core.c 218.0 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
136 137
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
138 139
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
140

141 142 143 144 145 146 147
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

148 149 150 151 152 153
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
154 155 156 157
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
158
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
159
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
161

162 163 164
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
165
static atomic_t nr_freq_events __read_mostly;
166
static atomic_t nr_switch_events __read_mostly;
167

P
Peter Zijlstra 已提交
168 169 170 171
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

172
/*
173
 * perf event paranoia level:
174 175
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
176
 *   1 - disallow cpu events for unpriv
177
 *   2 - disallow kernel profiling for unpriv
178
 */
179
int sysctl_perf_event_paranoid __read_mostly = 1;
180

181 182
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 184

/*
185
 * max perf event sample rate
186
 */
187 188 189 190 191 192 193 194 195
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
196 197
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198 199 200 201 202 203

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
204
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
205
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206
}
P
Peter Zijlstra 已提交
207

208 209
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
210 211 212 213
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
214
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
215 216 217 218 219

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
238 239 240

	return 0;
}
241

242 243 244 245 246 247 248
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
249
static DEFINE_PER_CPU(u64, running_sample_length);
250

251
static void perf_duration_warn(struct irq_work *w)
252
{
253
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254
	u64 avg_local_sample_len;
255
	u64 local_samples_len;
256

257
	local_samples_len = __this_cpu_read(running_sample_length);
258 259 260 261 262
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
263
			avg_local_sample_len, allowed_ns >> 1,
264 265 266 267 268 269 270
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
271
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 273
	u64 avg_local_sample_len;
	u64 local_samples_len;
274

P
Peter Zijlstra 已提交
275
	if (allowed_ns == 0)
276 277 278
		return;

	/* decay the counter by 1 average sample */
279
	local_samples_len = __this_cpu_read(running_sample_length);
280 281
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
282
	__this_cpu_write(running_sample_length, local_samples_len);
283 284 285 286 287 288 289 290

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
291
	if (avg_local_sample_len <= allowed_ns)
292 293 294 295 296 297 298 299 300 301
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
302

303 304 305 306 307 308
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
309 310
}

311
static atomic64_t perf_event_id;
312

313 314 315 316
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
317 318 319 320 321
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
322

323
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
324

325
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
326
{
327
	return "pmu";
T
Thomas Gleixner 已提交
328 329
}

330 331 332 333 334
static inline u64 perf_clock(void)
{
	return local_clock();
}

335 336 337 338 339
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
340 341 342 343 344 345
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
362 363 364 365 366 367 368 369
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
386 387 388 389
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
390
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
429 430
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
431
	/*
432 433
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
434
	 */
435
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
436 437
		return;

438 439 440 441 442 443
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
444 445 446
}

static inline void
447 448
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
449 450 451 452
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

453 454 455 456 457 458
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
459 460 461 462
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
463
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 497
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
498 499 500 501 502 503 504 505 506

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
507 508
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
509 510 511 512 513 514 515 516 517 518 519

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
520
				WARN_ON_ONCE(cpuctx->cgrp);
521 522 523 524
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
525 526 527 528
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
529 530
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
531 532 533 534 535 536 537 538
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

539 540
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
541
{
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
564 565
}

566 567
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
568
{
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
587 588 589 590 591 592 593 594
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
595 596
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
597

598
	if (!f.file)
S
Stephane Eranian 已提交
599 600
		return -EBADF;

A
Al Viro 已提交
601
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
602
					 &perf_event_cgrp_subsys);
603 604 605 606
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
620
out:
621
	fdput(f);
S
Stephane Eranian 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

695 696
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
697 698 699
{
}

700 701
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
702 703 704 705 706 707 708 709 710 711 712
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
713 714
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

745 746 747 748 749 750 751 752
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
753
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 755 756 757 758 759 760 761 762
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
763 764
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
765
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
766 767 768
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
769

P
Peter Zijlstra 已提交
770
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 772
}

773
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774
{
775
	struct hrtimer *timer = &cpuctx->hrtimer;
776
	struct pmu *pmu = cpuctx->ctx.pmu;
777
	u64 interval;
778 779 780 781 782

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

783 784 785 786
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
787 788 789
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790

791
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792

P
Peter Zijlstra 已提交
793 794
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795
	timer->function = perf_mux_hrtimer_handler;
796 797
}

798
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799
{
800
	struct hrtimer *timer = &cpuctx->hrtimer;
801
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
802
	unsigned long flags;
803 804 805

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
806
		return 0;
807

P
Peter Zijlstra 已提交
808 809 810 811 812 813 814
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815

816
	return 0;
817 818
}

P
Peter Zijlstra 已提交
819
void perf_pmu_disable(struct pmu *pmu)
820
{
P
Peter Zijlstra 已提交
821 822 823
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
824 825
}

P
Peter Zijlstra 已提交
826
void perf_pmu_enable(struct pmu *pmu)
827
{
P
Peter Zijlstra 已提交
828 829 830
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
831 832
}

833
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834 835

/*
836 837 838 839
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
840
 */
841
static void perf_event_ctx_activate(struct perf_event_context *ctx)
842
{
843
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
844

845
	WARN_ON(!irqs_disabled());
846

847 848 849 850 851 852 853 854 855 856 857 858
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
859 860
}

861
static void get_ctx(struct perf_event_context *ctx)
862
{
863
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 865
}

866 867 868 869 870 871 872 873 874
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

875
static void put_ctx(struct perf_event_context *ctx)
876
{
877 878 879
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
880 881
		if (ctx->task)
			put_task_struct(ctx->task);
882
		call_rcu(&ctx->rcu_head, free_ctx);
883
	}
884 885
}

P
Peter Zijlstra 已提交
886 887 888 889 890 891 892
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
947 948
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
949 950 951 952 953 954 955 956 957 958 959 960
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
961
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
962 963 964 965 966 967 968 969 970
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
971 972 973 974 975 976
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
977 978 979 980 981 982 983
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

984 985 986 987 988 989 990
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
991
{
992 993 994 995 996
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
997
		ctx->parent_ctx = NULL;
998
	ctx->generation++;
999 1000

	return parent_ctx;
1001 1002
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1025
/*
1026
 * If we inherit events we want to return the parent event id
1027 1028
 * to userspace.
 */
1029
static u64 primary_event_id(struct perf_event *event)
1030
{
1031
	u64 id = event->id;
1032

1033 1034
	if (event->parent)
		id = event->parent->id;
1035 1036 1037 1038

	return id;
}

1039
/*
1040
 * Get the perf_event_context for a task and lock it.
1041 1042 1043
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1044
static struct perf_event_context *
P
Peter Zijlstra 已提交
1045
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046
{
1047
	struct perf_event_context *ctx;
1048

P
Peter Zijlstra 已提交
1049
retry:
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1061
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 1063 1064 1065
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1066
		 * perf_event_task_sched_out, though the
1067 1068 1069 1070 1071 1072
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1073
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1074
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1076 1077
			rcu_read_unlock();
			preempt_enable();
1078 1079
			goto retry;
		}
1080 1081

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1082
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1083 1084
			ctx = NULL;
		}
1085 1086
	}
	rcu_read_unlock();
1087
	preempt_enable();
1088 1089 1090 1091 1092 1093 1094 1095
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1096 1097
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1098
{
1099
	struct perf_event_context *ctx;
1100 1101
	unsigned long flags;

P
Peter Zijlstra 已提交
1102
	ctx = perf_lock_task_context(task, ctxn, &flags);
1103 1104
	if (ctx) {
		++ctx->pin_count;
1105
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1106 1107 1108 1109
	}
	return ctx;
}

1110
static void perf_unpin_context(struct perf_event_context *ctx)
1111 1112 1113
{
	unsigned long flags;

1114
	raw_spin_lock_irqsave(&ctx->lock, flags);
1115
	--ctx->pin_count;
1116
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1130 1131 1132
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1133 1134 1135 1136

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1137 1138 1139
	return ctx ? ctx->time : 0;
}

1140 1141
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1142
 * The caller of this function needs to hold the ctx->lock.
1143 1144 1145 1146 1147 1148 1149 1150 1151
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1163
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1164 1165
	else if (ctx->is_active)
		run_end = ctx->time;
1166 1167 1168 1169
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1170 1171 1172 1173

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1174
		run_end = perf_event_time(event);
1175 1176

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1177

1178 1179
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1192 1193 1194 1195 1196 1197 1198 1199 1200
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1201
/*
1202
 * Add a event from the lists for its context.
1203 1204
 * Must be called with ctx->mutex and ctx->lock held.
 */
1205
static void
1206
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1207
{
1208 1209
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1210 1211

	/*
1212 1213 1214
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1215
	 */
1216
	if (event->group_leader == event) {
1217 1218
		struct list_head *list;

1219 1220 1221
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1222 1223
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1224
	}
P
Peter Zijlstra 已提交
1225

1226
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1227 1228
		ctx->nr_cgroups++;

1229 1230 1231
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1232
		ctx->nr_stat++;
1233 1234

	ctx->generation++;
1235 1236
}

J
Jiri Olsa 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1285 1286 1287 1288 1289 1290
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1291 1292 1293
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1294 1295 1296
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1297 1298 1299
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1300 1301 1302
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1303 1304 1305 1306 1307 1308 1309 1310 1311
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1312 1313 1314 1315 1316 1317
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1318 1319 1320
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1321 1322 1323 1324 1325 1326 1327 1328 1329
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1330
	event->id_header_size = size;
1331 1332
}

1333 1334
static void perf_group_attach(struct perf_event *event)
{
1335
	struct perf_event *group_leader = event->group_leader, *pos;
1336

P
Peter Zijlstra 已提交
1337 1338 1339 1340 1341 1342
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1343 1344 1345 1346 1347
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1348 1349
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1350 1351 1352 1353 1354 1355
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1356 1357 1358 1359 1360

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1361 1362
}

1363
/*
1364
 * Remove a event from the lists for its context.
1365
 * Must be called with ctx->mutex and ctx->lock held.
1366
 */
1367
static void
1368
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1369
{
1370
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1371 1372 1373 1374

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1375 1376 1377 1378
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1379
		return;
1380 1381 1382

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1383
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1384
		ctx->nr_cgroups--;
1385 1386 1387 1388 1389 1390 1391 1392 1393
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1394

1395 1396
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1397
		ctx->nr_stat--;
1398

1399
	list_del_rcu(&event->event_entry);
1400

1401 1402
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1403

1404
	update_group_times(event);
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1415 1416

	ctx->generation++;
1417 1418
}

1419
static void perf_group_detach(struct perf_event *event)
1420 1421
{
	struct perf_event *sibling, *tmp;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1438
		goto out;
1439 1440 1441 1442
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1443

1444
	/*
1445 1446
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1447
	 * to whatever list we are on.
1448
	 */
1449
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1450 1451
		if (list)
			list_move_tail(&sibling->group_entry, list);
1452
		sibling->group_leader = sibling;
1453 1454 1455

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1456 1457

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1458
	}
1459 1460 1461 1462 1463 1464

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1465 1466
}

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1506 1507 1508 1509 1510 1511
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1512 1513 1514
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1515
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1516
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1517 1518
}

1519 1520
static void
event_sched_out(struct perf_event *event,
1521
		  struct perf_cpu_context *cpuctx,
1522
		  struct perf_event_context *ctx)
1523
{
1524
	u64 tstamp = perf_event_time(event);
1525
	u64 delta;
P
Peter Zijlstra 已提交
1526 1527 1528 1529

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1530 1531 1532 1533 1534 1535 1536 1537
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1538
		delta = tstamp - event->tstamp_stopped;
1539
		event->tstamp_running += delta;
1540
		event->tstamp_stopped = tstamp;
1541 1542
	}

1543
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1544
		return;
1545

1546 1547
	perf_pmu_disable(event->pmu);

1548 1549 1550 1551
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1552
	}
1553
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1554
	event->pmu->del(event, 0);
1555
	event->oncpu = -1;
1556

1557
	if (!is_software_event(event))
1558
		cpuctx->active_oncpu--;
1559 1560
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1561 1562
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1563
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1564
		cpuctx->exclusive = 0;
1565

1566 1567 1568
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1569
	perf_pmu_enable(event->pmu);
1570 1571
}

1572
static void
1573
group_sched_out(struct perf_event *group_event,
1574
		struct perf_cpu_context *cpuctx,
1575
		struct perf_event_context *ctx)
1576
{
1577
	struct perf_event *event;
1578
	int state = group_event->state;
1579

1580
	event_sched_out(group_event, cpuctx, ctx);
1581 1582 1583 1584

	/*
	 * Schedule out siblings (if any):
	 */
1585 1586
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1587

1588
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1589 1590 1591
		cpuctx->exclusive = 0;
}

1592 1593 1594 1595 1596
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1597
/*
1598
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1599
 *
1600
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1601 1602
 * remove it from the context list.
 */
1603
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1604
{
1605 1606
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1607
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1608
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1609

1610
	raw_spin_lock(&ctx->lock);
1611
	event_sched_out(event, cpuctx, ctx);
1612 1613
	if (re->detach_group)
		perf_group_detach(event);
1614
	list_del_event(event, ctx);
1615 1616 1617 1618
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1619
	raw_spin_unlock(&ctx->lock);
1620 1621

	return 0;
T
Thomas Gleixner 已提交
1622 1623 1624 1625
}


/*
1626
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1627
 *
1628
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1629
 * call when the task is on a CPU.
1630
 *
1631 1632
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1633 1634
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1635
 * When called from perf_event_exit_task, it's OK because the
1636
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1637
 */
1638
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1639
{
1640
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1641
	struct task_struct *task = ctx->task;
1642 1643 1644 1645
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1646

1647 1648
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1649 1650
	if (!task) {
		/*
1651 1652 1653 1654
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1655
		 */
1656
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1657 1658 1659 1660
		return;
	}

retry:
1661
	if (!task_function_call(task, __perf_remove_from_context, &re))
1662
		return;
T
Thomas Gleixner 已提交
1663

1664
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1665
	/*
1666 1667
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1668
	 */
1669
	if (ctx->is_active) {
1670
		raw_spin_unlock_irq(&ctx->lock);
1671 1672 1673 1674 1675
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1676 1677 1678 1679
		goto retry;
	}

	/*
1680 1681
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1682
	 */
1683 1684
	if (detach_group)
		perf_group_detach(event);
1685
	list_del_event(event, ctx);
1686
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1687 1688
}

1689
/*
1690
 * Cross CPU call to disable a performance event
1691
 */
1692
int __perf_event_disable(void *info)
1693
{
1694 1695
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1696
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1697 1698

	/*
1699 1700
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1701 1702 1703
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1704
	 */
1705
	if (ctx->task && cpuctx->task_ctx != ctx)
1706
		return -EINVAL;
1707

1708
	raw_spin_lock(&ctx->lock);
1709 1710

	/*
1711
	 * If the event is on, turn it off.
1712 1713
	 * If it is in error state, leave it in error state.
	 */
1714
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1715
		update_context_time(ctx);
S
Stephane Eranian 已提交
1716
		update_cgrp_time_from_event(event);
1717 1718 1719
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1720
		else
1721 1722
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1723 1724
	}

1725
	raw_spin_unlock(&ctx->lock);
1726 1727

	return 0;
1728 1729 1730
}

/*
1731
 * Disable a event.
1732
 *
1733 1734
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1735
 * remains valid.  This condition is satisifed when called through
1736 1737 1738 1739
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1740
 * is the current context on this CPU and preemption is disabled,
1741
 * hence we can't get into perf_event_task_sched_out for this context.
1742
 */
P
Peter Zijlstra 已提交
1743
static void _perf_event_disable(struct perf_event *event)
1744
{
1745
	struct perf_event_context *ctx = event->ctx;
1746 1747 1748 1749
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1750
		 * Disable the event on the cpu that it's on
1751
		 */
1752
		cpu_function_call(event->cpu, __perf_event_disable, event);
1753 1754 1755
		return;
	}

P
Peter Zijlstra 已提交
1756
retry:
1757 1758
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1759

1760
	raw_spin_lock_irq(&ctx->lock);
1761
	/*
1762
	 * If the event is still active, we need to retry the cross-call.
1763
	 */
1764
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1765
		raw_spin_unlock_irq(&ctx->lock);
1766 1767 1768 1769 1770
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1771 1772 1773 1774 1775 1776 1777
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1778 1779 1780
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1781
	}
1782
	raw_spin_unlock_irq(&ctx->lock);
1783
}
P
Peter Zijlstra 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1797
EXPORT_SYMBOL_GPL(perf_event_disable);
1798

S
Stephane Eranian 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1834 1835 1836
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1837
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1838

1839
static int
1840
event_sched_in(struct perf_event *event,
1841
		 struct perf_cpu_context *cpuctx,
1842
		 struct perf_event_context *ctx)
1843
{
1844
	u64 tstamp = perf_event_time(event);
1845
	int ret = 0;
1846

1847 1848
	lockdep_assert_held(&ctx->lock);

1849
	if (event->state <= PERF_EVENT_STATE_OFF)
1850 1851
		return 0;

1852
	event->state = PERF_EVENT_STATE_ACTIVE;
1853
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1865 1866 1867 1868 1869
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1870 1871
	perf_pmu_disable(event->pmu);

1872 1873
	perf_set_shadow_time(event, ctx, tstamp);

1874 1875
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1876
	if (event->pmu->add(event, PERF_EF_START)) {
1877 1878
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1879 1880
		ret = -EAGAIN;
		goto out;
1881 1882
	}

1883 1884
	event->tstamp_running += tstamp - event->tstamp_stopped;

1885
	if (!is_software_event(event))
1886
		cpuctx->active_oncpu++;
1887 1888
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1889 1890
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1891

1892
	if (event->attr.exclusive)
1893 1894
		cpuctx->exclusive = 1;

1895 1896 1897
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1898 1899 1900 1901
out:
	perf_pmu_enable(event->pmu);

	return ret;
1902 1903
}

1904
static int
1905
group_sched_in(struct perf_event *group_event,
1906
	       struct perf_cpu_context *cpuctx,
1907
	       struct perf_event_context *ctx)
1908
{
1909
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1910
	struct pmu *pmu = ctx->pmu;
1911 1912
	u64 now = ctx->time;
	bool simulate = false;
1913

1914
	if (group_event->state == PERF_EVENT_STATE_OFF)
1915 1916
		return 0;

1917
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1918

1919
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1920
		pmu->cancel_txn(pmu);
1921
		perf_mux_hrtimer_restart(cpuctx);
1922
		return -EAGAIN;
1923
	}
1924 1925 1926 1927

	/*
	 * Schedule in siblings as one group (if any):
	 */
1928
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1929
		if (event_sched_in(event, cpuctx, ctx)) {
1930
			partial_group = event;
1931 1932 1933 1934
			goto group_error;
		}
	}

1935
	if (!pmu->commit_txn(pmu))
1936
		return 0;
1937

1938 1939 1940 1941
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1952
	 */
1953 1954
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1955 1956 1957 1958 1959 1960 1961 1962
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1963
	}
1964
	event_sched_out(group_event, cpuctx, ctx);
1965

P
Peter Zijlstra 已提交
1966
	pmu->cancel_txn(pmu);
1967

1968
	perf_mux_hrtimer_restart(cpuctx);
1969

1970 1971 1972
	return -EAGAIN;
}

1973
/*
1974
 * Work out whether we can put this event group on the CPU now.
1975
 */
1976
static int group_can_go_on(struct perf_event *event,
1977 1978 1979 1980
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1981
	 * Groups consisting entirely of software events can always go on.
1982
	 */
1983
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1984 1985 1986
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1987
	 * events can go on.
1988 1989 1990 1991 1992
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1993
	 * events on the CPU, it can't go on.
1994
	 */
1995
	if (event->attr.exclusive && cpuctx->active_oncpu)
1996 1997 1998 1999 2000 2001 2002 2003
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2004 2005
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2006
{
2007 2008
	u64 tstamp = perf_event_time(event);

2009
	list_add_event(event, ctx);
2010
	perf_group_attach(event);
2011 2012 2013
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2014 2015
}

2016 2017 2018 2019 2020 2021
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2022

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2035
/*
2036
 * Cross CPU call to install and enable a performance event
2037 2038
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2039
 */
2040
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2041
{
2042 2043
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2044
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2045 2046 2047
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2048
	perf_ctx_lock(cpuctx, task_ctx);
2049
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2050 2051

	/*
2052
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2053
	 */
2054
	if (task_ctx)
2055
		task_ctx_sched_out(task_ctx);
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2070 2071
		task = task_ctx->task;
	}
2072

2073
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2074

2075
	update_context_time(ctx);
S
Stephane Eranian 已提交
2076 2077 2078 2079 2080 2081
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2082

2083
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2084

2085
	/*
2086
	 * Schedule everything back in
2087
	 */
2088
	perf_event_sched_in(cpuctx, task_ctx, task);
2089 2090 2091

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2092 2093

	return 0;
T
Thomas Gleixner 已提交
2094 2095 2096
}

/*
2097
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2098
 *
2099 2100
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2101
 *
2102
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2103 2104 2105 2106
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2107 2108
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2109 2110 2111 2112
			int cpu)
{
	struct task_struct *task = ctx->task;

2113 2114
	lockdep_assert_held(&ctx->mutex);

2115
	event->ctx = ctx;
2116 2117
	if (event->cpu != -1)
		event->cpu = cpu;
2118

T
Thomas Gleixner 已提交
2119 2120
	if (!task) {
		/*
2121
		 * Per cpu events are installed via an smp call and
2122
		 * the install is always successful.
T
Thomas Gleixner 已提交
2123
		 */
2124
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2125 2126 2127 2128
		return;
	}

retry:
2129 2130
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2131

2132
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2133
	/*
2134 2135
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2136
	 */
2137
	if (ctx->is_active) {
2138
		raw_spin_unlock_irq(&ctx->lock);
2139 2140 2141 2142 2143
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2144 2145 2146 2147
		goto retry;
	}

	/*
2148 2149
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2150
	 */
2151
	add_event_to_ctx(event, ctx);
2152
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2153 2154
}

2155
/*
2156
 * Put a event into inactive state and update time fields.
2157 2158 2159 2160 2161 2162
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2163
static void __perf_event_mark_enabled(struct perf_event *event)
2164
{
2165
	struct perf_event *sub;
2166
	u64 tstamp = perf_event_time(event);
2167

2168
	event->state = PERF_EVENT_STATE_INACTIVE;
2169
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2170
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2171 2172
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2173
	}
2174 2175
}

2176
/*
2177
 * Cross CPU call to enable a performance event
2178
 */
2179
static int __perf_event_enable(void *info)
2180
{
2181 2182 2183
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2184
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2185
	int err;
2186

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2197
		return -EINVAL;
2198

2199
	raw_spin_lock(&ctx->lock);
2200
	update_context_time(ctx);
2201

2202
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2203
		goto unlock;
S
Stephane Eranian 已提交
2204 2205 2206 2207

	/*
	 * set current task's cgroup time reference point
	 */
2208
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2209

2210
	__perf_event_mark_enabled(event);
2211

S
Stephane Eranian 已提交
2212 2213 2214
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2215
		goto unlock;
S
Stephane Eranian 已提交
2216
	}
2217

2218
	/*
2219
	 * If the event is in a group and isn't the group leader,
2220
	 * then don't put it on unless the group is on.
2221
	 */
2222
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2223
		goto unlock;
2224

2225
	if (!group_can_go_on(event, cpuctx, 1)) {
2226
		err = -EEXIST;
2227
	} else {
2228
		if (event == leader)
2229
			err = group_sched_in(event, cpuctx, ctx);
2230
		else
2231
			err = event_sched_in(event, cpuctx, ctx);
2232
	}
2233 2234 2235

	if (err) {
		/*
2236
		 * If this event can't go on and it's part of a
2237 2238
		 * group, then the whole group has to come off.
		 */
2239
		if (leader != event) {
2240
			group_sched_out(leader, cpuctx, ctx);
2241
			perf_mux_hrtimer_restart(cpuctx);
2242
		}
2243
		if (leader->attr.pinned) {
2244
			update_group_times(leader);
2245
			leader->state = PERF_EVENT_STATE_ERROR;
2246
		}
2247 2248
	}

P
Peter Zijlstra 已提交
2249
unlock:
2250
	raw_spin_unlock(&ctx->lock);
2251 2252

	return 0;
2253 2254 2255
}

/*
2256
 * Enable a event.
2257
 *
2258 2259
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2260
 * remains valid.  This condition is satisfied when called through
2261 2262
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2263
 */
P
Peter Zijlstra 已提交
2264
static void _perf_event_enable(struct perf_event *event)
2265
{
2266
	struct perf_event_context *ctx = event->ctx;
2267 2268 2269 2270
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2271
		 * Enable the event on the cpu that it's on
2272
		 */
2273
		cpu_function_call(event->cpu, __perf_event_enable, event);
2274 2275 2276
		return;
	}

2277
	raw_spin_lock_irq(&ctx->lock);
2278
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2279 2280 2281
		goto out;

	/*
2282 2283
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2284 2285 2286 2287
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2288 2289
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2290

P
Peter Zijlstra 已提交
2291
retry:
2292
	if (!ctx->is_active) {
2293
		__perf_event_mark_enabled(event);
2294 2295 2296
		goto out;
	}

2297
	raw_spin_unlock_irq(&ctx->lock);
2298 2299 2300

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2301

2302
	raw_spin_lock_irq(&ctx->lock);
2303 2304

	/*
2305
	 * If the context is active and the event is still off,
2306 2307
	 * we need to retry the cross-call.
	 */
2308 2309 2310 2311 2312 2313
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2314
		goto retry;
2315
	}
2316

P
Peter Zijlstra 已提交
2317
out:
2318
	raw_spin_unlock_irq(&ctx->lock);
2319
}
P
Peter Zijlstra 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2332
EXPORT_SYMBOL_GPL(perf_event_enable);
2333

P
Peter Zijlstra 已提交
2334
static int _perf_event_refresh(struct perf_event *event, int refresh)
2335
{
2336
	/*
2337
	 * not supported on inherited events
2338
	 */
2339
	if (event->attr.inherit || !is_sampling_event(event))
2340 2341
		return -EINVAL;

2342
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2343
	_perf_event_enable(event);
2344 2345

	return 0;
2346
}
P
Peter Zijlstra 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2362
EXPORT_SYMBOL_GPL(perf_event_refresh);
2363

2364 2365 2366
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2367
{
2368
	struct perf_event *event;
2369
	int is_active = ctx->is_active;
2370

2371
	ctx->is_active &= ~event_type;
2372
	if (likely(!ctx->nr_events))
2373 2374
		return;

2375
	update_context_time(ctx);
S
Stephane Eranian 已提交
2376
	update_cgrp_time_from_cpuctx(cpuctx);
2377
	if (!ctx->nr_active)
2378
		return;
2379

P
Peter Zijlstra 已提交
2380
	perf_pmu_disable(ctx->pmu);
2381
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2382 2383
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2384
	}
2385

2386
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2387
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2388
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2389
	}
P
Peter Zijlstra 已提交
2390
	perf_pmu_enable(ctx->pmu);
2391 2392
}

2393
/*
2394 2395 2396 2397 2398 2399
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2400
 */
2401 2402
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2403
{
2404 2405 2406
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2429 2430
}

2431 2432
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2433 2434 2435
{
	u64 value;

2436
	if (!event->attr.inherit_stat)
2437 2438 2439
		return;

	/*
2440
	 * Update the event value, we cannot use perf_event_read()
2441 2442
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2443
	 * we know the event must be on the current CPU, therefore we
2444 2445
	 * don't need to use it.
	 */
2446 2447
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2448 2449
		event->pmu->read(event);
		/* fall-through */
2450

2451 2452
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2453 2454 2455 2456 2457 2458 2459
		break;

	default:
		break;
	}

	/*
2460
	 * In order to keep per-task stats reliable we need to flip the event
2461 2462
	 * values when we flip the contexts.
	 */
2463 2464 2465
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2466

2467 2468
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2469

2470
	/*
2471
	 * Since we swizzled the values, update the user visible data too.
2472
	 */
2473 2474
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2475 2476
}

2477 2478
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2479
{
2480
	struct perf_event *event, *next_event;
2481 2482 2483 2484

	if (!ctx->nr_stat)
		return;

2485 2486
	update_context_time(ctx);

2487 2488
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2489

2490 2491
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2492

2493 2494
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2495

2496
		__perf_event_sync_stat(event, next_event);
2497

2498 2499
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2500 2501 2502
	}
}

2503 2504
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2505
{
P
Peter Zijlstra 已提交
2506
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2507
	struct perf_event_context *next_ctx;
2508
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2509
	struct perf_cpu_context *cpuctx;
2510
	int do_switch = 1;
T
Thomas Gleixner 已提交
2511

P
Peter Zijlstra 已提交
2512 2513
	if (likely(!ctx))
		return;
2514

P
Peter Zijlstra 已提交
2515 2516
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2517 2518
		return;

2519
	rcu_read_lock();
P
Peter Zijlstra 已提交
2520
	next_ctx = next->perf_event_ctxp[ctxn];
2521 2522 2523 2524 2525 2526 2527
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2528
	if (!parent && !next_parent)
2529 2530 2531
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2532 2533 2534 2535 2536 2537 2538 2539 2540
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2541 2542
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2543
		if (context_equiv(ctx, next_ctx)) {
2544 2545
			/*
			 * XXX do we need a memory barrier of sorts
2546
			 * wrt to rcu_dereference() of perf_event_ctxp
2547
			 */
P
Peter Zijlstra 已提交
2548 2549
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2550 2551
			ctx->task = next;
			next_ctx->task = task;
2552 2553 2554

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2555
			do_switch = 0;
2556

2557
			perf_event_sync_stat(ctx, next_ctx);
2558
		}
2559 2560
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2561
	}
2562
unlock:
2563
	rcu_read_unlock();
2564

2565
	if (do_switch) {
2566
		raw_spin_lock(&ctx->lock);
2567
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2568
		cpuctx->task_ctx = NULL;
2569
		raw_spin_unlock(&ctx->lock);
2570
	}
T
Thomas Gleixner 已提交
2571 2572
}

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2623 2624 2625
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2640 2641
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2642 2643 2644
{
	int ctxn;

2645 2646 2647
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2648 2649 2650
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2651 2652
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2653 2654 2655 2656 2657 2658

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2659
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2660
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2661 2662
}

2663
static void task_ctx_sched_out(struct perf_event_context *ctx)
2664
{
P
Peter Zijlstra 已提交
2665
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2666

2667 2668
	if (!cpuctx->task_ctx)
		return;
2669 2670 2671 2672

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2673
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2674 2675 2676
	cpuctx->task_ctx = NULL;
}

2677 2678 2679 2680 2681 2682 2683
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2684 2685
}

2686
static void
2687
ctx_pinned_sched_in(struct perf_event_context *ctx,
2688
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2689
{
2690
	struct perf_event *event;
T
Thomas Gleixner 已提交
2691

2692 2693
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2694
			continue;
2695
		if (!event_filter_match(event))
2696 2697
			continue;

S
Stephane Eranian 已提交
2698 2699 2700 2701
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2702
		if (group_can_go_on(event, cpuctx, 1))
2703
			group_sched_in(event, cpuctx, ctx);
2704 2705 2706 2707 2708

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2709 2710 2711
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2712
		}
2713
	}
2714 2715 2716 2717
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2718
		      struct perf_cpu_context *cpuctx)
2719 2720 2721
{
	struct perf_event *event;
	int can_add_hw = 1;
2722

2723 2724 2725
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2726
			continue;
2727 2728
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2729
		 * of events:
2730
		 */
2731
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2732 2733
			continue;

S
Stephane Eranian 已提交
2734 2735 2736 2737
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2738
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2739
			if (group_sched_in(event, cpuctx, ctx))
2740
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2741
		}
T
Thomas Gleixner 已提交
2742
	}
2743 2744 2745 2746 2747
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2748 2749
	     enum event_type_t event_type,
	     struct task_struct *task)
2750
{
S
Stephane Eranian 已提交
2751
	u64 now;
2752
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2753

2754
	ctx->is_active |= event_type;
2755
	if (likely(!ctx->nr_events))
2756
		return;
2757

S
Stephane Eranian 已提交
2758 2759
	now = perf_clock();
	ctx->timestamp = now;
2760
	perf_cgroup_set_timestamp(task, ctx);
2761 2762 2763 2764
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2765
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2766
		ctx_pinned_sched_in(ctx, cpuctx);
2767 2768

	/* Then walk through the lower prio flexible groups */
2769
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2770
		ctx_flexible_sched_in(ctx, cpuctx);
2771 2772
}

2773
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2774 2775
			     enum event_type_t event_type,
			     struct task_struct *task)
2776 2777 2778
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2779
	ctx_sched_in(ctx, cpuctx, event_type, task);
2780 2781
}

S
Stephane Eranian 已提交
2782 2783
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2784
{
P
Peter Zijlstra 已提交
2785
	struct perf_cpu_context *cpuctx;
2786

P
Peter Zijlstra 已提交
2787
	cpuctx = __get_cpu_context(ctx);
2788 2789 2790
	if (cpuctx->task_ctx == ctx)
		return;

2791
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2792
	perf_pmu_disable(ctx->pmu);
2793 2794 2795 2796 2797 2798 2799
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2800 2801
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2802

2803 2804
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2805 2806
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2807 2808
}

P
Peter Zijlstra 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2820 2821
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2822 2823 2824 2825 2826 2827 2828 2829 2830
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2831
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2832
	}
S
Stephane Eranian 已提交
2833 2834 2835 2836 2837
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2838
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2839
		perf_cgroup_sched_in(prev, task);
2840

2841 2842 2843
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2844 2845
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2846 2847
}

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2875
#define REDUCE_FLS(a, b)		\
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2915 2916 2917
	if (!divisor)
		return dividend;

2918 2919 2920
	return div64_u64(dividend, divisor);
}

2921 2922 2923
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2924
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2925
{
2926
	struct hw_perf_event *hwc = &event->hw;
2927
	s64 period, sample_period;
2928 2929
	s64 delta;

2930
	period = perf_calculate_period(event, nsec, count);
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2941

2942
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2943 2944 2945
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2946
		local64_set(&hwc->period_left, 0);
2947 2948 2949

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2950
	}
2951 2952
}

2953 2954 2955 2956 2957 2958 2959
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2960
{
2961 2962
	struct perf_event *event;
	struct hw_perf_event *hwc;
2963
	u64 now, period = TICK_NSEC;
2964
	s64 delta;
2965

2966 2967 2968 2969 2970 2971
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2972 2973
		return;

2974
	raw_spin_lock(&ctx->lock);
2975
	perf_pmu_disable(ctx->pmu);
2976

2977
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2978
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2979 2980
			continue;

2981
		if (!event_filter_match(event))
2982 2983
			continue;

2984 2985
		perf_pmu_disable(event->pmu);

2986
		hwc = &event->hw;
2987

2988
		if (hwc->interrupts == MAX_INTERRUPTS) {
2989
			hwc->interrupts = 0;
2990
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2991
			event->pmu->start(event, 0);
2992 2993
		}

2994
		if (!event->attr.freq || !event->attr.sample_freq)
2995
			goto next;
2996

2997 2998 2999 3000 3001
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3002
		now = local64_read(&event->count);
3003 3004
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3005

3006 3007 3008
		/*
		 * restart the event
		 * reload only if value has changed
3009 3010 3011
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3012
		 */
3013
		if (delta > 0)
3014
			perf_adjust_period(event, period, delta, false);
3015 3016

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3017 3018
	next:
		perf_pmu_enable(event->pmu);
3019
	}
3020

3021
	perf_pmu_enable(ctx->pmu);
3022
	raw_spin_unlock(&ctx->lock);
3023 3024
}

3025
/*
3026
 * Round-robin a context's events:
3027
 */
3028
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3029
{
3030 3031 3032 3033 3034 3035
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3036 3037
}

3038
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3039
{
P
Peter Zijlstra 已提交
3040
	struct perf_event_context *ctx = NULL;
3041
	int rotate = 0;
3042

3043 3044 3045 3046
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3047

P
Peter Zijlstra 已提交
3048
	ctx = cpuctx->task_ctx;
3049 3050 3051 3052
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3053

3054
	if (!rotate)
3055 3056
		goto done;

3057
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3058
	perf_pmu_disable(cpuctx->ctx.pmu);
3059

3060 3061 3062
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3063

3064 3065 3066
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3067

3068
	perf_event_sched_in(cpuctx, ctx, current);
3069

3070 3071
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3072
done:
3073 3074

	return rotate;
3075 3076
}

3077 3078 3079
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3080
	if (atomic_read(&nr_freq_events) ||
3081
	    __this_cpu_read(perf_throttled_count))
3082
		return false;
3083 3084
	else
		return true;
3085 3086 3087
}
#endif

3088 3089
void perf_event_task_tick(void)
{
3090 3091
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3092
	int throttled;
3093

3094 3095
	WARN_ON(!irqs_disabled());

3096 3097 3098
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3099
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3100
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3101 3102
}

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3113
	__perf_event_mark_enabled(event);
3114 3115 3116 3117

	return 1;
}

3118
/*
3119
 * Enable all of a task's events that have been marked enable-on-exec.
3120 3121
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3122
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3123
{
3124
	struct perf_event_context *clone_ctx = NULL;
3125
	struct perf_event *event;
3126 3127
	unsigned long flags;
	int enabled = 0;
3128
	int ret;
3129 3130

	local_irq_save(flags);
3131
	if (!ctx || !ctx->nr_events)
3132 3133
		goto out;

3134 3135 3136 3137 3138 3139 3140
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3141
	perf_cgroup_sched_out(current, NULL);
3142

3143
	raw_spin_lock(&ctx->lock);
3144
	task_ctx_sched_out(ctx);
3145

3146
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3147 3148 3149
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3150 3151 3152
	}

	/*
3153
	 * Unclone this context if we enabled any event.
3154
	 */
3155
	if (enabled)
3156
		clone_ctx = unclone_ctx(ctx);
3157

3158
	raw_spin_unlock(&ctx->lock);
3159

3160 3161 3162
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3163
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3164
out:
3165
	local_irq_restore(flags);
3166 3167 3168

	if (clone_ctx)
		put_ctx(clone_ctx);
3169 3170
}

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

3187 3188 3189
struct perf_read_data {
	struct perf_event *event;
	bool group;
3190
	int ret;
3191 3192
};

T
Thomas Gleixner 已提交
3193
/*
3194
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3195
 */
3196
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3197
{
3198 3199
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3200
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3201
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3202

3203 3204 3205 3206
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3207 3208
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3209 3210 3211 3212
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3213
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3214
	if (ctx->is_active) {
3215
		update_context_time(ctx);
S
Stephane Eranian 已提交
3216 3217
		update_cgrp_time_from_event(event);
	}
3218

3219
	update_event_times(event);
3220 3221
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3222 3223 3224 3225 3226 3227 3228 3229 3230

	if (!data->group)
		goto unlock;

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
		if (sub->state == PERF_EVENT_STATE_ACTIVE)
			sub->pmu->read(sub);
	}
3231
	data->ret = 0;
3232 3233

unlock:
3234
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3235 3236
}

P
Peter Zijlstra 已提交
3237 3238
static inline u64 perf_event_count(struct perf_event *event)
{
3239 3240 3241 3242
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3243 3244
}

3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3298
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3299
{
3300 3301
	int ret = 0;

T
Thomas Gleixner 已提交
3302
	/*
3303 3304
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3305
	 */
3306
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3307 3308 3309
		struct perf_read_data data = {
			.event = event,
			.group = group,
3310
			.ret = 0,
3311
		};
3312
		smp_call_function_single(event->oncpu,
3313
					 __perf_event_read, &data, 1);
3314
		ret = data.ret;
3315
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3316 3317 3318
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3319
		raw_spin_lock_irqsave(&ctx->lock, flags);
3320 3321 3322 3323 3324
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3325
		if (ctx->is_active) {
3326
			update_context_time(ctx);
S
Stephane Eranian 已提交
3327 3328
			update_cgrp_time_from_event(event);
		}
3329 3330 3331 3332
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3333
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3334
	}
3335 3336

	return ret;
T
Thomas Gleixner 已提交
3337 3338
}

3339
/*
3340
 * Initialize the perf_event context in a task_struct:
3341
 */
3342
static void __perf_event_init_context(struct perf_event_context *ctx)
3343
{
3344
	raw_spin_lock_init(&ctx->lock);
3345
	mutex_init(&ctx->mutex);
3346
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3347 3348
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3349 3350
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3351
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3367
	}
3368 3369 3370
	ctx->pmu = pmu;

	return ctx;
3371 3372
}

3373 3374 3375 3376 3377
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3378 3379

	rcu_read_lock();
3380
	if (!vpid)
T
Thomas Gleixner 已提交
3381 3382
		task = current;
	else
3383
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3384 3385 3386 3387 3388 3389 3390 3391
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3392 3393 3394 3395
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3396 3397 3398 3399 3400 3401 3402
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3403 3404 3405
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3406
static struct perf_event_context *
3407 3408
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3409
{
3410
	struct perf_event_context *ctx, *clone_ctx = NULL;
3411
	struct perf_cpu_context *cpuctx;
3412
	void *task_ctx_data = NULL;
3413
	unsigned long flags;
P
Peter Zijlstra 已提交
3414
	int ctxn, err;
3415
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3416

3417
	if (!task) {
3418
		/* Must be root to operate on a CPU event: */
3419
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3420 3421 3422
			return ERR_PTR(-EACCES);

		/*
3423
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3424 3425 3426
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3427
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3428 3429
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3430
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3431
		ctx = &cpuctx->ctx;
3432
		get_ctx(ctx);
3433
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3434 3435 3436 3437

		return ctx;
	}

P
Peter Zijlstra 已提交
3438 3439 3440 3441 3442
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3443 3444 3445 3446 3447 3448 3449 3450
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3451
retry:
P
Peter Zijlstra 已提交
3452
	ctx = perf_lock_task_context(task, ctxn, &flags);
3453
	if (ctx) {
3454
		clone_ctx = unclone_ctx(ctx);
3455
		++ctx->pin_count;
3456 3457 3458 3459 3460

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3461
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3462 3463 3464

		if (clone_ctx)
			put_ctx(clone_ctx);
3465
	} else {
3466
		ctx = alloc_perf_context(pmu, task);
3467 3468 3469
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3470

3471 3472 3473 3474 3475
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3486
		else {
3487
			get_ctx(ctx);
3488
			++ctx->pin_count;
3489
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3490
		}
3491 3492 3493
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3494
			put_ctx(ctx);
3495 3496 3497 3498

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3499 3500 3501
		}
	}

3502
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3503
	return ctx;
3504

P
Peter Zijlstra 已提交
3505
errout:
3506
	kfree(task_ctx_data);
3507
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3508 3509
}

L
Li Zefan 已提交
3510
static void perf_event_free_filter(struct perf_event *event);
3511
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3512

3513
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3514
{
3515
	struct perf_event *event;
P
Peter Zijlstra 已提交
3516

3517 3518 3519
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3520
	perf_event_free_filter(event);
3521
	kfree(event);
P
Peter Zijlstra 已提交
3522 3523
}

3524 3525
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3526

3527
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3528
{
3529 3530 3531 3532 3533 3534
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3535

3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3549 3550
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3551 3552 3553 3554
	if (event->attr.context_switch) {
		static_key_slow_dec_deferred(&perf_sched_events);
		atomic_dec(&nr_switch_events);
	}
3555 3556 3557 3558 3559 3560 3561
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3562

3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3648 3649
static void __free_event(struct perf_event *event)
{
3650
	if (!event->parent) {
3651 3652
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3653
	}
3654

3655 3656
	perf_event_free_bpf_prog(event);

3657 3658 3659 3660 3661 3662
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3663 3664
	if (event->pmu) {
		exclusive_event_destroy(event);
3665
		module_put(event->pmu->module);
3666
	}
3667

3668 3669
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3670 3671

static void _free_event(struct perf_event *event)
3672
{
3673
	irq_work_sync(&event->pending);
3674

3675
	unaccount_event(event);
3676

3677
	if (event->rb) {
3678 3679 3680 3681 3682 3683 3684
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3685
		ring_buffer_attach(event, NULL);
3686
		mutex_unlock(&event->mmap_mutex);
3687 3688
	}

S
Stephane Eranian 已提交
3689 3690 3691
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3692
	__free_event(event);
3693 3694
}

P
Peter Zijlstra 已提交
3695 3696 3697 3698 3699
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3700
{
P
Peter Zijlstra 已提交
3701 3702 3703 3704 3705 3706
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3707

P
Peter Zijlstra 已提交
3708
	_free_event(event);
T
Thomas Gleixner 已提交
3709 3710
}

3711
/*
3712
 * Remove user event from the owner task.
3713
 */
3714
static void perf_remove_from_owner(struct perf_event *event)
3715
{
P
Peter Zijlstra 已提交
3716
	struct task_struct *owner;
3717

P
Peter Zijlstra 已提交
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3759 3760 3761 3762
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3763
	struct perf_event_context *ctx;
3764 3765 3766 3767 3768 3769

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3770

P
Peter Zijlstra 已提交
3771 3772 3773 3774 3775 3776 3777
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3778
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3779 3780 3781 3782
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3783 3784
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3785
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3786
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3787 3788

	_free_event(event);
3789 3790
}

P
Peter Zijlstra 已提交
3791 3792 3793 3794 3795 3796 3797
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3798 3799 3800
/*
 * Called when the last reference to the file is gone.
 */
3801 3802 3803 3804
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3805 3806
}

3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3843
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3844
{
3845
	struct perf_event *child;
3846 3847
	u64 total = 0;

3848 3849 3850
	*enabled = 0;
	*running = 0;

3851
	mutex_lock(&event->child_mutex);
3852

3853
	(void)perf_event_read(event, false);
3854 3855
	total += perf_event_count(event);

3856 3857 3858 3859 3860 3861
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3862
		(void)perf_event_read(child, false);
3863
		total += perf_event_count(child);
3864 3865 3866
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3867
	mutex_unlock(&event->child_mutex);
3868 3869 3870

	return total;
}
3871
EXPORT_SYMBOL_GPL(perf_event_read_value);
3872

3873
static int __perf_read_group_add(struct perf_event *leader,
3874
					u64 read_format, u64 *values)
3875
{
3876 3877
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3878
	int ret;
P
Peter Zijlstra 已提交
3879

3880 3881 3882
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3883

3884 3885 3886 3887 3888 3889 3890 3891 3892
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3893

3894 3895 3896 3897 3898 3899 3900 3901 3902
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3903 3904
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3905

3906 3907 3908 3909 3910
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3911 3912

	return 0;
3913
}
3914

3915 3916 3917 3918 3919
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3920
	int ret;
3921
	u64 *values;
3922

3923
	lockdep_assert_held(&ctx->mutex);
3924

3925 3926 3927
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3928

3929 3930 3931 3932 3933 3934 3935
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3936

3937 3938 3939 3940 3941 3942 3943 3944 3945
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3946

3947
	mutex_unlock(&leader->child_mutex);
3948

3949
	ret = event->read_size;
3950 3951
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3952
	goto out;
3953

3954 3955 3956
unlock:
	mutex_unlock(&leader->child_mutex);
out:
3957
	kfree(values);
3958
	return ret;
3959 3960
}

3961
static int perf_read_one(struct perf_event *event,
3962 3963
				 u64 read_format, char __user *buf)
{
3964
	u64 enabled, running;
3965 3966 3967
	u64 values[4];
	int n = 0;

3968 3969 3970 3971 3972
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3973
	if (read_format & PERF_FORMAT_ID)
3974
		values[n++] = primary_event_id(event);
3975 3976 3977 3978 3979 3980 3981

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3995
/*
3996
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3997 3998
 */
static ssize_t
3999
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4000
{
4001
	u64 read_format = event->attr.read_format;
4002
	int ret;
T
Thomas Gleixner 已提交
4003

4004
	/*
4005
	 * Return end-of-file for a read on a event that is in
4006 4007 4008
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4009
	if (event->state == PERF_EVENT_STATE_ERROR)
4010 4011
		return 0;

4012
	if (count < event->read_size)
4013 4014
		return -ENOSPC;

4015
	WARN_ON_ONCE(event->ctx->parent_ctx);
4016
	if (read_format & PERF_FORMAT_GROUP)
4017
		ret = perf_read_group(event, read_format, buf);
4018
	else
4019
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4020

4021
	return ret;
T
Thomas Gleixner 已提交
4022 4023 4024 4025 4026
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4027
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4028 4029
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4030

P
Peter Zijlstra 已提交
4031
	ctx = perf_event_ctx_lock(event);
4032
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4033 4034 4035
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4036 4037 4038 4039
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4040
	struct perf_event *event = file->private_data;
4041
	struct ring_buffer *rb;
4042
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4043

4044
	poll_wait(file, &event->waitq, wait);
4045

4046
	if (is_event_hup(event))
4047
		return events;
P
Peter Zijlstra 已提交
4048

4049
	/*
4050 4051
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4052 4053
	 */
	mutex_lock(&event->mmap_mutex);
4054 4055
	rb = event->rb;
	if (rb)
4056
		events = atomic_xchg(&rb->poll, 0);
4057
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4058 4059 4060
	return events;
}

P
Peter Zijlstra 已提交
4061
static void _perf_event_reset(struct perf_event *event)
4062
{
4063
	(void)perf_event_read(event, false);
4064
	local64_set(&event->count, 0);
4065
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4066 4067
}

4068
/*
4069 4070 4071 4072
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4073
 */
4074 4075
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4076
{
4077
	struct perf_event *child;
P
Peter Zijlstra 已提交
4078

4079
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4080

4081 4082 4083
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4084
		func(child);
4085
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4086 4087
}

4088 4089
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4090
{
4091 4092
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4093

P
Peter Zijlstra 已提交
4094 4095
	lockdep_assert_held(&ctx->mutex);

4096
	event = event->group_leader;
4097

4098 4099
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4100
		perf_event_for_each_child(sibling, func);
4101 4102
}

4103 4104
struct period_event {
	struct perf_event *event;
4105
	u64 value;
4106
};
4107

4108 4109 4110 4111 4112 4113 4114
static int __perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	struct perf_event_context *ctx = event->ctx;
	u64 value = pe->value;
	bool active;
4115

4116
	raw_spin_lock(&ctx->lock);
4117 4118
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4119
	} else {
4120 4121
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4122
	}
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4136
	raw_spin_unlock(&ctx->lock);
4137

4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
	return 0;
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	struct period_event pe = { .event = event, };
	struct perf_event_context *ctx = event->ctx;
	struct task_struct *task;
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

	task = ctx->task;
	pe.value = value;

	if (!task) {
		cpu_function_call(event->cpu, __perf_event_period, &pe);
		return 0;
	}

retry:
	if (!task_function_call(task, __perf_event_period, &pe))
		return 0;

	raw_spin_lock_irq(&ctx->lock);
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		task = ctx->task;
		goto retry;
	}

	__perf_event_period(&pe);
4180
	raw_spin_unlock_irq(&ctx->lock);
4181

4182
	return 0;
4183 4184
}

4185 4186
static const struct file_operations perf_fops;

4187
static inline int perf_fget_light(int fd, struct fd *p)
4188
{
4189 4190 4191
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4192

4193 4194 4195
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4196
	}
4197 4198
	*p = f;
	return 0;
4199 4200 4201 4202
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4203
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4204
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4205

P
Peter Zijlstra 已提交
4206
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4207
{
4208
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4209
	u32 flags = arg;
4210 4211

	switch (cmd) {
4212
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4213
		func = _perf_event_enable;
4214
		break;
4215
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4216
		func = _perf_event_disable;
4217
		break;
4218
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4219
		func = _perf_event_reset;
4220
		break;
P
Peter Zijlstra 已提交
4221

4222
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4223
		return _perf_event_refresh(event, arg);
4224

4225 4226
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4227

4228 4229 4230 4231 4232 4233 4234 4235 4236
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4237
	case PERF_EVENT_IOC_SET_OUTPUT:
4238 4239 4240
	{
		int ret;
		if (arg != -1) {
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4251 4252 4253
		}
		return ret;
	}
4254

L
Li Zefan 已提交
4255 4256 4257
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4258 4259 4260
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4261
	default:
P
Peter Zijlstra 已提交
4262
		return -ENOTTY;
4263
	}
P
Peter Zijlstra 已提交
4264 4265

	if (flags & PERF_IOC_FLAG_GROUP)
4266
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4267
	else
4268
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4269 4270

	return 0;
4271 4272
}

P
Peter Zijlstra 已提交
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4306
int perf_event_task_enable(void)
4307
{
P
Peter Zijlstra 已提交
4308
	struct perf_event_context *ctx;
4309
	struct perf_event *event;
4310

4311
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4312 4313 4314 4315 4316
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4317
	mutex_unlock(&current->perf_event_mutex);
4318 4319 4320 4321

	return 0;
}

4322
int perf_event_task_disable(void)
4323
{
P
Peter Zijlstra 已提交
4324
	struct perf_event_context *ctx;
4325
	struct perf_event *event;
4326

4327
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4328 4329 4330 4331 4332
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4333
	mutex_unlock(&current->perf_event_mutex);
4334 4335 4336 4337

	return 0;
}

4338
static int perf_event_index(struct perf_event *event)
4339
{
P
Peter Zijlstra 已提交
4340 4341 4342
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4343
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4344 4345
		return 0;

4346
	return event->pmu->event_idx(event);
4347 4348
}

4349
static void calc_timer_values(struct perf_event *event,
4350
				u64 *now,
4351 4352
				u64 *enabled,
				u64 *running)
4353
{
4354
	u64 ctx_time;
4355

4356 4357
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4358 4359 4360 4361
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4377 4378
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4379 4380 4381 4382 4383

unlock:
	rcu_read_unlock();
}

4384 4385
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4386 4387 4388
{
}

4389 4390 4391 4392 4393
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4394
void perf_event_update_userpage(struct perf_event *event)
4395
{
4396
	struct perf_event_mmap_page *userpg;
4397
	struct ring_buffer *rb;
4398
	u64 enabled, running, now;
4399 4400

	rcu_read_lock();
4401 4402 4403 4404
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4405 4406 4407 4408 4409 4410 4411 4412 4413
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4414
	calc_timer_values(event, &now, &enabled, &running);
4415

4416
	userpg = rb->user_page;
4417 4418 4419 4420 4421
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4422
	++userpg->lock;
4423
	barrier();
4424
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4425
	userpg->offset = perf_event_count(event);
4426
	if (userpg->index)
4427
		userpg->offset -= local64_read(&event->hw.prev_count);
4428

4429
	userpg->time_enabled = enabled +
4430
			atomic64_read(&event->child_total_time_enabled);
4431

4432
	userpg->time_running = running +
4433
			atomic64_read(&event->child_total_time_running);
4434

4435
	arch_perf_update_userpage(event, userpg, now);
4436

4437
	barrier();
4438
	++userpg->lock;
4439
	preempt_enable();
4440
unlock:
4441
	rcu_read_unlock();
4442 4443
}

4444 4445 4446
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4447
	struct ring_buffer *rb;
4448 4449 4450 4451 4452 4453 4454 4455 4456
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4457 4458
	rb = rcu_dereference(event->rb);
	if (!rb)
4459 4460 4461 4462 4463
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4464
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4479 4480 4481
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4482
	struct ring_buffer *old_rb = NULL;
4483 4484
	unsigned long flags;

4485 4486 4487 4488 4489 4490
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4491

4492 4493 4494 4495
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4496

4497 4498
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4499
	}
4500

4501
	if (rb) {
4502 4503 4504 4505 4506
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4523 4524 4525 4526 4527 4528 4529 4530
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4531 4532 4533 4534
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4535 4536 4537
	rcu_read_unlock();
}

4538
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4539
{
4540
	struct ring_buffer *rb;
4541

4542
	rcu_read_lock();
4543 4544 4545 4546
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4547 4548 4549
	}
	rcu_read_unlock();

4550
	return rb;
4551 4552
}

4553
void ring_buffer_put(struct ring_buffer *rb)
4554
{
4555
	if (!atomic_dec_and_test(&rb->refcount))
4556
		return;
4557

4558
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4559

4560
	call_rcu(&rb->rcu_head, rb_free_rcu);
4561 4562 4563 4564
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4565
	struct perf_event *event = vma->vm_file->private_data;
4566

4567
	atomic_inc(&event->mmap_count);
4568
	atomic_inc(&event->rb->mmap_count);
4569

4570 4571 4572
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4573 4574
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4575 4576
}

4577 4578 4579 4580 4581 4582 4583 4584
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4585 4586
static void perf_mmap_close(struct vm_area_struct *vma)
{
4587
	struct perf_event *event = vma->vm_file->private_data;
4588

4589
	struct ring_buffer *rb = ring_buffer_get(event);
4590 4591 4592
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4593

4594 4595 4596
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4611 4612 4613
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4614
		goto out_put;
4615

4616
	ring_buffer_attach(event, NULL);
4617 4618 4619
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4620 4621
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4622

4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4639

4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4651 4652 4653
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4654
		mutex_unlock(&event->mmap_mutex);
4655
		put_event(event);
4656

4657 4658 4659 4660 4661
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4662
	}
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4678
out_put:
4679
	ring_buffer_put(rb); /* could be last */
4680 4681
}

4682
static const struct vm_operations_struct perf_mmap_vmops = {
4683
	.open		= perf_mmap_open,
4684
	.close		= perf_mmap_close, /* non mergable */
4685 4686
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4687 4688 4689 4690
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4691
	struct perf_event *event = file->private_data;
4692
	unsigned long user_locked, user_lock_limit;
4693
	struct user_struct *user = current_user();
4694
	unsigned long locked, lock_limit;
4695
	struct ring_buffer *rb = NULL;
4696 4697
	unsigned long vma_size;
	unsigned long nr_pages;
4698
	long user_extra = 0, extra = 0;
4699
	int ret = 0, flags = 0;
4700

4701 4702 4703
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4704
	 * same rb.
4705 4706 4707 4708
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4709
	if (!(vma->vm_flags & VM_SHARED))
4710
		return -EINVAL;
4711 4712

	vma_size = vma->vm_end - vma->vm_start;
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4773

4774
	/*
4775
	 * If we have rb pages ensure they're a power-of-two number, so we
4776 4777
	 * can do bitmasks instead of modulo.
	 */
4778
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4779 4780
		return -EINVAL;

4781
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4782 4783
		return -EINVAL;

4784
	WARN_ON_ONCE(event->ctx->parent_ctx);
4785
again:
4786
	mutex_lock(&event->mmap_mutex);
4787
	if (event->rb) {
4788
		if (event->rb->nr_pages != nr_pages) {
4789
			ret = -EINVAL;
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4803 4804 4805
		goto unlock;
	}

4806
	user_extra = nr_pages + 1;
4807 4808

accounting:
4809
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4810 4811 4812 4813 4814 4815

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4816
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4817

4818 4819
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4820

4821
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4822
	lock_limit >>= PAGE_SHIFT;
4823
	locked = vma->vm_mm->pinned_vm + extra;
4824

4825 4826
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4827 4828 4829
		ret = -EPERM;
		goto unlock;
	}
4830

4831
	WARN_ON(!rb && event->rb);
4832

4833
	if (vma->vm_flags & VM_WRITE)
4834
		flags |= RING_BUFFER_WRITABLE;
4835

4836
	if (!rb) {
4837 4838 4839
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4840

4841 4842 4843 4844
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4845

4846 4847 4848
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4849

4850
		ring_buffer_attach(event, rb);
4851

4852 4853 4854
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4855 4856
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4857 4858 4859
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4860

4861
unlock:
4862 4863 4864 4865
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4866
		atomic_inc(&event->mmap_count);
4867 4868 4869 4870
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4871
	mutex_unlock(&event->mmap_mutex);
4872

4873 4874 4875 4876
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4877
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4878
	vma->vm_ops = &perf_mmap_vmops;
4879

4880 4881 4882
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4883
	return ret;
4884 4885
}

P
Peter Zijlstra 已提交
4886 4887
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4888
	struct inode *inode = file_inode(filp);
4889
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4890 4891 4892
	int retval;

	mutex_lock(&inode->i_mutex);
4893
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4894 4895 4896 4897 4898 4899 4900 4901
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4902
static const struct file_operations perf_fops = {
4903
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4904 4905 4906
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4907
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4908
	.compat_ioctl		= perf_compat_ioctl,
4909
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4910
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4911 4912
};

4913
/*
4914
 * Perf event wakeup
4915 4916 4917 4918 4919
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4920 4921 4922 4923 4924 4925 4926 4927
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4928
void perf_event_wakeup(struct perf_event *event)
4929
{
4930
	ring_buffer_wakeup(event);
4931

4932
	if (event->pending_kill) {
4933
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4934
		event->pending_kill = 0;
4935
	}
4936 4937
}

4938
static void perf_pending_event(struct irq_work *entry)
4939
{
4940 4941
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4942 4943 4944 4945 4946 4947 4948
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4949

4950 4951 4952
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4953 4954
	}

4955 4956 4957
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4958
	}
4959 4960 4961

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4962 4963
}

4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5000
static void perf_sample_regs_user(struct perf_regs *regs_user,
5001 5002
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5003
{
5004 5005
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5006
		regs_user->regs = regs;
5007 5008
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5009 5010 5011
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5012 5013 5014
	}
}

5015 5016 5017 5018 5019 5020 5021 5022
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5118 5119 5120
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5134
		data->time = perf_event_clock(event);
5135

5136
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5148 5149 5150
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5175 5176 5177

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5178 5179
}

5180 5181 5182
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5183 5184 5185 5186 5187
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5188
static void perf_output_read_one(struct perf_output_handle *handle,
5189 5190
				 struct perf_event *event,
				 u64 enabled, u64 running)
5191
{
5192
	u64 read_format = event->attr.read_format;
5193 5194 5195
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5196
	values[n++] = perf_event_count(event);
5197
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5198
		values[n++] = enabled +
5199
			atomic64_read(&event->child_total_time_enabled);
5200 5201
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5202
		values[n++] = running +
5203
			atomic64_read(&event->child_total_time_running);
5204 5205
	}
	if (read_format & PERF_FORMAT_ID)
5206
		values[n++] = primary_event_id(event);
5207

5208
	__output_copy(handle, values, n * sizeof(u64));
5209 5210 5211
}

/*
5212
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5213 5214
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5215 5216
			    struct perf_event *event,
			    u64 enabled, u64 running)
5217
{
5218 5219
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5220 5221 5222 5223 5224 5225
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5226
		values[n++] = enabled;
5227 5228

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5229
		values[n++] = running;
5230

5231
	if (leader != event)
5232 5233
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5234
	values[n++] = perf_event_count(leader);
5235
	if (read_format & PERF_FORMAT_ID)
5236
		values[n++] = primary_event_id(leader);
5237

5238
	__output_copy(handle, values, n * sizeof(u64));
5239

5240
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5241 5242
		n = 0;

5243 5244
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5245 5246
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5247
		values[n++] = perf_event_count(sub);
5248
		if (read_format & PERF_FORMAT_ID)
5249
			values[n++] = primary_event_id(sub);
5250

5251
		__output_copy(handle, values, n * sizeof(u64));
5252 5253 5254
	}
}

5255 5256 5257
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5258
static void perf_output_read(struct perf_output_handle *handle,
5259
			     struct perf_event *event)
5260
{
5261
	u64 enabled = 0, running = 0, now;
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5273
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5274
		calc_timer_values(event, &now, &enabled, &running);
5275

5276
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5277
		perf_output_read_group(handle, event, enabled, running);
5278
	else
5279
		perf_output_read_one(handle, event, enabled, running);
5280 5281
}

5282 5283 5284
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5285
			struct perf_event *event)
5286 5287 5288 5289 5290
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5291 5292 5293
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5319
		perf_output_read(handle, event);
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5330
			__output_copy(handle, data->callchain, size);
5331 5332 5333 5334 5335 5336 5337 5338 5339
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
5340 5341
			__output_copy(handle, data->raw->data,
					   data->raw->size);
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5353

5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5388

5389
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5390 5391 5392
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5393
	}
A
Andi Kleen 已提交
5394 5395 5396

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5397 5398 5399

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5400

A
Andi Kleen 已提交
5401 5402 5403
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5434 5435 5436 5437
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5438
			 struct perf_event *event,
5439
			 struct pt_regs *regs)
5440
{
5441
	u64 sample_type = event->attr.sample_type;
5442

5443
	header->type = PERF_RECORD_SAMPLE;
5444
	header->size = sizeof(*header) + event->header_size;
5445 5446 5447

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5448

5449
	__perf_event_header__init_id(header, data, event);
5450

5451
	if (sample_type & PERF_SAMPLE_IP)
5452 5453
		data->ip = perf_instruction_pointer(regs);

5454
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5455
		int size = 1;
5456

5457
		data->callchain = perf_callchain(event, regs);
5458 5459 5460 5461 5462

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5463 5464
	}

5465
	if (sample_type & PERF_SAMPLE_RAW) {
5466 5467 5468 5469 5470 5471 5472 5473
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5474
		header->size += size;
5475
	}
5476 5477 5478 5479 5480 5481 5482 5483 5484

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5485

5486
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5487 5488
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5489

5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5513
						     data->regs_user.regs);
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5541
}
5542

5543 5544 5545
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5546 5547 5548
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5549

5550 5551 5552
	/* protect the callchain buffers */
	rcu_read_lock();

5553
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5554

5555
	if (perf_output_begin(&handle, event, header.size))
5556
		goto exit;
5557

5558
	perf_output_sample(&handle, &header, data, event);
5559

5560
	perf_output_end(&handle);
5561 5562 5563

exit:
	rcu_read_unlock();
5564 5565
}

5566
/*
5567
 * read event_id
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5578
perf_event_read_event(struct perf_event *event,
5579 5580 5581
			struct task_struct *task)
{
	struct perf_output_handle handle;
5582
	struct perf_sample_data sample;
5583
	struct perf_read_event read_event = {
5584
		.header = {
5585
			.type = PERF_RECORD_READ,
5586
			.misc = 0,
5587
			.size = sizeof(read_event) + event->read_size,
5588
		},
5589 5590
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5591
	};
5592
	int ret;
5593

5594
	perf_event_header__init_id(&read_event.header, &sample, event);
5595
	ret = perf_output_begin(&handle, event, read_event.header.size);
5596 5597 5598
	if (ret)
		return;

5599
	perf_output_put(&handle, read_event);
5600
	perf_output_read(&handle, event);
5601
	perf_event__output_id_sample(event, &handle, &sample);
5602

5603 5604 5605
	perf_output_end(&handle);
}

5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5620
		output(event, data);
5621 5622 5623 5624
	}
}

static void
5625
perf_event_aux(perf_event_aux_output_cb output, void *data,
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5638
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5639 5640 5641 5642 5643 5644 5645
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5646
			perf_event_aux_ctx(ctx, output, data);
5647 5648 5649 5650 5651 5652
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5653
		perf_event_aux_ctx(task_ctx, output, data);
5654 5655 5656 5657 5658
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5659
/*
P
Peter Zijlstra 已提交
5660 5661
 * task tracking -- fork/exit
 *
5662
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5663 5664
 */

P
Peter Zijlstra 已提交
5665
struct perf_task_event {
5666
	struct task_struct		*task;
5667
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5668 5669 5670 5671 5672 5673

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5674 5675
		u32				tid;
		u32				ptid;
5676
		u64				time;
5677
	} event_id;
P
Peter Zijlstra 已提交
5678 5679
};

5680 5681
static int perf_event_task_match(struct perf_event *event)
{
5682 5683 5684
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5685 5686
}

5687
static void perf_event_task_output(struct perf_event *event,
5688
				   void *data)
P
Peter Zijlstra 已提交
5689
{
5690
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5691
	struct perf_output_handle handle;
5692
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5693
	struct task_struct *task = task_event->task;
5694
	int ret, size = task_event->event_id.header.size;
5695

5696 5697 5698
	if (!perf_event_task_match(event))
		return;

5699
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5700

5701
	ret = perf_output_begin(&handle, event,
5702
				task_event->event_id.header.size);
5703
	if (ret)
5704
		goto out;
P
Peter Zijlstra 已提交
5705

5706 5707
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5708

5709 5710
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5711

5712 5713
	task_event->event_id.time = perf_event_clock(event);

5714
	perf_output_put(&handle, task_event->event_id);
5715

5716 5717
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5718
	perf_output_end(&handle);
5719 5720
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5721 5722
}

5723 5724
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5725
			      int new)
P
Peter Zijlstra 已提交
5726
{
P
Peter Zijlstra 已提交
5727
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5728

5729 5730 5731
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5732 5733
		return;

P
Peter Zijlstra 已提交
5734
	task_event = (struct perf_task_event){
5735 5736
		.task	  = task,
		.task_ctx = task_ctx,
5737
		.event_id    = {
P
Peter Zijlstra 已提交
5738
			.header = {
5739
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5740
				.misc = 0,
5741
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5742
			},
5743 5744
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5745 5746
			/* .tid  */
			/* .ptid */
5747
			/* .time */
P
Peter Zijlstra 已提交
5748 5749 5750
		},
	};

5751
	perf_event_aux(perf_event_task_output,
5752 5753
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5754 5755
}

5756
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5757
{
5758
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5759 5760
}

5761 5762 5763 5764 5765
/*
 * comm tracking
 */

struct perf_comm_event {
5766 5767
	struct task_struct	*task;
	char			*comm;
5768 5769 5770 5771 5772 5773 5774
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5775
	} event_id;
5776 5777
};

5778 5779 5780 5781 5782
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5783
static void perf_event_comm_output(struct perf_event *event,
5784
				   void *data)
5785
{
5786
	struct perf_comm_event *comm_event = data;
5787
	struct perf_output_handle handle;
5788
	struct perf_sample_data sample;
5789
	int size = comm_event->event_id.header.size;
5790 5791
	int ret;

5792 5793 5794
	if (!perf_event_comm_match(event))
		return;

5795 5796
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5797
				comm_event->event_id.header.size);
5798 5799

	if (ret)
5800
		goto out;
5801

5802 5803
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5804

5805
	perf_output_put(&handle, comm_event->event_id);
5806
	__output_copy(&handle, comm_event->comm,
5807
				   comm_event->comm_size);
5808 5809 5810

	perf_event__output_id_sample(event, &handle, &sample);

5811
	perf_output_end(&handle);
5812 5813
out:
	comm_event->event_id.header.size = size;
5814 5815
}

5816
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5817
{
5818
	char comm[TASK_COMM_LEN];
5819 5820
	unsigned int size;

5821
	memset(comm, 0, sizeof(comm));
5822
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5823
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5824 5825 5826 5827

	comm_event->comm = comm;
	comm_event->comm_size = size;

5828
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5829

5830
	perf_event_aux(perf_event_comm_output,
5831 5832
		       comm_event,
		       NULL);
5833 5834
}

5835
void perf_event_comm(struct task_struct *task, bool exec)
5836
{
5837 5838
	struct perf_comm_event comm_event;

5839
	if (!atomic_read(&nr_comm_events))
5840
		return;
5841

5842
	comm_event = (struct perf_comm_event){
5843
		.task	= task,
5844 5845
		/* .comm      */
		/* .comm_size */
5846
		.event_id  = {
5847
			.header = {
5848
				.type = PERF_RECORD_COMM,
5849
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5850 5851 5852 5853
				/* .size */
			},
			/* .pid */
			/* .tid */
5854 5855 5856
		},
	};

5857
	perf_event_comm_event(&comm_event);
5858 5859
}

5860 5861 5862 5863 5864
/*
 * mmap tracking
 */

struct perf_mmap_event {
5865 5866 5867 5868
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5869 5870 5871
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5872
	u32			prot, flags;
5873 5874 5875 5876 5877 5878 5879 5880 5881

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5882
	} event_id;
5883 5884
};

5885 5886 5887 5888 5889 5890 5891 5892
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5893
	       (executable && (event->attr.mmap || event->attr.mmap2));
5894 5895
}

5896
static void perf_event_mmap_output(struct perf_event *event,
5897
				   void *data)
5898
{
5899
	struct perf_mmap_event *mmap_event = data;
5900
	struct perf_output_handle handle;
5901
	struct perf_sample_data sample;
5902
	int size = mmap_event->event_id.header.size;
5903
	int ret;
5904

5905 5906 5907
	if (!perf_event_mmap_match(event, data))
		return;

5908 5909 5910 5911 5912
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5913
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5914 5915
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5916 5917
	}

5918 5919
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5920
				mmap_event->event_id.header.size);
5921
	if (ret)
5922
		goto out;
5923

5924 5925
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5926

5927
	perf_output_put(&handle, mmap_event->event_id);
5928 5929 5930 5931 5932 5933

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5934 5935
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5936 5937
	}

5938
	__output_copy(&handle, mmap_event->file_name,
5939
				   mmap_event->file_size);
5940 5941 5942

	perf_event__output_id_sample(event, &handle, &sample);

5943
	perf_output_end(&handle);
5944 5945
out:
	mmap_event->event_id.header.size = size;
5946 5947
}

5948
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5949
{
5950 5951
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5952 5953
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5954
	u32 prot = 0, flags = 0;
5955 5956 5957
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5958
	char *name;
5959

5960
	if (file) {
5961 5962
		struct inode *inode;
		dev_t dev;
5963

5964
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5965
		if (!buf) {
5966 5967
			name = "//enomem";
			goto cpy_name;
5968
		}
5969
		/*
5970
		 * d_path() works from the end of the rb backwards, so we
5971 5972 5973
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5974
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5975
		if (IS_ERR(name)) {
5976 5977
			name = "//toolong";
			goto cpy_name;
5978
		}
5979 5980 5981 5982 5983 5984
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6007
		goto got_name;
6008
	} else {
6009 6010 6011 6012 6013 6014
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6015
		name = (char *)arch_vma_name(vma);
6016 6017
		if (name)
			goto cpy_name;
6018

6019
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6020
				vma->vm_end >= vma->vm_mm->brk) {
6021 6022
			name = "[heap]";
			goto cpy_name;
6023 6024
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6025
				vma->vm_end >= vma->vm_mm->start_stack) {
6026 6027
			name = "[stack]";
			goto cpy_name;
6028 6029
		}

6030 6031
		name = "//anon";
		goto cpy_name;
6032 6033
	}

6034 6035 6036
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6037
got_name:
6038 6039 6040 6041 6042 6043 6044 6045
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6046 6047 6048

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6049 6050 6051 6052
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6053 6054
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6055

6056 6057 6058
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6059
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6060

6061
	perf_event_aux(perf_event_mmap_output,
6062 6063
		       mmap_event,
		       NULL);
6064

6065 6066 6067
	kfree(buf);
}

6068
void perf_event_mmap(struct vm_area_struct *vma)
6069
{
6070 6071
	struct perf_mmap_event mmap_event;

6072
	if (!atomic_read(&nr_mmap_events))
6073 6074 6075
		return;

	mmap_event = (struct perf_mmap_event){
6076
		.vma	= vma,
6077 6078
		/* .file_name */
		/* .file_size */
6079
		.event_id  = {
6080
			.header = {
6081
				.type = PERF_RECORD_MMAP,
6082
				.misc = PERF_RECORD_MISC_USER,
6083 6084 6085 6086
				/* .size */
			},
			/* .pid */
			/* .tid */
6087 6088
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6089
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6090
		},
6091 6092 6093 6094
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6095 6096
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6097 6098
	};

6099
	perf_event_mmap_event(&mmap_event);
6100 6101
}

A
Alexander Shishkin 已提交
6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6254 6255 6256 6257
/*
 * IRQ throttle logging
 */

6258
static void perf_log_throttle(struct perf_event *event, int enable)
6259 6260
{
	struct perf_output_handle handle;
6261
	struct perf_sample_data sample;
6262 6263 6264 6265 6266
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6267
		u64				id;
6268
		u64				stream_id;
6269 6270
	} throttle_event = {
		.header = {
6271
			.type = PERF_RECORD_THROTTLE,
6272 6273 6274
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6275
		.time		= perf_event_clock(event),
6276 6277
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6278 6279
	};

6280
	if (enable)
6281
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6282

6283 6284 6285
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6286
				throttle_event.header.size);
6287 6288 6289 6290
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6291
	perf_event__output_id_sample(event, &handle, &sample);
6292 6293 6294
	perf_output_end(&handle);
}

6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6331
/*
6332
 * Generic event overflow handling, sampling.
6333 6334
 */

6335
static int __perf_event_overflow(struct perf_event *event,
6336 6337
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6338
{
6339 6340
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6341
	u64 seq;
6342 6343
	int ret = 0;

6344 6345 6346 6347 6348 6349 6350
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6351 6352 6353 6354 6355 6356 6357 6358 6359
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6360 6361
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6362
			tick_nohz_full_kick();
6363 6364
			ret = 1;
		}
6365
	}
6366

6367
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6368
		u64 now = perf_clock();
6369
		s64 delta = now - hwc->freq_time_stamp;
6370

6371
		hwc->freq_time_stamp = now;
6372

6373
		if (delta > 0 && delta < 2*TICK_NSEC)
6374
			perf_adjust_period(event, delta, hwc->last_period, true);
6375 6376
	}

6377 6378
	/*
	 * XXX event_limit might not quite work as expected on inherited
6379
	 * events
6380 6381
	 */

6382 6383
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6384
		ret = 1;
6385
		event->pending_kill = POLL_HUP;
6386 6387
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6388 6389
	}

6390
	if (event->overflow_handler)
6391
		event->overflow_handler(event, data, regs);
6392
	else
6393
		perf_event_output(event, data, regs);
6394

6395
	if (*perf_event_fasync(event) && event->pending_kill) {
6396 6397
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6398 6399
	}

6400
	return ret;
6401 6402
}

6403
int perf_event_overflow(struct perf_event *event,
6404 6405
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6406
{
6407
	return __perf_event_overflow(event, 1, data, regs);
6408 6409
}

6410
/*
6411
 * Generic software event infrastructure
6412 6413
 */

6414 6415 6416 6417 6418 6419 6420
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
6421 6422 6423

	/* Keeps track of cpu being initialized/exited */
	bool				online;
6424 6425 6426 6427
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6428
/*
6429 6430
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6431 6432 6433 6434
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6435
u64 perf_swevent_set_period(struct perf_event *event)
6436
{
6437
	struct hw_perf_event *hwc = &event->hw;
6438 6439 6440 6441 6442
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6443 6444

again:
6445
	old = val = local64_read(&hwc->period_left);
6446 6447
	if (val < 0)
		return 0;
6448

6449 6450 6451
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6452
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6453
		goto again;
6454

6455
	return nr;
6456 6457
}

6458
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6459
				    struct perf_sample_data *data,
6460
				    struct pt_regs *regs)
6461
{
6462
	struct hw_perf_event *hwc = &event->hw;
6463
	int throttle = 0;
6464

6465 6466
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6467

6468 6469
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6470

6471
	for (; overflow; overflow--) {
6472
		if (__perf_event_overflow(event, throttle,
6473
					    data, regs)) {
6474 6475 6476 6477 6478 6479
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6480
		throttle = 1;
6481
	}
6482 6483
}

P
Peter Zijlstra 已提交
6484
static void perf_swevent_event(struct perf_event *event, u64 nr,
6485
			       struct perf_sample_data *data,
6486
			       struct pt_regs *regs)
6487
{
6488
	struct hw_perf_event *hwc = &event->hw;
6489

6490
	local64_add(nr, &event->count);
6491

6492 6493 6494
	if (!regs)
		return;

6495
	if (!is_sampling_event(event))
6496
		return;
6497

6498 6499 6500 6501 6502 6503
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6504
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6505
		return perf_swevent_overflow(event, 1, data, regs);
6506

6507
	if (local64_add_negative(nr, &hwc->period_left))
6508
		return;
6509

6510
	perf_swevent_overflow(event, 0, data, regs);
6511 6512
}

6513 6514 6515
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6516
	if (event->hw.state & PERF_HES_STOPPED)
6517
		return 1;
P
Peter Zijlstra 已提交
6518

6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6530
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6531
				enum perf_type_id type,
L
Li Zefan 已提交
6532 6533 6534
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6535
{
6536
	if (event->attr.type != type)
6537
		return 0;
6538

6539
	if (event->attr.config != event_id)
6540 6541
		return 0;

6542 6543
	if (perf_exclude_event(event, regs))
		return 0;
6544 6545 6546 6547

	return 1;
}

6548 6549 6550 6551 6552 6553 6554
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6555 6556
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6557
{
6558 6559 6560 6561
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6562

6563 6564
/* For the read side: events when they trigger */
static inline struct hlist_head *
6565
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6566 6567
{
	struct swevent_hlist *hlist;
6568

6569
	hlist = rcu_dereference(swhash->swevent_hlist);
6570 6571 6572
	if (!hlist)
		return NULL;

6573 6574 6575 6576 6577
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6578
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6589
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6590 6591 6592 6593 6594
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6595 6596 6597
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6598
				    u64 nr,
6599 6600
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6601
{
6602
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6603
	struct perf_event *event;
6604
	struct hlist_head *head;
6605

6606
	rcu_read_lock();
6607
	head = find_swevent_head_rcu(swhash, type, event_id);
6608 6609 6610
	if (!head)
		goto end;

6611
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6612
		if (perf_swevent_match(event, type, event_id, data, regs))
6613
			perf_swevent_event(event, nr, data, regs);
6614
	}
6615 6616
end:
	rcu_read_unlock();
6617 6618
}

6619 6620
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6621
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6622
{
6623
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6624

6625
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6626
}
I
Ingo Molnar 已提交
6627
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6628

6629
inline void perf_swevent_put_recursion_context(int rctx)
6630
{
6631
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6632

6633
	put_recursion_context(swhash->recursion, rctx);
6634
}
6635

6636
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6637
{
6638
	struct perf_sample_data data;
6639

6640
	if (WARN_ON_ONCE(!regs))
6641
		return;
6642

6643
	perf_sample_data_init(&data, addr, 0);
6644
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6657 6658

	perf_swevent_put_recursion_context(rctx);
6659
fail:
6660
	preempt_enable_notrace();
6661 6662
}

6663
static void perf_swevent_read(struct perf_event *event)
6664 6665 6666
{
}

P
Peter Zijlstra 已提交
6667
static int perf_swevent_add(struct perf_event *event, int flags)
6668
{
6669
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6670
	struct hw_perf_event *hwc = &event->hw;
6671 6672
	struct hlist_head *head;

6673
	if (is_sampling_event(event)) {
6674
		hwc->last_period = hwc->sample_period;
6675
		perf_swevent_set_period(event);
6676
	}
6677

P
Peter Zijlstra 已提交
6678 6679
	hwc->state = !(flags & PERF_EF_START);

6680
	head = find_swevent_head(swhash, event);
6681 6682 6683 6684 6685 6686
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6687
		return -EINVAL;
6688
	}
6689 6690

	hlist_add_head_rcu(&event->hlist_entry, head);
6691
	perf_event_update_userpage(event);
6692

6693 6694 6695
	return 0;
}

P
Peter Zijlstra 已提交
6696
static void perf_swevent_del(struct perf_event *event, int flags)
6697
{
6698
	hlist_del_rcu(&event->hlist_entry);
6699 6700
}

P
Peter Zijlstra 已提交
6701
static void perf_swevent_start(struct perf_event *event, int flags)
6702
{
P
Peter Zijlstra 已提交
6703
	event->hw.state = 0;
6704
}
I
Ingo Molnar 已提交
6705

P
Peter Zijlstra 已提交
6706
static void perf_swevent_stop(struct perf_event *event, int flags)
6707
{
P
Peter Zijlstra 已提交
6708
	event->hw.state = PERF_HES_STOPPED;
6709 6710
}

6711 6712
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6713
swevent_hlist_deref(struct swevent_htable *swhash)
6714
{
6715 6716
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6717 6718
}

6719
static void swevent_hlist_release(struct swevent_htable *swhash)
6720
{
6721
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6722

6723
	if (!hlist)
6724 6725
		return;

6726
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6727
	kfree_rcu(hlist, rcu_head);
6728 6729 6730 6731
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6732
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6733

6734
	mutex_lock(&swhash->hlist_mutex);
6735

6736 6737
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6738

6739
	mutex_unlock(&swhash->hlist_mutex);
6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6752
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6753 6754
	int err = 0;

6755
	mutex_lock(&swhash->hlist_mutex);
6756

6757
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6758 6759 6760 6761 6762 6763 6764
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6765
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6766
	}
6767
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6768
exit:
6769
	mutex_unlock(&swhash->hlist_mutex);
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6790
fail:
6791 6792 6793 6794 6795 6796 6797 6798 6799 6800
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6801
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6802

6803 6804 6805
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6806

6807 6808
	WARN_ON(event->parent);

6809
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6810 6811 6812 6813 6814
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6815
	u64 event_id = event->attr.config;
6816 6817 6818 6819

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6820 6821 6822 6823 6824 6825
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6826 6827 6828 6829 6830 6831 6832 6833 6834
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6835
	if (event_id >= PERF_COUNT_SW_MAX)
6836 6837 6838 6839 6840 6841 6842 6843 6844
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6845
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6846 6847 6848 6849 6850 6851 6852
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6853
	.task_ctx_nr	= perf_sw_context,
6854

6855 6856
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6857
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6858 6859 6860 6861
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6862 6863 6864
	.read		= perf_swevent_read,
};

6865 6866
#ifdef CONFIG_EVENT_TRACING

6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6881 6882
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6883 6884 6885 6886
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6887 6888 6889 6890 6891 6892 6893 6894 6895
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6896 6897
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6898 6899
{
	struct perf_sample_data data;
6900 6901
	struct perf_event *event;

6902 6903 6904 6905 6906
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6907
	perf_sample_data_init(&data, addr, 0);
6908 6909
	data.raw = &raw;

6910
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6911
		if (perf_tp_event_match(event, &data, regs))
6912
			perf_swevent_event(event, count, &data, regs);
6913
	}
6914

6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6940
	perf_swevent_put_recursion_context(rctx);
6941 6942 6943
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6944
static void tp_perf_event_destroy(struct perf_event *event)
6945
{
6946
	perf_trace_destroy(event);
6947 6948
}

6949
static int perf_tp_event_init(struct perf_event *event)
6950
{
6951 6952
	int err;

6953 6954 6955
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6956 6957 6958 6959 6960 6961
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6962 6963
	err = perf_trace_init(event);
	if (err)
6964
		return err;
6965

6966
	event->destroy = tp_perf_event_destroy;
6967

6968 6969 6970 6971
	return 0;
}

static struct pmu perf_tracepoint = {
6972 6973
	.task_ctx_nr	= perf_sw_context,

6974
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6975 6976 6977 6978
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6979 6980 6981 6982 6983
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6984
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6985
}
L
Li Zefan 已提交
6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7010 7011 7012 7013 7014 7015 7016 7017 7018 7019
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7020 7021
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7022 7023 7024 7025 7026 7027
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7028
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7053
#else
L
Li Zefan 已提交
7054

7055
static inline void perf_tp_register(void)
7056 7057
{
}
L
Li Zefan 已提交
7058 7059 7060 7061 7062 7063 7064 7065 7066 7067

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7068 7069 7070 7071 7072 7073 7074 7075
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7076
#endif /* CONFIG_EVENT_TRACING */
7077

7078
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7079
void perf_bp_event(struct perf_event *bp, void *data)
7080
{
7081 7082 7083
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7084
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7085

P
Peter Zijlstra 已提交
7086
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7087
		perf_swevent_event(bp, 1, &sample, regs);
7088 7089 7090
}
#endif

7091 7092 7093
/*
 * hrtimer based swevent callback
 */
7094

7095
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7096
{
7097 7098 7099 7100 7101
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7102

7103
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7104 7105 7106 7107

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7108
	event->pmu->read(event);
7109

7110
	perf_sample_data_init(&data, 0, event->hw.last_period);
7111 7112 7113
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7114
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7115
			if (__perf_event_overflow(event, 1, &data, regs))
7116 7117
				ret = HRTIMER_NORESTART;
	}
7118

7119 7120
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7121

7122
	return ret;
7123 7124
}

7125
static void perf_swevent_start_hrtimer(struct perf_event *event)
7126
{
7127
	struct hw_perf_event *hwc = &event->hw;
7128 7129 7130 7131
	s64 period;

	if (!is_sampling_event(event))
		return;
7132

7133 7134 7135 7136
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7137

7138 7139 7140 7141
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7142 7143
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7144
}
7145 7146

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7147
{
7148 7149
	struct hw_perf_event *hwc = &event->hw;

7150
	if (is_sampling_event(event)) {
7151
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7152
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7153 7154 7155

		hrtimer_cancel(&hwc->hrtimer);
	}
7156 7157
}

P
Peter Zijlstra 已提交
7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7178
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7179 7180 7181 7182
		event->attr.freq = 0;
	}
}

7183 7184 7185 7186 7187
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7188
{
7189 7190 7191
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7192
	now = local_clock();
7193 7194
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7195 7196
}

P
Peter Zijlstra 已提交
7197
static void cpu_clock_event_start(struct perf_event *event, int flags)
7198
{
P
Peter Zijlstra 已提交
7199
	local64_set(&event->hw.prev_count, local_clock());
7200 7201 7202
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7203
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7204
{
7205 7206 7207
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7208

P
Peter Zijlstra 已提交
7209 7210 7211 7212
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7213
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7214 7215 7216 7217 7218 7219 7220 7221 7222

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7223 7224 7225 7226
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7227

7228 7229 7230 7231 7232 7233 7234 7235
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7236 7237 7238 7239 7240 7241
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7242 7243
	perf_swevent_init_hrtimer(event);

7244
	return 0;
7245 7246
}

7247
static struct pmu perf_cpu_clock = {
7248 7249
	.task_ctx_nr	= perf_sw_context,

7250 7251
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7252
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7253 7254 7255 7256
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7257 7258 7259 7260 7261 7262 7263 7264
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7265
{
7266 7267
	u64 prev;
	s64 delta;
7268

7269 7270 7271 7272
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7273

P
Peter Zijlstra 已提交
7274
static void task_clock_event_start(struct perf_event *event, int flags)
7275
{
P
Peter Zijlstra 已提交
7276
	local64_set(&event->hw.prev_count, event->ctx->time);
7277 7278 7279
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7280
static void task_clock_event_stop(struct perf_event *event, int flags)
7281 7282 7283
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7284 7285 7286 7287 7288 7289
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7290
	perf_event_update_userpage(event);
7291

P
Peter Zijlstra 已提交
7292 7293 7294 7295 7296 7297
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7298 7299 7300 7301
}

static void task_clock_event_read(struct perf_event *event)
{
7302 7303 7304
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7305 7306 7307 7308 7309

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7310
{
7311 7312 7313 7314 7315 7316
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7317 7318 7319 7320 7321 7322
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7323 7324
	perf_swevent_init_hrtimer(event);

7325
	return 0;
L
Li Zefan 已提交
7326 7327
}

7328
static struct pmu perf_task_clock = {
7329 7330
	.task_ctx_nr	= perf_sw_context,

7331 7332
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7333
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7334 7335 7336 7337
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7338 7339
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7340

P
Peter Zijlstra 已提交
7341
static void perf_pmu_nop_void(struct pmu *pmu)
7342 7343
{
}
L
Li Zefan 已提交
7344

7345 7346 7347 7348
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7349
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7350
{
P
Peter Zijlstra 已提交
7351
	return 0;
L
Li Zefan 已提交
7352 7353
}

7354 7355 7356
DEFINE_PER_CPU(unsigned int, nop_txn_flags);

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7357
{
7358 7359 7360 7361 7362
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7363
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7364 7365
}

P
Peter Zijlstra 已提交
7366 7367
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7368 7369 7370 7371 7372 7373 7374
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7375 7376 7377
	perf_pmu_enable(pmu);
	return 0;
}
7378

P
Peter Zijlstra 已提交
7379
static void perf_pmu_cancel_txn(struct pmu *pmu)
7380
{
7381 7382 7383 7384 7385 7386 7387
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7388
	perf_pmu_enable(pmu);
7389 7390
}

7391 7392
static int perf_event_idx_default(struct perf_event *event)
{
7393
	return 0;
7394 7395
}

P
Peter Zijlstra 已提交
7396 7397 7398 7399
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7400
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7401
{
P
Peter Zijlstra 已提交
7402
	struct pmu *pmu;
7403

P
Peter Zijlstra 已提交
7404 7405
	if (ctxn < 0)
		return NULL;
7406

P
Peter Zijlstra 已提交
7407 7408 7409 7410
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7411

P
Peter Zijlstra 已提交
7412
	return NULL;
7413 7414
}

7415
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7416
{
7417 7418 7419 7420 7421 7422 7423
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7424 7425
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7426 7427 7428 7429 7430 7431
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7432

P
Peter Zijlstra 已提交
7433
	mutex_lock(&pmus_lock);
7434
	/*
P
Peter Zijlstra 已提交
7435
	 * Like a real lame refcount.
7436
	 */
7437 7438 7439
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7440
			goto out;
7441
		}
P
Peter Zijlstra 已提交
7442
	}
7443

7444
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7445 7446
out:
	mutex_unlock(&pmus_lock);
7447
}
P
Peter Zijlstra 已提交
7448
static struct idr pmu_idr;
7449

P
Peter Zijlstra 已提交
7450 7451 7452 7453 7454 7455 7456
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7457
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7458

7459 7460 7461 7462 7463 7464 7465 7466 7467 7468
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7469 7470
static DEFINE_MUTEX(mux_interval_mutex);

7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7490
	mutex_lock(&mux_interval_mutex);
7491 7492 7493
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7494 7495
	get_online_cpus();
	for_each_online_cpu(cpu) {
7496 7497 7498 7499
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7500 7501
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7502
	}
7503 7504
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7505 7506 7507

	return count;
}
7508
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7509

7510 7511 7512 7513
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7514
};
7515
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7516 7517 7518 7519

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7520
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7536
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7557
static struct lock_class_key cpuctx_mutex;
7558
static struct lock_class_key cpuctx_lock;
7559

7560
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7561
{
P
Peter Zijlstra 已提交
7562
	int cpu, ret;
7563

7564
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7565 7566 7567 7568
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7569

P
Peter Zijlstra 已提交
7570 7571 7572 7573 7574 7575
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7576 7577 7578
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7579 7580 7581 7582 7583
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7584 7585 7586 7587 7588 7589
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7590
skip_type:
P
Peter Zijlstra 已提交
7591 7592 7593
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7594

W
Wei Yongjun 已提交
7595
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7596 7597
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7598
		goto free_dev;
7599

P
Peter Zijlstra 已提交
7600 7601 7602 7603
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7604
		__perf_event_init_context(&cpuctx->ctx);
7605
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7606
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7607
		cpuctx->ctx.pmu = pmu;
7608

7609
		__perf_mux_hrtimer_init(cpuctx, cpu);
7610

7611
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7612
	}
7613

P
Peter Zijlstra 已提交
7614
got_cpu_context:
P
Peter Zijlstra 已提交
7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7626
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7627 7628
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7629
		}
7630
	}
7631

P
Peter Zijlstra 已提交
7632 7633 7634 7635 7636
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7637 7638 7639
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7640
	list_add_rcu(&pmu->entry, &pmus);
7641
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7642 7643
	ret = 0;
unlock:
7644 7645
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7646
	return ret;
P
Peter Zijlstra 已提交
7647

P
Peter Zijlstra 已提交
7648 7649 7650 7651
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7652 7653 7654 7655
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7656 7657 7658
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7659
}
7660
EXPORT_SYMBOL_GPL(perf_pmu_register);
7661

7662
void perf_pmu_unregister(struct pmu *pmu)
7663
{
7664 7665 7666
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7667

7668
	/*
P
Peter Zijlstra 已提交
7669 7670
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7671
	 */
7672
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7673
	synchronize_rcu();
7674

P
Peter Zijlstra 已提交
7675
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7676 7677
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7678 7679
	device_del(pmu->dev);
	put_device(pmu->dev);
7680
	free_pmu_context(pmu);
7681
}
7682
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7683

7684 7685
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7686
	struct perf_event_context *ctx = NULL;
7687 7688 7689 7690
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7691 7692

	if (event->group_leader != event) {
7693 7694 7695 7696 7697 7698
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7699 7700 7701
		BUG_ON(!ctx);
	}

7702 7703
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7704 7705 7706 7707

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7708 7709 7710 7711 7712 7713
	if (ret)
		module_put(pmu->module);

	return ret;
}

7714 7715 7716 7717
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
7718
	int ret;
7719 7720

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7721 7722 7723 7724

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7725
	if (pmu) {
7726
		ret = perf_try_init_event(pmu, event);
7727 7728
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7729
		goto unlock;
7730
	}
P
Peter Zijlstra 已提交
7731

7732
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7733
		ret = perf_try_init_event(pmu, event);
7734
		if (!ret)
P
Peter Zijlstra 已提交
7735
			goto unlock;
7736

7737 7738
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7739
			goto unlock;
7740
		}
7741
	}
P
Peter Zijlstra 已提交
7742 7743
	pmu = ERR_PTR(-ENOENT);
unlock:
7744
	srcu_read_unlock(&pmus_srcu, idx);
7745

7746
	return pmu;
7747 7748
}

7749 7750 7751 7752 7753 7754 7755 7756 7757
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7758 7759
static void account_event(struct perf_event *event)
{
7760 7761 7762
	if (event->parent)
		return;

7763 7764 7765 7766 7767 7768 7769 7770
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7771 7772 7773 7774
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7775 7776 7777 7778
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
		static_key_slow_inc(&perf_sched_events.key);
	}
7779
	if (has_branch_stack(event))
7780
		static_key_slow_inc(&perf_sched_events.key);
7781
	if (is_cgroup_event(event))
7782
		static_key_slow_inc(&perf_sched_events.key);
7783 7784

	account_event_cpu(event, event->cpu);
7785 7786
}

T
Thomas Gleixner 已提交
7787
/*
7788
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7789
 */
7790
static struct perf_event *
7791
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7792 7793 7794
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7795
		 perf_overflow_handler_t overflow_handler,
7796
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7797
{
P
Peter Zijlstra 已提交
7798
	struct pmu *pmu;
7799 7800
	struct perf_event *event;
	struct hw_perf_event *hwc;
7801
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7802

7803 7804 7805 7806 7807
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7808
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7809
	if (!event)
7810
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7811

7812
	/*
7813
	 * Single events are their own group leaders, with an
7814 7815 7816
	 * empty sibling list:
	 */
	if (!group_leader)
7817
		group_leader = event;
7818

7819 7820
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7821

7822 7823 7824
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7825
	INIT_LIST_HEAD(&event->rb_entry);
7826
	INIT_LIST_HEAD(&event->active_entry);
7827 7828
	INIT_HLIST_NODE(&event->hlist_entry);

7829

7830
	init_waitqueue_head(&event->waitq);
7831
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7832

7833
	mutex_init(&event->mmap_mutex);
7834

7835
	atomic_long_set(&event->refcount, 1);
7836 7837 7838 7839 7840
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7841

7842
	event->parent		= parent_event;
7843

7844
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7845
	event->id		= atomic64_inc_return(&perf_event_id);
7846

7847
	event->state		= PERF_EVENT_STATE_INACTIVE;
7848

7849 7850 7851
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7852 7853 7854
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7855
		 */
7856
		event->hw.target = task;
7857 7858
	}

7859 7860 7861 7862
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7863
	if (!overflow_handler && parent_event) {
7864
		overflow_handler = parent_event->overflow_handler;
7865 7866
		context = parent_event->overflow_handler_context;
	}
7867

7868
	event->overflow_handler	= overflow_handler;
7869
	event->overflow_handler_context = context;
7870

J
Jiri Olsa 已提交
7871
	perf_event__state_init(event);
7872

7873
	pmu = NULL;
7874

7875
	hwc = &event->hw;
7876
	hwc->sample_period = attr->sample_period;
7877
	if (attr->freq && attr->sample_freq)
7878
		hwc->sample_period = 1;
7879
	hwc->last_period = hwc->sample_period;
7880

7881
	local64_set(&hwc->period_left, hwc->sample_period);
7882

7883
	/*
7884
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7885
	 */
7886
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7887
		goto err_ns;
7888 7889 7890

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7891

7892 7893 7894 7895 7896 7897
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7898
	pmu = perf_init_event(event);
7899
	if (!pmu)
7900 7901
		goto err_ns;
	else if (IS_ERR(pmu)) {
7902
		err = PTR_ERR(pmu);
7903
		goto err_ns;
I
Ingo Molnar 已提交
7904
	}
7905

7906 7907 7908 7909
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7910
	if (!event->parent) {
7911 7912
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7913
			if (err)
7914
				goto err_per_task;
7915
		}
7916
	}
7917

7918
	return event;
7919

7920 7921 7922
err_per_task:
	exclusive_event_destroy(event);

7923 7924 7925
err_pmu:
	if (event->destroy)
		event->destroy(event);
7926
	module_put(pmu->module);
7927
err_ns:
7928 7929
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7930 7931 7932 7933 7934
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7935 7936
}

7937 7938
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7939 7940
{
	u32 size;
7941
	int ret;
7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7966 7967 7968
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7969 7970
	 */
	if (size > sizeof(*attr)) {
7971 7972 7973
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7974

7975 7976
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7977

7978
		for (; addr < end; addr++) {
7979 7980 7981 7982 7983 7984
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7985
		size = sizeof(*attr);
7986 7987 7988 7989 7990 7991
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7992
	if (attr->__reserved_1)
7993 7994 7995 7996 7997 7998 7999 8000
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8029 8030
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8031 8032
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8033
	}
8034

8035
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8036
		ret = perf_reg_validate(attr->sample_regs_user);
8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8055

8056 8057
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8058 8059 8060 8061 8062 8063 8064 8065 8066
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8067 8068
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8069
{
8070
	struct ring_buffer *rb = NULL;
8071 8072
	int ret = -EINVAL;

8073
	if (!output_event)
8074 8075
		goto set;

8076 8077
	/* don't allow circular references */
	if (event == output_event)
8078 8079
		goto out;

8080 8081 8082 8083 8084 8085 8086
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8087
	 * If its not a per-cpu rb, it must be the same task.
8088 8089 8090 8091
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8092 8093 8094 8095 8096 8097
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8098 8099 8100 8101 8102 8103 8104
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8105
set:
8106
	mutex_lock(&event->mmap_mutex);
8107 8108 8109
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8110

8111
	if (output_event) {
8112 8113 8114
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8115
			goto unlock;
8116 8117
	}

8118
	ring_buffer_attach(event, rb);
8119

8120
	ret = 0;
8121 8122 8123
unlock:
	mutex_unlock(&event->mmap_mutex);

8124 8125 8126 8127
out:
	return ret;
}

P
Peter Zijlstra 已提交
8128 8129 8130 8131 8132 8133 8134 8135 8136
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8174
/**
8175
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8176
 *
8177
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8178
 * @pid:		target pid
I
Ingo Molnar 已提交
8179
 * @cpu:		target cpu
8180
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8181
 */
8182 8183
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8184
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8185
{
8186 8187
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8188
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8189
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8190
	struct file *event_file = NULL;
8191
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8192
	struct task_struct *task = NULL;
8193
	struct pmu *pmu;
8194
	int event_fd;
8195
	int move_group = 0;
8196
	int err;
8197
	int f_flags = O_RDWR;
8198
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8199

8200
	/* for future expandability... */
S
Stephane Eranian 已提交
8201
	if (flags & ~PERF_FLAG_ALL)
8202 8203
		return -EINVAL;

8204 8205 8206
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8207

8208 8209 8210 8211 8212
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8213
	if (attr.freq) {
8214
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8215
			return -EINVAL;
8216 8217 8218
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8219 8220
	}

S
Stephane Eranian 已提交
8221 8222 8223 8224 8225 8226 8227 8228 8229
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8230 8231 8232 8233
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8234 8235 8236
	if (event_fd < 0)
		return event_fd;

8237
	if (group_fd != -1) {
8238 8239
		err = perf_fget_light(group_fd, &group);
		if (err)
8240
			goto err_fd;
8241
		group_leader = group.file->private_data;
8242 8243 8244 8245 8246 8247
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8248
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8249 8250 8251 8252 8253 8254 8255
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8256 8257 8258 8259 8260 8261
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8262 8263
	get_online_cpus();

8264 8265 8266
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8267
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8268
				 NULL, NULL, cgroup_fd);
8269 8270
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8271
		goto err_cpus;
8272 8273
	}

8274 8275 8276 8277 8278 8279 8280
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8281 8282
	account_event(event);

8283 8284 8285 8286 8287
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8288

8289 8290 8291 8292 8293 8294
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8317 8318 8319 8320

	/*
	 * Get the target context (task or percpu):
	 */
8321
	ctx = find_get_context(pmu, task, event);
8322 8323
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8324
		goto err_alloc;
8325 8326
	}

8327 8328 8329 8330 8331
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8332 8333 8334 8335 8336
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8337
	/*
8338
	 * Look up the group leader (we will attach this event to it):
8339
	 */
8340
	if (group_leader) {
8341
		err = -EINVAL;
8342 8343

		/*
I
Ingo Molnar 已提交
8344 8345 8346 8347
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8348
			goto err_context;
8349 8350 8351 8352 8353

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8354 8355 8356
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8357
		 */
8358
		if (move_group) {
8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8372 8373 8374 8375 8376 8377
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8378 8379 8380
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8381
		if (attr.exclusive || attr.pinned)
8382
			goto err_context;
8383 8384 8385 8386 8387
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8388
			goto err_context;
8389
	}
T
Thomas Gleixner 已提交
8390

8391 8392
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8393 8394
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8395
		goto err_context;
8396
	}
8397

8398
	if (move_group) {
P
Peter Zijlstra 已提交
8399 8400 8401 8402 8403 8404 8405
		gctx = group_leader->ctx;

		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8406

8407
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8408

8409 8410
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8411
			perf_remove_from_context(sibling, false);
8412 8413
			put_ctx(gctx);
		}
P
Peter Zijlstra 已提交
8414 8415
	} else {
		mutex_lock(&ctx->mutex);
8416
	}
8417

8418
	WARN_ON_ONCE(ctx->parent_ctx);
8419 8420

	if (move_group) {
P
Peter Zijlstra 已提交
8421 8422 8423 8424
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8425
		synchronize_rcu();
P
Peter Zijlstra 已提交
8426

8427 8428 8429 8430 8431 8432 8433 8434 8435 8436
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8437 8438
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8439
			perf_event__state_init(sibling);
8440
			perf_install_in_context(ctx, sibling, sibling->cpu);
8441 8442
			get_ctx(ctx);
		}
8443 8444 8445 8446 8447 8448 8449 8450 8451

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8452 8453
	}

8454 8455 8456 8457 8458 8459 8460
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
		mutex_unlock(&ctx->mutex);
		fput(event_file);
		goto err_context;
	}

8461
	perf_install_in_context(ctx, event, event->cpu);
8462
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8463 8464 8465 8466 8467

	if (move_group) {
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
	}
8468
	mutex_unlock(&ctx->mutex);
8469

8470 8471
	put_online_cpus();

8472
	event->owner = current;
P
Peter Zijlstra 已提交
8473

8474 8475 8476
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8477

8478 8479 8480 8481
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
8482
	perf_event__id_header_size(event);
8483

8484 8485 8486 8487 8488 8489
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8490
	fdput(group);
8491 8492
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8493

8494
err_context:
8495
	perf_unpin_context(ctx);
8496
	put_ctx(ctx);
8497
err_alloc:
8498
	free_event(event);
8499
err_cpus:
8500
	put_online_cpus();
8501
err_task:
P
Peter Zijlstra 已提交
8502 8503
	if (task)
		put_task_struct(task);
8504
err_group_fd:
8505
	fdput(group);
8506 8507
err_fd:
	put_unused_fd(event_fd);
8508
	return err;
T
Thomas Gleixner 已提交
8509 8510
}

8511 8512 8513 8514 8515
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8516
 * @task: task to profile (NULL for percpu)
8517 8518 8519
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8520
				 struct task_struct *task,
8521 8522
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8523 8524
{
	struct perf_event_context *ctx;
8525
	struct perf_event *event;
8526
	int err;
8527

8528 8529 8530
	/*
	 * Get the target context (task or percpu):
	 */
8531

8532
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8533
				 overflow_handler, context, -1);
8534 8535 8536 8537
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8538

8539 8540 8541
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8542 8543
	account_event(event);

8544
	ctx = find_get_context(event->pmu, task, event);
8545 8546
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8547
		goto err_free;
8548
	}
8549 8550 8551

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8552 8553 8554 8555 8556 8557 8558 8559
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8560
	perf_install_in_context(ctx, event, cpu);
8561
	perf_unpin_context(ctx);
8562 8563 8564 8565
	mutex_unlock(&ctx->mutex);

	return event;

8566 8567 8568
err_free:
	free_event(event);
err:
8569
	return ERR_PTR(err);
8570
}
8571
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8572

8573 8574 8575 8576 8577 8578 8579 8580 8581 8582
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8583 8584 8585 8586 8587
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8588 8589
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8590
		perf_remove_from_context(event, false);
8591
		unaccount_event_cpu(event, src_cpu);
8592
		put_ctx(src_ctx);
8593
		list_add(&event->migrate_entry, &events);
8594 8595
	}

8596 8597 8598
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8599 8600
	synchronize_rcu();

8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8625 8626
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8627 8628
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8629
		account_event_cpu(event, dst_cpu);
8630 8631 8632 8633
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8634
	mutex_unlock(&src_ctx->mutex);
8635 8636 8637
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8638
static void sync_child_event(struct perf_event *child_event,
8639
			       struct task_struct *child)
8640
{
8641
	struct perf_event *parent_event = child_event->parent;
8642
	u64 child_val;
8643

8644 8645
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8646

P
Peter Zijlstra 已提交
8647
	child_val = perf_event_count(child_event);
8648 8649 8650 8651

	/*
	 * Add back the child's count to the parent's count:
	 */
8652
	atomic64_add(child_val, &parent_event->child_count);
8653 8654 8655 8656
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8657 8658

	/*
8659
	 * Remove this event from the parent's list
8660
	 */
8661 8662 8663 8664
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8665

8666 8667 8668 8669 8670 8671
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8672
	/*
8673
	 * Release the parent event, if this was the last
8674 8675
	 * reference to it.
	 */
8676
	put_event(parent_event);
8677 8678
}

8679
static void
8680 8681
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8682
			 struct task_struct *child)
8683
{
8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8697

8698
	/*
8699
	 * It can happen that the parent exits first, and has events
8700
	 * that are still around due to the child reference. These
8701
	 * events need to be zapped.
8702
	 */
8703
	if (child_event->parent) {
8704 8705
		sync_child_event(child_event, child);
		free_event(child_event);
8706 8707 8708
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8709
	}
8710 8711
}

P
Peter Zijlstra 已提交
8712
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8713
{
8714
	struct perf_event *child_event, *next;
8715
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8716
	unsigned long flags;
8717

P
Peter Zijlstra 已提交
8718
	if (likely(!child->perf_event_ctxp[ctxn])) {
8719
		perf_event_task(child, NULL, 0);
8720
		return;
P
Peter Zijlstra 已提交
8721
	}
8722

8723
	local_irq_save(flags);
8724 8725 8726 8727 8728 8729
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8730
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8731 8732 8733

	/*
	 * Take the context lock here so that if find_get_context is
8734
	 * reading child->perf_event_ctxp, we wait until it has
8735 8736
	 * incremented the context's refcount before we do put_ctx below.
	 */
8737
	raw_spin_lock(&child_ctx->lock);
8738
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
8739
	child->perf_event_ctxp[ctxn] = NULL;
8740

8741 8742 8743
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8744
	 * the events from it.
8745
	 */
8746
	clone_ctx = unclone_ctx(child_ctx);
8747
	update_context_time(child_ctx);
8748
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8749

8750 8751
	if (clone_ctx)
		put_ctx(clone_ctx);
8752

P
Peter Zijlstra 已提交
8753
	/*
8754 8755 8756
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8757
	 */
8758
	perf_event_task(child, child_ctx, 0);
8759

8760 8761 8762
	/*
	 * We can recurse on the same lock type through:
	 *
8763 8764
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8765 8766
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8767 8768 8769
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8770
	mutex_lock(&child_ctx->mutex);
8771

8772
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8773
		__perf_event_exit_task(child_event, child_ctx, child);
8774

8775 8776 8777
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8778 8779
}

P
Peter Zijlstra 已提交
8780 8781 8782 8783 8784
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8785
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8786 8787
	int ctxn;

P
Peter Zijlstra 已提交
8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8803 8804 8805 8806
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8819
	put_event(parent);
8820

P
Peter Zijlstra 已提交
8821
	raw_spin_lock_irq(&ctx->lock);
8822
	perf_group_detach(event);
8823
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8824
	raw_spin_unlock_irq(&ctx->lock);
8825 8826 8827
	free_event(event);
}

8828
/*
P
Peter Zijlstra 已提交
8829
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8830
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8831 8832 8833
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8834
 */
8835
void perf_event_free_task(struct task_struct *task)
8836
{
P
Peter Zijlstra 已提交
8837
	struct perf_event_context *ctx;
8838
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8839
	int ctxn;
8840

P
Peter Zijlstra 已提交
8841 8842 8843 8844
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8845

P
Peter Zijlstra 已提交
8846
		mutex_lock(&ctx->mutex);
8847
again:
P
Peter Zijlstra 已提交
8848 8849 8850
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8851

P
Peter Zijlstra 已提交
8852 8853 8854
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8855

P
Peter Zijlstra 已提交
8856 8857 8858
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8859

P
Peter Zijlstra 已提交
8860
		mutex_unlock(&ctx->mutex);
8861

P
Peter Zijlstra 已提交
8862 8863
		put_ctx(ctx);
	}
8864 8865
}

8866 8867 8868 8869 8870 8871 8872 8873
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898
struct perf_event *perf_event_get(unsigned int fd)
{
	int err;
	struct fd f;
	struct perf_event *event;

	err = perf_fget_light(fd, &f);
	if (err)
		return ERR_PTR(err);

	event = f.file->private_data;
	atomic_long_inc(&event->refcount);
	fdput(f);

	return event;
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8910
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8911
	struct perf_event *child_event;
8912
	unsigned long flags;
P
Peter Zijlstra 已提交
8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8925
					   child,
P
Peter Zijlstra 已提交
8926
					   group_leader, parent_event,
8927
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8928 8929
	if (IS_ERR(child_event))
		return child_event;
8930

8931 8932
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8933 8934 8935 8936
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8937 8938 8939 8940 8941 8942 8943
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8944
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8961 8962
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8963

8964 8965 8966 8967
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8968
	perf_event__id_header_size(child_event);
8969

P
Peter Zijlstra 已提交
8970 8971 8972
	/*
	 * Link it up in the child's context:
	 */
8973
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8974
	add_event_to_ctx(child_event, child_ctx);
8975
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9009 9010 9011 9012 9013
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9014
		   struct task_struct *child, int ctxn,
9015 9016 9017
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9018
	struct perf_event_context *child_ctx;
9019 9020 9021 9022

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9023 9024
	}

9025
	child_ctx = child->perf_event_ctxp[ctxn];
9026 9027 9028 9029 9030 9031 9032
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9033

9034
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9035 9036
		if (!child_ctx)
			return -ENOMEM;
9037

P
Peter Zijlstra 已提交
9038
		child->perf_event_ctxp[ctxn] = child_ctx;
9039 9040 9041 9042 9043 9044 9045 9046 9047
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9048 9049
}

9050
/*
9051
 * Initialize the perf_event context in task_struct
9052
 */
9053
static int perf_event_init_context(struct task_struct *child, int ctxn)
9054
{
9055
	struct perf_event_context *child_ctx, *parent_ctx;
9056 9057
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9058
	struct task_struct *parent = current;
9059
	int inherited_all = 1;
9060
	unsigned long flags;
9061
	int ret = 0;
9062

P
Peter Zijlstra 已提交
9063
	if (likely(!parent->perf_event_ctxp[ctxn]))
9064 9065
		return 0;

9066
	/*
9067 9068
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9069
	 */
P
Peter Zijlstra 已提交
9070
	parent_ctx = perf_pin_task_context(parent, ctxn);
9071 9072
	if (!parent_ctx)
		return 0;
9073

9074 9075 9076 9077 9078 9079 9080
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9081 9082 9083 9084
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9085
	mutex_lock(&parent_ctx->mutex);
9086 9087 9088 9089 9090

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9091
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9092 9093
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9094 9095 9096
		if (ret)
			break;
	}
9097

9098 9099 9100 9101 9102 9103 9104 9105 9106
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9107
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9108 9109
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9110
		if (ret)
9111
			break;
9112 9113
	}

9114 9115 9116
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9117
	child_ctx = child->perf_event_ctxp[ctxn];
9118

9119
	if (child_ctx && inherited_all) {
9120 9121 9122
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9123 9124 9125
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9126
		 */
P
Peter Zijlstra 已提交
9127
		cloned_ctx = parent_ctx->parent_ctx;
9128 9129
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9130
			child_ctx->parent_gen = parent_ctx->parent_gen;
9131 9132 9133 9134 9135
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9136 9137
	}

P
Peter Zijlstra 已提交
9138
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9139
	mutex_unlock(&parent_ctx->mutex);
9140

9141
	perf_unpin_context(parent_ctx);
9142
	put_ctx(parent_ctx);
9143

9144
	return ret;
9145 9146
}

P
Peter Zijlstra 已提交
9147 9148 9149 9150 9151 9152 9153
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9154 9155 9156 9157
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9158 9159
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9160 9161
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9162
			return ret;
P
Peter Zijlstra 已提交
9163
		}
P
Peter Zijlstra 已提交
9164 9165 9166 9167 9168
	}

	return 0;
}

9169 9170
static void __init perf_event_init_all_cpus(void)
{
9171
	struct swevent_htable *swhash;
9172 9173 9174
	int cpu;

	for_each_possible_cpu(cpu) {
9175 9176
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9177
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9178 9179 9180
	}
}

9181
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9182
{
P
Peter Zijlstra 已提交
9183
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9184

9185
	mutex_lock(&swhash->hlist_mutex);
9186
	swhash->online = true;
9187
	if (swhash->hlist_refcount > 0) {
9188 9189
		struct swevent_hlist *hlist;

9190 9191 9192
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9193
	}
9194
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9195 9196
}

9197
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9198
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9199
{
9200
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
9201
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
9202

P
Peter Zijlstra 已提交
9203
	rcu_read_lock();
9204 9205
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
9206
	rcu_read_unlock();
T
Thomas Gleixner 已提交
9207
}
P
Peter Zijlstra 已提交
9208 9209 9210 9211 9212 9213 9214 9215 9216

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9217
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9218 9219 9220 9221 9222 9223 9224 9225

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9226
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9227
{
9228
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9229

P
Peter Zijlstra 已提交
9230 9231
	perf_event_exit_cpu_context(cpu);

9232
	mutex_lock(&swhash->hlist_mutex);
9233
	swhash->online = false;
9234 9235
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9236 9237
}
#else
9238
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9239 9240
#endif

P
Peter Zijlstra 已提交
9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9261
static int
T
Thomas Gleixner 已提交
9262 9263 9264 9265
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9266
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9267 9268

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9269
	case CPU_DOWN_FAILED:
9270
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9271 9272
		break;

P
Peter Zijlstra 已提交
9273
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9274
	case CPU_DOWN_PREPARE:
9275
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9276 9277 9278 9279 9280 9281 9282 9283
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9284
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9285
{
9286 9287
	int ret;

P
Peter Zijlstra 已提交
9288 9289
	idr_init(&pmu_idr);

9290
	perf_event_init_all_cpus();
9291
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9292 9293 9294
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9295 9296
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9297
	register_reboot_notifier(&perf_reboot_notifier);
9298 9299 9300

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9301 9302 9303

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9304 9305 9306 9307 9308 9309 9310

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9311
}
P
Peter Zijlstra 已提交
9312

9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9352 9353

#ifdef CONFIG_CGROUP_PERF
9354 9355
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9356 9357 9358
{
	struct perf_cgroup *jc;

9359
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9372
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9373
{
9374 9375
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

9387 9388
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9389
{
9390 9391
	struct task_struct *task;

9392
	cgroup_taskset_for_each(task, tset)
9393
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9394 9395
}

9396 9397
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
9398
			     struct task_struct *task)
S
Stephane Eranian 已提交
9399
{
9400
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9401 9402
}

9403
struct cgroup_subsys perf_event_cgrp_subsys = {
9404 9405
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9406
	.exit		= perf_cgroup_exit,
9407
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9408 9409
};
#endif /* CONFIG_CGROUP_PERF */