core.c 193.1 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
T
Thomas Gleixner 已提交
45

46 47
#include "internal.h"

48 49
#include <asm/irq_regs.h>

50 51
static struct workqueue_struct *perf_wq;

52
struct remote_function_call {
53 54 55 56
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
90 91 92 93
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
114 115 116 117
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
118 119 120 121 122 123 124
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

125 126 127 128 129 130 131
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
132 133
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
134 135
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
136

137 138 139 140 141 142 143
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

144 145 146 147 148 149
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
150 151 152 153
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
154
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
155
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
157

158 159 160
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
161
static atomic_t nr_freq_events __read_mostly;
162

P
Peter Zijlstra 已提交
163 164 165 166
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

167
/*
168
 * perf event paranoia level:
169 170
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
171
 *   1 - disallow cpu events for unpriv
172
 *   2 - disallow kernel profiling for unpriv
173
 */
174
int sysctl_perf_event_paranoid __read_mostly = 1;
175

176 177
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178 179

/*
180
 * max perf event sample rate
181
 */
182 183 184 185 186 187 188 189 190
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
191 192
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193 194 195 196 197 198

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
199
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
200
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201
}
P
Peter Zijlstra 已提交
202

203 204
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
205 206 207 208
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
209
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
210 211 212 213 214

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
233 234 235

	return 0;
}
236

237 238 239 240 241 242 243
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
244
static DEFINE_PER_CPU(u64, running_sample_length);
245

246
static void perf_duration_warn(struct irq_work *w)
247
{
248
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249
	u64 avg_local_sample_len;
250
	u64 local_samples_len;
251

252
	local_samples_len = __this_cpu_read(running_sample_length);
253 254 255 256 257
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
258
			avg_local_sample_len, allowed_ns >> 1,
259 260 261 262 263 264 265
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
266
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 268
	u64 avg_local_sample_len;
	u64 local_samples_len;
269

P
Peter Zijlstra 已提交
270
	if (allowed_ns == 0)
271 272 273
		return;

	/* decay the counter by 1 average sample */
274
	local_samples_len = __this_cpu_read(running_sample_length);
275 276
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
277
	__this_cpu_write(running_sample_length, local_samples_len);
278 279 280 281 282 283 284 285

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
286
	if (avg_local_sample_len <= allowed_ns)
287 288 289 290 291 292 293 294 295 296
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
297

298 299 300 301 302 303
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
304 305
}

306
static atomic64_t perf_event_id;
307

308 309 310 311
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
312 313 314 315 316
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
317

318
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
319

320
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
321
{
322
	return "pmu";
T
Thomas Gleixner 已提交
323 324
}

325 326 327 328 329
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
330 331 332 333 334 335
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
352 353
#ifdef CONFIG_CGROUP_PERF

354 355 356 357 358 359 360 361 362 363 364
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
365
	struct perf_cgroup_info	__percpu *info;
366 367
};

368 369 370 371 372
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
373 374 375
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
376
	return container_of(task_css(task, perf_event_cgrp_id),
377
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
378 379 380 381 382 383 384 385
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
402 403 404 405
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
406
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
445 446
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
447
	/*
448 449
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
450
	 */
451
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
452 453
		return;

454 455 456 457 458 459
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
460 461 462
}

static inline void
463 464
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
465 466 467 468
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

469 470 471 472 473 474
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
475 476 477 478
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
479
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 513
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
514 515 516 517 518 519 520 521 522

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
523 524
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
525 526 527 528 529 530 531 532 533 534 535

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
536
				WARN_ON_ONCE(cpuctx->cgrp);
537 538 539 540
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
541 542 543 544
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
545 546
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
547 548 549 550 551 552 553 554
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

555 556
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
557
{
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
580 581
}

582 583
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
584
{
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
603 604 605 606 607 608 609 610
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
611 612
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
613

614
	if (!f.file)
S
Stephane Eranian 已提交
615 616
		return -EBADF;

617 618
	css = css_tryget_online_from_dir(f.file->f_dentry,
					 &perf_event_cgrp_subsys);
619 620 621 622
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
636
out:
637
	fdput(f);
S
Stephane Eranian 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

711 712
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
713 714 715
{
}

716 717
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
718 719 720 721 722 723 724 725 726 727 728
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
729 730
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
824
	int timer;
825 826 827 828 829

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

830 831 832 833 834 835 836 837 838
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
861
void perf_pmu_disable(struct pmu *pmu)
862
{
P
Peter Zijlstra 已提交
863 864 865
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
866 867
}

P
Peter Zijlstra 已提交
868
void perf_pmu_enable(struct pmu *pmu)
869
{
P
Peter Zijlstra 已提交
870 871 872
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
873 874
}

875 876 877 878 879 880 881
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
882
static void perf_pmu_rotate_start(struct pmu *pmu)
883
{
P
Peter Zijlstra 已提交
884
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
885
	struct list_head *head = this_cpu_ptr(&rotation_list);
886

887
	WARN_ON(!irqs_disabled());
888

889
	if (list_empty(&cpuctx->rotation_list))
890
		list_add(&cpuctx->rotation_list, head);
891 892
}

893
static void get_ctx(struct perf_event_context *ctx)
894
{
895
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
896 897
}

898
static void put_ctx(struct perf_event_context *ctx)
899
{
900 901 902
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
903 904
		if (ctx->task)
			put_task_struct(ctx->task);
905
		kfree_rcu(ctx, rcu_head);
906
	}
907 908
}

909 910 911 912 913 914 915
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
916
{
917 918 919 920 921
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
922
		ctx->parent_ctx = NULL;
923
	ctx->generation++;
924 925

	return parent_ctx;
926 927
}

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

950
/*
951
 * If we inherit events we want to return the parent event id
952 953
 * to userspace.
 */
954
static u64 primary_event_id(struct perf_event *event)
955
{
956
	u64 id = event->id;
957

958 959
	if (event->parent)
		id = event->parent->id;
960 961 962 963

	return id;
}

964
/*
965
 * Get the perf_event_context for a task and lock it.
966 967 968
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
969
static struct perf_event_context *
P
Peter Zijlstra 已提交
970
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
971
{
972
	struct perf_event_context *ctx;
973

P
Peter Zijlstra 已提交
974
retry:
975 976 977 978 979 980 981 982 983 984 985
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
986
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
987 988 989 990
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
991
		 * perf_event_task_sched_out, though the
992 993 994 995 996 997
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
998
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
999
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1000
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1001 1002
			rcu_read_unlock();
			preempt_enable();
1003 1004
			goto retry;
		}
1005 1006

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1007
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1008 1009
			ctx = NULL;
		}
1010 1011
	}
	rcu_read_unlock();
1012
	preempt_enable();
1013 1014 1015 1016 1017 1018 1019 1020
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1021 1022
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1023
{
1024
	struct perf_event_context *ctx;
1025 1026
	unsigned long flags;

P
Peter Zijlstra 已提交
1027
	ctx = perf_lock_task_context(task, ctxn, &flags);
1028 1029
	if (ctx) {
		++ctx->pin_count;
1030
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1031 1032 1033 1034
	}
	return ctx;
}

1035
static void perf_unpin_context(struct perf_event_context *ctx)
1036 1037 1038
{
	unsigned long flags;

1039
	raw_spin_lock_irqsave(&ctx->lock, flags);
1040
	--ctx->pin_count;
1041
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1042 1043
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1055 1056 1057
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1058 1059 1060 1061

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1062 1063 1064
	return ctx ? ctx->time : 0;
}

1065 1066
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1067
 * The caller of this function needs to hold the ctx->lock.
1068 1069 1070 1071 1072 1073 1074 1075 1076
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1088
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1089 1090
	else if (ctx->is_active)
		run_end = ctx->time;
1091 1092 1093 1094
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1095 1096 1097 1098

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1099
		run_end = perf_event_time(event);
1100 1101

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1102

1103 1104
}

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1117 1118 1119 1120 1121 1122 1123 1124 1125
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1126
/*
1127
 * Add a event from the lists for its context.
1128 1129
 * Must be called with ctx->mutex and ctx->lock held.
 */
1130
static void
1131
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1132
{
1133 1134
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1135 1136

	/*
1137 1138 1139
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1140
	 */
1141
	if (event->group_leader == event) {
1142 1143
		struct list_head *list;

1144 1145 1146
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1147 1148
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1149
	}
P
Peter Zijlstra 已提交
1150

1151
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1152 1153
		ctx->nr_cgroups++;

1154 1155 1156
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1157
	list_add_rcu(&event->event_entry, &ctx->event_list);
1158
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1159
		perf_pmu_rotate_start(ctx->pmu);
1160 1161
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1162
		ctx->nr_stat++;
1163 1164

	ctx->generation++;
1165 1166
}

J
Jiri Olsa 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1215 1216 1217 1218 1219 1220
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1221 1222 1223
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1224 1225 1226
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1227 1228 1229
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1230 1231 1232
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1233 1234 1235 1236 1237 1238 1239 1240 1241
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1242 1243 1244 1245 1246 1247
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1248 1249 1250
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1251 1252 1253 1254 1255 1256 1257 1258 1259
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1260
	event->id_header_size = size;
1261 1262
}

1263 1264
static void perf_group_attach(struct perf_event *event)
{
1265
	struct perf_event *group_leader = event->group_leader, *pos;
1266

P
Peter Zijlstra 已提交
1267 1268 1269 1270 1271 1272
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1284 1285 1286 1287 1288

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1289 1290
}

1291
/*
1292
 * Remove a event from the lists for its context.
1293
 * Must be called with ctx->mutex and ctx->lock held.
1294
 */
1295
static void
1296
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1297
{
1298
	struct perf_cpu_context *cpuctx;
1299 1300 1301 1302
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1303
		return;
1304 1305 1306

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1307
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1308
		ctx->nr_cgroups--;
1309 1310 1311 1312 1313 1314 1315 1316 1317
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1318

1319 1320 1321
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1322 1323
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1324
		ctx->nr_stat--;
1325

1326
	list_del_rcu(&event->event_entry);
1327

1328 1329
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1330

1331
	update_group_times(event);
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1342 1343

	ctx->generation++;
1344 1345
}

1346
static void perf_group_detach(struct perf_event *event)
1347 1348
{
	struct perf_event *sibling, *tmp;
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1365
		goto out;
1366 1367 1368 1369
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1370

1371
	/*
1372 1373
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1374
	 * to whatever list we are on.
1375
	 */
1376
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1377 1378
		if (list)
			list_move_tail(&sibling->group_entry, list);
1379
		sibling->group_leader = sibling;
1380 1381 1382

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1383
	}
1384 1385 1386 1387 1388 1389

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1390 1391
}

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1431 1432 1433
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1434 1435
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1436 1437
}

1438 1439
static void
event_sched_out(struct perf_event *event,
1440
		  struct perf_cpu_context *cpuctx,
1441
		  struct perf_event_context *ctx)
1442
{
1443
	u64 tstamp = perf_event_time(event);
1444 1445 1446 1447 1448 1449 1450 1451 1452
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1453
		delta = tstamp - event->tstamp_stopped;
1454
		event->tstamp_running += delta;
1455
		event->tstamp_stopped = tstamp;
1456 1457
	}

1458
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1459
		return;
1460

1461 1462
	perf_pmu_disable(event->pmu);

1463 1464 1465 1466
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1467
	}
1468
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1469
	event->pmu->del(event, 0);
1470
	event->oncpu = -1;
1471

1472
	if (!is_software_event(event))
1473 1474
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1475 1476
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1477
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1478
		cpuctx->exclusive = 0;
1479

1480 1481 1482
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1483
	perf_pmu_enable(event->pmu);
1484 1485
}

1486
static void
1487
group_sched_out(struct perf_event *group_event,
1488
		struct perf_cpu_context *cpuctx,
1489
		struct perf_event_context *ctx)
1490
{
1491
	struct perf_event *event;
1492
	int state = group_event->state;
1493

1494
	event_sched_out(group_event, cpuctx, ctx);
1495 1496 1497 1498

	/*
	 * Schedule out siblings (if any):
	 */
1499 1500
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1501

1502
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1503 1504 1505
		cpuctx->exclusive = 0;
}

1506 1507 1508 1509 1510
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1511
/*
1512
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1513
 *
1514
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1515 1516
 * remove it from the context list.
 */
1517
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1518
{
1519 1520
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1521
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1522
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1523

1524
	raw_spin_lock(&ctx->lock);
1525
	event_sched_out(event, cpuctx, ctx);
1526 1527
	if (re->detach_group)
		perf_group_detach(event);
1528
	list_del_event(event, ctx);
1529 1530 1531 1532
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1533
	raw_spin_unlock(&ctx->lock);
1534 1535

	return 0;
T
Thomas Gleixner 已提交
1536 1537 1538 1539
}


/*
1540
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1541
 *
1542
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1543
 * call when the task is on a CPU.
1544
 *
1545 1546
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1547 1548
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1549
 * When called from perf_event_exit_task, it's OK because the
1550
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1551
 */
1552
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1553
{
1554
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1555
	struct task_struct *task = ctx->task;
1556 1557 1558 1559
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1560

1561 1562
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1563 1564
	if (!task) {
		/*
1565
		 * Per cpu events are removed via an smp call and
1566
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1567
		 */
1568
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1569 1570 1571 1572
		return;
	}

retry:
1573
	if (!task_function_call(task, __perf_remove_from_context, &re))
1574
		return;
T
Thomas Gleixner 已提交
1575

1576
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1577
	/*
1578 1579
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1580
	 */
1581
	if (ctx->is_active) {
1582
		raw_spin_unlock_irq(&ctx->lock);
1583 1584 1585 1586 1587
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1588 1589 1590 1591
		goto retry;
	}

	/*
1592 1593
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1594
	 */
1595 1596
	if (detach_group)
		perf_group_detach(event);
1597
	list_del_event(event, ctx);
1598
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1599 1600
}

1601
/*
1602
 * Cross CPU call to disable a performance event
1603
 */
1604
int __perf_event_disable(void *info)
1605
{
1606 1607
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1608
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1609 1610

	/*
1611 1612
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1613 1614 1615
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1616
	 */
1617
	if (ctx->task && cpuctx->task_ctx != ctx)
1618
		return -EINVAL;
1619

1620
	raw_spin_lock(&ctx->lock);
1621 1622

	/*
1623
	 * If the event is on, turn it off.
1624 1625
	 * If it is in error state, leave it in error state.
	 */
1626
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1627
		update_context_time(ctx);
S
Stephane Eranian 已提交
1628
		update_cgrp_time_from_event(event);
1629 1630 1631
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1632
		else
1633 1634
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1635 1636
	}

1637
	raw_spin_unlock(&ctx->lock);
1638 1639

	return 0;
1640 1641 1642
}

/*
1643
 * Disable a event.
1644
 *
1645 1646
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1647
 * remains valid.  This condition is satisifed when called through
1648 1649 1650 1651
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1652
 * is the current context on this CPU and preemption is disabled,
1653
 * hence we can't get into perf_event_task_sched_out for this context.
1654
 */
1655
void perf_event_disable(struct perf_event *event)
1656
{
1657
	struct perf_event_context *ctx = event->ctx;
1658 1659 1660 1661
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1662
		 * Disable the event on the cpu that it's on
1663
		 */
1664
		cpu_function_call(event->cpu, __perf_event_disable, event);
1665 1666 1667
		return;
	}

P
Peter Zijlstra 已提交
1668
retry:
1669 1670
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1671

1672
	raw_spin_lock_irq(&ctx->lock);
1673
	/*
1674
	 * If the event is still active, we need to retry the cross-call.
1675
	 */
1676
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1677
		raw_spin_unlock_irq(&ctx->lock);
1678 1679 1680 1681 1682
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1683 1684 1685 1686 1687 1688 1689
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1690 1691 1692
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1693
	}
1694
	raw_spin_unlock_irq(&ctx->lock);
1695
}
1696
EXPORT_SYMBOL_GPL(perf_event_disable);
1697

S
Stephane Eranian 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1733 1734 1735 1736
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1737
static int
1738
event_sched_in(struct perf_event *event,
1739
		 struct perf_cpu_context *cpuctx,
1740
		 struct perf_event_context *ctx)
1741
{
1742
	u64 tstamp = perf_event_time(event);
1743
	int ret = 0;
1744

1745 1746
	lockdep_assert_held(&ctx->lock);

1747
	if (event->state <= PERF_EVENT_STATE_OFF)
1748 1749
		return 0;

1750
	event->state = PERF_EVENT_STATE_ACTIVE;
1751
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1763 1764 1765 1766 1767
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1768 1769
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1770
	if (event->pmu->add(event, PERF_EF_START)) {
1771 1772
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1773 1774
		ret = -EAGAIN;
		goto out;
1775 1776
	}

1777
	event->tstamp_running += tstamp - event->tstamp_stopped;
1778

S
Stephane Eranian 已提交
1779
	perf_set_shadow_time(event, ctx, tstamp);
1780

1781
	if (!is_software_event(event))
1782
		cpuctx->active_oncpu++;
1783
	ctx->nr_active++;
1784 1785
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1786

1787
	if (event->attr.exclusive)
1788 1789
		cpuctx->exclusive = 1;

1790 1791 1792
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1793 1794 1795 1796
out:
	perf_pmu_enable(event->pmu);

	return ret;
1797 1798
}

1799
static int
1800
group_sched_in(struct perf_event *group_event,
1801
	       struct perf_cpu_context *cpuctx,
1802
	       struct perf_event_context *ctx)
1803
{
1804
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1805
	struct pmu *pmu = ctx->pmu;
1806 1807
	u64 now = ctx->time;
	bool simulate = false;
1808

1809
	if (group_event->state == PERF_EVENT_STATE_OFF)
1810 1811
		return 0;

P
Peter Zijlstra 已提交
1812
	pmu->start_txn(pmu);
1813

1814
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1815
		pmu->cancel_txn(pmu);
1816
		perf_cpu_hrtimer_restart(cpuctx);
1817
		return -EAGAIN;
1818
	}
1819 1820 1821 1822

	/*
	 * Schedule in siblings as one group (if any):
	 */
1823
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1824
		if (event_sched_in(event, cpuctx, ctx)) {
1825
			partial_group = event;
1826 1827 1828 1829
			goto group_error;
		}
	}

1830
	if (!pmu->commit_txn(pmu))
1831
		return 0;
1832

1833 1834 1835 1836
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1847
	 */
1848 1849
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1850 1851 1852 1853 1854 1855 1856 1857
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1858
	}
1859
	event_sched_out(group_event, cpuctx, ctx);
1860

P
Peter Zijlstra 已提交
1861
	pmu->cancel_txn(pmu);
1862

1863 1864
	perf_cpu_hrtimer_restart(cpuctx);

1865 1866 1867
	return -EAGAIN;
}

1868
/*
1869
 * Work out whether we can put this event group on the CPU now.
1870
 */
1871
static int group_can_go_on(struct perf_event *event,
1872 1873 1874 1875
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1876
	 * Groups consisting entirely of software events can always go on.
1877
	 */
1878
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1879 1880 1881
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1882
	 * events can go on.
1883 1884 1885 1886 1887
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1888
	 * events on the CPU, it can't go on.
1889
	 */
1890
	if (event->attr.exclusive && cpuctx->active_oncpu)
1891 1892 1893 1894 1895 1896 1897 1898
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1899 1900
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1901
{
1902 1903
	u64 tstamp = perf_event_time(event);

1904
	list_add_event(event, ctx);
1905
	perf_group_attach(event);
1906 1907 1908
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1909 1910
}

1911 1912 1913 1914 1915 1916
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1917

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1930
/*
1931
 * Cross CPU call to install and enable a performance event
1932 1933
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1934
 */
1935
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1936
{
1937 1938
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1939
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1940 1941 1942
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1943
	perf_ctx_lock(cpuctx, task_ctx);
1944
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1945 1946

	/*
1947
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1948
	 */
1949
	if (task_ctx)
1950
		task_ctx_sched_out(task_ctx);
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1965 1966
		task = task_ctx->task;
	}
1967

1968
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1969

1970
	update_context_time(ctx);
S
Stephane Eranian 已提交
1971 1972 1973 1974 1975 1976
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1977

1978
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1979

1980
	/*
1981
	 * Schedule everything back in
1982
	 */
1983
	perf_event_sched_in(cpuctx, task_ctx, task);
1984 1985 1986

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1987 1988

	return 0;
T
Thomas Gleixner 已提交
1989 1990 1991
}

/*
1992
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1993
 *
1994 1995
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1996
 *
1997
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1998 1999 2000 2001
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2002 2003
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2004 2005 2006 2007
			int cpu)
{
	struct task_struct *task = ctx->task;

2008 2009
	lockdep_assert_held(&ctx->mutex);

2010
	event->ctx = ctx;
2011 2012
	if (event->cpu != -1)
		event->cpu = cpu;
2013

T
Thomas Gleixner 已提交
2014 2015
	if (!task) {
		/*
2016
		 * Per cpu events are installed via an smp call and
2017
		 * the install is always successful.
T
Thomas Gleixner 已提交
2018
		 */
2019
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2020 2021 2022 2023
		return;
	}

retry:
2024 2025
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2026

2027
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2028
	/*
2029 2030
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2031
	 */
2032
	if (ctx->is_active) {
2033
		raw_spin_unlock_irq(&ctx->lock);
2034 2035 2036 2037 2038
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2039 2040 2041 2042
		goto retry;
	}

	/*
2043 2044
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2045
	 */
2046
	add_event_to_ctx(event, ctx);
2047
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2048 2049
}

2050
/*
2051
 * Put a event into inactive state and update time fields.
2052 2053 2054 2055 2056 2057
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2058
static void __perf_event_mark_enabled(struct perf_event *event)
2059
{
2060
	struct perf_event *sub;
2061
	u64 tstamp = perf_event_time(event);
2062

2063
	event->state = PERF_EVENT_STATE_INACTIVE;
2064
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2065
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2066 2067
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2068
	}
2069 2070
}

2071
/*
2072
 * Cross CPU call to enable a performance event
2073
 */
2074
static int __perf_event_enable(void *info)
2075
{
2076 2077 2078
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2079
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2080
	int err;
2081

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2092
		return -EINVAL;
2093

2094
	raw_spin_lock(&ctx->lock);
2095
	update_context_time(ctx);
2096

2097
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2098
		goto unlock;
S
Stephane Eranian 已提交
2099 2100 2101 2102

	/*
	 * set current task's cgroup time reference point
	 */
2103
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2104

2105
	__perf_event_mark_enabled(event);
2106

S
Stephane Eranian 已提交
2107 2108 2109
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2110
		goto unlock;
S
Stephane Eranian 已提交
2111
	}
2112

2113
	/*
2114
	 * If the event is in a group and isn't the group leader,
2115
	 * then don't put it on unless the group is on.
2116
	 */
2117
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2118
		goto unlock;
2119

2120
	if (!group_can_go_on(event, cpuctx, 1)) {
2121
		err = -EEXIST;
2122
	} else {
2123
		if (event == leader)
2124
			err = group_sched_in(event, cpuctx, ctx);
2125
		else
2126
			err = event_sched_in(event, cpuctx, ctx);
2127
	}
2128 2129 2130

	if (err) {
		/*
2131
		 * If this event can't go on and it's part of a
2132 2133
		 * group, then the whole group has to come off.
		 */
2134
		if (leader != event) {
2135
			group_sched_out(leader, cpuctx, ctx);
2136 2137
			perf_cpu_hrtimer_restart(cpuctx);
		}
2138
		if (leader->attr.pinned) {
2139
			update_group_times(leader);
2140
			leader->state = PERF_EVENT_STATE_ERROR;
2141
		}
2142 2143
	}

P
Peter Zijlstra 已提交
2144
unlock:
2145
	raw_spin_unlock(&ctx->lock);
2146 2147

	return 0;
2148 2149 2150
}

/*
2151
 * Enable a event.
2152
 *
2153 2154
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2155
 * remains valid.  This condition is satisfied when called through
2156 2157
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2158
 */
2159
void perf_event_enable(struct perf_event *event)
2160
{
2161
	struct perf_event_context *ctx = event->ctx;
2162 2163 2164 2165
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2166
		 * Enable the event on the cpu that it's on
2167
		 */
2168
		cpu_function_call(event->cpu, __perf_event_enable, event);
2169 2170 2171
		return;
	}

2172
	raw_spin_lock_irq(&ctx->lock);
2173
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2174 2175 2176
		goto out;

	/*
2177 2178
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2179 2180 2181 2182
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2183 2184
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2185

P
Peter Zijlstra 已提交
2186
retry:
2187
	if (!ctx->is_active) {
2188
		__perf_event_mark_enabled(event);
2189 2190 2191
		goto out;
	}

2192
	raw_spin_unlock_irq(&ctx->lock);
2193 2194 2195

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2196

2197
	raw_spin_lock_irq(&ctx->lock);
2198 2199

	/*
2200
	 * If the context is active and the event is still off,
2201 2202
	 * we need to retry the cross-call.
	 */
2203 2204 2205 2206 2207 2208
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2209
		goto retry;
2210
	}
2211

P
Peter Zijlstra 已提交
2212
out:
2213
	raw_spin_unlock_irq(&ctx->lock);
2214
}
2215
EXPORT_SYMBOL_GPL(perf_event_enable);
2216

2217
int perf_event_refresh(struct perf_event *event, int refresh)
2218
{
2219
	/*
2220
	 * not supported on inherited events
2221
	 */
2222
	if (event->attr.inherit || !is_sampling_event(event))
2223 2224
		return -EINVAL;

2225 2226
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2227 2228

	return 0;
2229
}
2230
EXPORT_SYMBOL_GPL(perf_event_refresh);
2231

2232 2233 2234
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2235
{
2236
	struct perf_event *event;
2237
	int is_active = ctx->is_active;
2238

2239
	ctx->is_active &= ~event_type;
2240
	if (likely(!ctx->nr_events))
2241 2242
		return;

2243
	update_context_time(ctx);
S
Stephane Eranian 已提交
2244
	update_cgrp_time_from_cpuctx(cpuctx);
2245
	if (!ctx->nr_active)
2246
		return;
2247

P
Peter Zijlstra 已提交
2248
	perf_pmu_disable(ctx->pmu);
2249
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2250 2251
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2252
	}
2253

2254
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2255
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2256
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2257
	}
P
Peter Zijlstra 已提交
2258
	perf_pmu_enable(ctx->pmu);
2259 2260
}

2261
/*
2262 2263 2264 2265 2266 2267
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2268
 */
2269 2270
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2271
{
2272 2273 2274
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2297 2298
}

2299 2300
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2301 2302 2303
{
	u64 value;

2304
	if (!event->attr.inherit_stat)
2305 2306 2307
		return;

	/*
2308
	 * Update the event value, we cannot use perf_event_read()
2309 2310
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2311
	 * we know the event must be on the current CPU, therefore we
2312 2313
	 * don't need to use it.
	 */
2314 2315
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2316 2317
		event->pmu->read(event);
		/* fall-through */
2318

2319 2320
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2321 2322 2323 2324 2325 2326 2327
		break;

	default:
		break;
	}

	/*
2328
	 * In order to keep per-task stats reliable we need to flip the event
2329 2330
	 * values when we flip the contexts.
	 */
2331 2332 2333
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2334

2335 2336
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2337

2338
	/*
2339
	 * Since we swizzled the values, update the user visible data too.
2340
	 */
2341 2342
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2343 2344
}

2345 2346
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2347
{
2348
	struct perf_event *event, *next_event;
2349 2350 2351 2352

	if (!ctx->nr_stat)
		return;

2353 2354
	update_context_time(ctx);

2355 2356
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2357

2358 2359
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2360

2361 2362
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2363

2364
		__perf_event_sync_stat(event, next_event);
2365

2366 2367
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2368 2369 2370
	}
}

2371 2372
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2373
{
P
Peter Zijlstra 已提交
2374
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2375
	struct perf_event_context *next_ctx;
2376
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2377
	struct perf_cpu_context *cpuctx;
2378
	int do_switch = 1;
T
Thomas Gleixner 已提交
2379

P
Peter Zijlstra 已提交
2380 2381
	if (likely(!ctx))
		return;
2382

P
Peter Zijlstra 已提交
2383 2384
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2385 2386
		return;

2387
	rcu_read_lock();
P
Peter Zijlstra 已提交
2388
	next_ctx = next->perf_event_ctxp[ctxn];
2389 2390 2391 2392 2393 2394 2395
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2396
	if (!parent && !next_parent)
2397 2398 2399
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2400 2401 2402 2403 2404 2405 2406 2407 2408
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2409 2410
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2411
		if (context_equiv(ctx, next_ctx)) {
2412 2413
			/*
			 * XXX do we need a memory barrier of sorts
2414
			 * wrt to rcu_dereference() of perf_event_ctxp
2415
			 */
P
Peter Zijlstra 已提交
2416 2417
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2418 2419 2420
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2421

2422
			perf_event_sync_stat(ctx, next_ctx);
2423
		}
2424 2425
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2426
	}
2427
unlock:
2428
	rcu_read_unlock();
2429

2430
	if (do_switch) {
2431
		raw_spin_lock(&ctx->lock);
2432
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2433
		cpuctx->task_ctx = NULL;
2434
		raw_spin_unlock(&ctx->lock);
2435
	}
T
Thomas Gleixner 已提交
2436 2437
}

P
Peter Zijlstra 已提交
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2452 2453
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2454 2455 2456 2457 2458
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2459 2460 2461 2462 2463 2464

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2465
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2466
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2467 2468
}

2469
static void task_ctx_sched_out(struct perf_event_context *ctx)
2470
{
P
Peter Zijlstra 已提交
2471
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2472

2473 2474
	if (!cpuctx->task_ctx)
		return;
2475 2476 2477 2478

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2479
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2480 2481 2482
	cpuctx->task_ctx = NULL;
}

2483 2484 2485 2486 2487 2488 2489
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2490 2491
}

2492
static void
2493
ctx_pinned_sched_in(struct perf_event_context *ctx,
2494
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2495
{
2496
	struct perf_event *event;
T
Thomas Gleixner 已提交
2497

2498 2499
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2500
			continue;
2501
		if (!event_filter_match(event))
2502 2503
			continue;

S
Stephane Eranian 已提交
2504 2505 2506 2507
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2508
		if (group_can_go_on(event, cpuctx, 1))
2509
			group_sched_in(event, cpuctx, ctx);
2510 2511 2512 2513 2514

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2515 2516 2517
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2518
		}
2519
	}
2520 2521 2522 2523
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2524
		      struct perf_cpu_context *cpuctx)
2525 2526 2527
{
	struct perf_event *event;
	int can_add_hw = 1;
2528

2529 2530 2531
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2532
			continue;
2533 2534
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2535
		 * of events:
2536
		 */
2537
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2538 2539
			continue;

S
Stephane Eranian 已提交
2540 2541 2542 2543
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2544
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2545
			if (group_sched_in(event, cpuctx, ctx))
2546
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2547
		}
T
Thomas Gleixner 已提交
2548
	}
2549 2550 2551 2552 2553
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2554 2555
	     enum event_type_t event_type,
	     struct task_struct *task)
2556
{
S
Stephane Eranian 已提交
2557
	u64 now;
2558
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2559

2560
	ctx->is_active |= event_type;
2561
	if (likely(!ctx->nr_events))
2562
		return;
2563

S
Stephane Eranian 已提交
2564 2565
	now = perf_clock();
	ctx->timestamp = now;
2566
	perf_cgroup_set_timestamp(task, ctx);
2567 2568 2569 2570
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2571
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2572
		ctx_pinned_sched_in(ctx, cpuctx);
2573 2574

	/* Then walk through the lower prio flexible groups */
2575
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2576
		ctx_flexible_sched_in(ctx, cpuctx);
2577 2578
}

2579
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2580 2581
			     enum event_type_t event_type,
			     struct task_struct *task)
2582 2583 2584
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2585
	ctx_sched_in(ctx, cpuctx, event_type, task);
2586 2587
}

S
Stephane Eranian 已提交
2588 2589
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2590
{
P
Peter Zijlstra 已提交
2591
	struct perf_cpu_context *cpuctx;
2592

P
Peter Zijlstra 已提交
2593
	cpuctx = __get_cpu_context(ctx);
2594 2595 2596
	if (cpuctx->task_ctx == ctx)
		return;

2597
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2598
	perf_pmu_disable(ctx->pmu);
2599 2600 2601 2602 2603 2604 2605
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2606 2607
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2608

2609 2610
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2611 2612 2613
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2614 2615 2616 2617
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2618
	perf_pmu_rotate_start(ctx->pmu);
2619 2620
}

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2690 2691
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2692 2693 2694 2695 2696 2697 2698 2699 2700
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2701
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2702
	}
S
Stephane Eranian 已提交
2703 2704 2705 2706 2707
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2708
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2709
		perf_cgroup_sched_in(prev, task);
2710 2711

	/* check for system-wide branch_stack events */
2712
	if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
2713
		perf_branch_stack_sched_in(prev, task);
2714 2715
}

2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2743
#define REDUCE_FLS(a, b)		\
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2783 2784 2785
	if (!divisor)
		return dividend;

2786 2787 2788
	return div64_u64(dividend, divisor);
}

2789 2790 2791
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2792
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2793
{
2794
	struct hw_perf_event *hwc = &event->hw;
2795
	s64 period, sample_period;
2796 2797
	s64 delta;

2798
	period = perf_calculate_period(event, nsec, count);
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2809

2810
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2811 2812 2813
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2814
		local64_set(&hwc->period_left, 0);
2815 2816 2817

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2818
	}
2819 2820
}

2821 2822 2823 2824 2825 2826 2827
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2828
{
2829 2830
	struct perf_event *event;
	struct hw_perf_event *hwc;
2831
	u64 now, period = TICK_NSEC;
2832
	s64 delta;
2833

2834 2835 2836 2837 2838 2839
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2840 2841
		return;

2842
	raw_spin_lock(&ctx->lock);
2843
	perf_pmu_disable(ctx->pmu);
2844

2845
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2846
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2847 2848
			continue;

2849
		if (!event_filter_match(event))
2850 2851
			continue;

2852 2853
		perf_pmu_disable(event->pmu);

2854
		hwc = &event->hw;
2855

2856
		if (hwc->interrupts == MAX_INTERRUPTS) {
2857
			hwc->interrupts = 0;
2858
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2859
			event->pmu->start(event, 0);
2860 2861
		}

2862
		if (!event->attr.freq || !event->attr.sample_freq)
2863
			goto next;
2864

2865 2866 2867 2868 2869
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2870
		now = local64_read(&event->count);
2871 2872
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2873

2874 2875 2876
		/*
		 * restart the event
		 * reload only if value has changed
2877 2878 2879
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2880
		 */
2881
		if (delta > 0)
2882
			perf_adjust_period(event, period, delta, false);
2883 2884

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2885 2886
	next:
		perf_pmu_enable(event->pmu);
2887
	}
2888

2889
	perf_pmu_enable(ctx->pmu);
2890
	raw_spin_unlock(&ctx->lock);
2891 2892
}

2893
/*
2894
 * Round-robin a context's events:
2895
 */
2896
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2897
{
2898 2899 2900 2901 2902 2903
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2904 2905
}

2906
/*
2907 2908 2909
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2910
 */
2911
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2912
{
P
Peter Zijlstra 已提交
2913
	struct perf_event_context *ctx = NULL;
2914
	int rotate = 0, remove = 1;
2915

2916
	if (cpuctx->ctx.nr_events) {
2917
		remove = 0;
2918 2919 2920
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2921

P
Peter Zijlstra 已提交
2922
	ctx = cpuctx->task_ctx;
2923
	if (ctx && ctx->nr_events) {
2924
		remove = 0;
2925 2926 2927
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2928

2929
	if (!rotate)
2930 2931
		goto done;

2932
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2933
	perf_pmu_disable(cpuctx->ctx.pmu);
2934

2935 2936 2937
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2938

2939 2940 2941
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2942

2943
	perf_event_sched_in(cpuctx, ctx, current);
2944

2945 2946
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2947
done:
2948 2949
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2950 2951

	return rotate;
2952 2953
}

2954 2955 2956
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2957
	if (atomic_read(&nr_freq_events) ||
2958
	    __this_cpu_read(perf_throttled_count))
2959
		return false;
2960 2961
	else
		return true;
2962 2963 2964
}
#endif

2965 2966
void perf_event_task_tick(void)
{
2967
	struct list_head *head = this_cpu_ptr(&rotation_list);
2968
	struct perf_cpu_context *cpuctx, *tmp;
2969 2970
	struct perf_event_context *ctx;
	int throttled;
2971

2972 2973
	WARN_ON(!irqs_disabled());

2974 2975 2976
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2977
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2978 2979 2980 2981 2982 2983
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2984
	}
T
Thomas Gleixner 已提交
2985 2986
}

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2997
	__perf_event_mark_enabled(event);
2998 2999 3000 3001

	return 1;
}

3002
/*
3003
 * Enable all of a task's events that have been marked enable-on-exec.
3004 3005
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3006
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3007
{
3008
	struct perf_event_context *clone_ctx = NULL;
3009
	struct perf_event *event;
3010 3011
	unsigned long flags;
	int enabled = 0;
3012
	int ret;
3013 3014

	local_irq_save(flags);
3015
	if (!ctx || !ctx->nr_events)
3016 3017
		goto out;

3018 3019 3020 3021 3022 3023 3024
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3025
	perf_cgroup_sched_out(current, NULL);
3026

3027
	raw_spin_lock(&ctx->lock);
3028
	task_ctx_sched_out(ctx);
3029

3030
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3031 3032 3033
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3034 3035 3036
	}

	/*
3037
	 * Unclone this context if we enabled any event.
3038
	 */
3039
	if (enabled)
3040
		clone_ctx = unclone_ctx(ctx);
3041

3042
	raw_spin_unlock(&ctx->lock);
3043

3044 3045 3046
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3047
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3048
out:
3049
	local_irq_restore(flags);
3050 3051 3052

	if (clone_ctx)
		put_ctx(clone_ctx);
3053 3054
}

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3071
/*
3072
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3073
 */
3074
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3075
{
3076 3077
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3078
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3079

3080 3081 3082 3083
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3084 3085
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3086 3087 3088 3089
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3090
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3091
	if (ctx->is_active) {
3092
		update_context_time(ctx);
S
Stephane Eranian 已提交
3093 3094
		update_cgrp_time_from_event(event);
	}
3095
	update_event_times(event);
3096 3097
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3098
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3099 3100
}

P
Peter Zijlstra 已提交
3101 3102
static inline u64 perf_event_count(struct perf_event *event)
{
3103
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3104 3105
}

3106
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3107 3108
{
	/*
3109 3110
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3111
	 */
3112 3113 3114 3115
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3116 3117 3118
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3119
		raw_spin_lock_irqsave(&ctx->lock, flags);
3120 3121 3122 3123 3124
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3125
		if (ctx->is_active) {
3126
			update_context_time(ctx);
S
Stephane Eranian 已提交
3127 3128
			update_cgrp_time_from_event(event);
		}
3129
		update_event_times(event);
3130
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3131 3132
	}

P
Peter Zijlstra 已提交
3133
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3134 3135
}

3136
/*
3137
 * Initialize the perf_event context in a task_struct:
3138
 */
3139
static void __perf_event_init_context(struct perf_event_context *ctx)
3140
{
3141
	raw_spin_lock_init(&ctx->lock);
3142
	mutex_init(&ctx->mutex);
3143 3144
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3145 3146
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3147
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3163
	}
3164 3165 3166
	ctx->pmu = pmu;

	return ctx;
3167 3168
}

3169 3170 3171 3172 3173
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3174 3175

	rcu_read_lock();
3176
	if (!vpid)
T
Thomas Gleixner 已提交
3177 3178
		task = current;
	else
3179
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3180 3181 3182 3183 3184 3185 3186 3187
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3188 3189 3190 3191
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3192 3193 3194 3195 3196 3197 3198
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3199 3200 3201
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3202
static struct perf_event_context *
M
Matt Helsley 已提交
3203
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3204
{
3205
	struct perf_event_context *ctx, *clone_ctx = NULL;
3206
	struct perf_cpu_context *cpuctx;
3207
	unsigned long flags;
P
Peter Zijlstra 已提交
3208
	int ctxn, err;
T
Thomas Gleixner 已提交
3209

3210
	if (!task) {
3211
		/* Must be root to operate on a CPU event: */
3212
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3213 3214 3215
			return ERR_PTR(-EACCES);

		/*
3216
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3217 3218 3219
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3220
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3221 3222
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3223
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3224
		ctx = &cpuctx->ctx;
3225
		get_ctx(ctx);
3226
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3227 3228 3229 3230

		return ctx;
	}

P
Peter Zijlstra 已提交
3231 3232 3233 3234 3235
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3236
retry:
P
Peter Zijlstra 已提交
3237
	ctx = perf_lock_task_context(task, ctxn, &flags);
3238
	if (ctx) {
3239
		clone_ctx = unclone_ctx(ctx);
3240
		++ctx->pin_count;
3241
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3242 3243 3244

		if (clone_ctx)
			put_ctx(clone_ctx);
3245
	} else {
3246
		ctx = alloc_perf_context(pmu, task);
3247 3248 3249
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3250

3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3261
		else {
3262
			get_ctx(ctx);
3263
			++ctx->pin_count;
3264
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3265
		}
3266 3267 3268
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3269
			put_ctx(ctx);
3270 3271 3272 3273

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3274 3275 3276
		}
	}

T
Thomas Gleixner 已提交
3277
	return ctx;
3278

P
Peter Zijlstra 已提交
3279
errout:
3280
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3281 3282
}

L
Li Zefan 已提交
3283 3284
static void perf_event_free_filter(struct perf_event *event);

3285
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3286
{
3287
	struct perf_event *event;
P
Peter Zijlstra 已提交
3288

3289 3290 3291
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3292
	perf_event_free_filter(event);
3293
	kfree(event);
P
Peter Zijlstra 已提交
3294 3295
}

3296
static void ring_buffer_put(struct ring_buffer *rb);
3297 3298
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3299

3300
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3301
{
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3312

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3326 3327
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3328 3329 3330 3331 3332 3333 3334
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3335

3336 3337
static void __free_event(struct perf_event *event)
{
3338
	if (!event->parent) {
3339 3340
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3341
	}
3342

3343 3344 3345 3346 3347 3348
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3349 3350 3351
	if (event->pmu)
		module_put(event->pmu->module);

3352 3353
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3354 3355

static void _free_event(struct perf_event *event)
3356
{
3357
	irq_work_sync(&event->pending);
3358

3359
	unaccount_event(event);
3360

3361
	if (event->rb) {
3362 3363 3364 3365 3366 3367 3368
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3369
		ring_buffer_attach(event, NULL);
3370
		mutex_unlock(&event->mmap_mutex);
3371 3372
	}

S
Stephane Eranian 已提交
3373 3374 3375
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3376
	__free_event(event);
3377 3378
}

P
Peter Zijlstra 已提交
3379 3380 3381 3382 3383
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3384
{
P
Peter Zijlstra 已提交
3385 3386 3387 3388 3389 3390
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3391

P
Peter Zijlstra 已提交
3392
	_free_event(event);
T
Thomas Gleixner 已提交
3393 3394
}

3395
/*
3396
 * Remove user event from the owner task.
3397
 */
3398
static void perf_remove_from_owner(struct perf_event *event)
3399
{
P
Peter Zijlstra 已提交
3400
	struct task_struct *owner;
3401

P
Peter Zijlstra 已提交
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
}

/*
 * Called when the last reference to the file is gone.
 */
static void put_event(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3448

P
Peter Zijlstra 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
	WARN_ON_ONCE(ctx->parent_ctx);
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
	perf_remove_from_context(event, true);
	mutex_unlock(&ctx->mutex);

	_free_event(event);
3467 3468
}

P
Peter Zijlstra 已提交
3469 3470 3471 3472 3473 3474 3475
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3476 3477 3478 3479
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3480 3481
}

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3518
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3519
{
3520
	struct perf_event *child;
3521 3522
	u64 total = 0;

3523 3524 3525
	*enabled = 0;
	*running = 0;

3526
	mutex_lock(&event->child_mutex);
3527
	total += perf_event_read(event);
3528 3529 3530 3531 3532 3533
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3534
		total += perf_event_read(child);
3535 3536 3537
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3538
	mutex_unlock(&event->child_mutex);
3539 3540 3541

	return total;
}
3542
EXPORT_SYMBOL_GPL(perf_event_read_value);
3543

3544
static int perf_event_read_group(struct perf_event *event,
3545 3546
				   u64 read_format, char __user *buf)
{
3547
	struct perf_event *leader = event->group_leader, *sub;
3548 3549
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3550
	u64 values[5];
3551
	u64 count, enabled, running;
3552

3553
	mutex_lock(&ctx->mutex);
3554
	count = perf_event_read_value(leader, &enabled, &running);
3555 3556

	values[n++] = 1 + leader->nr_siblings;
3557 3558 3559 3560
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3561 3562 3563
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3564 3565 3566 3567

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3568
		goto unlock;
3569

3570
	ret = size;
3571

3572
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3573
		n = 0;
3574

3575
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3576 3577 3578 3579 3580
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3581
		if (copy_to_user(buf + ret, values, size)) {
3582 3583 3584
			ret = -EFAULT;
			goto unlock;
		}
3585 3586

		ret += size;
3587
	}
3588 3589
unlock:
	mutex_unlock(&ctx->mutex);
3590

3591
	return ret;
3592 3593
}

3594
static int perf_event_read_one(struct perf_event *event,
3595 3596
				 u64 read_format, char __user *buf)
{
3597
	u64 enabled, running;
3598 3599 3600
	u64 values[4];
	int n = 0;

3601 3602 3603 3604 3605
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3606
	if (read_format & PERF_FORMAT_ID)
3607
		values[n++] = primary_event_id(event);
3608 3609 3610 3611 3612 3613 3614

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3628
/*
3629
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3630 3631
 */
static ssize_t
3632
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3633
{
3634
	u64 read_format = event->attr.read_format;
3635
	int ret;
T
Thomas Gleixner 已提交
3636

3637
	/*
3638
	 * Return end-of-file for a read on a event that is in
3639 3640 3641
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3642
	if (event->state == PERF_EVENT_STATE_ERROR)
3643 3644
		return 0;

3645
	if (count < event->read_size)
3646 3647
		return -ENOSPC;

3648
	WARN_ON_ONCE(event->ctx->parent_ctx);
3649
	if (read_format & PERF_FORMAT_GROUP)
3650
		ret = perf_event_read_group(event, read_format, buf);
3651
	else
3652
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3653

3654
	return ret;
T
Thomas Gleixner 已提交
3655 3656 3657 3658 3659
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3660
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3661

3662
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3663 3664 3665 3666
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3667
	struct perf_event *event = file->private_data;
3668
	struct ring_buffer *rb;
3669
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3670

3671
	poll_wait(file, &event->waitq, wait);
3672

3673
	if (is_event_hup(event))
3674
		return events;
P
Peter Zijlstra 已提交
3675

3676
	/*
3677 3678
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3679 3680
	 */
	mutex_lock(&event->mmap_mutex);
3681 3682
	rb = event->rb;
	if (rb)
3683
		events = atomic_xchg(&rb->poll, 0);
3684
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
3685 3686 3687
	return events;
}

3688
static void perf_event_reset(struct perf_event *event)
3689
{
3690
	(void)perf_event_read(event);
3691
	local64_set(&event->count, 0);
3692
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3693 3694
}

3695
/*
3696 3697 3698 3699
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3700
 */
3701 3702
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3703
{
3704
	struct perf_event *child;
P
Peter Zijlstra 已提交
3705

3706 3707 3708 3709
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3710
		func(child);
3711
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3712 3713
}

3714 3715
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3716
{
3717 3718
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3719

3720 3721
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3722
	event = event->group_leader;
3723

3724 3725
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3726
		perf_event_for_each_child(sibling, func);
3727
	mutex_unlock(&ctx->mutex);
3728 3729
}

3730
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3731
{
3732
	struct perf_event_context *ctx = event->ctx;
3733
	int ret = 0, active;
3734 3735
	u64 value;

3736
	if (!is_sampling_event(event))
3737 3738
		return -EINVAL;

3739
	if (copy_from_user(&value, arg, sizeof(value)))
3740 3741 3742 3743 3744
		return -EFAULT;

	if (!value)
		return -EINVAL;

3745
	raw_spin_lock_irq(&ctx->lock);
3746 3747
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3748 3749 3750 3751
			ret = -EINVAL;
			goto unlock;
		}

3752
		event->attr.sample_freq = value;
3753
	} else {
3754 3755
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3756
	}
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3771
unlock:
3772
	raw_spin_unlock_irq(&ctx->lock);
3773 3774 3775 3776

	return ret;
}

3777 3778
static const struct file_operations perf_fops;

3779
static inline int perf_fget_light(int fd, struct fd *p)
3780
{
3781 3782 3783
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3784

3785 3786 3787
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3788
	}
3789 3790
	*p = f;
	return 0;
3791 3792 3793 3794
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3795
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3796

3797 3798
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3799 3800
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3801
	u32 flags = arg;
3802 3803

	switch (cmd) {
3804 3805
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3806
		break;
3807 3808
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3809
		break;
3810 3811
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3812
		break;
P
Peter Zijlstra 已提交
3813

3814 3815
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3816

3817 3818
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3819

3820 3821 3822 3823 3824 3825 3826 3827 3828
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3829
	case PERF_EVENT_IOC_SET_OUTPUT:
3830 3831 3832
	{
		int ret;
		if (arg != -1) {
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3843 3844 3845
		}
		return ret;
	}
3846

L
Li Zefan 已提交
3847 3848 3849
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3850
	default:
P
Peter Zijlstra 已提交
3851
		return -ENOTTY;
3852
	}
P
Peter Zijlstra 已提交
3853 3854

	if (flags & PERF_IOC_FLAG_GROUP)
3855
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3856
	else
3857
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3858 3859

	return 0;
3860 3861
}

P
Pawel Moll 已提交
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

3882
int perf_event_task_enable(void)
3883
{
3884
	struct perf_event *event;
3885

3886 3887 3888 3889
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3890 3891 3892 3893

	return 0;
}

3894
int perf_event_task_disable(void)
3895
{
3896
	struct perf_event *event;
3897

3898 3899 3900 3901
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3902 3903 3904 3905

	return 0;
}

3906
static int perf_event_index(struct perf_event *event)
3907
{
P
Peter Zijlstra 已提交
3908 3909 3910
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3911
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3912 3913
		return 0;

3914
	return event->pmu->event_idx(event);
3915 3916
}

3917
static void calc_timer_values(struct perf_event *event,
3918
				u64 *now,
3919 3920
				u64 *enabled,
				u64 *running)
3921
{
3922
	u64 ctx_time;
3923

3924 3925
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3926 3927 3928 3929
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

3950
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3951 3952 3953
{
}

3954 3955 3956 3957 3958
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3959
void perf_event_update_userpage(struct perf_event *event)
3960
{
3961
	struct perf_event_mmap_page *userpg;
3962
	struct ring_buffer *rb;
3963
	u64 enabled, running, now;
3964 3965

	rcu_read_lock();
3966 3967 3968 3969
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3970 3971 3972 3973 3974 3975 3976 3977 3978
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3979
	calc_timer_values(event, &now, &enabled, &running);
3980

3981
	userpg = rb->user_page;
3982 3983 3984 3985 3986
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3987
	++userpg->lock;
3988
	barrier();
3989
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3990
	userpg->offset = perf_event_count(event);
3991
	if (userpg->index)
3992
		userpg->offset -= local64_read(&event->hw.prev_count);
3993

3994
	userpg->time_enabled = enabled +
3995
			atomic64_read(&event->child_total_time_enabled);
3996

3997
	userpg->time_running = running +
3998
			atomic64_read(&event->child_total_time_running);
3999

4000
	arch_perf_update_userpage(userpg, now);
4001

4002
	barrier();
4003
	++userpg->lock;
4004
	preempt_enable();
4005
unlock:
4006
	rcu_read_unlock();
4007 4008
}

4009 4010 4011
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4012
	struct ring_buffer *rb;
4013 4014 4015 4016 4017 4018 4019 4020 4021
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4022 4023
	rb = rcu_dereference(event->rb);
	if (!rb)
4024 4025 4026 4027 4028
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4029
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4044 4045 4046
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4047
	struct ring_buffer *old_rb = NULL;
4048 4049
	unsigned long flags;

4050 4051 4052 4053 4054 4055
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4056

4057 4058 4059
		old_rb = event->rb;
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4060

4061 4062 4063 4064
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
	}
4065

4066 4067 4068 4069
	if (event->rcu_pending && rb) {
		cond_synchronize_rcu(event->rcu_batches);
		event->rcu_pending = 0;
	}
4070

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
	if (rb) {
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4088 4089 4090 4091 4092 4093 4094 4095
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4096 4097 4098 4099
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4100 4101 4102
	rcu_read_unlock();
}

4103
static void rb_free_rcu(struct rcu_head *rcu_head)
4104
{
4105
	struct ring_buffer *rb;
4106

4107 4108
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
4109 4110
}

4111
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4112
{
4113
	struct ring_buffer *rb;
4114

4115
	rcu_read_lock();
4116 4117 4118 4119
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4120 4121 4122
	}
	rcu_read_unlock();

4123
	return rb;
4124 4125
}

4126
static void ring_buffer_put(struct ring_buffer *rb)
4127
{
4128
	if (!atomic_dec_and_test(&rb->refcount))
4129
		return;
4130

4131
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4132

4133
	call_rcu(&rb->rcu_head, rb_free_rcu);
4134 4135 4136 4137
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4138
	struct perf_event *event = vma->vm_file->private_data;
4139

4140
	atomic_inc(&event->mmap_count);
4141
	atomic_inc(&event->rb->mmap_count);
4142 4143
}

4144 4145 4146 4147 4148 4149 4150 4151
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4152 4153
static void perf_mmap_close(struct vm_area_struct *vma)
{
4154
	struct perf_event *event = vma->vm_file->private_data;
4155

4156
	struct ring_buffer *rb = ring_buffer_get(event);
4157 4158 4159
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4160

4161 4162 4163
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4164
		goto out_put;
4165

4166
	ring_buffer_attach(event, NULL);
4167 4168 4169
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4170 4171
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4172

4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4189

4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4201 4202 4203
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4204
		mutex_unlock(&event->mmap_mutex);
4205
		put_event(event);
4206

4207 4208 4209 4210 4211
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4212
	}
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4228
out_put:
4229
	ring_buffer_put(rb); /* could be last */
4230 4231
}

4232
static const struct vm_operations_struct perf_mmap_vmops = {
4233 4234 4235 4236
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4237 4238 4239 4240
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4241
	struct perf_event *event = file->private_data;
4242
	unsigned long user_locked, user_lock_limit;
4243
	struct user_struct *user = current_user();
4244
	unsigned long locked, lock_limit;
4245
	struct ring_buffer *rb;
4246 4247
	unsigned long vma_size;
	unsigned long nr_pages;
4248
	long user_extra, extra;
4249
	int ret = 0, flags = 0;
4250

4251 4252 4253
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4254
	 * same rb.
4255 4256 4257 4258
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4259
	if (!(vma->vm_flags & VM_SHARED))
4260
		return -EINVAL;
4261 4262 4263 4264

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4265
	/*
4266
	 * If we have rb pages ensure they're a power-of-two number, so we
4267 4268 4269
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4270 4271
		return -EINVAL;

4272
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4273 4274
		return -EINVAL;

4275 4276
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4277

4278
	WARN_ON_ONCE(event->ctx->parent_ctx);
4279
again:
4280
	mutex_lock(&event->mmap_mutex);
4281
	if (event->rb) {
4282
		if (event->rb->nr_pages != nr_pages) {
4283
			ret = -EINVAL;
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4297 4298 4299
		goto unlock;
	}

4300
	user_extra = nr_pages + 1;
4301
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4302 4303 4304 4305 4306 4307

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4308
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4309

4310 4311 4312
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4313

4314
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4315
	lock_limit >>= PAGE_SHIFT;
4316
	locked = vma->vm_mm->pinned_vm + extra;
4317

4318 4319
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4320 4321 4322
		ret = -EPERM;
		goto unlock;
	}
4323

4324
	WARN_ON(event->rb);
4325

4326
	if (vma->vm_flags & VM_WRITE)
4327
		flags |= RING_BUFFER_WRITABLE;
4328

4329 4330 4331 4332
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4333
	if (!rb) {
4334
		ret = -ENOMEM;
4335
		goto unlock;
4336
	}
P
Peter Zijlstra 已提交
4337

4338
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4339 4340
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4341

4342
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4343 4344
	vma->vm_mm->pinned_vm += extra;

4345
	ring_buffer_attach(event, rb);
4346

4347
	perf_event_init_userpage(event);
4348 4349
	perf_event_update_userpage(event);

4350
unlock:
4351 4352
	if (!ret)
		atomic_inc(&event->mmap_count);
4353
	mutex_unlock(&event->mmap_mutex);
4354

4355 4356 4357 4358
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4359
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4360
	vma->vm_ops = &perf_mmap_vmops;
4361 4362

	return ret;
4363 4364
}

P
Peter Zijlstra 已提交
4365 4366
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4367
	struct inode *inode = file_inode(filp);
4368
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4369 4370 4371
	int retval;

	mutex_lock(&inode->i_mutex);
4372
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4373 4374 4375 4376 4377 4378 4379 4380
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4381
static const struct file_operations perf_fops = {
4382
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4383 4384 4385
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4386
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4387
	.compat_ioctl		= perf_compat_ioctl,
4388
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4389
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4390 4391
};

4392
/*
4393
 * Perf event wakeup
4394 4395 4396 4397 4398
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4399
void perf_event_wakeup(struct perf_event *event)
4400
{
4401
	ring_buffer_wakeup(event);
4402

4403 4404 4405
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4406
	}
4407 4408
}

4409
static void perf_pending_event(struct irq_work *entry)
4410
{
4411 4412
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4413

4414 4415 4416
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4417 4418
	}

4419 4420 4421
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4422 4423 4424
	}
}

4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4572 4573 4574
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4590
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4602 4603 4604
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4629 4630 4631

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4632 4633
}

4634 4635 4636
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4637 4638 4639 4640 4641
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4642
static void perf_output_read_one(struct perf_output_handle *handle,
4643 4644
				 struct perf_event *event,
				 u64 enabled, u64 running)
4645
{
4646
	u64 read_format = event->attr.read_format;
4647 4648 4649
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4650
	values[n++] = perf_event_count(event);
4651
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4652
		values[n++] = enabled +
4653
			atomic64_read(&event->child_total_time_enabled);
4654 4655
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4656
		values[n++] = running +
4657
			atomic64_read(&event->child_total_time_running);
4658 4659
	}
	if (read_format & PERF_FORMAT_ID)
4660
		values[n++] = primary_event_id(event);
4661

4662
	__output_copy(handle, values, n * sizeof(u64));
4663 4664 4665
}

/*
4666
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4667 4668
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4669 4670
			    struct perf_event *event,
			    u64 enabled, u64 running)
4671
{
4672 4673
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4674 4675 4676 4677 4678 4679
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4680
		values[n++] = enabled;
4681 4682

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4683
		values[n++] = running;
4684

4685
	if (leader != event)
4686 4687
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4688
	values[n++] = perf_event_count(leader);
4689
	if (read_format & PERF_FORMAT_ID)
4690
		values[n++] = primary_event_id(leader);
4691

4692
	__output_copy(handle, values, n * sizeof(u64));
4693

4694
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4695 4696
		n = 0;

4697 4698
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4699 4700
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4701
		values[n++] = perf_event_count(sub);
4702
		if (read_format & PERF_FORMAT_ID)
4703
			values[n++] = primary_event_id(sub);
4704

4705
		__output_copy(handle, values, n * sizeof(u64));
4706 4707 4708
	}
}

4709 4710 4711
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4712
static void perf_output_read(struct perf_output_handle *handle,
4713
			     struct perf_event *event)
4714
{
4715
	u64 enabled = 0, running = 0, now;
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4727
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4728
		calc_timer_values(event, &now, &enabled, &running);
4729

4730
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4731
		perf_output_read_group(handle, event, enabled, running);
4732
	else
4733
		perf_output_read_one(handle, event, enabled, running);
4734 4735
}

4736 4737 4738
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4739
			struct perf_event *event)
4740 4741 4742 4743 4744
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4745 4746 4747
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4773
		perf_output_read(handle, event);
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4784
			__output_copy(handle, data->callchain, size);
4785 4786 4787 4788 4789 4790 4791 4792 4793
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4794 4795
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4807

4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4842

4843
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4844 4845 4846
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4847
	}
A
Andi Kleen 已提交
4848 4849 4850

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4851 4852 4853

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4854

A
Andi Kleen 已提交
4855 4856 4857
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4871 4872 4873 4874
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4875
			 struct perf_event *event,
4876
			 struct pt_regs *regs)
4877
{
4878
	u64 sample_type = event->attr.sample_type;
4879

4880
	header->type = PERF_RECORD_SAMPLE;
4881
	header->size = sizeof(*header) + event->header_size;
4882 4883 4884

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4885

4886
	__perf_event_header__init_id(header, data, event);
4887

4888
	if (sample_type & PERF_SAMPLE_IP)
4889 4890
		data->ip = perf_instruction_pointer(regs);

4891
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4892
		int size = 1;
4893

4894
		data->callchain = perf_callchain(event, regs);
4895 4896 4897 4898 4899

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4900 4901
	}

4902
	if (sample_type & PERF_SAMPLE_RAW) {
4903 4904 4905 4906 4907 4908 4909 4910
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4911
		header->size += size;
4912
	}
4913 4914 4915 4916 4917 4918 4919 4920 4921

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4965
}
4966

4967
static void perf_event_output(struct perf_event *event,
4968 4969 4970 4971 4972
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4973

4974 4975 4976
	/* protect the callchain buffers */
	rcu_read_lock();

4977
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4978

4979
	if (perf_output_begin(&handle, event, header.size))
4980
		goto exit;
4981

4982
	perf_output_sample(&handle, &header, data, event);
4983

4984
	perf_output_end(&handle);
4985 4986 4987

exit:
	rcu_read_unlock();
4988 4989
}

4990
/*
4991
 * read event_id
4992 4993 4994 4995 4996 4997 4998 4999 5000 5001
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5002
perf_event_read_event(struct perf_event *event,
5003 5004 5005
			struct task_struct *task)
{
	struct perf_output_handle handle;
5006
	struct perf_sample_data sample;
5007
	struct perf_read_event read_event = {
5008
		.header = {
5009
			.type = PERF_RECORD_READ,
5010
			.misc = 0,
5011
			.size = sizeof(read_event) + event->read_size,
5012
		},
5013 5014
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5015
	};
5016
	int ret;
5017

5018
	perf_event_header__init_id(&read_event.header, &sample, event);
5019
	ret = perf_output_begin(&handle, event, read_event.header.size);
5020 5021 5022
	if (ret)
		return;

5023
	perf_output_put(&handle, read_event);
5024
	perf_output_read(&handle, event);
5025
	perf_event__output_id_sample(event, &handle, &sample);
5026

5027 5028 5029
	perf_output_end(&handle);
}

5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5044
		output(event, data);
5045 5046 5047 5048
	}
}

static void
5049
perf_event_aux(perf_event_aux_output_cb output, void *data,
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5062
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5063 5064 5065 5066 5067 5068 5069
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5070
			perf_event_aux_ctx(ctx, output, data);
5071 5072 5073 5074 5075 5076
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5077
		perf_event_aux_ctx(task_ctx, output, data);
5078 5079 5080 5081 5082
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5083
/*
P
Peter Zijlstra 已提交
5084 5085
 * task tracking -- fork/exit
 *
5086
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5087 5088
 */

P
Peter Zijlstra 已提交
5089
struct perf_task_event {
5090
	struct task_struct		*task;
5091
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5092 5093 5094 5095 5096 5097

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5098 5099
		u32				tid;
		u32				ptid;
5100
		u64				time;
5101
	} event_id;
P
Peter Zijlstra 已提交
5102 5103
};

5104 5105
static int perf_event_task_match(struct perf_event *event)
{
5106 5107 5108
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5109 5110
}

5111
static void perf_event_task_output(struct perf_event *event,
5112
				   void *data)
P
Peter Zijlstra 已提交
5113
{
5114
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5115
	struct perf_output_handle handle;
5116
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5117
	struct task_struct *task = task_event->task;
5118
	int ret, size = task_event->event_id.header.size;
5119

5120 5121 5122
	if (!perf_event_task_match(event))
		return;

5123
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5124

5125
	ret = perf_output_begin(&handle, event,
5126
				task_event->event_id.header.size);
5127
	if (ret)
5128
		goto out;
P
Peter Zijlstra 已提交
5129

5130 5131
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5132

5133 5134
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5135

5136
	perf_output_put(&handle, task_event->event_id);
5137

5138 5139
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5140
	perf_output_end(&handle);
5141 5142
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5143 5144
}

5145 5146
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5147
			      int new)
P
Peter Zijlstra 已提交
5148
{
P
Peter Zijlstra 已提交
5149
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5150

5151 5152 5153
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5154 5155
		return;

P
Peter Zijlstra 已提交
5156
	task_event = (struct perf_task_event){
5157 5158
		.task	  = task,
		.task_ctx = task_ctx,
5159
		.event_id    = {
P
Peter Zijlstra 已提交
5160
			.header = {
5161
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5162
				.misc = 0,
5163
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5164
			},
5165 5166
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5167 5168
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
5169
			.time = perf_clock(),
P
Peter Zijlstra 已提交
5170 5171 5172
		},
	};

5173
	perf_event_aux(perf_event_task_output,
5174 5175
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5176 5177
}

5178
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5179
{
5180
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5181 5182
}

5183 5184 5185 5186 5187
/*
 * comm tracking
 */

struct perf_comm_event {
5188 5189
	struct task_struct	*task;
	char			*comm;
5190 5191 5192 5193 5194 5195 5196
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5197
	} event_id;
5198 5199
};

5200 5201 5202 5203 5204
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5205
static void perf_event_comm_output(struct perf_event *event,
5206
				   void *data)
5207
{
5208
	struct perf_comm_event *comm_event = data;
5209
	struct perf_output_handle handle;
5210
	struct perf_sample_data sample;
5211
	int size = comm_event->event_id.header.size;
5212 5213
	int ret;

5214 5215 5216
	if (!perf_event_comm_match(event))
		return;

5217 5218
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5219
				comm_event->event_id.header.size);
5220 5221

	if (ret)
5222
		goto out;
5223

5224 5225
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5226

5227
	perf_output_put(&handle, comm_event->event_id);
5228
	__output_copy(&handle, comm_event->comm,
5229
				   comm_event->comm_size);
5230 5231 5232

	perf_event__output_id_sample(event, &handle, &sample);

5233
	perf_output_end(&handle);
5234 5235
out:
	comm_event->event_id.header.size = size;
5236 5237
}

5238
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5239
{
5240
	char comm[TASK_COMM_LEN];
5241 5242
	unsigned int size;

5243
	memset(comm, 0, sizeof(comm));
5244
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5245
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5246 5247 5248 5249

	comm_event->comm = comm;
	comm_event->comm_size = size;

5250
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5251

5252
	perf_event_aux(perf_event_comm_output,
5253 5254
		       comm_event,
		       NULL);
5255 5256
}

5257
void perf_event_comm(struct task_struct *task, bool exec)
5258
{
5259 5260
	struct perf_comm_event comm_event;

5261
	if (!atomic_read(&nr_comm_events))
5262
		return;
5263

5264
	comm_event = (struct perf_comm_event){
5265
		.task	= task,
5266 5267
		/* .comm      */
		/* .comm_size */
5268
		.event_id  = {
5269
			.header = {
5270
				.type = PERF_RECORD_COMM,
5271
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5272 5273 5274 5275
				/* .size */
			},
			/* .pid */
			/* .tid */
5276 5277 5278
		},
	};

5279
	perf_event_comm_event(&comm_event);
5280 5281
}

5282 5283 5284 5285 5286
/*
 * mmap tracking
 */

struct perf_mmap_event {
5287 5288 5289 5290
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5291 5292 5293
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5294
	u32			prot, flags;
5295 5296 5297 5298 5299 5300 5301 5302 5303

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5304
	} event_id;
5305 5306
};

5307 5308 5309 5310 5311 5312 5313 5314
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5315
	       (executable && (event->attr.mmap || event->attr.mmap2));
5316 5317
}

5318
static void perf_event_mmap_output(struct perf_event *event,
5319
				   void *data)
5320
{
5321
	struct perf_mmap_event *mmap_event = data;
5322
	struct perf_output_handle handle;
5323
	struct perf_sample_data sample;
5324
	int size = mmap_event->event_id.header.size;
5325
	int ret;
5326

5327 5328 5329
	if (!perf_event_mmap_match(event, data))
		return;

5330 5331 5332 5333 5334
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5335
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5336 5337
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5338 5339
	}

5340 5341
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5342
				mmap_event->event_id.header.size);
5343
	if (ret)
5344
		goto out;
5345

5346 5347
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5348

5349
	perf_output_put(&handle, mmap_event->event_id);
5350 5351 5352 5353 5354 5355

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5356 5357
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5358 5359
	}

5360
	__output_copy(&handle, mmap_event->file_name,
5361
				   mmap_event->file_size);
5362 5363 5364

	perf_event__output_id_sample(event, &handle, &sample);

5365
	perf_output_end(&handle);
5366 5367
out:
	mmap_event->event_id.header.size = size;
5368 5369
}

5370
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5371
{
5372 5373
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5374 5375
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5376
	u32 prot = 0, flags = 0;
5377 5378 5379
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5380
	char *name;
5381

5382
	if (file) {
5383 5384
		struct inode *inode;
		dev_t dev;
5385

5386
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5387
		if (!buf) {
5388 5389
			name = "//enomem";
			goto cpy_name;
5390
		}
5391
		/*
5392
		 * d_path() works from the end of the rb backwards, so we
5393 5394 5395
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5396
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5397
		if (IS_ERR(name)) {
5398 5399
			name = "//toolong";
			goto cpy_name;
5400
		}
5401 5402 5403 5404 5405 5406
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5429
		goto got_name;
5430
	} else {
5431 5432 5433 5434 5435 5436
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5437
		name = (char *)arch_vma_name(vma);
5438 5439
		if (name)
			goto cpy_name;
5440

5441
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5442
				vma->vm_end >= vma->vm_mm->brk) {
5443 5444
			name = "[heap]";
			goto cpy_name;
5445 5446
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5447
				vma->vm_end >= vma->vm_mm->start_stack) {
5448 5449
			name = "[stack]";
			goto cpy_name;
5450 5451
		}

5452 5453
		name = "//anon";
		goto cpy_name;
5454 5455
	}

5456 5457 5458
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5459
got_name:
5460 5461 5462 5463 5464 5465 5466 5467
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5468 5469 5470

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5471 5472 5473 5474
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5475 5476
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5477

5478 5479 5480
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5481
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5482

5483
	perf_event_aux(perf_event_mmap_output,
5484 5485
		       mmap_event,
		       NULL);
5486

5487 5488 5489
	kfree(buf);
}

5490
void perf_event_mmap(struct vm_area_struct *vma)
5491
{
5492 5493
	struct perf_mmap_event mmap_event;

5494
	if (!atomic_read(&nr_mmap_events))
5495 5496 5497
		return;

	mmap_event = (struct perf_mmap_event){
5498
		.vma	= vma,
5499 5500
		/* .file_name */
		/* .file_size */
5501
		.event_id  = {
5502
			.header = {
5503
				.type = PERF_RECORD_MMAP,
5504
				.misc = PERF_RECORD_MISC_USER,
5505 5506 5507 5508
				/* .size */
			},
			/* .pid */
			/* .tid */
5509 5510
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5511
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5512
		},
5513 5514 5515 5516
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5517 5518
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5519 5520
	};

5521
	perf_event_mmap_event(&mmap_event);
5522 5523
}

5524 5525 5526 5527
/*
 * IRQ throttle logging
 */

5528
static void perf_log_throttle(struct perf_event *event, int enable)
5529 5530
{
	struct perf_output_handle handle;
5531
	struct perf_sample_data sample;
5532 5533 5534 5535 5536
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5537
		u64				id;
5538
		u64				stream_id;
5539 5540
	} throttle_event = {
		.header = {
5541
			.type = PERF_RECORD_THROTTLE,
5542 5543 5544
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5545
		.time		= perf_clock(),
5546 5547
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5548 5549
	};

5550
	if (enable)
5551
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5552

5553 5554 5555
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5556
				throttle_event.header.size);
5557 5558 5559 5560
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5561
	perf_event__output_id_sample(event, &handle, &sample);
5562 5563 5564
	perf_output_end(&handle);
}

5565
/*
5566
 * Generic event overflow handling, sampling.
5567 5568
 */

5569
static int __perf_event_overflow(struct perf_event *event,
5570 5571
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5572
{
5573 5574
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5575
	u64 seq;
5576 5577
	int ret = 0;

5578 5579 5580 5581 5582 5583 5584
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5585 5586 5587 5588 5589 5590 5591 5592 5593
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5594 5595
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5596
			tick_nohz_full_kick();
5597 5598
			ret = 1;
		}
5599
	}
5600

5601
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5602
		u64 now = perf_clock();
5603
		s64 delta = now - hwc->freq_time_stamp;
5604

5605
		hwc->freq_time_stamp = now;
5606

5607
		if (delta > 0 && delta < 2*TICK_NSEC)
5608
			perf_adjust_period(event, delta, hwc->last_period, true);
5609 5610
	}

5611 5612
	/*
	 * XXX event_limit might not quite work as expected on inherited
5613
	 * events
5614 5615
	 */

5616 5617
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5618
		ret = 1;
5619
		event->pending_kill = POLL_HUP;
5620 5621
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5622 5623
	}

5624
	if (event->overflow_handler)
5625
		event->overflow_handler(event, data, regs);
5626
	else
5627
		perf_event_output(event, data, regs);
5628

P
Peter Zijlstra 已提交
5629
	if (event->fasync && event->pending_kill) {
5630 5631
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5632 5633
	}

5634
	return ret;
5635 5636
}

5637
int perf_event_overflow(struct perf_event *event,
5638 5639
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5640
{
5641
	return __perf_event_overflow(event, 1, data, regs);
5642 5643
}

5644
/*
5645
 * Generic software event infrastructure
5646 5647
 */

5648 5649 5650 5651 5652 5653 5654
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
5655 5656 5657

	/* Keeps track of cpu being initialized/exited */
	bool				online;
5658 5659 5660 5661
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5662
/*
5663 5664
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5665 5666 5667 5668
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5669
u64 perf_swevent_set_period(struct perf_event *event)
5670
{
5671
	struct hw_perf_event *hwc = &event->hw;
5672 5673 5674 5675 5676
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5677 5678

again:
5679
	old = val = local64_read(&hwc->period_left);
5680 5681
	if (val < 0)
		return 0;
5682

5683 5684 5685
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5686
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5687
		goto again;
5688

5689
	return nr;
5690 5691
}

5692
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5693
				    struct perf_sample_data *data,
5694
				    struct pt_regs *regs)
5695
{
5696
	struct hw_perf_event *hwc = &event->hw;
5697
	int throttle = 0;
5698

5699 5700
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5701

5702 5703
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5704

5705
	for (; overflow; overflow--) {
5706
		if (__perf_event_overflow(event, throttle,
5707
					    data, regs)) {
5708 5709 5710 5711 5712 5713
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5714
		throttle = 1;
5715
	}
5716 5717
}

P
Peter Zijlstra 已提交
5718
static void perf_swevent_event(struct perf_event *event, u64 nr,
5719
			       struct perf_sample_data *data,
5720
			       struct pt_regs *regs)
5721
{
5722
	struct hw_perf_event *hwc = &event->hw;
5723

5724
	local64_add(nr, &event->count);
5725

5726 5727 5728
	if (!regs)
		return;

5729
	if (!is_sampling_event(event))
5730
		return;
5731

5732 5733 5734 5735 5736 5737
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5738
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5739
		return perf_swevent_overflow(event, 1, data, regs);
5740

5741
	if (local64_add_negative(nr, &hwc->period_left))
5742
		return;
5743

5744
	perf_swevent_overflow(event, 0, data, regs);
5745 5746
}

5747 5748 5749
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5750
	if (event->hw.state & PERF_HES_STOPPED)
5751
		return 1;
P
Peter Zijlstra 已提交
5752

5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5764
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5765
				enum perf_type_id type,
L
Li Zefan 已提交
5766 5767 5768
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5769
{
5770
	if (event->attr.type != type)
5771
		return 0;
5772

5773
	if (event->attr.config != event_id)
5774 5775
		return 0;

5776 5777
	if (perf_exclude_event(event, regs))
		return 0;
5778 5779 5780 5781

	return 1;
}

5782 5783 5784 5785 5786 5787 5788
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5789 5790
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5791
{
5792 5793 5794 5795
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5796

5797 5798
/* For the read side: events when they trigger */
static inline struct hlist_head *
5799
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5800 5801
{
	struct swevent_hlist *hlist;
5802

5803
	hlist = rcu_dereference(swhash->swevent_hlist);
5804 5805 5806
	if (!hlist)
		return NULL;

5807 5808 5809 5810 5811
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5812
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5823
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5824 5825 5826 5827 5828
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5829 5830 5831
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5832
				    u64 nr,
5833 5834
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5835
{
5836
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5837
	struct perf_event *event;
5838
	struct hlist_head *head;
5839

5840
	rcu_read_lock();
5841
	head = find_swevent_head_rcu(swhash, type, event_id);
5842 5843 5844
	if (!head)
		goto end;

5845
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5846
		if (perf_swevent_match(event, type, event_id, data, regs))
5847
			perf_swevent_event(event, nr, data, regs);
5848
	}
5849 5850
end:
	rcu_read_unlock();
5851 5852
}

5853
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5854
{
5855
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
5856

5857
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5858
}
I
Ingo Molnar 已提交
5859
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5860

5861
inline void perf_swevent_put_recursion_context(int rctx)
5862
{
5863
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5864

5865
	put_recursion_context(swhash->recursion, rctx);
5866
}
5867

5868
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5869
{
5870
	struct perf_sample_data data;
5871 5872
	int rctx;

5873
	preempt_disable_notrace();
5874 5875 5876
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5877

5878
	perf_sample_data_init(&data, addr, 0);
5879

5880
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5881 5882

	perf_swevent_put_recursion_context(rctx);
5883
	preempt_enable_notrace();
5884 5885
}

5886
static void perf_swevent_read(struct perf_event *event)
5887 5888 5889
{
}

P
Peter Zijlstra 已提交
5890
static int perf_swevent_add(struct perf_event *event, int flags)
5891
{
5892
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5893
	struct hw_perf_event *hwc = &event->hw;
5894 5895
	struct hlist_head *head;

5896
	if (is_sampling_event(event)) {
5897
		hwc->last_period = hwc->sample_period;
5898
		perf_swevent_set_period(event);
5899
	}
5900

P
Peter Zijlstra 已提交
5901 5902
	hwc->state = !(flags & PERF_EF_START);

5903
	head = find_swevent_head(swhash, event);
5904 5905 5906 5907 5908 5909
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
5910
		return -EINVAL;
5911
	}
5912 5913 5914

	hlist_add_head_rcu(&event->hlist_entry, head);

5915 5916 5917
	return 0;
}

P
Peter Zijlstra 已提交
5918
static void perf_swevent_del(struct perf_event *event, int flags)
5919
{
5920
	hlist_del_rcu(&event->hlist_entry);
5921 5922
}

P
Peter Zijlstra 已提交
5923
static void perf_swevent_start(struct perf_event *event, int flags)
5924
{
P
Peter Zijlstra 已提交
5925
	event->hw.state = 0;
5926
}
I
Ingo Molnar 已提交
5927

P
Peter Zijlstra 已提交
5928
static void perf_swevent_stop(struct perf_event *event, int flags)
5929
{
P
Peter Zijlstra 已提交
5930
	event->hw.state = PERF_HES_STOPPED;
5931 5932
}

5933 5934
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5935
swevent_hlist_deref(struct swevent_htable *swhash)
5936
{
5937 5938
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5939 5940
}

5941
static void swevent_hlist_release(struct swevent_htable *swhash)
5942
{
5943
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5944

5945
	if (!hlist)
5946 5947
		return;

5948
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
5949
	kfree_rcu(hlist, rcu_head);
5950 5951 5952 5953
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5954
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5955

5956
	mutex_lock(&swhash->hlist_mutex);
5957

5958 5959
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5960

5961
	mutex_unlock(&swhash->hlist_mutex);
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5974
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5975 5976
	int err = 0;

5977
	mutex_lock(&swhash->hlist_mutex);
5978

5979
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5980 5981 5982 5983 5984 5985 5986
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5987
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5988
	}
5989
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5990
exit:
5991
	mutex_unlock(&swhash->hlist_mutex);
5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6012
fail:
6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6023
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6024

6025 6026 6027
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6028

6029 6030
	WARN_ON(event->parent);

6031
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6032 6033 6034 6035 6036
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6037
	u64 event_id = event->attr.config;
6038 6039 6040 6041

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6042 6043 6044 6045 6046 6047
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6048 6049 6050 6051 6052 6053 6054 6055 6056
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6057
	if (event_id >= PERF_COUNT_SW_MAX)
6058 6059 6060 6061 6062 6063 6064 6065 6066
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6067
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6068 6069 6070 6071 6072 6073
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

6074 6075 6076 6077 6078
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

6079
static struct pmu perf_swevent = {
6080
	.task_ctx_nr	= perf_sw_context,
6081

6082
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6083 6084 6085 6086
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6087
	.read		= perf_swevent_read,
6088 6089

	.event_idx	= perf_swevent_event_idx,
6090 6091
};

6092 6093
#ifdef CONFIG_EVENT_TRACING

6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6108 6109
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6110 6111 6112 6113
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6114 6115 6116 6117 6118 6119 6120 6121 6122
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6123 6124
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6125 6126
{
	struct perf_sample_data data;
6127 6128
	struct perf_event *event;

6129 6130 6131 6132 6133
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6134
	perf_sample_data_init(&data, addr, 0);
6135 6136
	data.raw = &raw;

6137
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6138
		if (perf_tp_event_match(event, &data, regs))
6139
			perf_swevent_event(event, count, &data, regs);
6140
	}
6141

6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6167
	perf_swevent_put_recursion_context(rctx);
6168 6169 6170
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6171
static void tp_perf_event_destroy(struct perf_event *event)
6172
{
6173
	perf_trace_destroy(event);
6174 6175
}

6176
static int perf_tp_event_init(struct perf_event *event)
6177
{
6178 6179
	int err;

6180 6181 6182
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6183 6184 6185 6186 6187 6188
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6189 6190
	err = perf_trace_init(event);
	if (err)
6191
		return err;
6192

6193
	event->destroy = tp_perf_event_destroy;
6194

6195 6196 6197 6198
	return 0;
}

static struct pmu perf_tracepoint = {
6199 6200
	.task_ctx_nr	= perf_sw_context,

6201
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6202 6203 6204 6205
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6206
	.read		= perf_swevent_read,
6207 6208

	.event_idx	= perf_swevent_event_idx,
6209 6210 6211 6212
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6213
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6214
}
L
Li Zefan 已提交
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6239
#else
L
Li Zefan 已提交
6240

6241
static inline void perf_tp_register(void)
6242 6243
{
}
L
Li Zefan 已提交
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6254
#endif /* CONFIG_EVENT_TRACING */
6255

6256
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6257
void perf_bp_event(struct perf_event *bp, void *data)
6258
{
6259 6260 6261
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6262
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6263

P
Peter Zijlstra 已提交
6264
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6265
		perf_swevent_event(bp, 1, &sample, regs);
6266 6267 6268
}
#endif

6269 6270 6271
/*
 * hrtimer based swevent callback
 */
6272

6273
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6274
{
6275 6276 6277 6278 6279
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6280

6281
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6282 6283 6284 6285

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6286
	event->pmu->read(event);
6287

6288
	perf_sample_data_init(&data, 0, event->hw.last_period);
6289 6290 6291
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6292
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6293
			if (__perf_event_overflow(event, 1, &data, regs))
6294 6295
				ret = HRTIMER_NORESTART;
	}
6296

6297 6298
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6299

6300
	return ret;
6301 6302
}

6303
static void perf_swevent_start_hrtimer(struct perf_event *event)
6304
{
6305
	struct hw_perf_event *hwc = &event->hw;
6306 6307 6308 6309
	s64 period;

	if (!is_sampling_event(event))
		return;
6310

6311 6312 6313 6314
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6315

6316 6317 6318 6319 6320
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6321
				ns_to_ktime(period), 0,
6322
				HRTIMER_MODE_REL_PINNED, 0);
6323
}
6324 6325

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6326
{
6327 6328
	struct hw_perf_event *hwc = &event->hw;

6329
	if (is_sampling_event(event)) {
6330
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6331
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6332 6333 6334

		hrtimer_cancel(&hwc->hrtimer);
	}
6335 6336
}

P
Peter Zijlstra 已提交
6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6357
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6358 6359 6360 6361
		event->attr.freq = 0;
	}
}

6362 6363 6364 6365 6366
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6367
{
6368 6369 6370
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6371
	now = local_clock();
6372 6373
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6374 6375
}

P
Peter Zijlstra 已提交
6376
static void cpu_clock_event_start(struct perf_event *event, int flags)
6377
{
P
Peter Zijlstra 已提交
6378
	local64_set(&event->hw.prev_count, local_clock());
6379 6380 6381
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6382
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6383
{
6384 6385 6386
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6387

P
Peter Zijlstra 已提交
6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6401 6402 6403 6404
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6405

6406 6407 6408 6409 6410 6411 6412 6413
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6414 6415 6416 6417 6418 6419
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6420 6421
	perf_swevent_init_hrtimer(event);

6422
	return 0;
6423 6424
}

6425
static struct pmu perf_cpu_clock = {
6426 6427
	.task_ctx_nr	= perf_sw_context,

6428
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6429 6430 6431 6432
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6433
	.read		= cpu_clock_event_read,
6434 6435

	.event_idx	= perf_swevent_event_idx,
6436 6437 6438 6439 6440 6441 6442
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6443
{
6444 6445
	u64 prev;
	s64 delta;
6446

6447 6448 6449 6450
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6451

P
Peter Zijlstra 已提交
6452
static void task_clock_event_start(struct perf_event *event, int flags)
6453
{
P
Peter Zijlstra 已提交
6454
	local64_set(&event->hw.prev_count, event->ctx->time);
6455 6456 6457
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6458
static void task_clock_event_stop(struct perf_event *event, int flags)
6459 6460 6461
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6462 6463 6464 6465 6466 6467
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6468

P
Peter Zijlstra 已提交
6469 6470 6471 6472 6473 6474
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6475 6476 6477 6478
}

static void task_clock_event_read(struct perf_event *event)
{
6479 6480 6481
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6482 6483 6484 6485 6486

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6487
{
6488 6489 6490 6491 6492 6493
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6494 6495 6496 6497 6498 6499
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6500 6501
	perf_swevent_init_hrtimer(event);

6502
	return 0;
L
Li Zefan 已提交
6503 6504
}

6505
static struct pmu perf_task_clock = {
6506 6507
	.task_ctx_nr	= perf_sw_context,

6508
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6509 6510 6511 6512
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6513
	.read		= task_clock_event_read,
6514 6515

	.event_idx	= perf_swevent_event_idx,
6516
};
L
Li Zefan 已提交
6517

P
Peter Zijlstra 已提交
6518
static void perf_pmu_nop_void(struct pmu *pmu)
6519 6520
{
}
L
Li Zefan 已提交
6521

P
Peter Zijlstra 已提交
6522
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6523
{
P
Peter Zijlstra 已提交
6524
	return 0;
L
Li Zefan 已提交
6525 6526
}

P
Peter Zijlstra 已提交
6527
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6528
{
P
Peter Zijlstra 已提交
6529
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6530 6531
}

P
Peter Zijlstra 已提交
6532 6533 6534 6535 6536
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6537

P
Peter Zijlstra 已提交
6538
static void perf_pmu_cancel_txn(struct pmu *pmu)
6539
{
P
Peter Zijlstra 已提交
6540
	perf_pmu_enable(pmu);
6541 6542
}

6543 6544 6545 6546 6547
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6548 6549 6550 6551
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6552
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6553
{
P
Peter Zijlstra 已提交
6554
	struct pmu *pmu;
6555

P
Peter Zijlstra 已提交
6556 6557
	if (ctxn < 0)
		return NULL;
6558

P
Peter Zijlstra 已提交
6559 6560 6561 6562
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6563

P
Peter Zijlstra 已提交
6564
	return NULL;
6565 6566
}

6567
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6568
{
6569 6570 6571 6572 6573 6574 6575
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6576 6577
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6578 6579 6580 6581 6582 6583
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6584

P
Peter Zijlstra 已提交
6585
	mutex_lock(&pmus_lock);
6586
	/*
P
Peter Zijlstra 已提交
6587
	 * Like a real lame refcount.
6588
	 */
6589 6590 6591
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6592
			goto out;
6593
		}
P
Peter Zijlstra 已提交
6594
	}
6595

6596
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6597 6598
out:
	mutex_unlock(&pmus_lock);
6599
}
P
Peter Zijlstra 已提交
6600
static struct idr pmu_idr;
6601

P
Peter Zijlstra 已提交
6602 6603 6604 6605 6606 6607 6608
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6609
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6610

6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6654
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6655

6656 6657 6658 6659
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6660
};
6661
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6662 6663 6664 6665

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6666
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6682
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6703
static struct lock_class_key cpuctx_mutex;
6704
static struct lock_class_key cpuctx_lock;
6705

6706
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6707
{
P
Peter Zijlstra 已提交
6708
	int cpu, ret;
6709

6710
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6711 6712 6713 6714
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6715

P
Peter Zijlstra 已提交
6716 6717 6718 6719 6720 6721
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6722 6723 6724
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6725 6726 6727 6728 6729
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6730 6731 6732 6733 6734 6735
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6736
skip_type:
P
Peter Zijlstra 已提交
6737 6738 6739
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6740

W
Wei Yongjun 已提交
6741
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6742 6743
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6744
		goto free_dev;
6745

P
Peter Zijlstra 已提交
6746 6747 6748 6749
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6750
		__perf_event_init_context(&cpuctx->ctx);
6751
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6752
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6753
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6754
		cpuctx->ctx.pmu = pmu;
6755 6756 6757

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6758
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6759
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6760
	}
6761

P
Peter Zijlstra 已提交
6762
got_cpu_context:
P
Peter Zijlstra 已提交
6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6777
		}
6778
	}
6779

P
Peter Zijlstra 已提交
6780 6781 6782 6783 6784
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6785 6786 6787
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6788
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6789 6790
	ret = 0;
unlock:
6791 6792
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6793
	return ret;
P
Peter Zijlstra 已提交
6794

P
Peter Zijlstra 已提交
6795 6796 6797 6798
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6799 6800 6801 6802
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6803 6804 6805
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6806
}
6807
EXPORT_SYMBOL_GPL(perf_pmu_register);
6808

6809
void perf_pmu_unregister(struct pmu *pmu)
6810
{
6811 6812 6813
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6814

6815
	/*
P
Peter Zijlstra 已提交
6816 6817
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6818
	 */
6819
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6820
	synchronize_rcu();
6821

P
Peter Zijlstra 已提交
6822
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6823 6824
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6825 6826
	device_del(pmu->dev);
	put_device(pmu->dev);
6827
	free_pmu_context(pmu);
6828
}
6829
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6830

6831 6832 6833 6834
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6835
	int ret;
6836 6837

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6838 6839 6840 6841

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6842
	if (pmu) {
6843 6844 6845 6846
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
6847
		event->pmu = pmu;
6848 6849 6850
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6851
		goto unlock;
6852
	}
P
Peter Zijlstra 已提交
6853

6854
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6855 6856 6857 6858
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
6859
		event->pmu = pmu;
6860
		ret = pmu->event_init(event);
6861
		if (!ret)
P
Peter Zijlstra 已提交
6862
			goto unlock;
6863

6864 6865
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6866
			goto unlock;
6867
		}
6868
	}
P
Peter Zijlstra 已提交
6869 6870
	pmu = ERR_PTR(-ENOENT);
unlock:
6871
	srcu_read_unlock(&pmus_srcu, idx);
6872

6873
	return pmu;
6874 6875
}

6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6889 6890
static void account_event(struct perf_event *event)
{
6891 6892 6893
	if (event->parent)
		return;

6894 6895 6896 6897 6898 6899 6900 6901
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6902 6903 6904 6905
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6906
	if (has_branch_stack(event))
6907
		static_key_slow_inc(&perf_sched_events.key);
6908
	if (is_cgroup_event(event))
6909
		static_key_slow_inc(&perf_sched_events.key);
6910 6911

	account_event_cpu(event, event->cpu);
6912 6913
}

T
Thomas Gleixner 已提交
6914
/*
6915
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6916
 */
6917
static struct perf_event *
6918
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6919 6920 6921
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6922 6923
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6924
{
P
Peter Zijlstra 已提交
6925
	struct pmu *pmu;
6926 6927
	struct perf_event *event;
	struct hw_perf_event *hwc;
6928
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6929

6930 6931 6932 6933 6934
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6935
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6936
	if (!event)
6937
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6938

6939
	/*
6940
	 * Single events are their own group leaders, with an
6941 6942 6943
	 * empty sibling list:
	 */
	if (!group_leader)
6944
		group_leader = event;
6945

6946 6947
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6948

6949 6950 6951
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6952
	INIT_LIST_HEAD(&event->rb_entry);
6953
	INIT_LIST_HEAD(&event->active_entry);
6954 6955
	INIT_HLIST_NODE(&event->hlist_entry);

6956

6957
	init_waitqueue_head(&event->waitq);
6958
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6959

6960
	mutex_init(&event->mmap_mutex);
6961

6962
	atomic_long_set(&event->refcount, 1);
6963 6964 6965 6966 6967
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6968

6969
	event->parent		= parent_event;
6970

6971
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6972
	event->id		= atomic64_inc_return(&perf_event_id);
6973

6974
	event->state		= PERF_EVENT_STATE_INACTIVE;
6975

6976 6977
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6978 6979 6980

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6981 6982 6983 6984
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6985
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6986 6987 6988 6989
			event->hw.bp_target = task;
#endif
	}

6990
	if (!overflow_handler && parent_event) {
6991
		overflow_handler = parent_event->overflow_handler;
6992 6993
		context = parent_event->overflow_handler_context;
	}
6994

6995
	event->overflow_handler	= overflow_handler;
6996
	event->overflow_handler_context = context;
6997

J
Jiri Olsa 已提交
6998
	perf_event__state_init(event);
6999

7000
	pmu = NULL;
7001

7002
	hwc = &event->hw;
7003
	hwc->sample_period = attr->sample_period;
7004
	if (attr->freq && attr->sample_freq)
7005
		hwc->sample_period = 1;
7006
	hwc->last_period = hwc->sample_period;
7007

7008
	local64_set(&hwc->period_left, hwc->sample_period);
7009

7010
	/*
7011
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7012
	 */
7013
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7014
		goto err_ns;
7015

7016
	pmu = perf_init_event(event);
7017
	if (!pmu)
7018 7019
		goto err_ns;
	else if (IS_ERR(pmu)) {
7020
		err = PTR_ERR(pmu);
7021
		goto err_ns;
I
Ingo Molnar 已提交
7022
	}
7023

7024
	if (!event->parent) {
7025 7026
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7027 7028
			if (err)
				goto err_pmu;
7029
		}
7030
	}
7031

7032
	return event;
7033 7034 7035 7036

err_pmu:
	if (event->destroy)
		event->destroy(event);
7037
	module_put(pmu->module);
7038 7039 7040 7041 7042 7043
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7044 7045
}

7046 7047
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7048 7049
{
	u32 size;
7050
	int ret;
7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7075 7076 7077
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7078 7079
	 */
	if (size > sizeof(*attr)) {
7080 7081 7082
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7083

7084 7085
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7086

7087
		for (; addr < end; addr++) {
7088 7089 7090 7091 7092 7093
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7094
		size = sizeof(*attr);
7095 7096 7097 7098 7099 7100
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7101
	if (attr->__reserved_1)
7102 7103 7104 7105 7106 7107 7108 7109
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7138 7139
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7140 7141
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7142
	}
7143

7144
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7145
		ret = perf_reg_validate(attr->sample_regs_user);
7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7164

7165 7166 7167 7168 7169 7170 7171 7172 7173
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7174 7175
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7176
{
7177
	struct ring_buffer *rb = NULL;
7178 7179
	int ret = -EINVAL;

7180
	if (!output_event)
7181 7182
		goto set;

7183 7184
	/* don't allow circular references */
	if (event == output_event)
7185 7186
		goto out;

7187 7188 7189 7190 7191 7192 7193
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7194
	 * If its not a per-cpu rb, it must be the same task.
7195 7196 7197 7198
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7199
set:
7200
	mutex_lock(&event->mmap_mutex);
7201 7202 7203
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7204

7205
	if (output_event) {
7206 7207 7208
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7209
			goto unlock;
7210 7211
	}

7212
	ring_buffer_attach(event, rb);
7213

7214
	ret = 0;
7215 7216 7217
unlock:
	mutex_unlock(&event->mmap_mutex);

7218 7219 7220 7221
out:
	return ret;
}

T
Thomas Gleixner 已提交
7222
/**
7223
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7224
 *
7225
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7226
 * @pid:		target pid
I
Ingo Molnar 已提交
7227
 * @cpu:		target cpu
7228
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7229
 */
7230 7231
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7232
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7233
{
7234 7235
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7236 7237 7238
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
7239
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7240
	struct task_struct *task = NULL;
7241
	struct pmu *pmu;
7242
	int event_fd;
7243
	int move_group = 0;
7244
	int err;
7245
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7246

7247
	/* for future expandability... */
S
Stephane Eranian 已提交
7248
	if (flags & ~PERF_FLAG_ALL)
7249 7250
		return -EINVAL;

7251 7252 7253
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7254

7255 7256 7257 7258 7259
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7260
	if (attr.freq) {
7261
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7262
			return -EINVAL;
7263 7264 7265
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7266 7267
	}

S
Stephane Eranian 已提交
7268 7269 7270 7271 7272 7273 7274 7275 7276
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7277 7278 7279 7280
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7281 7282 7283
	if (event_fd < 0)
		return event_fd;

7284
	if (group_fd != -1) {
7285 7286
		err = perf_fget_light(group_fd, &group);
		if (err)
7287
			goto err_fd;
7288
		group_leader = group.file->private_data;
7289 7290 7291 7292 7293 7294
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7295
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7296 7297 7298 7299 7300 7301 7302
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7303 7304 7305 7306 7307 7308
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7309 7310
	get_online_cpus();

7311 7312
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7313 7314
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7315
		goto err_cpus;
7316 7317
	}

S
Stephane Eranian 已提交
7318 7319
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7320 7321
		if (err) {
			__free_event(event);
7322
			goto err_cpus;
7323
		}
S
Stephane Eranian 已提交
7324 7325
	}

7326 7327 7328 7329 7330 7331 7332
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

7333 7334
	account_event(event);

7335 7336 7337 7338 7339
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7363 7364 7365 7366

	/*
	 * Get the target context (task or percpu):
	 */
7367
	ctx = find_get_context(pmu, task, event->cpu);
7368 7369
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7370
		goto err_alloc;
7371 7372
	}

7373 7374 7375 7376 7377
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7378
	/*
7379
	 * Look up the group leader (we will attach this event to it):
7380
	 */
7381
	if (group_leader) {
7382
		err = -EINVAL;
7383 7384

		/*
I
Ingo Molnar 已提交
7385 7386 7387 7388
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7389
			goto err_context;
I
Ingo Molnar 已提交
7390 7391 7392
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7393
		 */
7394 7395 7396 7397 7398 7399 7400 7401
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7402 7403 7404
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7405
		if (attr.exclusive || attr.pinned)
7406
			goto err_context;
7407 7408 7409 7410 7411
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7412
			goto err_context;
7413
	}
T
Thomas Gleixner 已提交
7414

7415 7416
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7417 7418
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7419
		goto err_context;
7420
	}
7421

7422 7423 7424 7425
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7426
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
7427 7428 7429 7430 7431 7432 7433

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7434 7435
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7436
			perf_remove_from_context(sibling, false);
J
Jiri Olsa 已提交
7437
			perf_event__state_init(sibling);
7438 7439 7440 7441
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7442
	}
7443

7444
	WARN_ON_ONCE(ctx->parent_ctx);
7445
	mutex_lock(&ctx->mutex);
7446 7447

	if (move_group) {
7448
		synchronize_rcu();
7449
		perf_install_in_context(ctx, group_leader, event->cpu);
7450 7451 7452
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7453
			perf_install_in_context(ctx, sibling, event->cpu);
7454 7455 7456 7457
			get_ctx(ctx);
		}
	}

7458
	perf_install_in_context(ctx, event, event->cpu);
7459
	perf_unpin_context(ctx);
7460
	mutex_unlock(&ctx->mutex);
7461

7462 7463
	put_online_cpus();

7464
	event->owner = current;
P
Peter Zijlstra 已提交
7465

7466 7467 7468
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7469

7470 7471 7472 7473
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7474
	perf_event__id_header_size(event);
7475

7476 7477 7478 7479 7480 7481
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7482
	fdput(group);
7483 7484
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7485

7486
err_context:
7487
	perf_unpin_context(ctx);
7488
	put_ctx(ctx);
7489
err_alloc:
7490
	free_event(event);
7491
err_cpus:
7492
	put_online_cpus();
7493
err_task:
P
Peter Zijlstra 已提交
7494 7495
	if (task)
		put_task_struct(task);
7496
err_group_fd:
7497
	fdput(group);
7498 7499
err_fd:
	put_unused_fd(event_fd);
7500
	return err;
T
Thomas Gleixner 已提交
7501 7502
}

7503 7504 7505 7506 7507
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7508
 * @task: task to profile (NULL for percpu)
7509 7510 7511
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7512
				 struct task_struct *task,
7513 7514
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7515 7516
{
	struct perf_event_context *ctx;
7517
	struct perf_event *event;
7518
	int err;
7519

7520 7521 7522
	/*
	 * Get the target context (task or percpu):
	 */
7523

7524 7525
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7526 7527 7528 7529
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7530

7531 7532 7533
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

7534 7535
	account_event(event);

M
Matt Helsley 已提交
7536
	ctx = find_get_context(event->pmu, task, cpu);
7537 7538
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7539
		goto err_free;
7540
	}
7541 7542 7543 7544

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7545
	perf_unpin_context(ctx);
7546 7547 7548 7549
	mutex_unlock(&ctx->mutex);

	return event;

7550 7551 7552
err_free:
	free_event(event);
err:
7553
	return ERR_PTR(err);
7554
}
7555
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7556

7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
7570
		perf_remove_from_context(event, false);
7571
		unaccount_event_cpu(event, src_cpu);
7572
		put_ctx(src_ctx);
7573
		list_add(&event->migrate_entry, &events);
7574 7575 7576 7577 7578 7579
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
7580 7581
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7582 7583
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7584
		account_event_cpu(event, dst_cpu);
7585 7586 7587 7588 7589 7590 7591
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7592
static void sync_child_event(struct perf_event *child_event,
7593
			       struct task_struct *child)
7594
{
7595
	struct perf_event *parent_event = child_event->parent;
7596
	u64 child_val;
7597

7598 7599
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7600

P
Peter Zijlstra 已提交
7601
	child_val = perf_event_count(child_event);
7602 7603 7604 7605

	/*
	 * Add back the child's count to the parent's count:
	 */
7606
	atomic64_add(child_val, &parent_event->child_count);
7607 7608 7609 7610
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7611 7612

	/*
7613
	 * Remove this event from the parent's list
7614
	 */
7615 7616 7617 7618
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7619

7620 7621 7622 7623 7624 7625
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

7626
	/*
7627
	 * Release the parent event, if this was the last
7628 7629
	 * reference to it.
	 */
7630
	put_event(parent_event);
7631 7632
}

7633
static void
7634 7635
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7636
			 struct task_struct *child)
7637
{
7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
7651

7652
	/*
7653
	 * It can happen that the parent exits first, and has events
7654
	 * that are still around due to the child reference. These
7655
	 * events need to be zapped.
7656
	 */
7657
	if (child_event->parent) {
7658 7659
		sync_child_event(child_event, child);
		free_event(child_event);
7660 7661 7662
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
7663
	}
7664 7665
}

P
Peter Zijlstra 已提交
7666
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7667
{
7668
	struct perf_event *child_event, *next;
7669
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
7670
	unsigned long flags;
7671

P
Peter Zijlstra 已提交
7672
	if (likely(!child->perf_event_ctxp[ctxn])) {
7673
		perf_event_task(child, NULL, 0);
7674
		return;
P
Peter Zijlstra 已提交
7675
	}
7676

7677
	local_irq_save(flags);
7678 7679 7680 7681 7682 7683
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7684
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7685 7686 7687

	/*
	 * Take the context lock here so that if find_get_context is
7688
	 * reading child->perf_event_ctxp, we wait until it has
7689 7690
	 * incremented the context's refcount before we do put_ctx below.
	 */
7691
	raw_spin_lock(&child_ctx->lock);
7692
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7693
	child->perf_event_ctxp[ctxn] = NULL;
7694

7695 7696 7697
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7698
	 * the events from it.
7699
	 */
7700
	clone_ctx = unclone_ctx(child_ctx);
7701
	update_context_time(child_ctx);
7702
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7703

7704 7705
	if (clone_ctx)
		put_ctx(clone_ctx);
7706

P
Peter Zijlstra 已提交
7707
	/*
7708 7709 7710
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7711
	 */
7712
	perf_event_task(child, child_ctx, 0);
7713

7714 7715 7716
	/*
	 * We can recurse on the same lock type through:
	 *
7717 7718
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7719 7720
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7721 7722 7723
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7724
	mutex_lock(&child_ctx->mutex);
7725

7726
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7727
		__perf_event_exit_task(child_event, child_ctx, child);
7728

7729 7730 7731
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7732 7733
}

P
Peter Zijlstra 已提交
7734 7735 7736 7737 7738
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7739
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7740 7741
	int ctxn;

P
Peter Zijlstra 已提交
7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7757 7758 7759 7760
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7773
	put_event(parent);
7774

7775
	perf_group_detach(event);
7776 7777 7778 7779
	list_del_event(event, ctx);
	free_event(event);
}

7780 7781
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7782
 * perf_event_init_task below, used by fork() in case of fail.
7783
 */
7784
void perf_event_free_task(struct task_struct *task)
7785
{
P
Peter Zijlstra 已提交
7786
	struct perf_event_context *ctx;
7787
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7788
	int ctxn;
7789

P
Peter Zijlstra 已提交
7790 7791 7792 7793
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7794

P
Peter Zijlstra 已提交
7795
		mutex_lock(&ctx->mutex);
7796
again:
P
Peter Zijlstra 已提交
7797 7798 7799
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7800

P
Peter Zijlstra 已提交
7801 7802 7803
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7804

P
Peter Zijlstra 已提交
7805 7806 7807
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7808

P
Peter Zijlstra 已提交
7809
		mutex_unlock(&ctx->mutex);
7810

P
Peter Zijlstra 已提交
7811 7812
		put_ctx(ctx);
	}
7813 7814
}

7815 7816 7817 7818 7819 7820 7821 7822
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
7834
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
7835
	struct perf_event *child_event;
7836
	unsigned long flags;
P
Peter Zijlstra 已提交
7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7849
					   child,
P
Peter Zijlstra 已提交
7850
					   group_leader, parent_event,
7851
				           NULL, NULL);
P
Peter Zijlstra 已提交
7852 7853
	if (IS_ERR(child_event))
		return child_event;
7854

7855 7856
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
7857 7858 7859 7860
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7861 7862 7863 7864 7865 7866 7867
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
7868
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7885 7886
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7887

7888 7889 7890 7891
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7892
	perf_event__id_header_size(child_event);
7893

P
Peter Zijlstra 已提交
7894 7895 7896
	/*
	 * Link it up in the child's context:
	 */
7897
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7898
	add_event_to_ctx(child_event, child_ctx);
7899
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7933 7934 7935 7936 7937
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7938
		   struct task_struct *child, int ctxn,
7939 7940 7941
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7942
	struct perf_event_context *child_ctx;
7943 7944 7945 7946

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7947 7948
	}

7949
	child_ctx = child->perf_event_ctxp[ctxn];
7950 7951 7952 7953 7954 7955 7956
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7957

7958
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7959 7960
		if (!child_ctx)
			return -ENOMEM;
7961

P
Peter Zijlstra 已提交
7962
		child->perf_event_ctxp[ctxn] = child_ctx;
7963 7964 7965 7966 7967 7968 7969 7970 7971
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7972 7973
}

7974
/*
7975
 * Initialize the perf_event context in task_struct
7976
 */
7977
static int perf_event_init_context(struct task_struct *child, int ctxn)
7978
{
7979
	struct perf_event_context *child_ctx, *parent_ctx;
7980 7981
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7982
	struct task_struct *parent = current;
7983
	int inherited_all = 1;
7984
	unsigned long flags;
7985
	int ret = 0;
7986

P
Peter Zijlstra 已提交
7987
	if (likely(!parent->perf_event_ctxp[ctxn]))
7988 7989
		return 0;

7990
	/*
7991 7992
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7993
	 */
P
Peter Zijlstra 已提交
7994
	parent_ctx = perf_pin_task_context(parent, ctxn);
7995 7996
	if (!parent_ctx)
		return 0;
7997

7998 7999 8000 8001 8002 8003 8004
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

8005 8006 8007 8008
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
8009
	mutex_lock(&parent_ctx->mutex);
8010 8011 8012 8013 8014

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
8015
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
8016 8017
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8018 8019 8020
		if (ret)
			break;
	}
8021

8022 8023 8024 8025 8026 8027 8028 8029 8030
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

8031
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
8032 8033
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8034
		if (ret)
8035
			break;
8036 8037
	}

8038 8039 8040
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
8041
	child_ctx = child->perf_event_ctxp[ctxn];
8042

8043
	if (child_ctx && inherited_all) {
8044 8045 8046
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
8047 8048 8049
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
8050
		 */
P
Peter Zijlstra 已提交
8051
		cloned_ctx = parent_ctx->parent_ctx;
8052 8053
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
8054
			child_ctx->parent_gen = parent_ctx->parent_gen;
8055 8056 8057 8058 8059
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
8060 8061
	}

P
Peter Zijlstra 已提交
8062
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8063
	mutex_unlock(&parent_ctx->mutex);
8064

8065
	perf_unpin_context(parent_ctx);
8066
	put_ctx(parent_ctx);
8067

8068
	return ret;
8069 8070
}

P
Peter Zijlstra 已提交
8071 8072 8073 8074 8075 8076 8077
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

8078 8079 8080 8081
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
8082 8083
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
8084 8085
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
8086
			return ret;
P
Peter Zijlstra 已提交
8087
		}
P
Peter Zijlstra 已提交
8088 8089 8090 8091 8092
	}

	return 0;
}

8093 8094
static void __init perf_event_init_all_cpus(void)
{
8095
	struct swevent_htable *swhash;
8096 8097 8098
	int cpu;

	for_each_possible_cpu(cpu) {
8099 8100
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
8101
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
8102 8103 8104
	}
}

8105
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
8106
{
P
Peter Zijlstra 已提交
8107
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
8108

8109
	mutex_lock(&swhash->hlist_mutex);
8110
	swhash->online = true;
8111
	if (swhash->hlist_refcount > 0) {
8112 8113
		struct swevent_hlist *hlist;

8114 8115 8116
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8117
	}
8118
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8119 8120
}

P
Peter Zijlstra 已提交
8121
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8122
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
8123
{
8124 8125 8126 8127 8128 8129 8130
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
8131
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
8132
{
8133
	struct remove_event re = { .detach_group = false };
P
Peter Zijlstra 已提交
8134
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
8135

P
Peter Zijlstra 已提交
8136
	perf_pmu_rotate_stop(ctx->pmu);
8137

P
Peter Zijlstra 已提交
8138
	rcu_read_lock();
8139 8140
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
8141
	rcu_read_unlock();
T
Thomas Gleixner 已提交
8142
}
P
Peter Zijlstra 已提交
8143 8144 8145 8146 8147 8148 8149 8150 8151

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8152
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
8153 8154 8155 8156 8157 8158 8159 8160

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

8161
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
8162
{
8163
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8164

P
Peter Zijlstra 已提交
8165 8166
	perf_event_exit_cpu_context(cpu);

8167
	mutex_lock(&swhash->hlist_mutex);
8168
	swhash->online = false;
8169 8170
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8171 8172
}
#else
8173
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
8174 8175
#endif

P
Peter Zijlstra 已提交
8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

8196
static int
T
Thomas Gleixner 已提交
8197 8198 8199 8200
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

8201
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
8202 8203

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
8204
	case CPU_DOWN_FAILED:
8205
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
8206 8207
		break;

P
Peter Zijlstra 已提交
8208
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
8209
	case CPU_DOWN_PREPARE:
8210
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
8211 8212 8213 8214 8215 8216 8217 8218
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

8219
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
8220
{
8221 8222
	int ret;

P
Peter Zijlstra 已提交
8223 8224
	idr_init(&pmu_idr);

8225
	perf_event_init_all_cpus();
8226
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
8227 8228 8229
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
8230 8231
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
8232
	register_reboot_notifier(&perf_reboot_notifier);
8233 8234 8235

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8236 8237 8238

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
8239 8240 8241 8242 8243 8244 8245

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8246
}
P
Peter Zijlstra 已提交
8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8275 8276

#ifdef CONFIG_CGROUP_PERF
8277 8278
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8279 8280 8281
{
	struct perf_cgroup *jc;

8282
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8295
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8296
{
8297 8298
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8310 8311
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8312
{
8313 8314
	struct task_struct *task;

8315
	cgroup_taskset_for_each(task, tset)
8316
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8317 8318
}

8319 8320
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8321
			     struct task_struct *task)
S
Stephane Eranian 已提交
8322 8323 8324 8325 8326 8327 8328 8329 8330
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8331
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8332 8333
}

8334
struct cgroup_subsys perf_event_cgrp_subsys = {
8335 8336
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8337
	.exit		= perf_cgroup_exit,
8338
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8339 8340
};
#endif /* CONFIG_CGROUP_PERF */