core.c 187.1 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
42
#include <linux/module.h>
T
Thomas Gleixner 已提交
43

44 45
#include "internal.h"

46 47
#include <asm/irq_regs.h>

48
struct remote_function_call {
49 50 51 52
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
86 87 88 89
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
110 111 112 113
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
114 115 116 117 118 119 120
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
121 122
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
123 124
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
125

126 127 128 129 130 131 132
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

133 134 135 136 137 138
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
139 140 141 142
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
143
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
144
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
145
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
146

147 148 149
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
150
static atomic_t nr_freq_events __read_mostly;
151

P
Peter Zijlstra 已提交
152 153 154 155
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

156
/*
157
 * perf event paranoia level:
158 159
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
160
 *   1 - disallow cpu events for unpriv
161
 *   2 - disallow kernel profiling for unpriv
162
 */
163
int sysctl_perf_event_paranoid __read_mostly = 1;
164

165 166
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
167 168

/*
169
 * max perf event sample rate
170
 */
171 172 173 174 175 176 177 178 179
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
180 181
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
182 183 184 185 186 187

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
188
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
189
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
190
}
P
Peter Zijlstra 已提交
191

192 193
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
194 195 196 197
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
198
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
199 200 201 202 203

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
222 223 224

	return 0;
}
225

226 227 228 229 230 231 232
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
233
static DEFINE_PER_CPU(u64, running_sample_length);
234

235
static void perf_duration_warn(struct irq_work *w)
236
{
237
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
238
	u64 avg_local_sample_len;
239
	u64 local_samples_len;
240 241 242 243 244 245 246

	local_samples_len = __get_cpu_var(running_sample_length);
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
247
			avg_local_sample_len, allowed_ns >> 1,
248 249 250 251 252 253 254
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
255
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
256 257
	u64 avg_local_sample_len;
	u64 local_samples_len;
258

P
Peter Zijlstra 已提交
259
	if (allowed_ns == 0)
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
275
	if (avg_local_sample_len <= allowed_ns)
276 277 278 279 280 281 282 283 284 285
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
286

287 288 289 290 291 292
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
293 294
}

295
static atomic64_t perf_event_id;
296

297 298 299 300
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
301 302 303 304 305
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
306

307
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
308

309
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
310
{
311
	return "pmu";
T
Thomas Gleixner 已提交
312 313
}

314 315 316 317 318
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
319 320 321 322 323 324
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
341 342
#ifdef CONFIG_CGROUP_PERF

343 344 345 346 347 348 349 350 351 352 353
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
354
	struct perf_cgroup_info	__percpu *info;
355 356
};

357 358 359 360 361
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
362 363 364
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
365
	return container_of(task_css(task, perf_event_cgrp_id),
366
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
367 368 369 370 371 372 373 374
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
439 440
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
441
	/*
442 443
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
444
	 */
445
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
446 447
		return;

448 449 450 451 452 453
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
454 455 456
}

static inline void
457 458
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
459 460 461 462
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

463 464 465 466 467 468
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
469 470 471 472
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
473
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
506 507
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
508 509 510 511 512 513 514 515 516

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
517 518
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
519 520 521 522 523 524 525 526 527 528 529

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
530
				WARN_ON_ONCE(cpuctx->cgrp);
531 532 533 534
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
535 536 537 538
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
539 540
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
541 542 543 544 545 546 547 548
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

549 550
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
551
{
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
574 575
}

576 577
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
578
{
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
597 598 599 600 601 602 603 604
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
605 606
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
607

608
	if (!f.file)
S
Stephane Eranian 已提交
609 610
		return -EBADF;

611
	css = css_tryget_from_dir(f.file->f_dentry, &perf_event_cgrp_subsys);
612 613 614 615
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
629
out:
630
	fdput(f);
S
Stephane Eranian 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

704 705
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
706 707 708
{
}

709 710
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
711 712 713 714 715 716 717 718 719 720 721
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
722 723
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
817
	int timer;
818 819 820 821 822

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

823 824 825 826 827 828 829 830 831
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
854
void perf_pmu_disable(struct pmu *pmu)
855
{
P
Peter Zijlstra 已提交
856 857 858
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
859 860
}

P
Peter Zijlstra 已提交
861
void perf_pmu_enable(struct pmu *pmu)
862
{
P
Peter Zijlstra 已提交
863 864 865
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
866 867
}

868 869 870 871 872 873 874
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
875
static void perf_pmu_rotate_start(struct pmu *pmu)
876
{
P
Peter Zijlstra 已提交
877
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
878
	struct list_head *head = &__get_cpu_var(rotation_list);
879

880
	WARN_ON(!irqs_disabled());
881

882
	if (list_empty(&cpuctx->rotation_list))
883
		list_add(&cpuctx->rotation_list, head);
884 885
}

886
static void get_ctx(struct perf_event_context *ctx)
887
{
888
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
889 890
}

891
static void put_ctx(struct perf_event_context *ctx)
892
{
893 894 895
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
896 897
		if (ctx->task)
			put_task_struct(ctx->task);
898
		kfree_rcu(ctx, rcu_head);
899
	}
900 901
}

902
static void unclone_ctx(struct perf_event_context *ctx)
903 904 905 906 907
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
908
	ctx->generation++;
909 910
}

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

933
/*
934
 * If we inherit events we want to return the parent event id
935 936
 * to userspace.
 */
937
static u64 primary_event_id(struct perf_event *event)
938
{
939
	u64 id = event->id;
940

941 942
	if (event->parent)
		id = event->parent->id;
943 944 945 946

	return id;
}

947
/*
948
 * Get the perf_event_context for a task and lock it.
949 950 951
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
952
static struct perf_event_context *
P
Peter Zijlstra 已提交
953
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
954
{
955
	struct perf_event_context *ctx;
956

P
Peter Zijlstra 已提交
957
retry:
958 959 960 961 962 963 964 965 966 967 968
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
969
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
970 971 972 973
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
974
		 * perf_event_task_sched_out, though the
975 976 977 978 979 980
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
981
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
982
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
983
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
984 985
			rcu_read_unlock();
			preempt_enable();
986 987
			goto retry;
		}
988 989

		if (!atomic_inc_not_zero(&ctx->refcount)) {
990
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
991 992
			ctx = NULL;
		}
993 994
	}
	rcu_read_unlock();
995
	preempt_enable();
996 997 998 999 1000 1001 1002 1003
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1004 1005
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1006
{
1007
	struct perf_event_context *ctx;
1008 1009
	unsigned long flags;

P
Peter Zijlstra 已提交
1010
	ctx = perf_lock_task_context(task, ctxn, &flags);
1011 1012
	if (ctx) {
		++ctx->pin_count;
1013
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1014 1015 1016 1017
	}
	return ctx;
}

1018
static void perf_unpin_context(struct perf_event_context *ctx)
1019 1020 1021
{
	unsigned long flags;

1022
	raw_spin_lock_irqsave(&ctx->lock, flags);
1023
	--ctx->pin_count;
1024
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1025 1026
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1038 1039 1040
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1041 1042 1043 1044

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1045 1046 1047
	return ctx ? ctx->time : 0;
}

1048 1049
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1050
 * The caller of this function needs to hold the ctx->lock.
1051 1052 1053 1054 1055 1056 1057 1058 1059
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1071
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1072 1073
	else if (ctx->is_active)
		run_end = ctx->time;
1074 1075 1076 1077
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1078 1079 1080 1081

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1082
		run_end = perf_event_time(event);
1083 1084

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1085

1086 1087
}

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1100 1101 1102 1103 1104 1105 1106 1107 1108
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1109
/*
1110
 * Add a event from the lists for its context.
1111 1112
 * Must be called with ctx->mutex and ctx->lock held.
 */
1113
static void
1114
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1115
{
1116 1117
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1118 1119

	/*
1120 1121 1122
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1123
	 */
1124
	if (event->group_leader == event) {
1125 1126
		struct list_head *list;

1127 1128 1129
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1130 1131
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1132
	}
P
Peter Zijlstra 已提交
1133

1134
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1135 1136
		ctx->nr_cgroups++;

1137 1138 1139
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1140
	list_add_rcu(&event->event_entry, &ctx->event_list);
1141
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1142
		perf_pmu_rotate_start(ctx->pmu);
1143 1144
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1145
		ctx->nr_stat++;
1146 1147

	ctx->generation++;
1148 1149
}

J
Jiri Olsa 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1198 1199 1200 1201 1202 1203
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1204 1205 1206
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1207 1208 1209
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1210 1211 1212
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1213 1214 1215
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1216 1217 1218 1219 1220 1221 1222 1223 1224
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1225 1226 1227 1228 1229 1230
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1231 1232 1233
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1234 1235 1236 1237 1238 1239 1240 1241 1242
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1243
	event->id_header_size = size;
1244 1245
}

1246 1247
static void perf_group_attach(struct perf_event *event)
{
1248
	struct perf_event *group_leader = event->group_leader, *pos;
1249

P
Peter Zijlstra 已提交
1250 1251 1252 1253 1254 1255
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1267 1268 1269 1270 1271

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1272 1273
}

1274
/*
1275
 * Remove a event from the lists for its context.
1276
 * Must be called with ctx->mutex and ctx->lock held.
1277
 */
1278
static void
1279
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1280
{
1281
	struct perf_cpu_context *cpuctx;
1282 1283 1284 1285
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1286
		return;
1287 1288 1289

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1290
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1291
		ctx->nr_cgroups--;
1292 1293 1294 1295 1296 1297 1298 1299 1300
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1301

1302 1303 1304
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1305 1306
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1307
		ctx->nr_stat--;
1308

1309
	list_del_rcu(&event->event_entry);
1310

1311 1312
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1313

1314
	update_group_times(event);
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1325 1326

	ctx->generation++;
1327 1328
}

1329
static void perf_group_detach(struct perf_event *event)
1330 1331
{
	struct perf_event *sibling, *tmp;
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1348
		goto out;
1349 1350 1351 1352
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1353

1354
	/*
1355 1356
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1357
	 * to whatever list we are on.
1358
	 */
1359
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1360 1361
		if (list)
			list_move_tail(&sibling->group_entry, list);
1362
		sibling->group_leader = sibling;
1363 1364 1365

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1366
	}
1367 1368 1369 1370 1371 1372

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1373 1374
}

1375 1376 1377
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1378 1379
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1380 1381
}

1382 1383
static void
event_sched_out(struct perf_event *event,
1384
		  struct perf_cpu_context *cpuctx,
1385
		  struct perf_event_context *ctx)
1386
{
1387
	u64 tstamp = perf_event_time(event);
1388 1389 1390 1391 1392 1393 1394 1395 1396
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1397
		delta = tstamp - event->tstamp_stopped;
1398
		event->tstamp_running += delta;
1399
		event->tstamp_stopped = tstamp;
1400 1401
	}

1402
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1403
		return;
1404

1405 1406
	perf_pmu_disable(event->pmu);

1407 1408 1409 1410
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1411
	}
1412
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1413
	event->pmu->del(event, 0);
1414
	event->oncpu = -1;
1415

1416
	if (!is_software_event(event))
1417 1418
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1419 1420
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1421
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1422
		cpuctx->exclusive = 0;
1423 1424

	perf_pmu_enable(event->pmu);
1425 1426
}

1427
static void
1428
group_sched_out(struct perf_event *group_event,
1429
		struct perf_cpu_context *cpuctx,
1430
		struct perf_event_context *ctx)
1431
{
1432
	struct perf_event *event;
1433
	int state = group_event->state;
1434

1435
	event_sched_out(group_event, cpuctx, ctx);
1436 1437 1438 1439

	/*
	 * Schedule out siblings (if any):
	 */
1440 1441
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1442

1443
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1444 1445 1446
		cpuctx->exclusive = 0;
}

1447 1448 1449 1450 1451
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1452
/*
1453
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1454
 *
1455
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1456 1457
 * remove it from the context list.
 */
1458
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1459
{
1460 1461
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1462
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1463
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1464

1465
	raw_spin_lock(&ctx->lock);
1466
	event_sched_out(event, cpuctx, ctx);
1467 1468
	if (re->detach_group)
		perf_group_detach(event);
1469
	list_del_event(event, ctx);
1470 1471 1472 1473
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1474
	raw_spin_unlock(&ctx->lock);
1475 1476

	return 0;
T
Thomas Gleixner 已提交
1477 1478 1479 1480
}


/*
1481
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1482
 *
1483
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1484
 * call when the task is on a CPU.
1485
 *
1486 1487
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1488 1489
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1490
 * When called from perf_event_exit_task, it's OK because the
1491
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1492
 */
1493
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1494
{
1495
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1496
	struct task_struct *task = ctx->task;
1497 1498 1499 1500
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1501

1502 1503
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1504 1505
	if (!task) {
		/*
1506
		 * Per cpu events are removed via an smp call and
1507
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1508
		 */
1509
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1510 1511 1512 1513
		return;
	}

retry:
1514
	if (!task_function_call(task, __perf_remove_from_context, &re))
1515
		return;
T
Thomas Gleixner 已提交
1516

1517
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1518
	/*
1519 1520
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1521
	 */
1522
	if (ctx->is_active) {
1523
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1524 1525 1526 1527
		goto retry;
	}

	/*
1528 1529
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1530
	 */
1531 1532
	if (detach_group)
		perf_group_detach(event);
1533
	list_del_event(event, ctx);
1534
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1535 1536
}

1537
/*
1538
 * Cross CPU call to disable a performance event
1539
 */
1540
int __perf_event_disable(void *info)
1541
{
1542 1543
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1544
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1545 1546

	/*
1547 1548
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1549 1550 1551
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1552
	 */
1553
	if (ctx->task && cpuctx->task_ctx != ctx)
1554
		return -EINVAL;
1555

1556
	raw_spin_lock(&ctx->lock);
1557 1558

	/*
1559
	 * If the event is on, turn it off.
1560 1561
	 * If it is in error state, leave it in error state.
	 */
1562
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1563
		update_context_time(ctx);
S
Stephane Eranian 已提交
1564
		update_cgrp_time_from_event(event);
1565 1566 1567
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1568
		else
1569 1570
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1571 1572
	}

1573
	raw_spin_unlock(&ctx->lock);
1574 1575

	return 0;
1576 1577 1578
}

/*
1579
 * Disable a event.
1580
 *
1581 1582
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1583
 * remains valid.  This condition is satisifed when called through
1584 1585 1586 1587
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1588
 * is the current context on this CPU and preemption is disabled,
1589
 * hence we can't get into perf_event_task_sched_out for this context.
1590
 */
1591
void perf_event_disable(struct perf_event *event)
1592
{
1593
	struct perf_event_context *ctx = event->ctx;
1594 1595 1596 1597
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1598
		 * Disable the event on the cpu that it's on
1599
		 */
1600
		cpu_function_call(event->cpu, __perf_event_disable, event);
1601 1602 1603
		return;
	}

P
Peter Zijlstra 已提交
1604
retry:
1605 1606
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1607

1608
	raw_spin_lock_irq(&ctx->lock);
1609
	/*
1610
	 * If the event is still active, we need to retry the cross-call.
1611
	 */
1612
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1613
		raw_spin_unlock_irq(&ctx->lock);
1614 1615 1616 1617 1618
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1619 1620 1621 1622 1623 1624 1625
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1626 1627 1628
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1629
	}
1630
	raw_spin_unlock_irq(&ctx->lock);
1631
}
1632
EXPORT_SYMBOL_GPL(perf_event_disable);
1633

S
Stephane Eranian 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1669 1670 1671 1672
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1673
static int
1674
event_sched_in(struct perf_event *event,
1675
		 struct perf_cpu_context *cpuctx,
1676
		 struct perf_event_context *ctx)
1677
{
1678
	u64 tstamp = perf_event_time(event);
1679
	int ret = 0;
1680

1681 1682
	lockdep_assert_held(&ctx->lock);

1683
	if (event->state <= PERF_EVENT_STATE_OFF)
1684 1685
		return 0;

1686
	event->state = PERF_EVENT_STATE_ACTIVE;
1687
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1699 1700 1701 1702 1703
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1704 1705
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1706
	if (event->pmu->add(event, PERF_EF_START)) {
1707 1708
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1709 1710
		ret = -EAGAIN;
		goto out;
1711 1712
	}

1713
	event->tstamp_running += tstamp - event->tstamp_stopped;
1714

S
Stephane Eranian 已提交
1715
	perf_set_shadow_time(event, ctx, tstamp);
1716

1717
	if (!is_software_event(event))
1718
		cpuctx->active_oncpu++;
1719
	ctx->nr_active++;
1720 1721
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1722

1723
	if (event->attr.exclusive)
1724 1725
		cpuctx->exclusive = 1;

1726 1727 1728 1729
out:
	perf_pmu_enable(event->pmu);

	return ret;
1730 1731
}

1732
static int
1733
group_sched_in(struct perf_event *group_event,
1734
	       struct perf_cpu_context *cpuctx,
1735
	       struct perf_event_context *ctx)
1736
{
1737
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1738
	struct pmu *pmu = ctx->pmu;
1739 1740
	u64 now = ctx->time;
	bool simulate = false;
1741

1742
	if (group_event->state == PERF_EVENT_STATE_OFF)
1743 1744
		return 0;

P
Peter Zijlstra 已提交
1745
	pmu->start_txn(pmu);
1746

1747
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1748
		pmu->cancel_txn(pmu);
1749
		perf_cpu_hrtimer_restart(cpuctx);
1750
		return -EAGAIN;
1751
	}
1752 1753 1754 1755

	/*
	 * Schedule in siblings as one group (if any):
	 */
1756
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1757
		if (event_sched_in(event, cpuctx, ctx)) {
1758
			partial_group = event;
1759 1760 1761 1762
			goto group_error;
		}
	}

1763
	if (!pmu->commit_txn(pmu))
1764
		return 0;
1765

1766 1767 1768 1769
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1780
	 */
1781 1782
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1783 1784 1785 1786 1787 1788 1789 1790
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1791
	}
1792
	event_sched_out(group_event, cpuctx, ctx);
1793

P
Peter Zijlstra 已提交
1794
	pmu->cancel_txn(pmu);
1795

1796 1797
	perf_cpu_hrtimer_restart(cpuctx);

1798 1799 1800
	return -EAGAIN;
}

1801
/*
1802
 * Work out whether we can put this event group on the CPU now.
1803
 */
1804
static int group_can_go_on(struct perf_event *event,
1805 1806 1807 1808
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1809
	 * Groups consisting entirely of software events can always go on.
1810
	 */
1811
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1812 1813 1814
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1815
	 * events can go on.
1816 1817 1818 1819 1820
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1821
	 * events on the CPU, it can't go on.
1822
	 */
1823
	if (event->attr.exclusive && cpuctx->active_oncpu)
1824 1825 1826 1827 1828 1829 1830 1831
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1832 1833
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1834
{
1835 1836
	u64 tstamp = perf_event_time(event);

1837
	list_add_event(event, ctx);
1838
	perf_group_attach(event);
1839 1840 1841
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1842 1843
}

1844 1845 1846 1847 1848 1849
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1850

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1863
/*
1864
 * Cross CPU call to install and enable a performance event
1865 1866
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1867
 */
1868
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1869
{
1870 1871
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1872
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1873 1874 1875
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1876
	perf_ctx_lock(cpuctx, task_ctx);
1877
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1878 1879

	/*
1880
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1881
	 */
1882
	if (task_ctx)
1883
		task_ctx_sched_out(task_ctx);
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1898 1899
		task = task_ctx->task;
	}
1900

1901
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1902

1903
	update_context_time(ctx);
S
Stephane Eranian 已提交
1904 1905 1906 1907 1908 1909
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1910

1911
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1912

1913
	/*
1914
	 * Schedule everything back in
1915
	 */
1916
	perf_event_sched_in(cpuctx, task_ctx, task);
1917 1918 1919

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1920 1921

	return 0;
T
Thomas Gleixner 已提交
1922 1923 1924
}

/*
1925
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1926
 *
1927 1928
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1929
 *
1930
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1931 1932 1933 1934
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1935 1936
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1937 1938 1939 1940
			int cpu)
{
	struct task_struct *task = ctx->task;

1941 1942
	lockdep_assert_held(&ctx->mutex);

1943
	event->ctx = ctx;
1944 1945
	if (event->cpu != -1)
		event->cpu = cpu;
1946

T
Thomas Gleixner 已提交
1947 1948
	if (!task) {
		/*
1949
		 * Per cpu events are installed via an smp call and
1950
		 * the install is always successful.
T
Thomas Gleixner 已提交
1951
		 */
1952
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1953 1954 1955 1956
		return;
	}

retry:
1957 1958
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1959

1960
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1961
	/*
1962 1963
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1964
	 */
1965
	if (ctx->is_active) {
1966
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1967 1968 1969 1970
		goto retry;
	}

	/*
1971 1972
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1973
	 */
1974
	add_event_to_ctx(event, ctx);
1975
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1976 1977
}

1978
/*
1979
 * Put a event into inactive state and update time fields.
1980 1981 1982 1983 1984 1985
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1986
static void __perf_event_mark_enabled(struct perf_event *event)
1987
{
1988
	struct perf_event *sub;
1989
	u64 tstamp = perf_event_time(event);
1990

1991
	event->state = PERF_EVENT_STATE_INACTIVE;
1992
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1993
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1994 1995
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1996
	}
1997 1998
}

1999
/*
2000
 * Cross CPU call to enable a performance event
2001
 */
2002
static int __perf_event_enable(void *info)
2003
{
2004 2005 2006
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2007
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2008
	int err;
2009

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2020
		return -EINVAL;
2021

2022
	raw_spin_lock(&ctx->lock);
2023
	update_context_time(ctx);
2024

2025
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2026
		goto unlock;
S
Stephane Eranian 已提交
2027 2028 2029 2030

	/*
	 * set current task's cgroup time reference point
	 */
2031
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2032

2033
	__perf_event_mark_enabled(event);
2034

S
Stephane Eranian 已提交
2035 2036 2037
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2038
		goto unlock;
S
Stephane Eranian 已提交
2039
	}
2040

2041
	/*
2042
	 * If the event is in a group and isn't the group leader,
2043
	 * then don't put it on unless the group is on.
2044
	 */
2045
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2046
		goto unlock;
2047

2048
	if (!group_can_go_on(event, cpuctx, 1)) {
2049
		err = -EEXIST;
2050
	} else {
2051
		if (event == leader)
2052
			err = group_sched_in(event, cpuctx, ctx);
2053
		else
2054
			err = event_sched_in(event, cpuctx, ctx);
2055
	}
2056 2057 2058

	if (err) {
		/*
2059
		 * If this event can't go on and it's part of a
2060 2061
		 * group, then the whole group has to come off.
		 */
2062
		if (leader != event) {
2063
			group_sched_out(leader, cpuctx, ctx);
2064 2065
			perf_cpu_hrtimer_restart(cpuctx);
		}
2066
		if (leader->attr.pinned) {
2067
			update_group_times(leader);
2068
			leader->state = PERF_EVENT_STATE_ERROR;
2069
		}
2070 2071
	}

P
Peter Zijlstra 已提交
2072
unlock:
2073
	raw_spin_unlock(&ctx->lock);
2074 2075

	return 0;
2076 2077 2078
}

/*
2079
 * Enable a event.
2080
 *
2081 2082
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2083
 * remains valid.  This condition is satisfied when called through
2084 2085
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2086
 */
2087
void perf_event_enable(struct perf_event *event)
2088
{
2089
	struct perf_event_context *ctx = event->ctx;
2090 2091 2092 2093
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2094
		 * Enable the event on the cpu that it's on
2095
		 */
2096
		cpu_function_call(event->cpu, __perf_event_enable, event);
2097 2098 2099
		return;
	}

2100
	raw_spin_lock_irq(&ctx->lock);
2101
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2102 2103 2104
		goto out;

	/*
2105 2106
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2107 2108 2109 2110
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2111 2112
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2113

P
Peter Zijlstra 已提交
2114
retry:
2115
	if (!ctx->is_active) {
2116
		__perf_event_mark_enabled(event);
2117 2118 2119
		goto out;
	}

2120
	raw_spin_unlock_irq(&ctx->lock);
2121 2122 2123

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2124

2125
	raw_spin_lock_irq(&ctx->lock);
2126 2127

	/*
2128
	 * If the context is active and the event is still off,
2129 2130
	 * we need to retry the cross-call.
	 */
2131 2132 2133 2134 2135 2136
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2137
		goto retry;
2138
	}
2139

P
Peter Zijlstra 已提交
2140
out:
2141
	raw_spin_unlock_irq(&ctx->lock);
2142
}
2143
EXPORT_SYMBOL_GPL(perf_event_enable);
2144

2145
int perf_event_refresh(struct perf_event *event, int refresh)
2146
{
2147
	/*
2148
	 * not supported on inherited events
2149
	 */
2150
	if (event->attr.inherit || !is_sampling_event(event))
2151 2152
		return -EINVAL;

2153 2154
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2155 2156

	return 0;
2157
}
2158
EXPORT_SYMBOL_GPL(perf_event_refresh);
2159

2160 2161 2162
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2163
{
2164
	struct perf_event *event;
2165
	int is_active = ctx->is_active;
2166

2167
	ctx->is_active &= ~event_type;
2168
	if (likely(!ctx->nr_events))
2169 2170
		return;

2171
	update_context_time(ctx);
S
Stephane Eranian 已提交
2172
	update_cgrp_time_from_cpuctx(cpuctx);
2173
	if (!ctx->nr_active)
2174
		return;
2175

P
Peter Zijlstra 已提交
2176
	perf_pmu_disable(ctx->pmu);
2177
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2178 2179
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2180
	}
2181

2182
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2183
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2184
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2185
	}
P
Peter Zijlstra 已提交
2186
	perf_pmu_enable(ctx->pmu);
2187 2188
}

2189
/*
2190 2191 2192 2193 2194 2195
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2196
 */
2197 2198
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2199
{
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2222 2223
}

2224 2225
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2226 2227 2228
{
	u64 value;

2229
	if (!event->attr.inherit_stat)
2230 2231 2232
		return;

	/*
2233
	 * Update the event value, we cannot use perf_event_read()
2234 2235
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2236
	 * we know the event must be on the current CPU, therefore we
2237 2238
	 * don't need to use it.
	 */
2239 2240
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2241 2242
		event->pmu->read(event);
		/* fall-through */
2243

2244 2245
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2246 2247 2248 2249 2250 2251 2252
		break;

	default:
		break;
	}

	/*
2253
	 * In order to keep per-task stats reliable we need to flip the event
2254 2255
	 * values when we flip the contexts.
	 */
2256 2257 2258
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2259

2260 2261
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2262

2263
	/*
2264
	 * Since we swizzled the values, update the user visible data too.
2265
	 */
2266 2267
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2268 2269
}

2270 2271
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2272
{
2273
	struct perf_event *event, *next_event;
2274 2275 2276 2277

	if (!ctx->nr_stat)
		return;

2278 2279
	update_context_time(ctx);

2280 2281
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2282

2283 2284
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2285

2286 2287
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2288

2289
		__perf_event_sync_stat(event, next_event);
2290

2291 2292
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2293 2294 2295
	}
}

2296 2297
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2298
{
P
Peter Zijlstra 已提交
2299
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2300
	struct perf_event_context *next_ctx;
2301
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2302
	struct perf_cpu_context *cpuctx;
2303
	int do_switch = 1;
T
Thomas Gleixner 已提交
2304

P
Peter Zijlstra 已提交
2305 2306
	if (likely(!ctx))
		return;
2307

P
Peter Zijlstra 已提交
2308 2309
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2310 2311
		return;

2312
	rcu_read_lock();
P
Peter Zijlstra 已提交
2313
	next_ctx = next->perf_event_ctxp[ctxn];
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
	if (!parent && !next_parent)
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2325 2326 2327 2328 2329 2330 2331 2332 2333
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2334 2335
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2336
		if (context_equiv(ctx, next_ctx)) {
2337 2338
			/*
			 * XXX do we need a memory barrier of sorts
2339
			 * wrt to rcu_dereference() of perf_event_ctxp
2340
			 */
P
Peter Zijlstra 已提交
2341 2342
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2343 2344 2345
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2346

2347
			perf_event_sync_stat(ctx, next_ctx);
2348
		}
2349 2350
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2351
	}
2352
unlock:
2353
	rcu_read_unlock();
2354

2355
	if (do_switch) {
2356
		raw_spin_lock(&ctx->lock);
2357
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2358
		cpuctx->task_ctx = NULL;
2359
		raw_spin_unlock(&ctx->lock);
2360
	}
T
Thomas Gleixner 已提交
2361 2362
}

P
Peter Zijlstra 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2377 2378
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2379 2380 2381 2382 2383
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2384 2385 2386 2387 2388 2389 2390

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2391
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2392 2393
}

2394
static void task_ctx_sched_out(struct perf_event_context *ctx)
2395
{
P
Peter Zijlstra 已提交
2396
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2397

2398 2399
	if (!cpuctx->task_ctx)
		return;
2400 2401 2402 2403

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2404
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2405 2406 2407
	cpuctx->task_ctx = NULL;
}

2408 2409 2410 2411 2412 2413 2414
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2415 2416
}

2417
static void
2418
ctx_pinned_sched_in(struct perf_event_context *ctx,
2419
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2420
{
2421
	struct perf_event *event;
T
Thomas Gleixner 已提交
2422

2423 2424
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2425
			continue;
2426
		if (!event_filter_match(event))
2427 2428
			continue;

S
Stephane Eranian 已提交
2429 2430 2431 2432
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2433
		if (group_can_go_on(event, cpuctx, 1))
2434
			group_sched_in(event, cpuctx, ctx);
2435 2436 2437 2438 2439

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2440 2441 2442
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2443
		}
2444
	}
2445 2446 2447 2448
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2449
		      struct perf_cpu_context *cpuctx)
2450 2451 2452
{
	struct perf_event *event;
	int can_add_hw = 1;
2453

2454 2455 2456
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2457
			continue;
2458 2459
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2460
		 * of events:
2461
		 */
2462
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2463 2464
			continue;

S
Stephane Eranian 已提交
2465 2466 2467 2468
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2469
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2470
			if (group_sched_in(event, cpuctx, ctx))
2471
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2472
		}
T
Thomas Gleixner 已提交
2473
	}
2474 2475 2476 2477 2478
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2479 2480
	     enum event_type_t event_type,
	     struct task_struct *task)
2481
{
S
Stephane Eranian 已提交
2482
	u64 now;
2483
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2484

2485
	ctx->is_active |= event_type;
2486
	if (likely(!ctx->nr_events))
2487
		return;
2488

S
Stephane Eranian 已提交
2489 2490
	now = perf_clock();
	ctx->timestamp = now;
2491
	perf_cgroup_set_timestamp(task, ctx);
2492 2493 2494 2495
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2496
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2497
		ctx_pinned_sched_in(ctx, cpuctx);
2498 2499

	/* Then walk through the lower prio flexible groups */
2500
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2501
		ctx_flexible_sched_in(ctx, cpuctx);
2502 2503
}

2504
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2505 2506
			     enum event_type_t event_type,
			     struct task_struct *task)
2507 2508 2509
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2510
	ctx_sched_in(ctx, cpuctx, event_type, task);
2511 2512
}

S
Stephane Eranian 已提交
2513 2514
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2515
{
P
Peter Zijlstra 已提交
2516
	struct perf_cpu_context *cpuctx;
2517

P
Peter Zijlstra 已提交
2518
	cpuctx = __get_cpu_context(ctx);
2519 2520 2521
	if (cpuctx->task_ctx == ctx)
		return;

2522
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2523
	perf_pmu_disable(ctx->pmu);
2524 2525 2526 2527 2528 2529 2530
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2531 2532
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2533

2534 2535
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2536 2537 2538
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2539 2540 2541 2542
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2543
	perf_pmu_rotate_start(ctx->pmu);
2544 2545
}

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2615 2616
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2626
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2627
	}
S
Stephane Eranian 已提交
2628 2629 2630 2631 2632 2633
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2634
		perf_cgroup_sched_in(prev, task);
2635 2636 2637 2638

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2639 2640
}

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2668
#define REDUCE_FLS(a, b)		\
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2708 2709 2710
	if (!divisor)
		return dividend;

2711 2712 2713
	return div64_u64(dividend, divisor);
}

2714 2715 2716
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2717
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2718
{
2719
	struct hw_perf_event *hwc = &event->hw;
2720
	s64 period, sample_period;
2721 2722
	s64 delta;

2723
	period = perf_calculate_period(event, nsec, count);
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2734

2735
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2736 2737 2738
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2739
		local64_set(&hwc->period_left, 0);
2740 2741 2742

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2743
	}
2744 2745
}

2746 2747 2748 2749 2750 2751 2752
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2753
{
2754 2755
	struct perf_event *event;
	struct hw_perf_event *hwc;
2756
	u64 now, period = TICK_NSEC;
2757
	s64 delta;
2758

2759 2760 2761 2762 2763 2764
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2765 2766
		return;

2767
	raw_spin_lock(&ctx->lock);
2768
	perf_pmu_disable(ctx->pmu);
2769

2770
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2771
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2772 2773
			continue;

2774
		if (!event_filter_match(event))
2775 2776
			continue;

2777 2778
		perf_pmu_disable(event->pmu);

2779
		hwc = &event->hw;
2780

2781
		if (hwc->interrupts == MAX_INTERRUPTS) {
2782
			hwc->interrupts = 0;
2783
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2784
			event->pmu->start(event, 0);
2785 2786
		}

2787
		if (!event->attr.freq || !event->attr.sample_freq)
2788
			goto next;
2789

2790 2791 2792 2793 2794
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2795
		now = local64_read(&event->count);
2796 2797
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2798

2799 2800 2801
		/*
		 * restart the event
		 * reload only if value has changed
2802 2803 2804
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2805
		 */
2806
		if (delta > 0)
2807
			perf_adjust_period(event, period, delta, false);
2808 2809

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2810 2811
	next:
		perf_pmu_enable(event->pmu);
2812
	}
2813

2814
	perf_pmu_enable(ctx->pmu);
2815
	raw_spin_unlock(&ctx->lock);
2816 2817
}

2818
/*
2819
 * Round-robin a context's events:
2820
 */
2821
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2822
{
2823 2824 2825 2826 2827 2828
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2829 2830
}

2831
/*
2832 2833 2834
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2835
 */
2836
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2837
{
P
Peter Zijlstra 已提交
2838
	struct perf_event_context *ctx = NULL;
2839
	int rotate = 0, remove = 1;
2840

2841
	if (cpuctx->ctx.nr_events) {
2842
		remove = 0;
2843 2844 2845
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2846

P
Peter Zijlstra 已提交
2847
	ctx = cpuctx->task_ctx;
2848
	if (ctx && ctx->nr_events) {
2849
		remove = 0;
2850 2851 2852
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2853

2854
	if (!rotate)
2855 2856
		goto done;

2857
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2858
	perf_pmu_disable(cpuctx->ctx.pmu);
2859

2860 2861 2862
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2863

2864 2865 2866
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2867

2868
	perf_event_sched_in(cpuctx, ctx, current);
2869

2870 2871
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2872
done:
2873 2874
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2875 2876

	return rotate;
2877 2878
}

2879 2880 2881
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2882
	if (atomic_read(&nr_freq_events) ||
2883
	    __this_cpu_read(perf_throttled_count))
2884
		return false;
2885 2886
	else
		return true;
2887 2888 2889
}
#endif

2890 2891 2892 2893
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2894 2895
	struct perf_event_context *ctx;
	int throttled;
2896

2897 2898
	WARN_ON(!irqs_disabled());

2899 2900 2901
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2902
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2903 2904 2905 2906 2907 2908
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2909
	}
T
Thomas Gleixner 已提交
2910 2911
}

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2922
	__perf_event_mark_enabled(event);
2923 2924 2925 2926

	return 1;
}

2927
/*
2928
 * Enable all of a task's events that have been marked enable-on-exec.
2929 2930
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2931
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2932
{
2933
	struct perf_event *event;
2934 2935
	unsigned long flags;
	int enabled = 0;
2936
	int ret;
2937 2938

	local_irq_save(flags);
2939
	if (!ctx || !ctx->nr_events)
2940 2941
		goto out;

2942 2943 2944 2945 2946 2947 2948
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2949
	perf_cgroup_sched_out(current, NULL);
2950

2951
	raw_spin_lock(&ctx->lock);
2952
	task_ctx_sched_out(ctx);
2953

2954
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2955 2956 2957
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2958 2959 2960
	}

	/*
2961
	 * Unclone this context if we enabled any event.
2962
	 */
2963 2964
	if (enabled)
		unclone_ctx(ctx);
2965

2966
	raw_spin_unlock(&ctx->lock);
2967

2968 2969 2970
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2971
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2972
out:
2973 2974 2975
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2976
/*
2977
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2978
 */
2979
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2980
{
2981 2982
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2983
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2984

2985 2986 2987 2988
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2989 2990
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2991 2992 2993 2994
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2995
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2996
	if (ctx->is_active) {
2997
		update_context_time(ctx);
S
Stephane Eranian 已提交
2998 2999
		update_cgrp_time_from_event(event);
	}
3000
	update_event_times(event);
3001 3002
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3003
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3004 3005
}

P
Peter Zijlstra 已提交
3006 3007
static inline u64 perf_event_count(struct perf_event *event)
{
3008
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3009 3010
}

3011
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3012 3013
{
	/*
3014 3015
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3016
	 */
3017 3018 3019 3020
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3021 3022 3023
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3024
		raw_spin_lock_irqsave(&ctx->lock, flags);
3025 3026 3027 3028 3029
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3030
		if (ctx->is_active) {
3031
			update_context_time(ctx);
S
Stephane Eranian 已提交
3032 3033
			update_cgrp_time_from_event(event);
		}
3034
		update_event_times(event);
3035
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3036 3037
	}

P
Peter Zijlstra 已提交
3038
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3039 3040
}

3041
/*
3042
 * Initialize the perf_event context in a task_struct:
3043
 */
3044
static void __perf_event_init_context(struct perf_event_context *ctx)
3045
{
3046
	raw_spin_lock_init(&ctx->lock);
3047
	mutex_init(&ctx->mutex);
3048 3049
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3050 3051
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3067
	}
3068 3069 3070
	ctx->pmu = pmu;

	return ctx;
3071 3072
}

3073 3074 3075 3076 3077
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3078 3079

	rcu_read_lock();
3080
	if (!vpid)
T
Thomas Gleixner 已提交
3081 3082
		task = current;
	else
3083
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3084 3085 3086 3087 3088 3089 3090 3091
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3092 3093 3094 3095
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3096 3097 3098 3099 3100 3101 3102
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3103 3104 3105
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3106
static struct perf_event_context *
M
Matt Helsley 已提交
3107
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3108
{
3109
	struct perf_event_context *ctx;
3110
	struct perf_cpu_context *cpuctx;
3111
	unsigned long flags;
P
Peter Zijlstra 已提交
3112
	int ctxn, err;
T
Thomas Gleixner 已提交
3113

3114
	if (!task) {
3115
		/* Must be root to operate on a CPU event: */
3116
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3117 3118 3119
			return ERR_PTR(-EACCES);

		/*
3120
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3121 3122 3123
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3124
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3125 3126
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3127
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3128
		ctx = &cpuctx->ctx;
3129
		get_ctx(ctx);
3130
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3131 3132 3133 3134

		return ctx;
	}

P
Peter Zijlstra 已提交
3135 3136 3137 3138 3139
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3140
retry:
P
Peter Zijlstra 已提交
3141
	ctx = perf_lock_task_context(task, ctxn, &flags);
3142
	if (ctx) {
3143
		unclone_ctx(ctx);
3144
		++ctx->pin_count;
3145
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3146
	} else {
3147
		ctx = alloc_perf_context(pmu, task);
3148 3149 3150
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3151

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3162
		else {
3163
			get_ctx(ctx);
3164
			++ctx->pin_count;
3165
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3166
		}
3167 3168 3169
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3170
			put_ctx(ctx);
3171 3172 3173 3174

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3175 3176 3177
		}
	}

T
Thomas Gleixner 已提交
3178
	return ctx;
3179

P
Peter Zijlstra 已提交
3180
errout:
3181
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3182 3183
}

L
Li Zefan 已提交
3184 3185
static void perf_event_free_filter(struct perf_event *event);

3186
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3187
{
3188
	struct perf_event *event;
P
Peter Zijlstra 已提交
3189

3190 3191 3192
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3193
	perf_event_free_filter(event);
3194
	kfree(event);
P
Peter Zijlstra 已提交
3195 3196
}

3197
static void ring_buffer_put(struct ring_buffer *rb);
3198
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3199

3200
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3201
{
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3212

3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3226 3227
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3228 3229 3230 3231 3232 3233 3234
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3235

3236 3237
static void __free_event(struct perf_event *event)
{
3238
	if (!event->parent) {
3239 3240
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3241
	}
3242

3243 3244 3245 3246 3247 3248
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3249 3250 3251
	if (event->pmu)
		module_put(event->pmu->module);

3252 3253
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3254 3255

static void _free_event(struct perf_event *event)
3256
{
3257
	irq_work_sync(&event->pending);
3258

3259
	unaccount_event(event);
3260

3261
	if (event->rb) {
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3278 3279
	}

S
Stephane Eranian 已提交
3280 3281 3282
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3283
	__free_event(event);
3284 3285
}

P
Peter Zijlstra 已提交
3286 3287 3288 3289 3290
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3291
{
P
Peter Zijlstra 已提交
3292 3293 3294 3295 3296 3297
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3298

P
Peter Zijlstra 已提交
3299
	_free_event(event);
T
Thomas Gleixner 已提交
3300 3301
}

3302 3303 3304
/*
 * Called when the last reference to the file is gone.
 */
3305
static void put_event(struct perf_event *event)
3306
{
P
Peter Zijlstra 已提交
3307
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3308
	struct task_struct *owner;
3309

3310 3311
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3312

P
Peter Zijlstra 已提交
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

P
Peter Zijlstra 已提交
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
	WARN_ON_ONCE(ctx->parent_ctx);
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
	perf_remove_from_context(event, true);
	mutex_unlock(&ctx->mutex);

	_free_event(event);
3364 3365
}

P
Peter Zijlstra 已提交
3366 3367 3368 3369 3370 3371 3372
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3373 3374 3375 3376
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3377 3378
}

3379
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3380
{
3381
	struct perf_event *child;
3382 3383
	u64 total = 0;

3384 3385 3386
	*enabled = 0;
	*running = 0;

3387
	mutex_lock(&event->child_mutex);
3388
	total += perf_event_read(event);
3389 3390 3391 3392 3393 3394
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3395
		total += perf_event_read(child);
3396 3397 3398
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3399
	mutex_unlock(&event->child_mutex);
3400 3401 3402

	return total;
}
3403
EXPORT_SYMBOL_GPL(perf_event_read_value);
3404

3405
static int perf_event_read_group(struct perf_event *event,
3406 3407
				   u64 read_format, char __user *buf)
{
3408
	struct perf_event *leader = event->group_leader, *sub;
3409 3410
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3411
	u64 values[5];
3412
	u64 count, enabled, running;
3413

3414
	mutex_lock(&ctx->mutex);
3415
	count = perf_event_read_value(leader, &enabled, &running);
3416 3417

	values[n++] = 1 + leader->nr_siblings;
3418 3419 3420 3421
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3422 3423 3424
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3425 3426 3427 3428

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3429
		goto unlock;
3430

3431
	ret = size;
3432

3433
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3434
		n = 0;
3435

3436
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3437 3438 3439 3440 3441
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3442
		if (copy_to_user(buf + ret, values, size)) {
3443 3444 3445
			ret = -EFAULT;
			goto unlock;
		}
3446 3447

		ret += size;
3448
	}
3449 3450
unlock:
	mutex_unlock(&ctx->mutex);
3451

3452
	return ret;
3453 3454
}

3455
static int perf_event_read_one(struct perf_event *event,
3456 3457
				 u64 read_format, char __user *buf)
{
3458
	u64 enabled, running;
3459 3460 3461
	u64 values[4];
	int n = 0;

3462 3463 3464 3465 3466
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3467
	if (read_format & PERF_FORMAT_ID)
3468
		values[n++] = primary_event_id(event);
3469 3470 3471 3472 3473 3474 3475

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3476
/*
3477
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3478 3479
 */
static ssize_t
3480
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3481
{
3482
	u64 read_format = event->attr.read_format;
3483
	int ret;
T
Thomas Gleixner 已提交
3484

3485
	/*
3486
	 * Return end-of-file for a read on a event that is in
3487 3488 3489
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3490
	if (event->state == PERF_EVENT_STATE_ERROR)
3491 3492
		return 0;

3493
	if (count < event->read_size)
3494 3495
		return -ENOSPC;

3496
	WARN_ON_ONCE(event->ctx->parent_ctx);
3497
	if (read_format & PERF_FORMAT_GROUP)
3498
		ret = perf_event_read_group(event, read_format, buf);
3499
	else
3500
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3501

3502
	return ret;
T
Thomas Gleixner 已提交
3503 3504 3505 3506 3507
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3508
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3509

3510
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3511 3512 3513 3514
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3515
	struct perf_event *event = file->private_data;
3516
	struct ring_buffer *rb;
3517
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3518

3519
	/*
3520 3521
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3522 3523
	 */
	mutex_lock(&event->mmap_mutex);
3524 3525
	rb = event->rb;
	if (rb)
3526
		events = atomic_xchg(&rb->poll, 0);
3527 3528
	mutex_unlock(&event->mmap_mutex);

3529
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3530 3531 3532 3533

	return events;
}

3534
static void perf_event_reset(struct perf_event *event)
3535
{
3536
	(void)perf_event_read(event);
3537
	local64_set(&event->count, 0);
3538
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3539 3540
}

3541
/*
3542 3543 3544 3545
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3546
 */
3547 3548
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3549
{
3550
	struct perf_event *child;
P
Peter Zijlstra 已提交
3551

3552 3553 3554 3555
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3556
		func(child);
3557
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3558 3559
}

3560 3561
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3562
{
3563 3564
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3565

3566 3567
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3568
	event = event->group_leader;
3569

3570 3571
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3572
		perf_event_for_each_child(sibling, func);
3573
	mutex_unlock(&ctx->mutex);
3574 3575
}

3576
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3577
{
3578
	struct perf_event_context *ctx = event->ctx;
3579
	int ret = 0, active;
3580 3581
	u64 value;

3582
	if (!is_sampling_event(event))
3583 3584
		return -EINVAL;

3585
	if (copy_from_user(&value, arg, sizeof(value)))
3586 3587 3588 3589 3590
		return -EFAULT;

	if (!value)
		return -EINVAL;

3591
	raw_spin_lock_irq(&ctx->lock);
3592 3593
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3594 3595 3596 3597
			ret = -EINVAL;
			goto unlock;
		}

3598
		event->attr.sample_freq = value;
3599
	} else {
3600 3601
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3602
	}
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3617
unlock:
3618
	raw_spin_unlock_irq(&ctx->lock);
3619 3620 3621 3622

	return ret;
}

3623 3624
static const struct file_operations perf_fops;

3625
static inline int perf_fget_light(int fd, struct fd *p)
3626
{
3627 3628 3629
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3630

3631 3632 3633
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3634
	}
3635 3636
	*p = f;
	return 0;
3637 3638 3639 3640
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3641
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3642

3643 3644
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3645 3646
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3647
	u32 flags = arg;
3648 3649

	switch (cmd) {
3650 3651
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3652
		break;
3653 3654
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3655
		break;
3656 3657
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3658
		break;
P
Peter Zijlstra 已提交
3659

3660 3661
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3662

3663 3664
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3665

3666 3667 3668 3669 3670 3671 3672 3673 3674
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3675
	case PERF_EVENT_IOC_SET_OUTPUT:
3676 3677 3678
	{
		int ret;
		if (arg != -1) {
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3689 3690 3691
		}
		return ret;
	}
3692

L
Li Zefan 已提交
3693 3694 3695
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3696
	default:
P
Peter Zijlstra 已提交
3697
		return -ENOTTY;
3698
	}
P
Peter Zijlstra 已提交
3699 3700

	if (flags & PERF_IOC_FLAG_GROUP)
3701
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3702
	else
3703
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3704 3705

	return 0;
3706 3707
}

3708
int perf_event_task_enable(void)
3709
{
3710
	struct perf_event *event;
3711

3712 3713 3714 3715
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3716 3717 3718 3719

	return 0;
}

3720
int perf_event_task_disable(void)
3721
{
3722
	struct perf_event *event;
3723

3724 3725 3726 3727
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3728 3729 3730 3731

	return 0;
}

3732
static int perf_event_index(struct perf_event *event)
3733
{
P
Peter Zijlstra 已提交
3734 3735 3736
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3737
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3738 3739
		return 0;

3740
	return event->pmu->event_idx(event);
3741 3742
}

3743
static void calc_timer_values(struct perf_event *event,
3744
				u64 *now,
3745 3746
				u64 *enabled,
				u64 *running)
3747
{
3748
	u64 ctx_time;
3749

3750 3751
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3752 3753 3754 3755
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

3776
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3777 3778 3779
{
}

3780 3781 3782 3783 3784
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3785
void perf_event_update_userpage(struct perf_event *event)
3786
{
3787
	struct perf_event_mmap_page *userpg;
3788
	struct ring_buffer *rb;
3789
	u64 enabled, running, now;
3790 3791

	rcu_read_lock();
3792 3793 3794 3795
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3796 3797 3798 3799 3800 3801 3802 3803 3804
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3805
	calc_timer_values(event, &now, &enabled, &running);
3806

3807
	userpg = rb->user_page;
3808 3809 3810 3811 3812
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3813
	++userpg->lock;
3814
	barrier();
3815
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3816
	userpg->offset = perf_event_count(event);
3817
	if (userpg->index)
3818
		userpg->offset -= local64_read(&event->hw.prev_count);
3819

3820
	userpg->time_enabled = enabled +
3821
			atomic64_read(&event->child_total_time_enabled);
3822

3823
	userpg->time_running = running +
3824
			atomic64_read(&event->child_total_time_running);
3825

3826
	arch_perf_update_userpage(userpg, now);
3827

3828
	barrier();
3829
	++userpg->lock;
3830
	preempt_enable();
3831
unlock:
3832
	rcu_read_unlock();
3833 3834
}

3835 3836 3837
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3838
	struct ring_buffer *rb;
3839 3840 3841 3842 3843 3844 3845 3846 3847
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3848 3849
	rb = rcu_dereference(event->rb);
	if (!rb)
3850 3851 3852 3853 3854
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3855
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3870 3871 3872 3873 3874 3875 3876 3877 3878
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3879 3880
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3881 3882 3883
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3884
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3903 3904 3905 3906
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3907 3908 3909
	rcu_read_unlock();
}

3910
static void rb_free_rcu(struct rcu_head *rcu_head)
3911
{
3912
	struct ring_buffer *rb;
3913

3914 3915
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3916 3917
}

3918
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3919
{
3920
	struct ring_buffer *rb;
3921

3922
	rcu_read_lock();
3923 3924 3925 3926
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3927 3928 3929
	}
	rcu_read_unlock();

3930
	return rb;
3931 3932
}

3933
static void ring_buffer_put(struct ring_buffer *rb)
3934
{
3935
	if (!atomic_dec_and_test(&rb->refcount))
3936
		return;
3937

3938
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3939

3940
	call_rcu(&rb->rcu_head, rb_free_rcu);
3941 3942 3943 3944
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3945
	struct perf_event *event = vma->vm_file->private_data;
3946

3947
	atomic_inc(&event->mmap_count);
3948
	atomic_inc(&event->rb->mmap_count);
3949 3950
}

3951 3952 3953 3954 3955 3956 3957 3958
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3959 3960
static void perf_mmap_close(struct vm_area_struct *vma)
{
3961
	struct perf_event *event = vma->vm_file->private_data;
3962

3963 3964 3965 3966
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3967

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3983

3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4000

4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
4016
		}
4017
		mutex_unlock(&event->mmap_mutex);
4018
		put_event(event);
4019

4020 4021 4022 4023 4024
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4025
	}
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
4042 4043
}

4044
static const struct vm_operations_struct perf_mmap_vmops = {
4045 4046 4047 4048
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4049 4050 4051 4052
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4053
	struct perf_event *event = file->private_data;
4054
	unsigned long user_locked, user_lock_limit;
4055
	struct user_struct *user = current_user();
4056
	unsigned long locked, lock_limit;
4057
	struct ring_buffer *rb;
4058 4059
	unsigned long vma_size;
	unsigned long nr_pages;
4060
	long user_extra, extra;
4061
	int ret = 0, flags = 0;
4062

4063 4064 4065
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4066
	 * same rb.
4067 4068 4069 4070
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4071
	if (!(vma->vm_flags & VM_SHARED))
4072
		return -EINVAL;
4073 4074 4075 4076

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4077
	/*
4078
	 * If we have rb pages ensure they're a power-of-two number, so we
4079 4080 4081
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4082 4083
		return -EINVAL;

4084
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4085 4086
		return -EINVAL;

4087 4088
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4089

4090
	WARN_ON_ONCE(event->ctx->parent_ctx);
4091
again:
4092
	mutex_lock(&event->mmap_mutex);
4093
	if (event->rb) {
4094
		if (event->rb->nr_pages != nr_pages) {
4095
			ret = -EINVAL;
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4109 4110 4111
		goto unlock;
	}

4112
	user_extra = nr_pages + 1;
4113
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4114 4115 4116 4117 4118 4119

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4120
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4121

4122 4123 4124
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4125

4126
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4127
	lock_limit >>= PAGE_SHIFT;
4128
	locked = vma->vm_mm->pinned_vm + extra;
4129

4130 4131
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4132 4133 4134
		ret = -EPERM;
		goto unlock;
	}
4135

4136
	WARN_ON(event->rb);
4137

4138
	if (vma->vm_flags & VM_WRITE)
4139
		flags |= RING_BUFFER_WRITABLE;
4140

4141 4142 4143 4144
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4145
	if (!rb) {
4146
		ret = -ENOMEM;
4147
		goto unlock;
4148
	}
P
Peter Zijlstra 已提交
4149

4150
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4151 4152
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4153

4154
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4155 4156
	vma->vm_mm->pinned_vm += extra;

4157
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
4158
	rcu_assign_pointer(event->rb, rb);
4159

4160
	perf_event_init_userpage(event);
4161 4162
	perf_event_update_userpage(event);

4163
unlock:
4164 4165
	if (!ret)
		atomic_inc(&event->mmap_count);
4166
	mutex_unlock(&event->mmap_mutex);
4167

4168 4169 4170 4171
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4172
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4173
	vma->vm_ops = &perf_mmap_vmops;
4174 4175

	return ret;
4176 4177
}

P
Peter Zijlstra 已提交
4178 4179
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4180
	struct inode *inode = file_inode(filp);
4181
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4182 4183 4184
	int retval;

	mutex_lock(&inode->i_mutex);
4185
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4186 4187 4188 4189 4190 4191 4192 4193
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4194
static const struct file_operations perf_fops = {
4195
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4196 4197 4198
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4199 4200
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4201
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4202
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4203 4204
};

4205
/*
4206
 * Perf event wakeup
4207 4208 4209 4210 4211
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4212
void perf_event_wakeup(struct perf_event *event)
4213
{
4214
	ring_buffer_wakeup(event);
4215

4216 4217 4218
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4219
	}
4220 4221
}

4222
static void perf_pending_event(struct irq_work *entry)
4223
{
4224 4225
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4226

4227 4228 4229
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4230 4231
	}

4232 4233 4234
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4235 4236 4237
	}
}

4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4385 4386 4387
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4403
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4415 4416 4417
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4442 4443 4444

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4445 4446
}

4447 4448 4449
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4450 4451 4452 4453 4454
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4455
static void perf_output_read_one(struct perf_output_handle *handle,
4456 4457
				 struct perf_event *event,
				 u64 enabled, u64 running)
4458
{
4459
	u64 read_format = event->attr.read_format;
4460 4461 4462
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4463
	values[n++] = perf_event_count(event);
4464
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4465
		values[n++] = enabled +
4466
			atomic64_read(&event->child_total_time_enabled);
4467 4468
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4469
		values[n++] = running +
4470
			atomic64_read(&event->child_total_time_running);
4471 4472
	}
	if (read_format & PERF_FORMAT_ID)
4473
		values[n++] = primary_event_id(event);
4474

4475
	__output_copy(handle, values, n * sizeof(u64));
4476 4477 4478
}

/*
4479
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4480 4481
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4482 4483
			    struct perf_event *event,
			    u64 enabled, u64 running)
4484
{
4485 4486
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4487 4488 4489 4490 4491 4492
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4493
		values[n++] = enabled;
4494 4495

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4496
		values[n++] = running;
4497

4498
	if (leader != event)
4499 4500
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4501
	values[n++] = perf_event_count(leader);
4502
	if (read_format & PERF_FORMAT_ID)
4503
		values[n++] = primary_event_id(leader);
4504

4505
	__output_copy(handle, values, n * sizeof(u64));
4506

4507
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4508 4509
		n = 0;

4510 4511
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4512 4513
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4514
		values[n++] = perf_event_count(sub);
4515
		if (read_format & PERF_FORMAT_ID)
4516
			values[n++] = primary_event_id(sub);
4517

4518
		__output_copy(handle, values, n * sizeof(u64));
4519 4520 4521
	}
}

4522 4523 4524
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4525
static void perf_output_read(struct perf_output_handle *handle,
4526
			     struct perf_event *event)
4527
{
4528
	u64 enabled = 0, running = 0, now;
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4540
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4541
		calc_timer_values(event, &now, &enabled, &running);
4542

4543
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4544
		perf_output_read_group(handle, event, enabled, running);
4545
	else
4546
		perf_output_read_one(handle, event, enabled, running);
4547 4548
}

4549 4550 4551
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4552
			struct perf_event *event)
4553 4554 4555 4556 4557
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4558 4559 4560
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4586
		perf_output_read(handle, event);
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4597
			__output_copy(handle, data->callchain, size);
4598 4599 4600 4601 4602 4603 4604 4605 4606
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4607 4608
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4620

4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4655

4656
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4657 4658 4659
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4660
	}
A
Andi Kleen 已提交
4661 4662 4663

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4664 4665 4666

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4667

A
Andi Kleen 已提交
4668 4669 4670
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4684 4685 4686 4687
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4688
			 struct perf_event *event,
4689
			 struct pt_regs *regs)
4690
{
4691
	u64 sample_type = event->attr.sample_type;
4692

4693
	header->type = PERF_RECORD_SAMPLE;
4694
	header->size = sizeof(*header) + event->header_size;
4695 4696 4697

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4698

4699
	__perf_event_header__init_id(header, data, event);
4700

4701
	if (sample_type & PERF_SAMPLE_IP)
4702 4703
		data->ip = perf_instruction_pointer(regs);

4704
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4705
		int size = 1;
4706

4707
		data->callchain = perf_callchain(event, regs);
4708 4709 4710 4711 4712

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4713 4714
	}

4715
	if (sample_type & PERF_SAMPLE_RAW) {
4716 4717 4718 4719 4720 4721 4722 4723
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4724
		header->size += size;
4725
	}
4726 4727 4728 4729 4730 4731 4732 4733 4734

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4778
}
4779

4780
static void perf_event_output(struct perf_event *event,
4781 4782 4783 4784 4785
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4786

4787 4788 4789
	/* protect the callchain buffers */
	rcu_read_lock();

4790
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4791

4792
	if (perf_output_begin(&handle, event, header.size))
4793
		goto exit;
4794

4795
	perf_output_sample(&handle, &header, data, event);
4796

4797
	perf_output_end(&handle);
4798 4799 4800

exit:
	rcu_read_unlock();
4801 4802
}

4803
/*
4804
 * read event_id
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4815
perf_event_read_event(struct perf_event *event,
4816 4817 4818
			struct task_struct *task)
{
	struct perf_output_handle handle;
4819
	struct perf_sample_data sample;
4820
	struct perf_read_event read_event = {
4821
		.header = {
4822
			.type = PERF_RECORD_READ,
4823
			.misc = 0,
4824
			.size = sizeof(read_event) + event->read_size,
4825
		},
4826 4827
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4828
	};
4829
	int ret;
4830

4831
	perf_event_header__init_id(&read_event.header, &sample, event);
4832
	ret = perf_output_begin(&handle, event, read_event.header.size);
4833 4834 4835
	if (ret)
		return;

4836
	perf_output_put(&handle, read_event);
4837
	perf_output_read(&handle, event);
4838
	perf_event__output_id_sample(event, &handle, &sample);
4839

4840 4841 4842
	perf_output_end(&handle);
}

4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4857
		output(event, data);
4858 4859 4860 4861
	}
}

static void
4862
perf_event_aux(perf_event_aux_output_cb output, void *data,
4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4875
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4876 4877 4878 4879 4880 4881 4882
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4883
			perf_event_aux_ctx(ctx, output, data);
4884 4885 4886 4887 4888 4889
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4890
		perf_event_aux_ctx(task_ctx, output, data);
4891 4892 4893 4894 4895
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4896
/*
P
Peter Zijlstra 已提交
4897 4898
 * task tracking -- fork/exit
 *
4899
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4900 4901
 */

P
Peter Zijlstra 已提交
4902
struct perf_task_event {
4903
	struct task_struct		*task;
4904
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4905 4906 4907 4908 4909 4910

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4911 4912
		u32				tid;
		u32				ptid;
4913
		u64				time;
4914
	} event_id;
P
Peter Zijlstra 已提交
4915 4916
};

4917 4918
static int perf_event_task_match(struct perf_event *event)
{
4919 4920 4921
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
4922 4923
}

4924
static void perf_event_task_output(struct perf_event *event,
4925
				   void *data)
P
Peter Zijlstra 已提交
4926
{
4927
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4928
	struct perf_output_handle handle;
4929
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4930
	struct task_struct *task = task_event->task;
4931
	int ret, size = task_event->event_id.header.size;
4932

4933 4934 4935
	if (!perf_event_task_match(event))
		return;

4936
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4937

4938
	ret = perf_output_begin(&handle, event,
4939
				task_event->event_id.header.size);
4940
	if (ret)
4941
		goto out;
P
Peter Zijlstra 已提交
4942

4943 4944
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4945

4946 4947
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4948

4949
	perf_output_put(&handle, task_event->event_id);
4950

4951 4952
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4953
	perf_output_end(&handle);
4954 4955
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4956 4957
}

4958 4959
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4960
			      int new)
P
Peter Zijlstra 已提交
4961
{
P
Peter Zijlstra 已提交
4962
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4963

4964 4965 4966
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4967 4968
		return;

P
Peter Zijlstra 已提交
4969
	task_event = (struct perf_task_event){
4970 4971
		.task	  = task,
		.task_ctx = task_ctx,
4972
		.event_id    = {
P
Peter Zijlstra 已提交
4973
			.header = {
4974
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4975
				.misc = 0,
4976
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4977
			},
4978 4979
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4980 4981
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4982
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4983 4984 4985
		},
	};

4986
	perf_event_aux(perf_event_task_output,
4987 4988
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4989 4990
}

4991
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4992
{
4993
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4994 4995
}

4996 4997 4998 4999 5000
/*
 * comm tracking
 */

struct perf_comm_event {
5001 5002
	struct task_struct	*task;
	char			*comm;
5003 5004 5005 5006 5007 5008 5009
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5010
	} event_id;
5011 5012
};

5013 5014 5015 5016 5017
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5018
static void perf_event_comm_output(struct perf_event *event,
5019
				   void *data)
5020
{
5021
	struct perf_comm_event *comm_event = data;
5022
	struct perf_output_handle handle;
5023
	struct perf_sample_data sample;
5024
	int size = comm_event->event_id.header.size;
5025 5026
	int ret;

5027 5028 5029
	if (!perf_event_comm_match(event))
		return;

5030 5031
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5032
				comm_event->event_id.header.size);
5033 5034

	if (ret)
5035
		goto out;
5036

5037 5038
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5039

5040
	perf_output_put(&handle, comm_event->event_id);
5041
	__output_copy(&handle, comm_event->comm,
5042
				   comm_event->comm_size);
5043 5044 5045

	perf_event__output_id_sample(event, &handle, &sample);

5046
	perf_output_end(&handle);
5047 5048
out:
	comm_event->event_id.header.size = size;
5049 5050
}

5051
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5052
{
5053
	char comm[TASK_COMM_LEN];
5054 5055
	unsigned int size;

5056
	memset(comm, 0, sizeof(comm));
5057
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5058
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5059 5060 5061 5062

	comm_event->comm = comm;
	comm_event->comm_size = size;

5063
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5064

5065
	perf_event_aux(perf_event_comm_output,
5066 5067
		       comm_event,
		       NULL);
5068 5069
}

5070
void perf_event_comm(struct task_struct *task)
5071
{
5072
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
5073 5074
	struct perf_event_context *ctx;
	int ctxn;
5075

5076
	rcu_read_lock();
P
Peter Zijlstra 已提交
5077 5078 5079 5080
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5081

P
Peter Zijlstra 已提交
5082 5083
		perf_event_enable_on_exec(ctx);
	}
5084
	rcu_read_unlock();
5085

5086
	if (!atomic_read(&nr_comm_events))
5087
		return;
5088

5089
	comm_event = (struct perf_comm_event){
5090
		.task	= task,
5091 5092
		/* .comm      */
		/* .comm_size */
5093
		.event_id  = {
5094
			.header = {
5095
				.type = PERF_RECORD_COMM,
5096 5097 5098 5099 5100
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
5101 5102 5103
		},
	};

5104
	perf_event_comm_event(&comm_event);
5105 5106
}

5107 5108 5109 5110 5111
/*
 * mmap tracking
 */

struct perf_mmap_event {
5112 5113 5114 5115
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5116 5117 5118
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5119 5120 5121 5122 5123 5124 5125 5126 5127

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5128
	} event_id;
5129 5130
};

5131 5132 5133 5134 5135 5136 5137 5138
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5139
	       (executable && (event->attr.mmap || event->attr.mmap2));
5140 5141
}

5142
static void perf_event_mmap_output(struct perf_event *event,
5143
				   void *data)
5144
{
5145
	struct perf_mmap_event *mmap_event = data;
5146
	struct perf_output_handle handle;
5147
	struct perf_sample_data sample;
5148
	int size = mmap_event->event_id.header.size;
5149
	int ret;
5150

5151 5152 5153
	if (!perf_event_mmap_match(event, data))
		return;

5154 5155 5156 5157 5158
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5159
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5160 5161
	}

5162 5163
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5164
				mmap_event->event_id.header.size);
5165
	if (ret)
5166
		goto out;
5167

5168 5169
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5170

5171
	perf_output_put(&handle, mmap_event->event_id);
5172 5173 5174 5175 5176 5177 5178 5179

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
	}

5180
	__output_copy(&handle, mmap_event->file_name,
5181
				   mmap_event->file_size);
5182 5183 5184

	perf_event__output_id_sample(event, &handle, &sample);

5185
	perf_output_end(&handle);
5186 5187
out:
	mmap_event->event_id.header.size = size;
5188 5189
}

5190
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5191
{
5192 5193
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5194 5195
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5196 5197 5198
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5199
	char *name;
5200

5201
	if (file) {
5202 5203
		struct inode *inode;
		dev_t dev;
5204

5205
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5206
		if (!buf) {
5207 5208
			name = "//enomem";
			goto cpy_name;
5209
		}
5210
		/*
5211
		 * d_path() works from the end of the rb backwards, so we
5212 5213 5214
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5215
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5216
		if (IS_ERR(name)) {
5217 5218
			name = "//toolong";
			goto cpy_name;
5219
		}
5220 5221 5222 5223 5224 5225
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5226
		goto got_name;
5227
	} else {
5228
		name = (char *)arch_vma_name(vma);
5229 5230
		if (name)
			goto cpy_name;
5231

5232
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5233
				vma->vm_end >= vma->vm_mm->brk) {
5234 5235
			name = "[heap]";
			goto cpy_name;
5236 5237
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5238
				vma->vm_end >= vma->vm_mm->start_stack) {
5239 5240
			name = "[stack]";
			goto cpy_name;
5241 5242
		}

5243 5244
		name = "//anon";
		goto cpy_name;
5245 5246
	}

5247 5248 5249
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5250
got_name:
5251 5252 5253 5254 5255 5256 5257 5258
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5259 5260 5261

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5262 5263 5264 5265
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5266

5267 5268 5269
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5270
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5271

5272
	perf_event_aux(perf_event_mmap_output,
5273 5274
		       mmap_event,
		       NULL);
5275

5276 5277 5278
	kfree(buf);
}

5279
void perf_event_mmap(struct vm_area_struct *vma)
5280
{
5281 5282
	struct perf_mmap_event mmap_event;

5283
	if (!atomic_read(&nr_mmap_events))
5284 5285 5286
		return;

	mmap_event = (struct perf_mmap_event){
5287
		.vma	= vma,
5288 5289
		/* .file_name */
		/* .file_size */
5290
		.event_id  = {
5291
			.header = {
5292
				.type = PERF_RECORD_MMAP,
5293
				.misc = PERF_RECORD_MISC_USER,
5294 5295 5296 5297
				/* .size */
			},
			/* .pid */
			/* .tid */
5298 5299
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5300
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5301
		},
5302 5303 5304 5305
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5306 5307
	};

5308
	perf_event_mmap_event(&mmap_event);
5309 5310
}

5311 5312 5313 5314
/*
 * IRQ throttle logging
 */

5315
static void perf_log_throttle(struct perf_event *event, int enable)
5316 5317
{
	struct perf_output_handle handle;
5318
	struct perf_sample_data sample;
5319 5320 5321 5322 5323
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5324
		u64				id;
5325
		u64				stream_id;
5326 5327
	} throttle_event = {
		.header = {
5328
			.type = PERF_RECORD_THROTTLE,
5329 5330 5331
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5332
		.time		= perf_clock(),
5333 5334
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5335 5336
	};

5337
	if (enable)
5338
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5339

5340 5341 5342
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5343
				throttle_event.header.size);
5344 5345 5346 5347
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5348
	perf_event__output_id_sample(event, &handle, &sample);
5349 5350 5351
	perf_output_end(&handle);
}

5352
/*
5353
 * Generic event overflow handling, sampling.
5354 5355
 */

5356
static int __perf_event_overflow(struct perf_event *event,
5357 5358
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5359
{
5360 5361
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5362
	u64 seq;
5363 5364
	int ret = 0;

5365 5366 5367 5368 5369 5370 5371
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5372 5373 5374 5375 5376 5377 5378 5379 5380
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5381 5382
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5383
			tick_nohz_full_kick();
5384 5385
			ret = 1;
		}
5386
	}
5387

5388
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5389
		u64 now = perf_clock();
5390
		s64 delta = now - hwc->freq_time_stamp;
5391

5392
		hwc->freq_time_stamp = now;
5393

5394
		if (delta > 0 && delta < 2*TICK_NSEC)
5395
			perf_adjust_period(event, delta, hwc->last_period, true);
5396 5397
	}

5398 5399
	/*
	 * XXX event_limit might not quite work as expected on inherited
5400
	 * events
5401 5402
	 */

5403 5404
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5405
		ret = 1;
5406
		event->pending_kill = POLL_HUP;
5407 5408
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5409 5410
	}

5411
	if (event->overflow_handler)
5412
		event->overflow_handler(event, data, regs);
5413
	else
5414
		perf_event_output(event, data, regs);
5415

P
Peter Zijlstra 已提交
5416
	if (event->fasync && event->pending_kill) {
5417 5418
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5419 5420
	}

5421
	return ret;
5422 5423
}

5424
int perf_event_overflow(struct perf_event *event,
5425 5426
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5427
{
5428
	return __perf_event_overflow(event, 1, data, regs);
5429 5430
}

5431
/*
5432
 * Generic software event infrastructure
5433 5434
 */

5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5446
/*
5447 5448
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5449 5450 5451 5452
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5453
u64 perf_swevent_set_period(struct perf_event *event)
5454
{
5455
	struct hw_perf_event *hwc = &event->hw;
5456 5457 5458 5459 5460
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5461 5462

again:
5463
	old = val = local64_read(&hwc->period_left);
5464 5465
	if (val < 0)
		return 0;
5466

5467 5468 5469
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5470
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5471
		goto again;
5472

5473
	return nr;
5474 5475
}

5476
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5477
				    struct perf_sample_data *data,
5478
				    struct pt_regs *regs)
5479
{
5480
	struct hw_perf_event *hwc = &event->hw;
5481
	int throttle = 0;
5482

5483 5484
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5485

5486 5487
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5488

5489
	for (; overflow; overflow--) {
5490
		if (__perf_event_overflow(event, throttle,
5491
					    data, regs)) {
5492 5493 5494 5495 5496 5497
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5498
		throttle = 1;
5499
	}
5500 5501
}

P
Peter Zijlstra 已提交
5502
static void perf_swevent_event(struct perf_event *event, u64 nr,
5503
			       struct perf_sample_data *data,
5504
			       struct pt_regs *regs)
5505
{
5506
	struct hw_perf_event *hwc = &event->hw;
5507

5508
	local64_add(nr, &event->count);
5509

5510 5511 5512
	if (!regs)
		return;

5513
	if (!is_sampling_event(event))
5514
		return;
5515

5516 5517 5518 5519 5520 5521
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5522
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5523
		return perf_swevent_overflow(event, 1, data, regs);
5524

5525
	if (local64_add_negative(nr, &hwc->period_left))
5526
		return;
5527

5528
	perf_swevent_overflow(event, 0, data, regs);
5529 5530
}

5531 5532 5533
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5534
	if (event->hw.state & PERF_HES_STOPPED)
5535
		return 1;
P
Peter Zijlstra 已提交
5536

5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5548
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5549
				enum perf_type_id type,
L
Li Zefan 已提交
5550 5551 5552
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5553
{
5554
	if (event->attr.type != type)
5555
		return 0;
5556

5557
	if (event->attr.config != event_id)
5558 5559
		return 0;

5560 5561
	if (perf_exclude_event(event, regs))
		return 0;
5562 5563 5564 5565

	return 1;
}

5566 5567 5568 5569 5570 5571 5572
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5573 5574
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5575
{
5576 5577 5578 5579
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5580

5581 5582
/* For the read side: events when they trigger */
static inline struct hlist_head *
5583
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5584 5585
{
	struct swevent_hlist *hlist;
5586

5587
	hlist = rcu_dereference(swhash->swevent_hlist);
5588 5589 5590
	if (!hlist)
		return NULL;

5591 5592 5593 5594 5595
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5596
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5607
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5608 5609 5610 5611 5612
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5613 5614 5615
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5616
				    u64 nr,
5617 5618
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5619
{
5620
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5621
	struct perf_event *event;
5622
	struct hlist_head *head;
5623

5624
	rcu_read_lock();
5625
	head = find_swevent_head_rcu(swhash, type, event_id);
5626 5627 5628
	if (!head)
		goto end;

5629
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5630
		if (perf_swevent_match(event, type, event_id, data, regs))
5631
			perf_swevent_event(event, nr, data, regs);
5632
	}
5633 5634
end:
	rcu_read_unlock();
5635 5636
}

5637
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5638
{
5639
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5640

5641
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5642
}
I
Ingo Molnar 已提交
5643
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5644

5645
inline void perf_swevent_put_recursion_context(int rctx)
5646
{
5647
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5648

5649
	put_recursion_context(swhash->recursion, rctx);
5650
}
5651

5652
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5653
{
5654
	struct perf_sample_data data;
5655 5656
	int rctx;

5657
	preempt_disable_notrace();
5658 5659 5660
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5661

5662
	perf_sample_data_init(&data, addr, 0);
5663

5664
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5665 5666

	perf_swevent_put_recursion_context(rctx);
5667
	preempt_enable_notrace();
5668 5669
}

5670
static void perf_swevent_read(struct perf_event *event)
5671 5672 5673
{
}

P
Peter Zijlstra 已提交
5674
static int perf_swevent_add(struct perf_event *event, int flags)
5675
{
5676
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5677
	struct hw_perf_event *hwc = &event->hw;
5678 5679
	struct hlist_head *head;

5680
	if (is_sampling_event(event)) {
5681
		hwc->last_period = hwc->sample_period;
5682
		perf_swevent_set_period(event);
5683
	}
5684

P
Peter Zijlstra 已提交
5685 5686
	hwc->state = !(flags & PERF_EF_START);

5687
	head = find_swevent_head(swhash, event);
5688 5689 5690 5691 5692
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5693 5694 5695
	return 0;
}

P
Peter Zijlstra 已提交
5696
static void perf_swevent_del(struct perf_event *event, int flags)
5697
{
5698
	hlist_del_rcu(&event->hlist_entry);
5699 5700
}

P
Peter Zijlstra 已提交
5701
static void perf_swevent_start(struct perf_event *event, int flags)
5702
{
P
Peter Zijlstra 已提交
5703
	event->hw.state = 0;
5704
}
I
Ingo Molnar 已提交
5705

P
Peter Zijlstra 已提交
5706
static void perf_swevent_stop(struct perf_event *event, int flags)
5707
{
P
Peter Zijlstra 已提交
5708
	event->hw.state = PERF_HES_STOPPED;
5709 5710
}

5711 5712
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5713
swevent_hlist_deref(struct swevent_htable *swhash)
5714
{
5715 5716
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5717 5718
}

5719
static void swevent_hlist_release(struct swevent_htable *swhash)
5720
{
5721
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5722

5723
	if (!hlist)
5724 5725
		return;

5726
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5727
	kfree_rcu(hlist, rcu_head);
5728 5729 5730 5731
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5732
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5733

5734
	mutex_lock(&swhash->hlist_mutex);
5735

5736 5737
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5738

5739
	mutex_unlock(&swhash->hlist_mutex);
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5752
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5753 5754
	int err = 0;

5755
	mutex_lock(&swhash->hlist_mutex);
5756

5757
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5758 5759 5760 5761 5762 5763 5764
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5765
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5766
	}
5767
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5768
exit:
5769
	mutex_unlock(&swhash->hlist_mutex);
5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5790
fail:
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5801
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5802

5803 5804 5805
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5806

5807 5808
	WARN_ON(event->parent);

5809
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5810 5811 5812 5813 5814
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5815
	u64 event_id = event->attr.config;
5816 5817 5818 5819

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5820 5821 5822 5823 5824 5825
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5826 5827 5828 5829 5830 5831 5832 5833 5834
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5835
	if (event_id >= PERF_COUNT_SW_MAX)
5836 5837 5838 5839 5840 5841 5842 5843 5844
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5845
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5846 5847 5848 5849 5850 5851
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5852 5853 5854 5855 5856
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5857
static struct pmu perf_swevent = {
5858
	.task_ctx_nr	= perf_sw_context,
5859

5860
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5861 5862 5863 5864
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5865
	.read		= perf_swevent_read,
5866 5867

	.event_idx	= perf_swevent_event_idx,
5868 5869
};

5870 5871
#ifdef CONFIG_EVENT_TRACING

5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5886 5887
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5888 5889 5890 5891
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5892 5893 5894 5895 5896 5897 5898 5899 5900
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5901 5902
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5903 5904
{
	struct perf_sample_data data;
5905 5906
	struct perf_event *event;

5907 5908 5909 5910 5911
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5912
	perf_sample_data_init(&data, addr, 0);
5913 5914
	data.raw = &raw;

5915
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5916
		if (perf_tp_event_match(event, &data, regs))
5917
			perf_swevent_event(event, count, &data, regs);
5918
	}
5919

5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5945
	perf_swevent_put_recursion_context(rctx);
5946 5947 5948
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5949
static void tp_perf_event_destroy(struct perf_event *event)
5950
{
5951
	perf_trace_destroy(event);
5952 5953
}

5954
static int perf_tp_event_init(struct perf_event *event)
5955
{
5956 5957
	int err;

5958 5959 5960
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5961 5962 5963 5964 5965 5966
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5967 5968
	err = perf_trace_init(event);
	if (err)
5969
		return err;
5970

5971
	event->destroy = tp_perf_event_destroy;
5972

5973 5974 5975 5976
	return 0;
}

static struct pmu perf_tracepoint = {
5977 5978
	.task_ctx_nr	= perf_sw_context,

5979
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5980 5981 5982 5983
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5984
	.read		= perf_swevent_read,
5985 5986

	.event_idx	= perf_swevent_event_idx,
5987 5988 5989 5990
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5991
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5992
}
L
Li Zefan 已提交
5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6017
#else
L
Li Zefan 已提交
6018

6019
static inline void perf_tp_register(void)
6020 6021
{
}
L
Li Zefan 已提交
6022 6023 6024 6025 6026 6027 6028 6029 6030 6031

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6032
#endif /* CONFIG_EVENT_TRACING */
6033

6034
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6035
void perf_bp_event(struct perf_event *bp, void *data)
6036
{
6037 6038 6039
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6040
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6041

P
Peter Zijlstra 已提交
6042
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6043
		perf_swevent_event(bp, 1, &sample, regs);
6044 6045 6046
}
#endif

6047 6048 6049
/*
 * hrtimer based swevent callback
 */
6050

6051
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6052
{
6053 6054 6055 6056 6057
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6058

6059
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6060 6061 6062 6063

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6064
	event->pmu->read(event);
6065

6066
	perf_sample_data_init(&data, 0, event->hw.last_period);
6067 6068 6069
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6070
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6071
			if (__perf_event_overflow(event, 1, &data, regs))
6072 6073
				ret = HRTIMER_NORESTART;
	}
6074

6075 6076
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6077

6078
	return ret;
6079 6080
}

6081
static void perf_swevent_start_hrtimer(struct perf_event *event)
6082
{
6083
	struct hw_perf_event *hwc = &event->hw;
6084 6085 6086 6087
	s64 period;

	if (!is_sampling_event(event))
		return;
6088

6089 6090 6091 6092
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6093

6094 6095 6096 6097 6098
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6099
				ns_to_ktime(period), 0,
6100
				HRTIMER_MODE_REL_PINNED, 0);
6101
}
6102 6103

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6104
{
6105 6106
	struct hw_perf_event *hwc = &event->hw;

6107
	if (is_sampling_event(event)) {
6108
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6109
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6110 6111 6112

		hrtimer_cancel(&hwc->hrtimer);
	}
6113 6114
}

P
Peter Zijlstra 已提交
6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6135
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6136 6137 6138 6139
		event->attr.freq = 0;
	}
}

6140 6141 6142 6143 6144
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6145
{
6146 6147 6148
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6149
	now = local_clock();
6150 6151
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6152 6153
}

P
Peter Zijlstra 已提交
6154
static void cpu_clock_event_start(struct perf_event *event, int flags)
6155
{
P
Peter Zijlstra 已提交
6156
	local64_set(&event->hw.prev_count, local_clock());
6157 6158 6159
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6160
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6161
{
6162 6163 6164
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6165

P
Peter Zijlstra 已提交
6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6179 6180 6181 6182
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6183

6184 6185 6186 6187 6188 6189 6190 6191
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6192 6193 6194 6195 6196 6197
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6198 6199
	perf_swevent_init_hrtimer(event);

6200
	return 0;
6201 6202
}

6203
static struct pmu perf_cpu_clock = {
6204 6205
	.task_ctx_nr	= perf_sw_context,

6206
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6207 6208 6209 6210
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6211
	.read		= cpu_clock_event_read,
6212 6213

	.event_idx	= perf_swevent_event_idx,
6214 6215 6216 6217 6218 6219 6220
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6221
{
6222 6223
	u64 prev;
	s64 delta;
6224

6225 6226 6227 6228
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6229

P
Peter Zijlstra 已提交
6230
static void task_clock_event_start(struct perf_event *event, int flags)
6231
{
P
Peter Zijlstra 已提交
6232
	local64_set(&event->hw.prev_count, event->ctx->time);
6233 6234 6235
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6236
static void task_clock_event_stop(struct perf_event *event, int flags)
6237 6238 6239
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6240 6241 6242 6243 6244 6245
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6246

P
Peter Zijlstra 已提交
6247 6248 6249 6250 6251 6252
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6253 6254 6255 6256
}

static void task_clock_event_read(struct perf_event *event)
{
6257 6258 6259
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6260 6261 6262 6263 6264

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6265
{
6266 6267 6268 6269 6270 6271
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6272 6273 6274 6275 6276 6277
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6278 6279
	perf_swevent_init_hrtimer(event);

6280
	return 0;
L
Li Zefan 已提交
6281 6282
}

6283
static struct pmu perf_task_clock = {
6284 6285
	.task_ctx_nr	= perf_sw_context,

6286
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6287 6288 6289 6290
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6291
	.read		= task_clock_event_read,
6292 6293

	.event_idx	= perf_swevent_event_idx,
6294
};
L
Li Zefan 已提交
6295

P
Peter Zijlstra 已提交
6296
static void perf_pmu_nop_void(struct pmu *pmu)
6297 6298
{
}
L
Li Zefan 已提交
6299

P
Peter Zijlstra 已提交
6300
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6301
{
P
Peter Zijlstra 已提交
6302
	return 0;
L
Li Zefan 已提交
6303 6304
}

P
Peter Zijlstra 已提交
6305
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6306
{
P
Peter Zijlstra 已提交
6307
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6308 6309
}

P
Peter Zijlstra 已提交
6310 6311 6312 6313 6314
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6315

P
Peter Zijlstra 已提交
6316
static void perf_pmu_cancel_txn(struct pmu *pmu)
6317
{
P
Peter Zijlstra 已提交
6318
	perf_pmu_enable(pmu);
6319 6320
}

6321 6322 6323 6324 6325
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6326 6327 6328 6329
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6330
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6331
{
P
Peter Zijlstra 已提交
6332
	struct pmu *pmu;
6333

P
Peter Zijlstra 已提交
6334 6335
	if (ctxn < 0)
		return NULL;
6336

P
Peter Zijlstra 已提交
6337 6338 6339 6340
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6341

P
Peter Zijlstra 已提交
6342
	return NULL;
6343 6344
}

6345
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6346
{
6347 6348 6349 6350 6351 6352 6353
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6354 6355
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6356 6357 6358 6359 6360 6361
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6362

P
Peter Zijlstra 已提交
6363
	mutex_lock(&pmus_lock);
6364
	/*
P
Peter Zijlstra 已提交
6365
	 * Like a real lame refcount.
6366
	 */
6367 6368 6369
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6370
			goto out;
6371
		}
P
Peter Zijlstra 已提交
6372
	}
6373

6374
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6375 6376
out:
	mutex_unlock(&pmus_lock);
6377
}
P
Peter Zijlstra 已提交
6378
static struct idr pmu_idr;
6379

P
Peter Zijlstra 已提交
6380 6381 6382 6383 6384 6385 6386
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6387
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6388

6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6432
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6433

6434 6435 6436 6437
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6438
};
6439
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6440 6441 6442 6443

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6444
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6460
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6481
static struct lock_class_key cpuctx_mutex;
6482
static struct lock_class_key cpuctx_lock;
6483

6484
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6485
{
P
Peter Zijlstra 已提交
6486
	int cpu, ret;
6487

6488
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6489 6490 6491 6492
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6493

P
Peter Zijlstra 已提交
6494 6495 6496 6497 6498 6499
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6500 6501 6502
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6503 6504 6505 6506 6507
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6508 6509 6510 6511 6512 6513
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6514
skip_type:
P
Peter Zijlstra 已提交
6515 6516 6517
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6518

W
Wei Yongjun 已提交
6519
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6520 6521
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6522
		goto free_dev;
6523

P
Peter Zijlstra 已提交
6524 6525 6526 6527
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6528
		__perf_event_init_context(&cpuctx->ctx);
6529
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6530
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6531
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6532
		cpuctx->ctx.pmu = pmu;
6533 6534 6535

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6536
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6537
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6538
	}
6539

P
Peter Zijlstra 已提交
6540
got_cpu_context:
P
Peter Zijlstra 已提交
6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6555
		}
6556
	}
6557

P
Peter Zijlstra 已提交
6558 6559 6560 6561 6562
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6563 6564 6565
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6566
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6567 6568
	ret = 0;
unlock:
6569 6570
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6571
	return ret;
P
Peter Zijlstra 已提交
6572

P
Peter Zijlstra 已提交
6573 6574 6575 6576
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6577 6578 6579 6580
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6581 6582 6583
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6584
}
6585
EXPORT_SYMBOL_GPL(perf_pmu_register);
6586

6587
void perf_pmu_unregister(struct pmu *pmu)
6588
{
6589 6590 6591
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6592

6593
	/*
P
Peter Zijlstra 已提交
6594 6595
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6596
	 */
6597
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6598
	synchronize_rcu();
6599

P
Peter Zijlstra 已提交
6600
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6601 6602
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6603 6604
	device_del(pmu->dev);
	put_device(pmu->dev);
6605
	free_pmu_context(pmu);
6606
}
6607
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6608

6609 6610 6611 6612
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6613
	int ret;
6614 6615

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6616 6617 6618 6619

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6620
	if (pmu) {
6621 6622 6623 6624
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
6625
		event->pmu = pmu;
6626 6627 6628
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6629
		goto unlock;
6630
	}
P
Peter Zijlstra 已提交
6631

6632
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6633 6634 6635 6636
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
6637
		event->pmu = pmu;
6638
		ret = pmu->event_init(event);
6639
		if (!ret)
P
Peter Zijlstra 已提交
6640
			goto unlock;
6641

6642 6643
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6644
			goto unlock;
6645
		}
6646
	}
P
Peter Zijlstra 已提交
6647 6648
	pmu = ERR_PTR(-ENOENT);
unlock:
6649
	srcu_read_unlock(&pmus_srcu, idx);
6650

6651
	return pmu;
6652 6653
}

6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6667 6668
static void account_event(struct perf_event *event)
{
6669 6670 6671
	if (event->parent)
		return;

6672 6673 6674 6675 6676 6677 6678 6679
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6680 6681 6682 6683
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6684
	if (has_branch_stack(event))
6685
		static_key_slow_inc(&perf_sched_events.key);
6686
	if (is_cgroup_event(event))
6687
		static_key_slow_inc(&perf_sched_events.key);
6688 6689

	account_event_cpu(event, event->cpu);
6690 6691
}

T
Thomas Gleixner 已提交
6692
/*
6693
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6694
 */
6695
static struct perf_event *
6696
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6697 6698 6699
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6700 6701
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6702
{
P
Peter Zijlstra 已提交
6703
	struct pmu *pmu;
6704 6705
	struct perf_event *event;
	struct hw_perf_event *hwc;
6706
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6707

6708 6709 6710 6711 6712
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6713
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6714
	if (!event)
6715
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6716

6717
	/*
6718
	 * Single events are their own group leaders, with an
6719 6720 6721
	 * empty sibling list:
	 */
	if (!group_leader)
6722
		group_leader = event;
6723

6724 6725
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6726

6727 6728 6729
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6730
	INIT_LIST_HEAD(&event->rb_entry);
6731
	INIT_LIST_HEAD(&event->active_entry);
6732 6733
	INIT_HLIST_NODE(&event->hlist_entry);

6734

6735
	init_waitqueue_head(&event->waitq);
6736
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6737

6738
	mutex_init(&event->mmap_mutex);
6739

6740
	atomic_long_set(&event->refcount, 1);
6741 6742 6743 6744 6745
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6746

6747
	event->parent		= parent_event;
6748

6749
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6750
	event->id		= atomic64_inc_return(&perf_event_id);
6751

6752
	event->state		= PERF_EVENT_STATE_INACTIVE;
6753

6754 6755
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6756 6757 6758

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6759 6760 6761 6762
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6763
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6764 6765 6766 6767
			event->hw.bp_target = task;
#endif
	}

6768
	if (!overflow_handler && parent_event) {
6769
		overflow_handler = parent_event->overflow_handler;
6770 6771
		context = parent_event->overflow_handler_context;
	}
6772

6773
	event->overflow_handler	= overflow_handler;
6774
	event->overflow_handler_context = context;
6775

J
Jiri Olsa 已提交
6776
	perf_event__state_init(event);
6777

6778
	pmu = NULL;
6779

6780
	hwc = &event->hw;
6781
	hwc->sample_period = attr->sample_period;
6782
	if (attr->freq && attr->sample_freq)
6783
		hwc->sample_period = 1;
6784
	hwc->last_period = hwc->sample_period;
6785

6786
	local64_set(&hwc->period_left, hwc->sample_period);
6787

6788
	/*
6789
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6790
	 */
6791
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6792
		goto err_ns;
6793

6794
	pmu = perf_init_event(event);
6795
	if (!pmu)
6796 6797
		goto err_ns;
	else if (IS_ERR(pmu)) {
6798
		err = PTR_ERR(pmu);
6799
		goto err_ns;
I
Ingo Molnar 已提交
6800
	}
6801

6802
	if (!event->parent) {
6803 6804
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
6805 6806
			if (err)
				goto err_pmu;
6807
		}
6808
	}
6809

6810
	return event;
6811 6812 6813 6814

err_pmu:
	if (event->destroy)
		event->destroy(event);
6815
	module_put(pmu->module);
6816 6817 6818 6819 6820 6821
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6822 6823
}

6824 6825
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6826 6827
{
	u32 size;
6828
	int ret;
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6853 6854 6855
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6856 6857
	 */
	if (size > sizeof(*attr)) {
6858 6859 6860
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6861

6862 6863
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6864

6865
		for (; addr < end; addr++) {
6866 6867 6868 6869 6870 6871
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6872
		size = sizeof(*attr);
6873 6874 6875 6876 6877 6878
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6879 6880 6881 6882
	/* disabled for now */
	if (attr->mmap2)
		return -EINVAL;

6883
	if (attr->__reserved_1)
6884 6885 6886 6887 6888 6889 6890 6891
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6920 6921
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6922 6923
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6924
	}
6925

6926
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6927
		ret = perf_reg_validate(attr->sample_regs_user);
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6946

6947 6948 6949 6950 6951 6952 6953 6954 6955
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6956 6957
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6958
{
6959
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6960 6961
	int ret = -EINVAL;

6962
	if (!output_event)
6963 6964
		goto set;

6965 6966
	/* don't allow circular references */
	if (event == output_event)
6967 6968
		goto out;

6969 6970 6971 6972 6973 6974 6975
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6976
	 * If its not a per-cpu rb, it must be the same task.
6977 6978 6979 6980
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6981
set:
6982
	mutex_lock(&event->mmap_mutex);
6983 6984 6985
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6986

6987 6988
	old_rb = event->rb;

6989
	if (output_event) {
6990 6991 6992
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6993
			goto unlock;
6994 6995
	}

6996 6997
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

7014
	ret = 0;
7015 7016 7017
unlock:
	mutex_unlock(&event->mmap_mutex);

7018 7019 7020 7021
out:
	return ret;
}

T
Thomas Gleixner 已提交
7022
/**
7023
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7024
 *
7025
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7026
 * @pid:		target pid
I
Ingo Molnar 已提交
7027
 * @cpu:		target cpu
7028
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7029
 */
7030 7031
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7032
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7033
{
7034 7035
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7036 7037 7038
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
7039
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7040
	struct task_struct *task = NULL;
7041
	struct pmu *pmu;
7042
	int event_fd;
7043
	int move_group = 0;
7044
	int err;
7045
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7046

7047
	/* for future expandability... */
S
Stephane Eranian 已提交
7048
	if (flags & ~PERF_FLAG_ALL)
7049 7050
		return -EINVAL;

7051 7052 7053
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7054

7055 7056 7057 7058 7059
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7060
	if (attr.freq) {
7061
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7062 7063 7064
			return -EINVAL;
	}

S
Stephane Eranian 已提交
7065 7066 7067 7068 7069 7070 7071 7072 7073
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7074 7075 7076 7077
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7078 7079 7080
	if (event_fd < 0)
		return event_fd;

7081
	if (group_fd != -1) {
7082 7083
		err = perf_fget_light(group_fd, &group);
		if (err)
7084
			goto err_fd;
7085
		group_leader = group.file->private_data;
7086 7087 7088 7089 7090 7091
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7092
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7093 7094 7095 7096 7097 7098 7099
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7100 7101 7102 7103 7104 7105
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7106 7107
	get_online_cpus();

7108 7109
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7110 7111
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7112
		goto err_cpus;
7113 7114
	}

S
Stephane Eranian 已提交
7115 7116
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7117 7118
		if (err) {
			__free_event(event);
7119
			goto err_cpus;
7120
		}
S
Stephane Eranian 已提交
7121 7122
	}

7123 7124
	account_event(event);

7125 7126 7127 7128 7129
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7153 7154 7155 7156

	/*
	 * Get the target context (task or percpu):
	 */
7157
	ctx = find_get_context(pmu, task, event->cpu);
7158 7159
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7160
		goto err_alloc;
7161 7162
	}

7163 7164 7165 7166 7167
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7168
	/*
7169
	 * Look up the group leader (we will attach this event to it):
7170
	 */
7171
	if (group_leader) {
7172
		err = -EINVAL;
7173 7174

		/*
I
Ingo Molnar 已提交
7175 7176 7177 7178
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7179
			goto err_context;
I
Ingo Molnar 已提交
7180 7181 7182
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7183
		 */
7184 7185 7186 7187 7188 7189 7190 7191
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7192 7193 7194
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7195
		if (attr.exclusive || attr.pinned)
7196
			goto err_context;
7197 7198 7199 7200 7201
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7202
			goto err_context;
7203
	}
T
Thomas Gleixner 已提交
7204

7205 7206
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7207 7208
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7209
		goto err_context;
7210
	}
7211

7212 7213 7214 7215
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7216
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
7217 7218 7219 7220 7221 7222 7223

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7224 7225
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7226
			perf_remove_from_context(sibling, false);
J
Jiri Olsa 已提交
7227
			perf_event__state_init(sibling);
7228 7229 7230 7231
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7232
	}
7233

7234
	WARN_ON_ONCE(ctx->parent_ctx);
7235
	mutex_lock(&ctx->mutex);
7236 7237

	if (move_group) {
7238
		synchronize_rcu();
7239
		perf_install_in_context(ctx, group_leader, event->cpu);
7240 7241 7242
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7243
			perf_install_in_context(ctx, sibling, event->cpu);
7244 7245 7246 7247
			get_ctx(ctx);
		}
	}

7248
	perf_install_in_context(ctx, event, event->cpu);
7249
	perf_unpin_context(ctx);
7250
	mutex_unlock(&ctx->mutex);
7251

7252 7253
	put_online_cpus();

7254
	event->owner = current;
P
Peter Zijlstra 已提交
7255

7256 7257 7258
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7259

7260 7261 7262 7263
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7264
	perf_event__id_header_size(event);
7265

7266 7267 7268 7269 7270 7271
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7272
	fdput(group);
7273 7274
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7275

7276
err_context:
7277
	perf_unpin_context(ctx);
7278
	put_ctx(ctx);
7279
err_alloc:
7280
	free_event(event);
7281
err_cpus:
7282
	put_online_cpus();
7283
err_task:
P
Peter Zijlstra 已提交
7284 7285
	if (task)
		put_task_struct(task);
7286
err_group_fd:
7287
	fdput(group);
7288 7289
err_fd:
	put_unused_fd(event_fd);
7290
	return err;
T
Thomas Gleixner 已提交
7291 7292
}

7293 7294 7295 7296 7297
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7298
 * @task: task to profile (NULL for percpu)
7299 7300 7301
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7302
				 struct task_struct *task,
7303 7304
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7305 7306
{
	struct perf_event_context *ctx;
7307
	struct perf_event *event;
7308
	int err;
7309

7310 7311 7312
	/*
	 * Get the target context (task or percpu):
	 */
7313

7314 7315
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7316 7317 7318 7319
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7320

7321 7322
	account_event(event);

M
Matt Helsley 已提交
7323
	ctx = find_get_context(event->pmu, task, cpu);
7324 7325
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7326
		goto err_free;
7327
	}
7328 7329 7330 7331

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7332
	perf_unpin_context(ctx);
7333 7334 7335 7336
	mutex_unlock(&ctx->mutex);

	return event;

7337 7338 7339
err_free:
	free_event(event);
err:
7340
	return ERR_PTR(err);
7341
}
7342
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7343

7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
7357
		perf_remove_from_context(event, false);
7358
		unaccount_event_cpu(event, src_cpu);
7359
		put_ctx(src_ctx);
7360
		list_add(&event->migrate_entry, &events);
7361 7362 7363 7364 7365 7366
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
7367 7368
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7369 7370
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7371
		account_event_cpu(event, dst_cpu);
7372 7373 7374 7375 7376 7377 7378
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7379
static void sync_child_event(struct perf_event *child_event,
7380
			       struct task_struct *child)
7381
{
7382
	struct perf_event *parent_event = child_event->parent;
7383
	u64 child_val;
7384

7385 7386
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7387

P
Peter Zijlstra 已提交
7388
	child_val = perf_event_count(child_event);
7389 7390 7391 7392

	/*
	 * Add back the child's count to the parent's count:
	 */
7393
	atomic64_add(child_val, &parent_event->child_count);
7394 7395 7396 7397
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7398 7399

	/*
7400
	 * Remove this event from the parent's list
7401
	 */
7402 7403 7404 7405
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7406 7407

	/*
7408
	 * Release the parent event, if this was the last
7409 7410
	 * reference to it.
	 */
7411
	put_event(parent_event);
7412 7413
}

7414
static void
7415 7416
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7417
			 struct task_struct *child)
7418
{
7419
	perf_remove_from_context(child_event, true);
7420

7421
	/*
7422
	 * It can happen that the parent exits first, and has events
7423
	 * that are still around due to the child reference. These
7424
	 * events need to be zapped.
7425
	 */
7426
	if (child_event->parent) {
7427 7428
		sync_child_event(child_event, child);
		free_event(child_event);
7429
	}
7430 7431
}

P
Peter Zijlstra 已提交
7432
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7433
{
7434
	struct perf_event *child_event;
7435
	struct perf_event_context *child_ctx;
7436
	unsigned long flags;
7437

P
Peter Zijlstra 已提交
7438
	if (likely(!child->perf_event_ctxp[ctxn])) {
7439
		perf_event_task(child, NULL, 0);
7440
		return;
P
Peter Zijlstra 已提交
7441
	}
7442

7443
	local_irq_save(flags);
7444 7445 7446 7447 7448 7449
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7450
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7451 7452 7453

	/*
	 * Take the context lock here so that if find_get_context is
7454
	 * reading child->perf_event_ctxp, we wait until it has
7455 7456
	 * incremented the context's refcount before we do put_ctx below.
	 */
7457
	raw_spin_lock(&child_ctx->lock);
7458
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7459
	child->perf_event_ctxp[ctxn] = NULL;
7460 7461 7462
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7463
	 * the events from it.
7464 7465
	 */
	unclone_ctx(child_ctx);
7466
	update_context_time(child_ctx);
7467
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7468 7469

	/*
7470 7471 7472
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7473
	 */
7474
	perf_event_task(child, child_ctx, 0);
7475

7476 7477 7478
	/*
	 * We can recurse on the same lock type through:
	 *
7479 7480
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7481 7482
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7483 7484 7485
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7486
	mutex_lock(&child_ctx->mutex);
7487

7488
	list_for_each_entry_rcu(child_event, &child_ctx->event_list, event_entry)
7489
		__perf_event_exit_task(child_event, child_ctx, child);
7490

7491 7492 7493
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7494 7495
}

P
Peter Zijlstra 已提交
7496 7497 7498 7499 7500
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7501
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7502 7503
	int ctxn;

P
Peter Zijlstra 已提交
7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7519 7520 7521 7522
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7535
	put_event(parent);
7536

7537
	perf_group_detach(event);
7538 7539 7540 7541
	list_del_event(event, ctx);
	free_event(event);
}

7542 7543
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7544
 * perf_event_init_task below, used by fork() in case of fail.
7545
 */
7546
void perf_event_free_task(struct task_struct *task)
7547
{
P
Peter Zijlstra 已提交
7548
	struct perf_event_context *ctx;
7549
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7550
	int ctxn;
7551

P
Peter Zijlstra 已提交
7552 7553 7554 7555
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7556

P
Peter Zijlstra 已提交
7557
		mutex_lock(&ctx->mutex);
7558
again:
P
Peter Zijlstra 已提交
7559 7560 7561
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7562

P
Peter Zijlstra 已提交
7563 7564 7565
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7566

P
Peter Zijlstra 已提交
7567 7568 7569
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7570

P
Peter Zijlstra 已提交
7571
		mutex_unlock(&ctx->mutex);
7572

P
Peter Zijlstra 已提交
7573 7574
		put_ctx(ctx);
	}
7575 7576
}

7577 7578 7579 7580 7581 7582 7583 7584
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7597
	unsigned long flags;
P
Peter Zijlstra 已提交
7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7610
					   child,
P
Peter Zijlstra 已提交
7611
					   group_leader, parent_event,
7612
				           NULL, NULL);
P
Peter Zijlstra 已提交
7613 7614
	if (IS_ERR(child_event))
		return child_event;
7615 7616 7617 7618 7619 7620

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7645 7646
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7647

7648 7649 7650 7651
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7652
	perf_event__id_header_size(child_event);
7653

P
Peter Zijlstra 已提交
7654 7655 7656
	/*
	 * Link it up in the child's context:
	 */
7657
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7658
	add_event_to_ctx(child_event, child_ctx);
7659
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7693 7694 7695 7696 7697
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7698
		   struct task_struct *child, int ctxn,
7699 7700 7701
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7702
	struct perf_event_context *child_ctx;
7703 7704 7705 7706

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7707 7708
	}

7709
	child_ctx = child->perf_event_ctxp[ctxn];
7710 7711 7712 7713 7714 7715 7716
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7717

7718
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7719 7720
		if (!child_ctx)
			return -ENOMEM;
7721

P
Peter Zijlstra 已提交
7722
		child->perf_event_ctxp[ctxn] = child_ctx;
7723 7724 7725 7726 7727 7728 7729 7730 7731
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7732 7733
}

7734
/*
7735
 * Initialize the perf_event context in task_struct
7736
 */
P
Peter Zijlstra 已提交
7737
int perf_event_init_context(struct task_struct *child, int ctxn)
7738
{
7739
	struct perf_event_context *child_ctx, *parent_ctx;
7740 7741
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7742
	struct task_struct *parent = current;
7743
	int inherited_all = 1;
7744
	unsigned long flags;
7745
	int ret = 0;
7746

P
Peter Zijlstra 已提交
7747
	if (likely(!parent->perf_event_ctxp[ctxn]))
7748 7749
		return 0;

7750
	/*
7751 7752
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7753
	 */
P
Peter Zijlstra 已提交
7754
	parent_ctx = perf_pin_task_context(parent, ctxn);
7755 7756
	if (!parent_ctx)
		return 0;
7757

7758 7759 7760 7761 7762 7763 7764
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7765 7766 7767 7768
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7769
	mutex_lock(&parent_ctx->mutex);
7770 7771 7772 7773 7774

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7775
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7776 7777
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7778 7779 7780
		if (ret)
			break;
	}
7781

7782 7783 7784 7785 7786 7787 7788 7789 7790
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7791
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7792 7793
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7794
		if (ret)
7795
			break;
7796 7797
	}

7798 7799 7800
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7801
	child_ctx = child->perf_event_ctxp[ctxn];
7802

7803
	if (child_ctx && inherited_all) {
7804 7805 7806
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7807 7808 7809
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7810
		 */
P
Peter Zijlstra 已提交
7811
		cloned_ctx = parent_ctx->parent_ctx;
7812 7813
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7814
			child_ctx->parent_gen = parent_ctx->parent_gen;
7815 7816 7817 7818 7819
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7820 7821
	}

P
Peter Zijlstra 已提交
7822
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7823
	mutex_unlock(&parent_ctx->mutex);
7824

7825
	perf_unpin_context(parent_ctx);
7826
	put_ctx(parent_ctx);
7827

7828
	return ret;
7829 7830
}

P
Peter Zijlstra 已提交
7831 7832 7833 7834 7835 7836 7837
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7838 7839 7840 7841
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7842 7843 7844 7845 7846 7847 7848 7849 7850
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7851 7852
static void __init perf_event_init_all_cpus(void)
{
7853
	struct swevent_htable *swhash;
7854 7855 7856
	int cpu;

	for_each_possible_cpu(cpu) {
7857 7858
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7859
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7860 7861 7862
	}
}

7863
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7864
{
P
Peter Zijlstra 已提交
7865
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7866

7867
	mutex_lock(&swhash->hlist_mutex);
7868
	if (swhash->hlist_refcount > 0) {
7869 7870
		struct swevent_hlist *hlist;

7871 7872 7873
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7874
	}
7875
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7876 7877
}

P
Peter Zijlstra 已提交
7878
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7879
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7880
{
7881 7882 7883 7884 7885 7886 7887
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7888
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7889
{
7890
	struct remove_event re = { .detach_group = false };
P
Peter Zijlstra 已提交
7891
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
7892

P
Peter Zijlstra 已提交
7893
	perf_pmu_rotate_stop(ctx->pmu);
7894

P
Peter Zijlstra 已提交
7895
	rcu_read_lock();
7896 7897
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
7898
	rcu_read_unlock();
T
Thomas Gleixner 已提交
7899
}
P
Peter Zijlstra 已提交
7900 7901 7902 7903 7904 7905 7906 7907 7908

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7909
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7910 7911 7912 7913 7914 7915 7916 7917

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7918
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7919
{
7920
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7921

P
Peter Zijlstra 已提交
7922 7923
	perf_event_exit_cpu_context(cpu);

7924 7925 7926
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7927 7928
}
#else
7929
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7930 7931
#endif

P
Peter Zijlstra 已提交
7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

7952
static int
T
Thomas Gleixner 已提交
7953 7954 7955 7956
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7957
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7958 7959

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7960
	case CPU_DOWN_FAILED:
7961
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7962 7963
		break;

P
Peter Zijlstra 已提交
7964
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7965
	case CPU_DOWN_PREPARE:
7966
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7967 7968 7969 7970 7971 7972 7973 7974
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7975
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7976
{
7977 7978
	int ret;

P
Peter Zijlstra 已提交
7979 7980
	idr_init(&pmu_idr);

7981
	perf_event_init_all_cpus();
7982
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7983 7984 7985
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7986 7987
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7988
	register_reboot_notifier(&perf_reboot_notifier);
7989 7990 7991

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7992 7993 7994

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7995 7996 7997 7998 7999 8000 8001

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8002
}
P
Peter Zijlstra 已提交
8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8031 8032

#ifdef CONFIG_CGROUP_PERF
8033 8034
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8035 8036 8037
{
	struct perf_cgroup *jc;

8038
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8051
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8052
{
8053 8054
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8066 8067
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8068
{
8069 8070
	struct task_struct *task;

8071
	cgroup_taskset_for_each(task, tset)
8072
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8073 8074
}

8075 8076
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8077
			     struct task_struct *task)
S
Stephane Eranian 已提交
8078 8079 8080 8081 8082 8083 8084 8085 8086
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8087
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8088 8089
}

8090
struct cgroup_subsys perf_event_cgrp_subsys = {
8091 8092
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8093
	.exit		= perf_cgroup_exit,
8094
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8095 8096
};
#endif /* CONFIG_CGROUP_PERF */