 6483 6484 6485 6486
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6487
	event_fd = get_unused_fd();
6488 6489 6490
	if (event_fd < 0)
		return event_fd;

6491
	if (group_fd != -1) {
6492 6493
		err = perf_fget_light(group_fd, &group);
		if (err)
6494
			goto err_fd;
6495
		group_leader = group.file->private_data;
6496 6497 6498 6499 6500 6501
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6502
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6503 6504 6505 6506 6507 6508 6509
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6510 6511
	get_online_cpus();

6512 6513
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6514 6515
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6516
		goto err_task;
6517 6518
	}

S
Stephane Eranian 已提交
6519 6520 6521 6522
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6523 6524 6525 6526 6527 6528
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6529
		static_key_slow_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6530 6531
	}

6532 6533 6534 6535 6536
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6560 6561 6562 6563

	/*
	 * Get the target context (task or percpu):
	 */
6564
	ctx = find_get_context(pmu, task, event->cpu);
6565 6566
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6567
		goto err_alloc;
6568 6569
	}

6570 6571 6572 6573 6574
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6575
	/*
6576
	 * Look up the group leader (we will attach this event to it):
6577
	 */
6578
	if (group_leader) {
6579
		err = -EINVAL;
6580 6581

		/*
I
Ingo Molnar 已提交
6582 6583 6584 6585
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6586
			goto err_context;
I
Ingo Molnar 已提交
6587 6588 6589
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6590
		 */
6591 6592 6593 6594 6595 6596 6597 6598
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6599 6600 6601
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6602
		if (attr.exclusive || attr.pinned)
6603
			goto err_context;
6604 6605 6606 6607 6608
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6609
			goto err_context;
6610
	}
T
Thomas Gleixner 已提交
6611

6612 6613 6614
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6615
		goto err_context;
6616
	}
6617

6618 6619 6620 6621
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6622
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
6623 6624 6625 6626 6627 6628 6629

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
6630 6631
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6632
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
6633
			perf_event__state_init(sibling);
6634 6635 6636 6637
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6638
	}
6639

6640
	WARN_ON_ONCE(ctx->parent_ctx);
6641
	mutex_lock(&ctx->mutex);
6642 6643

	if (move_group) {
6644
		synchronize_rcu();
6645
		perf_install_in_context(ctx, group_leader, event->cpu);
6646 6647 6648
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6649
			perf_install_in_context(ctx, sibling, event->cpu);
6650 6651 6652 6653
			get_ctx(ctx);
		}
	}

6654
	perf_install_in_context(ctx, event, event->cpu);
6655
	++ctx->generation;
6656
	perf_unpin_context(ctx);
6657
	mutex_unlock(&ctx->mutex);
6658

6659 6660
	put_online_cpus();

6661
	event->owner = current;
P
Peter Zijlstra 已提交
6662

6663 6664 6665
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6666

6667 6668 6669 6670
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6671
	perf_event__id_header_size(event);
6672

6673 6674 6675 6676 6677 6678
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6679
	fdput(group);
6680 6681
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6682

6683
err_context:
6684
	perf_unpin_context(ctx);
6685
	put_ctx(ctx);
6686
err_alloc:
6687
	free_event(event);
P
Peter Zijlstra 已提交
6688
err_task:
6689
	put_online_cpus();
P
Peter Zijlstra 已提交
6690 6691
	if (task)
		put_task_struct(task);
6692
err_group_fd:
6693
	fdput(group);
6694 6695
err_fd:
	put_unused_fd(event_fd);
6696
	return err;
T
Thomas Gleixner 已提交
6697 6698
}

6699 6700 6701 6702 6703
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6704
 * @task: task to profile (NULL for percpu)
6705 6706 6707
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6708
				 struct task_struct *task,
6709 6710
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6711 6712
{
	struct perf_event_context *ctx;
6713
	struct perf_event *event;
6714
	int err;
6715

6716 6717 6718
	/*
	 * Get the target context (task or percpu):
	 */
6719

6720 6721
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6722 6723 6724 6725
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6726

M
Matt Helsley 已提交
6727
	ctx = find_get_context(event->pmu, task, cpu);
6728 6729
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6730
		goto err_free;
6731
	}
6732 6733 6734 6735 6736

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6737
	perf_unpin_context(ctx);
6738 6739 6740 6741
	mutex_unlock(&ctx->mutex);

	return event;

6742 6743 6744
err_free:
	free_event(event);
err:
6745
	return ERR_PTR(err);
6746
}
6747
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6748

6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

6782
static void sync_child_event(struct perf_event *child_event,
6783
			       struct task_struct *child)
6784
{
6785
	struct perf_event *parent_event = child_event->parent;
6786
	u64 child_val;
6787

6788 6789
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6790

P
Peter Zijlstra 已提交
6791
	child_val = perf_event_count(child_event);
6792 6793 6794 6795

	/*
	 * Add back the child's count to the parent's count:
	 */
6796
	atomic64_add(child_val, &parent_event->child_count);
6797 6798 6799 6800
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6801 6802

	/*
6803
	 * Remove this event from the parent's list
6804
	 */
6805 6806 6807 6808
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6809 6810

	/*
6811
	 * Release the parent event, if this was the last
6812 6813
	 * reference to it.
	 */
6814
	put_event(parent_event);
6815 6816
}

6817
static void
6818 6819
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6820
			 struct task_struct *child)
6821
{
6822 6823 6824 6825 6826
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6827

6828
	perf_remove_from_context(child_event);
6829

6830
	/*
6831
	 * It can happen that the parent exits first, and has events
6832
	 * that are still around due to the child reference. These
6833
	 * events need to be zapped.
6834
	 */
6835
	if (child_event->parent) {
6836 6837
		sync_child_event(child_event, child);
		free_event(child_event);
6838
	}
6839 6840
}

P
Peter Zijlstra 已提交
6841
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6842
{
6843 6844
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6845
	unsigned long flags;
6846

P
Peter Zijlstra 已提交
6847
	if (likely(!child->perf_event_ctxp[ctxn])) {
6848
		perf_event_task(child, NULL, 0);
6849
		return;
P
Peter Zijlstra 已提交
6850
	}
6851

6852
	local_irq_save(flags);
6853 6854 6855 6856 6857 6858
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6859
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6860 6861 6862

	/*
	 * Take the context lock here so that if find_get_context is
6863
	 * reading child->perf_event_ctxp, we wait until it has
6864 6865
	 * incremented the context's refcount before we do put_ctx below.
	 */
6866
	raw_spin_lock(&child_ctx->lock);
6867
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6868
	child->perf_event_ctxp[ctxn] = NULL;
6869 6870 6871
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6872
	 * the events from it.
6873 6874
	 */
	unclone_ctx(child_ctx);
6875
	update_context_time(child_ctx);
6876
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6877 6878

	/*
6879 6880 6881
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6882
	 */
6883
	perf_event_task(child, child_ctx, 0);
6884

6885 6886 6887
	/*
	 * We can recurse on the same lock type through:
	 *
6888 6889
	 *   __perf_event_exit_task()
	 *     sync_child_event()
6890 6891
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
6892 6893 6894
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6895
	mutex_lock(&child_ctx->mutex);
6896

6897
again:
6898 6899 6900 6901 6902
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6903
				 group_entry)
6904
		__perf_event_exit_task(child_event, child_ctx, child);
6905 6906

	/*
6907
	 * If the last event was a group event, it will have appended all
6908 6909 6910
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6911 6912
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6913
		goto again;
6914 6915 6916 6917

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6918 6919
}

P
Peter Zijlstra 已提交
6920 6921 6922 6923 6924
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6925
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6926 6927
	int ctxn;

P
Peter Zijlstra 已提交
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6943 6944 6945 6946
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

6959
	put_event(parent);
6960

6961
	perf_group_detach(event);
6962 6963 6964 6965
	list_del_event(event, ctx);
	free_event(event);
}

6966 6967
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6968
 * perf_event_init_task below, used by fork() in case of fail.
6969
 */
6970
void perf_event_free_task(struct task_struct *task)
6971
{
P
Peter Zijlstra 已提交
6972
	struct perf_event_context *ctx;
6973
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6974
	int ctxn;
6975

P
Peter Zijlstra 已提交
6976 6977 6978 6979
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6980

P
Peter Zijlstra 已提交
6981
		mutex_lock(&ctx->mutex);
6982
again:
P
Peter Zijlstra 已提交
6983 6984 6985
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6986

P
Peter Zijlstra 已提交
6987 6988 6989
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6990

P
Peter Zijlstra 已提交
6991 6992 6993
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6994

P
Peter Zijlstra 已提交
6995
		mutex_unlock(&ctx->mutex);
6996

P
Peter Zijlstra 已提交
6997 6998
		put_ctx(ctx);
	}
6999 7000
}

7001 7002 7003 7004 7005 7006 7007 7008
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7021
	unsigned long flags;
P
Peter Zijlstra 已提交
7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7034
					   child,
P
Peter Zijlstra 已提交
7035
					   group_leader, parent_event,
7036
				           NULL, NULL);
P
Peter Zijlstra 已提交
7037 7038
	if (IS_ERR(child_event))
		return child_event;
7039 7040 7041 7042 7043 7044

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7069 7070
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7071

7072 7073 7074 7075
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7076
	perf_event__id_header_size(child_event);
7077

P
Peter Zijlstra 已提交
7078 7079 7080
	/*
	 * Link it up in the child's context:
	 */
7081
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7082
	add_event_to_ctx(child_event, child_ctx);
7083
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7117 7118 7119 7120 7121
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7122
		   struct task_struct *child, int ctxn,
7123 7124 7125
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7126
	struct perf_event_context *child_ctx;
7127 7128 7129 7130

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7131 7132
	}

7133
	child_ctx = child->perf_event_ctxp[ctxn];
7134 7135 7136 7137 7138 7139 7140
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7141

7142
		child_ctx = alloc_perf_context(event->pmu, child);
7143 7144
		if (!child_ctx)
			return -ENOMEM;
7145

P
Peter Zijlstra 已提交
7146
		child->perf_event_ctxp[ctxn] = child_ctx;
7147 7148 7149 7150 7151 7152 7153 7154 7155
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7156 7157
}

7158
/*
7159
 * Initialize the perf_event context in task_struct
7160
 */
P
Peter Zijlstra 已提交
7161
int perf_event_init_context(struct task_struct *child, int ctxn)
7162
{
7163
	struct perf_event_context *child_ctx, *parent_ctx;
7164 7165
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7166
	struct task_struct *parent = current;
7167
	int inherited_all = 1;
7168
	unsigned long flags;
7169
	int ret = 0;
7170

P
Peter Zijlstra 已提交
7171
	if (likely(!parent->perf_event_ctxp[ctxn]))
7172 7173
		return 0;

7174
	/*
7175 7176
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7177
	 */
P
Peter Zijlstra 已提交
7178
	parent_ctx = perf_pin_task_context(parent, ctxn);
7179

7180 7181 7182 7183 7184 7185 7186
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7187 7188 7189 7190
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7191
	mutex_lock(&parent_ctx->mutex);
7192 7193 7194 7195 7196

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7197
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7198 7199
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7200 7201 7202
		if (ret)
			break;
	}
7203

7204 7205 7206 7207 7208 7209 7210 7211 7212
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7213
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7214 7215
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7216
		if (ret)
7217
			break;
7218 7219
	}

7220 7221 7222
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7223
	child_ctx = child->perf_event_ctxp[ctxn];
7224

7225
	if (child_ctx && inherited_all) {
7226 7227 7228
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7229 7230 7231
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7232
		 */
P
Peter Zijlstra 已提交
7233
		cloned_ctx = parent_ctx->parent_ctx;
7234 7235
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7236
			child_ctx->parent_gen = parent_ctx->parent_gen;
7237 7238 7239 7240 7241
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7242 7243
	}

P
Peter Zijlstra 已提交
7244
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7245
	mutex_unlock(&parent_ctx->mutex);
7246

7247
	perf_unpin_context(parent_ctx);
7248
	put_ctx(parent_ctx);
7249

7250
	return ret;
7251 7252
}

P
Peter Zijlstra 已提交
7253 7254 7255 7256 7257 7258 7259
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7260 7261 7262 7263
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7264 7265 7266 7267 7268 7269 7270 7271 7272
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7273 7274
static void __init perf_event_init_all_cpus(void)
{
7275
	struct swevent_htable *swhash;
7276 7277 7278
	int cpu;

	for_each_possible_cpu(cpu) {
7279 7280
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7281
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7282 7283 7284
	}
}

7285
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7286
{
P
Peter Zijlstra 已提交
7287
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7288

7289
	mutex_lock(&swhash->hlist_mutex);
7290
	if (swhash->hlist_refcount > 0) {
7291 7292
		struct swevent_hlist *hlist;

7293 7294 7295
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7296
	}
7297
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7298 7299
}

P
Peter Zijlstra 已提交
7300
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7301
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7302
{
7303 7304 7305 7306 7307 7308 7309
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7310
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7311
{
P
Peter Zijlstra 已提交
7312
	struct perf_event_context *ctx = __info;
7313
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7314

P
Peter Zijlstra 已提交
7315
	perf_pmu_rotate_stop(ctx->pmu);
7316

7317
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7318
		__perf_remove_from_context(event);
7319
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7320
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7321
}
P
Peter Zijlstra 已提交
7322 7323 7324 7325 7326 7327 7328 7329 7330

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7331
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7332 7333 7334 7335 7336 7337 7338 7339

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7340
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7341
{
7342
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7343

7344 7345 7346
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7347

P
Peter Zijlstra 已提交
7348
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7349 7350
}
#else
7351
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7352 7353
#endif

P
Peter Zijlstra 已提交
7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7374 7375 7376 7377 7378
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7379
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7380 7381

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7382
	case CPU_DOWN_FAILED:
7383
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7384 7385
		break;

P
Peter Zijlstra 已提交
7386
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7387
	case CPU_DOWN_PREPARE:
7388
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7389 7390 7391 7392 7393 7394 7395 7396 7397
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7398
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7399
{
7400 7401
	int ret;

P
Peter Zijlstra 已提交
7402 7403
	idr_init(&pmu_idr);

7404
	perf_event_init_all_cpus();
7405
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7406 7407 7408
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7409 7410
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7411
	register_reboot_notifier(&perf_reboot_notifier);
7412 7413 7414

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7415 7416 7417

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7418 7419 7420 7421 7422 7423 7424

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7425
}
P
Peter Zijlstra 已提交
7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7454 7455

#ifdef CONFIG_CGROUP_PERF
7456
static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
S
Stephane Eranian 已提交
7457 7458 7459
{
	struct perf_cgroup *jc;

7460
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7473
static void perf_cgroup_css_free(struct cgroup *cont)
S
Stephane Eranian 已提交
7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7489
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7490
{
7491 7492 7493 7494
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7495 7496
}

7497 7498
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7499 7500 7501 7502 7503 7504 7505 7506 7507
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7508
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7509 7510 7511
}

struct cgroup_subsys perf_subsys = {
7512 7513
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7514 7515
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7516
	.exit		= perf_cgroup_exit,
7517
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7518 7519
};
#endif /* CONFIG_CGROUP_PERF */