core.c 218.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
static void event_function_call(struct perf_event *event,
				int (*active)(void *),
				void (*inactive)(void *),
				void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct task_struct *task = ctx->task;

	if (!task) {
		cpu_function_call(event->cpu, active, data);
		return;
	}

again:
	if (!task_function_call(task, active, data))
		return;

	raw_spin_lock_irq(&ctx->lock);
	if (ctx->is_active) {
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	inactive(data);
	raw_spin_unlock_irq(&ctx->lock);
}

160 161 162 163 164 165 166
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
167 168
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
169 170
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
171

172 173 174 175 176 177 178
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

179 180 181 182 183 184
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
185 186 187 188
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
189
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
190
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
191
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
192

193 194 195
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
196
static atomic_t nr_freq_events __read_mostly;
197
static atomic_t nr_switch_events __read_mostly;
198

P
Peter Zijlstra 已提交
199 200 201 202
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

203
/*
204
 * perf event paranoia level:
205 206
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
207
 *   1 - disallow cpu events for unpriv
208
 *   2 - disallow kernel profiling for unpriv
209
 */
210
int sysctl_perf_event_paranoid __read_mostly = 1;
211

212 213
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
214 215

/*
216
 * max perf event sample rate
217
 */
218 219 220 221 222 223 224 225 226
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
227 228
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
229

230
static void update_perf_cpu_limits(void)
231 232 233 234
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
235
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
236
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
237
}
P
Peter Zijlstra 已提交
238

239 240
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
241 242 243 244
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
245
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
246 247 248 249 250

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
269 270 271

	return 0;
}
272

273 274 275 276 277 278 279
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
280
static DEFINE_PER_CPU(u64, running_sample_length);
281

282
static void perf_duration_warn(struct irq_work *w)
283
{
284
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
285
	u64 avg_local_sample_len;
286
	u64 local_samples_len;
287

288
	local_samples_len = __this_cpu_read(running_sample_length);
289 290 291 292 293
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
294
			avg_local_sample_len, allowed_ns >> 1,
295 296 297 298 299 300 301
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
302
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
303 304
	u64 avg_local_sample_len;
	u64 local_samples_len;
305

P
Peter Zijlstra 已提交
306
	if (allowed_ns == 0)
307 308 309
		return;

	/* decay the counter by 1 average sample */
310
	local_samples_len = __this_cpu_read(running_sample_length);
311 312
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
313
	__this_cpu_write(running_sample_length, local_samples_len);
314 315 316 317 318 319 320 321

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
322
	if (avg_local_sample_len <= allowed_ns)
323 324 325 326 327 328 329 330 331 332
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
333

334 335 336 337 338 339
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
340 341
}

342
static atomic64_t perf_event_id;
343

344 345 346 347
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
348 349 350 351 352
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
353

354
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
355

356
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
357
{
358
	return "pmu";
T
Thomas Gleixner 已提交
359 360
}

361 362 363 364 365
static inline u64 perf_clock(void)
{
	return local_clock();
}

366 367 368 369 370
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
371 372 373 374 375 376
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
393 394 395 396 397 398 399 400
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
417 418 419 420
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
421
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
460 461
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
462
	/*
463 464
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
465
	 */
466
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
467 468
		return;

469
	cgrp = perf_cgroup_from_task(current, event->ctx);
470 471 472 473 474
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
475 476 477
}

static inline void
478 479
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
480 481 482 483
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

484 485 486 487 488 489
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
490 491
		return;

492
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
493
	info = this_cpu_ptr(cgrp->info);
494
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
495 496 497 498 499 500 501 502 503 504 505
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
506
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
526 527
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
528 529 530 531 532 533 534 535 536

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
537 538
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
539 540 541 542 543 544 545 546 547 548 549

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
550
				WARN_ON_ONCE(cpuctx->cgrp);
551 552 553 554
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
555 556
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
557
				 */
558
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
559 560
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
561 562
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
563 564 565 566 567 568
		}
	}

	local_irq_restore(flags);
}

569 570
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
571
{
572 573 574
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

575
	rcu_read_lock();
576 577
	/*
	 * we come here when we know perf_cgroup_events > 0
578 579
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
580
	 */
581
	cgrp1 = perf_cgroup_from_task(task, NULL);
582 583 584 585 586 587

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
588
		cgrp2 = perf_cgroup_from_task(next, NULL);
589 590 591 592 593 594 595 596

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
597 598

	rcu_read_unlock();
S
Stephane Eranian 已提交
599 600
}

601 602
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
603
{
604 605 606
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

607
	rcu_read_lock();
608 609
	/*
	 * we come here when we know perf_cgroup_events > 0
610 611
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
612
	 */
613
	cgrp1 = perf_cgroup_from_task(task, NULL);
614 615

	/* prev can never be NULL */
616
	cgrp2 = perf_cgroup_from_task(prev, NULL);
617 618 619 620 621 622 623 624

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
625 626

	rcu_read_unlock();
S
Stephane Eranian 已提交
627 628 629 630 631 632 633 634
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
635 636
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
637

638
	if (!f.file)
S
Stephane Eranian 已提交
639 640
		return -EBADF;

A
Al Viro 已提交
641
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
642
					 &perf_event_cgrp_subsys);
643 644 645 646
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
660
out:
661
	fdput(f);
S
Stephane Eranian 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

735 736
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
737 738 739
{
}

740 741
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
742 743 744 745 746 747 748 749 750 751 752
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
753 754
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

785 786 787 788 789 790 791 792
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
793
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
794 795 796 797 798 799 800 801 802
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
803 804
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
805
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
806 807 808
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
809

P
Peter Zijlstra 已提交
810
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
811 812
}

813
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
814
{
815
	struct hrtimer *timer = &cpuctx->hrtimer;
816
	struct pmu *pmu = cpuctx->ctx.pmu;
817
	u64 interval;
818 819 820 821 822

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

823 824 825 826
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
827 828 829
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
830

831
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
832

P
Peter Zijlstra 已提交
833 834
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
835
	timer->function = perf_mux_hrtimer_handler;
836 837
}

838
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
839
{
840
	struct hrtimer *timer = &cpuctx->hrtimer;
841
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
842
	unsigned long flags;
843 844 845

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
846
		return 0;
847

P
Peter Zijlstra 已提交
848 849 850 851 852 853 854
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
855

856
	return 0;
857 858
}

P
Peter Zijlstra 已提交
859
void perf_pmu_disable(struct pmu *pmu)
860
{
P
Peter Zijlstra 已提交
861 862 863
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
864 865
}

P
Peter Zijlstra 已提交
866
void perf_pmu_enable(struct pmu *pmu)
867
{
P
Peter Zijlstra 已提交
868 869 870
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
871 872
}

873
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
874 875

/*
876 877 878 879
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
880
 */
881
static void perf_event_ctx_activate(struct perf_event_context *ctx)
882
{
883
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
884

885
	WARN_ON(!irqs_disabled());
886

887 888 889 890 891 892 893 894 895 896 897 898
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
899 900
}

901
static void get_ctx(struct perf_event_context *ctx)
902
{
903
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
904 905
}

906 907 908 909 910 911 912 913 914
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

915
static void put_ctx(struct perf_event_context *ctx)
916
{
917 918 919
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
920 921
		if (ctx->task)
			put_task_struct(ctx->task);
922
		call_rcu(&ctx->rcu_head, free_ctx);
923
	}
924 925
}

P
Peter Zijlstra 已提交
926 927 928 929 930 931 932
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
987 988
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
989 990 991 992 993 994 995 996 997 998 999 1000
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1001
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1011 1012 1013 1014 1015 1016
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1017 1018 1019 1020 1021 1022 1023
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1024 1025 1026 1027 1028 1029 1030
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1031
{
1032 1033 1034 1035 1036
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1037
		ctx->parent_ctx = NULL;
1038
	ctx->generation++;
1039 1040

	return parent_ctx;
1041 1042
}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1065
/*
1066
 * If we inherit events we want to return the parent event id
1067 1068
 * to userspace.
 */
1069
static u64 primary_event_id(struct perf_event *event)
1070
{
1071
	u64 id = event->id;
1072

1073 1074
	if (event->parent)
		id = event->parent->id;
1075 1076 1077 1078

	return id;
}

1079
/*
1080
 * Get the perf_event_context for a task and lock it.
1081 1082 1083
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1084
static struct perf_event_context *
P
Peter Zijlstra 已提交
1085
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1086
{
1087
	struct perf_event_context *ctx;
1088

P
Peter Zijlstra 已提交
1089
retry:
1090 1091 1092
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1093
	 * part of the read side critical section was irqs-enabled -- see
1094 1095 1096
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1097
	 * side critical section has interrupts disabled.
1098
	 */
1099
	local_irq_save(*flags);
1100
	rcu_read_lock();
P
Peter Zijlstra 已提交
1101
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1102 1103 1104 1105
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1106
		 * perf_event_task_sched_out, though the
1107 1108 1109 1110 1111 1112
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1113
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1114
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1115
			raw_spin_unlock(&ctx->lock);
1116
			rcu_read_unlock();
1117
			local_irq_restore(*flags);
1118 1119
			goto retry;
		}
1120 1121

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1122
			raw_spin_unlock(&ctx->lock);
1123 1124
			ctx = NULL;
		}
1125 1126
	}
	rcu_read_unlock();
1127 1128
	if (!ctx)
		local_irq_restore(*flags);
1129 1130 1131 1132 1133 1134 1135 1136
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1137 1138
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1139
{
1140
	struct perf_event_context *ctx;
1141 1142
	unsigned long flags;

P
Peter Zijlstra 已提交
1143
	ctx = perf_lock_task_context(task, ctxn, &flags);
1144 1145
	if (ctx) {
		++ctx->pin_count;
1146
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1147 1148 1149 1150
	}
	return ctx;
}

1151
static void perf_unpin_context(struct perf_event_context *ctx)
1152 1153 1154
{
	unsigned long flags;

1155
	raw_spin_lock_irqsave(&ctx->lock, flags);
1156
	--ctx->pin_count;
1157
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1158 1159
}

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1171 1172 1173
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1174 1175 1176 1177

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1178 1179 1180
	return ctx ? ctx->time : 0;
}

1181 1182
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1183
 * The caller of this function needs to hold the ctx->lock.
1184 1185 1186 1187 1188 1189 1190 1191 1192
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1204
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1205 1206
	else if (ctx->is_active)
		run_end = ctx->time;
1207 1208 1209 1210
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1211 1212 1213 1214

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1215
		run_end = perf_event_time(event);
1216 1217

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1218

1219 1220
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1233 1234 1235 1236 1237 1238 1239 1240 1241
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1242
/*
1243
 * Add a event from the lists for its context.
1244 1245
 * Must be called with ctx->mutex and ctx->lock held.
 */
1246
static void
1247
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1248
{
1249 1250
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1251 1252

	/*
1253 1254 1255
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1256
	 */
1257
	if (event->group_leader == event) {
1258 1259
		struct list_head *list;

1260 1261 1262
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1263 1264
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1265
	}
P
Peter Zijlstra 已提交
1266

1267
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1268 1269
		ctx->nr_cgroups++;

1270 1271 1272
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1273
		ctx->nr_stat++;
1274 1275

	ctx->generation++;
1276 1277
}

J
Jiri Olsa 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1287
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1303
		nr += nr_siblings;
1304 1305 1306 1307 1308 1309 1310
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1311
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1312 1313 1314 1315 1316 1317 1318
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1319 1320 1321 1322 1323 1324
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1325 1326 1327
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1328 1329 1330
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1331 1332 1333
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1334 1335 1336
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1337 1338 1339
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1351 1352 1353 1354 1355 1356
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1357 1358 1359 1360 1361 1362
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1363 1364 1365
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1366 1367 1368 1369 1370 1371 1372 1373 1374
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1375
	event->id_header_size = size;
1376 1377
}

P
Peter Zijlstra 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1399 1400
static void perf_group_attach(struct perf_event *event)
{
1401
	struct perf_event *group_leader = event->group_leader, *pos;
1402

P
Peter Zijlstra 已提交
1403 1404 1405 1406 1407 1408
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1409 1410 1411 1412 1413
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1414 1415
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1416 1417 1418 1419 1420 1421
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1422 1423 1424 1425 1426

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1427 1428
}

1429
/*
1430
 * Remove a event from the lists for its context.
1431
 * Must be called with ctx->mutex and ctx->lock held.
1432
 */
1433
static void
1434
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1435
{
1436
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1437 1438 1439 1440

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1441 1442 1443 1444
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1445
		return;
1446 1447 1448

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1449
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1450
		ctx->nr_cgroups--;
1451 1452 1453 1454 1455 1456 1457 1458 1459
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1460

1461 1462
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1463
		ctx->nr_stat--;
1464

1465
	list_del_rcu(&event->event_entry);
1466

1467 1468
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1469

1470
	update_group_times(event);
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1481 1482

	ctx->generation++;
1483 1484
}

1485
static void perf_group_detach(struct perf_event *event)
1486 1487
{
	struct perf_event *sibling, *tmp;
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1504
		goto out;
1505 1506 1507 1508
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1509

1510
	/*
1511 1512
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1513
	 * to whatever list we are on.
1514
	 */
1515
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1516 1517
		if (list)
			list_move_tail(&sibling->group_entry, list);
1518
		sibling->group_leader = sibling;
1519 1520 1521

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1522 1523

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1524
	}
1525 1526 1527 1528 1529 1530

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1531 1532
}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1572 1573 1574 1575 1576 1577
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1578 1579 1580
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1581
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1582
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1583 1584
}

1585 1586
static void
event_sched_out(struct perf_event *event,
1587
		  struct perf_cpu_context *cpuctx,
1588
		  struct perf_event_context *ctx)
1589
{
1590
	u64 tstamp = perf_event_time(event);
1591
	u64 delta;
P
Peter Zijlstra 已提交
1592 1593 1594 1595

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1596 1597 1598 1599 1600 1601 1602 1603
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1604
		delta = tstamp - event->tstamp_stopped;
1605
		event->tstamp_running += delta;
1606
		event->tstamp_stopped = tstamp;
1607 1608
	}

1609
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1610
		return;
1611

1612 1613
	perf_pmu_disable(event->pmu);

1614 1615 1616 1617
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1618
	}
1619
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1620
	event->pmu->del(event, 0);
1621
	event->oncpu = -1;
1622

1623
	if (!is_software_event(event))
1624
		cpuctx->active_oncpu--;
1625 1626
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1627 1628
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1629
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1630
		cpuctx->exclusive = 0;
1631

1632 1633 1634
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1635
	perf_pmu_enable(event->pmu);
1636 1637
}

1638
static void
1639
group_sched_out(struct perf_event *group_event,
1640
		struct perf_cpu_context *cpuctx,
1641
		struct perf_event_context *ctx)
1642
{
1643
	struct perf_event *event;
1644
	int state = group_event->state;
1645

1646
	event_sched_out(group_event, cpuctx, ctx);
1647 1648 1649 1650

	/*
	 * Schedule out siblings (if any):
	 */
1651 1652
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1653

1654
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1655 1656 1657
		cpuctx->exclusive = 0;
}

1658 1659 1660 1661 1662
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
static void ___perf_remove_from_context(void *info)
{
	struct remove_event *re = info;
	struct perf_event *event = re->event;
	struct perf_event_context *ctx = event->ctx;

	if (re->detach_group)
		perf_group_detach(event);
	list_del_event(event, ctx);
}

T
Thomas Gleixner 已提交
1674
/*
1675
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1676
 *
1677
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1678 1679
 * remove it from the context list.
 */
1680
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1681
{
1682 1683
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1684
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1685
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1686

1687
	raw_spin_lock(&ctx->lock);
1688
	event_sched_out(event, cpuctx, ctx);
1689 1690
	if (re->detach_group)
		perf_group_detach(event);
1691
	list_del_event(event, ctx);
1692 1693 1694 1695
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1696
	raw_spin_unlock(&ctx->lock);
1697 1698

	return 0;
T
Thomas Gleixner 已提交
1699 1700 1701
}

/*
1702
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1703
 *
1704
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1705
 * call when the task is on a CPU.
1706
 *
1707 1708
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1709 1710
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1711
 * When called from perf_event_exit_task, it's OK because the
1712
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1713
 */
1714
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1715
{
1716
	struct perf_event_context *ctx = event->ctx;
1717 1718 1719 1720
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1721

1722 1723
	lockdep_assert_held(&ctx->mutex);

1724 1725
	event_function_call(event, __perf_remove_from_context,
			    ___perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1726 1727
}

1728
/*
1729
 * Cross CPU call to disable a performance event
1730
 */
1731
int __perf_event_disable(void *info)
1732
{
1733 1734
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1735
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1736 1737

	/*
1738 1739
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1740 1741 1742
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1743
	 */
1744
	if (ctx->task && cpuctx->task_ctx != ctx)
1745
		return -EINVAL;
1746

1747
	raw_spin_lock(&ctx->lock);
1748 1749

	/*
1750
	 * If the event is on, turn it off.
1751 1752
	 * If it is in error state, leave it in error state.
	 */
1753
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1754
		update_context_time(ctx);
S
Stephane Eranian 已提交
1755
		update_cgrp_time_from_event(event);
1756 1757 1758
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1759
		else
1760 1761
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1762 1763
	}

1764
	raw_spin_unlock(&ctx->lock);
1765 1766

	return 0;
1767 1768
}

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
void ___perf_event_disable(void *info)
{
	struct perf_event *event = info;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
	}
}

1783
/*
1784
 * Disable a event.
1785
 *
1786 1787
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1788
 * remains valid.  This condition is satisifed when called through
1789 1790 1791 1792
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1793
 * is the current context on this CPU and preemption is disabled,
1794
 * hence we can't get into perf_event_task_sched_out for this context.
1795
 */
P
Peter Zijlstra 已提交
1796
static void _perf_event_disable(struct perf_event *event)
1797
{
1798
	struct perf_event_context *ctx = event->ctx;
1799

1800
	raw_spin_lock_irq(&ctx->lock);
1801
	if (event->state <= PERF_EVENT_STATE_OFF) {
1802
		raw_spin_unlock_irq(&ctx->lock);
1803
		return;
1804
	}
1805
	raw_spin_unlock_irq(&ctx->lock);
1806 1807 1808

	event_function_call(event, __perf_event_disable,
			    ___perf_event_disable, event);
1809
}
P
Peter Zijlstra 已提交
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1823
EXPORT_SYMBOL_GPL(perf_event_disable);
1824

S
Stephane Eranian 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1860 1861 1862
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1863
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1864

1865
static int
1866
event_sched_in(struct perf_event *event,
1867
		 struct perf_cpu_context *cpuctx,
1868
		 struct perf_event_context *ctx)
1869
{
1870
	u64 tstamp = perf_event_time(event);
1871
	int ret = 0;
1872

1873 1874
	lockdep_assert_held(&ctx->lock);

1875
	if (event->state <= PERF_EVENT_STATE_OFF)
1876 1877
		return 0;

1878
	event->state = PERF_EVENT_STATE_ACTIVE;
1879
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1891 1892 1893 1894 1895
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1896 1897
	perf_pmu_disable(event->pmu);

1898 1899
	perf_set_shadow_time(event, ctx, tstamp);

1900 1901
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1902
	if (event->pmu->add(event, PERF_EF_START)) {
1903 1904
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1905 1906
		ret = -EAGAIN;
		goto out;
1907 1908
	}

1909 1910
	event->tstamp_running += tstamp - event->tstamp_stopped;

1911
	if (!is_software_event(event))
1912
		cpuctx->active_oncpu++;
1913 1914
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1915 1916
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1917

1918
	if (event->attr.exclusive)
1919 1920
		cpuctx->exclusive = 1;

1921 1922 1923
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1924 1925 1926 1927
out:
	perf_pmu_enable(event->pmu);

	return ret;
1928 1929
}

1930
static int
1931
group_sched_in(struct perf_event *group_event,
1932
	       struct perf_cpu_context *cpuctx,
1933
	       struct perf_event_context *ctx)
1934
{
1935
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1936
	struct pmu *pmu = ctx->pmu;
1937 1938
	u64 now = ctx->time;
	bool simulate = false;
1939

1940
	if (group_event->state == PERF_EVENT_STATE_OFF)
1941 1942
		return 0;

1943
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1944

1945
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1946
		pmu->cancel_txn(pmu);
1947
		perf_mux_hrtimer_restart(cpuctx);
1948
		return -EAGAIN;
1949
	}
1950 1951 1952 1953

	/*
	 * Schedule in siblings as one group (if any):
	 */
1954
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1955
		if (event_sched_in(event, cpuctx, ctx)) {
1956
			partial_group = event;
1957 1958 1959 1960
			goto group_error;
		}
	}

1961
	if (!pmu->commit_txn(pmu))
1962
		return 0;
1963

1964 1965 1966 1967
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1978
	 */
1979 1980
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1981 1982 1983 1984 1985 1986 1987 1988
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1989
	}
1990
	event_sched_out(group_event, cpuctx, ctx);
1991

P
Peter Zijlstra 已提交
1992
	pmu->cancel_txn(pmu);
1993

1994
	perf_mux_hrtimer_restart(cpuctx);
1995

1996 1997 1998
	return -EAGAIN;
}

1999
/*
2000
 * Work out whether we can put this event group on the CPU now.
2001
 */
2002
static int group_can_go_on(struct perf_event *event,
2003 2004 2005 2006
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2007
	 * Groups consisting entirely of software events can always go on.
2008
	 */
2009
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2010 2011 2012
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2013
	 * events can go on.
2014 2015 2016 2017 2018
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2019
	 * events on the CPU, it can't go on.
2020
	 */
2021
	if (event->attr.exclusive && cpuctx->active_oncpu)
2022 2023 2024 2025 2026 2027 2028 2029
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2030 2031
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2032
{
2033 2034
	u64 tstamp = perf_event_time(event);

2035
	list_add_event(event, ctx);
2036
	perf_group_attach(event);
2037 2038 2039
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2040 2041
}

2042 2043 2044 2045 2046 2047
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2048

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
static void ___perf_install_in_context(void *info)
{
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;

	/*
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
	 */
	add_event_to_ctx(event, ctx);
}

T
Thomas Gleixner 已提交
2073
/*
2074
 * Cross CPU call to install and enable a performance event
2075 2076
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2077
 */
2078
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2079
{
2080 2081
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2082
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2083 2084 2085
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2086
	perf_ctx_lock(cpuctx, task_ctx);
2087
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2088 2089

	/*
2090
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2091
	 */
2092
	if (task_ctx)
2093
		task_ctx_sched_out(task_ctx);
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2108 2109
		task = task_ctx->task;
	}
2110

2111
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2112

2113
	update_context_time(ctx);
S
Stephane Eranian 已提交
2114 2115 2116 2117 2118 2119
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2120

2121
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2122

2123
	/*
2124
	 * Schedule everything back in
2125
	 */
2126
	perf_event_sched_in(cpuctx, task_ctx, task);
2127 2128 2129

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2130 2131

	return 0;
T
Thomas Gleixner 已提交
2132 2133 2134
}

/*
2135
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2136
 *
2137 2138
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2139
 *
2140
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2141 2142 2143 2144
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2145 2146
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2147 2148
			int cpu)
{
2149 2150
	lockdep_assert_held(&ctx->mutex);

2151
	event->ctx = ctx;
2152 2153
	if (event->cpu != -1)
		event->cpu = cpu;
2154

2155 2156
	event_function_call(event, __perf_install_in_context,
			    ___perf_install_in_context, event);
T
Thomas Gleixner 已提交
2157 2158
}

2159
/*
2160
 * Put a event into inactive state and update time fields.
2161 2162 2163 2164 2165 2166
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2167
static void __perf_event_mark_enabled(struct perf_event *event)
2168
{
2169
	struct perf_event *sub;
2170
	u64 tstamp = perf_event_time(event);
2171

2172
	event->state = PERF_EVENT_STATE_INACTIVE;
2173
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2174
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2175 2176
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2177
	}
2178 2179
}

2180
/*
2181
 * Cross CPU call to enable a performance event
2182
 */
2183
static int __perf_event_enable(void *info)
2184
{
2185 2186 2187
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2188
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2189
	int err;
2190

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2201
		return -EINVAL;
2202

2203
	raw_spin_lock(&ctx->lock);
2204
	update_context_time(ctx);
2205

2206
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2207
		goto unlock;
S
Stephane Eranian 已提交
2208 2209 2210 2211

	/*
	 * set current task's cgroup time reference point
	 */
2212
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2213

2214
	__perf_event_mark_enabled(event);
2215

S
Stephane Eranian 已提交
2216 2217 2218
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2219
		goto unlock;
S
Stephane Eranian 已提交
2220
	}
2221

2222
	/*
2223
	 * If the event is in a group and isn't the group leader,
2224
	 * then don't put it on unless the group is on.
2225
	 */
2226
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2227
		goto unlock;
2228

2229
	if (!group_can_go_on(event, cpuctx, 1)) {
2230
		err = -EEXIST;
2231
	} else {
2232
		if (event == leader)
2233
			err = group_sched_in(event, cpuctx, ctx);
2234
		else
2235
			err = event_sched_in(event, cpuctx, ctx);
2236
	}
2237 2238 2239

	if (err) {
		/*
2240
		 * If this event can't go on and it's part of a
2241 2242
		 * group, then the whole group has to come off.
		 */
2243
		if (leader != event) {
2244
			group_sched_out(leader, cpuctx, ctx);
2245
			perf_mux_hrtimer_restart(cpuctx);
2246
		}
2247
		if (leader->attr.pinned) {
2248
			update_group_times(leader);
2249
			leader->state = PERF_EVENT_STATE_ERROR;
2250
		}
2251 2252
	}

P
Peter Zijlstra 已提交
2253
unlock:
2254
	raw_spin_unlock(&ctx->lock);
2255 2256

	return 0;
2257 2258
}

2259 2260 2261 2262 2263
void ___perf_event_enable(void *info)
{
	__perf_event_mark_enabled((struct perf_event *)info);
}

2264
/*
2265
 * Enable a event.
2266
 *
2267 2268
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2269
 * remains valid.  This condition is satisfied when called through
2270 2271
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2272
 */
P
Peter Zijlstra 已提交
2273
static void _perf_event_enable(struct perf_event *event)
2274
{
2275
	struct perf_event_context *ctx = event->ctx;
2276

2277 2278 2279
	raw_spin_lock_irq(&ctx->lock);
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
		raw_spin_unlock_irq(&ctx->lock);
2280 2281 2282 2283
		return;
	}

	/*
2284
	 * If the event is in error state, clear that first.
2285 2286 2287 2288
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2289
	 */
2290 2291
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2292
	raw_spin_unlock_irq(&ctx->lock);
2293

2294 2295
	event_function_call(event, __perf_event_enable,
			    ___perf_event_enable, event);
2296
}
P
Peter Zijlstra 已提交
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2309
EXPORT_SYMBOL_GPL(perf_event_enable);
2310

P
Peter Zijlstra 已提交
2311
static int _perf_event_refresh(struct perf_event *event, int refresh)
2312
{
2313
	/*
2314
	 * not supported on inherited events
2315
	 */
2316
	if (event->attr.inherit || !is_sampling_event(event))
2317 2318
		return -EINVAL;

2319
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2320
	_perf_event_enable(event);
2321 2322

	return 0;
2323
}
P
Peter Zijlstra 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2339
EXPORT_SYMBOL_GPL(perf_event_refresh);
2340

2341 2342 2343
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2344
{
2345
	struct perf_event *event;
2346
	int is_active = ctx->is_active;
2347

2348
	ctx->is_active &= ~event_type;
2349
	if (likely(!ctx->nr_events))
2350 2351
		return;

2352
	update_context_time(ctx);
S
Stephane Eranian 已提交
2353
	update_cgrp_time_from_cpuctx(cpuctx);
2354
	if (!ctx->nr_active)
2355
		return;
2356

P
Peter Zijlstra 已提交
2357
	perf_pmu_disable(ctx->pmu);
2358
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2359 2360
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2361
	}
2362

2363
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2364
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2365
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2366
	}
P
Peter Zijlstra 已提交
2367
	perf_pmu_enable(ctx->pmu);
2368 2369
}

2370
/*
2371 2372 2373 2374 2375 2376
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2377
 */
2378 2379
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2380
{
2381 2382 2383
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2406 2407
}

2408 2409
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2410 2411 2412
{
	u64 value;

2413
	if (!event->attr.inherit_stat)
2414 2415 2416
		return;

	/*
2417
	 * Update the event value, we cannot use perf_event_read()
2418 2419
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2420
	 * we know the event must be on the current CPU, therefore we
2421 2422
	 * don't need to use it.
	 */
2423 2424
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2425 2426
		event->pmu->read(event);
		/* fall-through */
2427

2428 2429
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2430 2431 2432 2433 2434 2435 2436
		break;

	default:
		break;
	}

	/*
2437
	 * In order to keep per-task stats reliable we need to flip the event
2438 2439
	 * values when we flip the contexts.
	 */
2440 2441 2442
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2443

2444 2445
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2446

2447
	/*
2448
	 * Since we swizzled the values, update the user visible data too.
2449
	 */
2450 2451
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2452 2453
}

2454 2455
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2456
{
2457
	struct perf_event *event, *next_event;
2458 2459 2460 2461

	if (!ctx->nr_stat)
		return;

2462 2463
	update_context_time(ctx);

2464 2465
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2466

2467 2468
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2469

2470 2471
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2472

2473
		__perf_event_sync_stat(event, next_event);
2474

2475 2476
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2477 2478 2479
	}
}

2480 2481
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2482
{
P
Peter Zijlstra 已提交
2483
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2484
	struct perf_event_context *next_ctx;
2485
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2486
	struct perf_cpu_context *cpuctx;
2487
	int do_switch = 1;
T
Thomas Gleixner 已提交
2488

P
Peter Zijlstra 已提交
2489 2490
	if (likely(!ctx))
		return;
2491

P
Peter Zijlstra 已提交
2492 2493
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2494 2495
		return;

2496
	rcu_read_lock();
P
Peter Zijlstra 已提交
2497
	next_ctx = next->perf_event_ctxp[ctxn];
2498 2499 2500 2501 2502 2503 2504
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2505
	if (!parent && !next_parent)
2506 2507 2508
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2509 2510 2511 2512 2513 2514 2515 2516 2517
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2518 2519
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2520
		if (context_equiv(ctx, next_ctx)) {
2521 2522
			/*
			 * XXX do we need a memory barrier of sorts
2523
			 * wrt to rcu_dereference() of perf_event_ctxp
2524
			 */
P
Peter Zijlstra 已提交
2525 2526
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2527 2528
			ctx->task = next;
			next_ctx->task = task;
2529 2530 2531

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2532
			do_switch = 0;
2533

2534
			perf_event_sync_stat(ctx, next_ctx);
2535
		}
2536 2537
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2538
	}
2539
unlock:
2540
	rcu_read_unlock();
2541

2542
	if (do_switch) {
2543
		raw_spin_lock(&ctx->lock);
2544
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2545
		cpuctx->task_ctx = NULL;
2546
		raw_spin_unlock(&ctx->lock);
2547
	}
T
Thomas Gleixner 已提交
2548 2549
}

2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2600 2601 2602
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2617 2618
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2619 2620 2621
{
	int ctxn;

2622 2623 2624
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2625 2626 2627
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2628 2629
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2630 2631 2632 2633 2634 2635

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2636
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2637
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2638 2639
}

2640
static void task_ctx_sched_out(struct perf_event_context *ctx)
2641
{
P
Peter Zijlstra 已提交
2642
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2643

2644 2645
	if (!cpuctx->task_ctx)
		return;
2646 2647 2648 2649

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2650
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2651 2652 2653
	cpuctx->task_ctx = NULL;
}

2654 2655 2656 2657 2658 2659 2660
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2661 2662
}

2663
static void
2664
ctx_pinned_sched_in(struct perf_event_context *ctx,
2665
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2666
{
2667
	struct perf_event *event;
T
Thomas Gleixner 已提交
2668

2669 2670
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2671
			continue;
2672
		if (!event_filter_match(event))
2673 2674
			continue;

S
Stephane Eranian 已提交
2675 2676 2677 2678
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2679
		if (group_can_go_on(event, cpuctx, 1))
2680
			group_sched_in(event, cpuctx, ctx);
2681 2682 2683 2684 2685

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2686 2687 2688
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2689
		}
2690
	}
2691 2692 2693 2694
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2695
		      struct perf_cpu_context *cpuctx)
2696 2697 2698
{
	struct perf_event *event;
	int can_add_hw = 1;
2699

2700 2701 2702
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2703
			continue;
2704 2705
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2706
		 * of events:
2707
		 */
2708
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2709 2710
			continue;

S
Stephane Eranian 已提交
2711 2712 2713 2714
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2715
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2716
			if (group_sched_in(event, cpuctx, ctx))
2717
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2718
		}
T
Thomas Gleixner 已提交
2719
	}
2720 2721 2722 2723 2724
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2725 2726
	     enum event_type_t event_type,
	     struct task_struct *task)
2727
{
S
Stephane Eranian 已提交
2728
	u64 now;
2729
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2730

2731
	ctx->is_active |= event_type;
2732
	if (likely(!ctx->nr_events))
2733
		return;
2734

S
Stephane Eranian 已提交
2735 2736
	now = perf_clock();
	ctx->timestamp = now;
2737
	perf_cgroup_set_timestamp(task, ctx);
2738 2739 2740 2741
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2742
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2743
		ctx_pinned_sched_in(ctx, cpuctx);
2744 2745

	/* Then walk through the lower prio flexible groups */
2746
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2747
		ctx_flexible_sched_in(ctx, cpuctx);
2748 2749
}

2750
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2751 2752
			     enum event_type_t event_type,
			     struct task_struct *task)
2753 2754 2755
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2756
	ctx_sched_in(ctx, cpuctx, event_type, task);
2757 2758
}

S
Stephane Eranian 已提交
2759 2760
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2761
{
P
Peter Zijlstra 已提交
2762
	struct perf_cpu_context *cpuctx;
2763

P
Peter Zijlstra 已提交
2764
	cpuctx = __get_cpu_context(ctx);
2765 2766 2767
	if (cpuctx->task_ctx == ctx)
		return;

2768
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2769
	perf_pmu_disable(ctx->pmu);
2770 2771 2772 2773 2774 2775 2776
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2777 2778
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2779

2780 2781
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2782 2783
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2784 2785
}

P
Peter Zijlstra 已提交
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2797 2798
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2799 2800 2801 2802 2803 2804 2805 2806 2807
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2808
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2809
	}
S
Stephane Eranian 已提交
2810 2811 2812 2813 2814
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2815
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2816
		perf_cgroup_sched_in(prev, task);
2817

2818 2819 2820
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2821 2822
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2823 2824
}

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2852
#define REDUCE_FLS(a, b)		\
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2892 2893 2894
	if (!divisor)
		return dividend;

2895 2896 2897
	return div64_u64(dividend, divisor);
}

2898 2899 2900
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2901
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2902
{
2903
	struct hw_perf_event *hwc = &event->hw;
2904
	s64 period, sample_period;
2905 2906
	s64 delta;

2907
	period = perf_calculate_period(event, nsec, count);
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2918

2919
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2920 2921 2922
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2923
		local64_set(&hwc->period_left, 0);
2924 2925 2926

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2927
	}
2928 2929
}

2930 2931 2932 2933 2934 2935 2936
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2937
{
2938 2939
	struct perf_event *event;
	struct hw_perf_event *hwc;
2940
	u64 now, period = TICK_NSEC;
2941
	s64 delta;
2942

2943 2944 2945 2946 2947 2948
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2949 2950
		return;

2951
	raw_spin_lock(&ctx->lock);
2952
	perf_pmu_disable(ctx->pmu);
2953

2954
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2955
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2956 2957
			continue;

2958
		if (!event_filter_match(event))
2959 2960
			continue;

2961 2962
		perf_pmu_disable(event->pmu);

2963
		hwc = &event->hw;
2964

2965
		if (hwc->interrupts == MAX_INTERRUPTS) {
2966
			hwc->interrupts = 0;
2967
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2968
			event->pmu->start(event, 0);
2969 2970
		}

2971
		if (!event->attr.freq || !event->attr.sample_freq)
2972
			goto next;
2973

2974 2975 2976 2977 2978
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2979
		now = local64_read(&event->count);
2980 2981
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2982

2983 2984 2985
		/*
		 * restart the event
		 * reload only if value has changed
2986 2987 2988
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2989
		 */
2990
		if (delta > 0)
2991
			perf_adjust_period(event, period, delta, false);
2992 2993

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2994 2995
	next:
		perf_pmu_enable(event->pmu);
2996
	}
2997

2998
	perf_pmu_enable(ctx->pmu);
2999
	raw_spin_unlock(&ctx->lock);
3000 3001
}

3002
/*
3003
 * Round-robin a context's events:
3004
 */
3005
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3006
{
3007 3008 3009 3010 3011 3012
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3013 3014
}

3015
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3016
{
P
Peter Zijlstra 已提交
3017
	struct perf_event_context *ctx = NULL;
3018
	int rotate = 0;
3019

3020 3021 3022 3023
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3024

P
Peter Zijlstra 已提交
3025
	ctx = cpuctx->task_ctx;
3026 3027 3028 3029
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3030

3031
	if (!rotate)
3032 3033
		goto done;

3034
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3035
	perf_pmu_disable(cpuctx->ctx.pmu);
3036

3037 3038 3039
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3040

3041 3042 3043
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3044

3045
	perf_event_sched_in(cpuctx, ctx, current);
3046

3047 3048
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3049
done:
3050 3051

	return rotate;
3052 3053
}

3054 3055 3056
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3057
	if (atomic_read(&nr_freq_events) ||
3058
	    __this_cpu_read(perf_throttled_count))
3059
		return false;
3060 3061
	else
		return true;
3062 3063 3064
}
#endif

3065 3066
void perf_event_task_tick(void)
{
3067 3068
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3069
	int throttled;
3070

3071 3072
	WARN_ON(!irqs_disabled());

3073 3074 3075
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3076
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3077
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3078 3079
}

3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3090
	__perf_event_mark_enabled(event);
3091 3092 3093 3094

	return 1;
}

3095
/*
3096
 * Enable all of a task's events that have been marked enable-on-exec.
3097 3098
 * This expects task == current.
 */
3099
static void perf_event_enable_on_exec(int ctxn)
3100
{
3101
	struct perf_event_context *ctx, *clone_ctx = NULL;
3102
	struct perf_event *event;
3103 3104
	unsigned long flags;
	int enabled = 0;
3105
	int ret;
3106 3107

	local_irq_save(flags);
3108
	ctx = current->perf_event_ctxp[ctxn];
3109
	if (!ctx || !ctx->nr_events)
3110 3111
		goto out;

3112 3113 3114 3115 3116 3117 3118
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3119
	perf_cgroup_sched_out(current, NULL);
3120

3121
	raw_spin_lock(&ctx->lock);
3122
	task_ctx_sched_out(ctx);
3123

3124
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3125 3126 3127
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3128 3129 3130
	}

	/*
3131
	 * Unclone this context if we enabled any event.
3132
	 */
3133
	if (enabled)
3134
		clone_ctx = unclone_ctx(ctx);
3135

3136
	raw_spin_unlock(&ctx->lock);
3137

3138 3139 3140
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3141
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3142
out:
3143
	local_irq_restore(flags);
3144 3145 3146

	if (clone_ctx)
		put_ctx(clone_ctx);
3147 3148
}

3149 3150 3151 3152 3153
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3154 3155
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3156 3157 3158
	rcu_read_unlock();
}

3159 3160 3161
struct perf_read_data {
	struct perf_event *event;
	bool group;
3162
	int ret;
3163 3164
};

T
Thomas Gleixner 已提交
3165
/*
3166
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3167
 */
3168
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3169
{
3170 3171
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3172
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3173
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3174
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3175

3176 3177 3178 3179
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3180 3181
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3182 3183 3184 3185
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3186
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3187
	if (ctx->is_active) {
3188
		update_context_time(ctx);
S
Stephane Eranian 已提交
3189 3190
		update_cgrp_time_from_event(event);
	}
3191

3192
	update_event_times(event);
3193 3194
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3195

3196 3197 3198
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3199
		goto unlock;
3200 3201 3202 3203 3204
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3205 3206 3207

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3208 3209 3210 3211 3212
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3213
			sub->pmu->read(sub);
3214
		}
3215
	}
3216 3217

	data->ret = pmu->commit_txn(pmu);
3218 3219

unlock:
3220
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3221 3222
}

P
Peter Zijlstra 已提交
3223 3224
static inline u64 perf_event_count(struct perf_event *event)
{
3225 3226 3227 3228
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3229 3230
}

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3284
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3285
{
3286 3287
	int ret = 0;

T
Thomas Gleixner 已提交
3288
	/*
3289 3290
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3291
	 */
3292
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3293 3294 3295
		struct perf_read_data data = {
			.event = event,
			.group = group,
3296
			.ret = 0,
3297
		};
3298
		smp_call_function_single(event->oncpu,
3299
					 __perf_event_read, &data, 1);
3300
		ret = data.ret;
3301
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3302 3303 3304
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3305
		raw_spin_lock_irqsave(&ctx->lock, flags);
3306 3307 3308 3309 3310
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3311
		if (ctx->is_active) {
3312
			update_context_time(ctx);
S
Stephane Eranian 已提交
3313 3314
			update_cgrp_time_from_event(event);
		}
3315 3316 3317 3318
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3319
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3320
	}
3321 3322

	return ret;
T
Thomas Gleixner 已提交
3323 3324
}

3325
/*
3326
 * Initialize the perf_event context in a task_struct:
3327
 */
3328
static void __perf_event_init_context(struct perf_event_context *ctx)
3329
{
3330
	raw_spin_lock_init(&ctx->lock);
3331
	mutex_init(&ctx->mutex);
3332
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3333 3334
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3335 3336
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3337
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3353
	}
3354 3355 3356
	ctx->pmu = pmu;

	return ctx;
3357 3358
}

3359 3360 3361 3362 3363
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3364 3365

	rcu_read_lock();
3366
	if (!vpid)
T
Thomas Gleixner 已提交
3367 3368
		task = current;
	else
3369
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3370 3371 3372 3373 3374 3375 3376 3377
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3378
	err = -EACCES;
3379
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3380 3381
		goto errout;

3382 3383 3384 3385 3386 3387 3388
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3389 3390 3391
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3392
static struct perf_event_context *
3393 3394
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3395
{
3396
	struct perf_event_context *ctx, *clone_ctx = NULL;
3397
	struct perf_cpu_context *cpuctx;
3398
	void *task_ctx_data = NULL;
3399
	unsigned long flags;
P
Peter Zijlstra 已提交
3400
	int ctxn, err;
3401
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3402

3403
	if (!task) {
3404
		/* Must be root to operate on a CPU event: */
3405
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3406 3407 3408
			return ERR_PTR(-EACCES);

		/*
3409
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3410 3411 3412
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3413
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3414 3415
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3416
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3417
		ctx = &cpuctx->ctx;
3418
		get_ctx(ctx);
3419
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3420 3421 3422 3423

		return ctx;
	}

P
Peter Zijlstra 已提交
3424 3425 3426 3427 3428
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3429 3430 3431 3432 3433 3434 3435 3436
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3437
retry:
P
Peter Zijlstra 已提交
3438
	ctx = perf_lock_task_context(task, ctxn, &flags);
3439
	if (ctx) {
3440
		clone_ctx = unclone_ctx(ctx);
3441
		++ctx->pin_count;
3442 3443 3444 3445 3446

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3447
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3448 3449 3450

		if (clone_ctx)
			put_ctx(clone_ctx);
3451
	} else {
3452
		ctx = alloc_perf_context(pmu, task);
3453 3454 3455
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3456

3457 3458 3459 3460 3461
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3472
		else {
3473
			get_ctx(ctx);
3474
			++ctx->pin_count;
3475
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3476
		}
3477 3478 3479
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3480
			put_ctx(ctx);
3481 3482 3483 3484

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3485 3486 3487
		}
	}

3488
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3489
	return ctx;
3490

P
Peter Zijlstra 已提交
3491
errout:
3492
	kfree(task_ctx_data);
3493
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3494 3495
}

L
Li Zefan 已提交
3496
static void perf_event_free_filter(struct perf_event *event);
3497
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3498

3499
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3500
{
3501
	struct perf_event *event;
P
Peter Zijlstra 已提交
3502

3503 3504 3505
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3506
	perf_event_free_filter(event);
3507
	kfree(event);
P
Peter Zijlstra 已提交
3508 3509
}

3510 3511
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3512

3513
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3514
{
3515 3516 3517 3518 3519 3520
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3521

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3535 3536
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3537 3538 3539 3540
	if (event->attr.context_switch) {
		static_key_slow_dec_deferred(&perf_sched_events);
		atomic_dec(&nr_switch_events);
	}
3541 3542 3543 3544 3545 3546 3547
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3548

3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3634 3635
static void __free_event(struct perf_event *event)
{
3636
	if (!event->parent) {
3637 3638
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3639
	}
3640

3641 3642
	perf_event_free_bpf_prog(event);

3643 3644 3645 3646 3647 3648
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3649 3650
	if (event->pmu) {
		exclusive_event_destroy(event);
3651
		module_put(event->pmu->module);
3652
	}
3653

3654 3655
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3656 3657

static void _free_event(struct perf_event *event)
3658
{
3659
	irq_work_sync(&event->pending);
3660

3661
	unaccount_event(event);
3662

3663
	if (event->rb) {
3664 3665 3666 3667 3668 3669 3670
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3671
		ring_buffer_attach(event, NULL);
3672
		mutex_unlock(&event->mmap_mutex);
3673 3674
	}

S
Stephane Eranian 已提交
3675 3676 3677
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3678
	__free_event(event);
3679 3680
}

P
Peter Zijlstra 已提交
3681 3682 3683 3684 3685
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3686
{
P
Peter Zijlstra 已提交
3687 3688 3689 3690 3691 3692
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3693

P
Peter Zijlstra 已提交
3694
	_free_event(event);
T
Thomas Gleixner 已提交
3695 3696
}

3697
/*
3698
 * Remove user event from the owner task.
3699
 */
3700
static void perf_remove_from_owner(struct perf_event *event)
3701
{
P
Peter Zijlstra 已提交
3702
	struct task_struct *owner;
3703

P
Peter Zijlstra 已提交
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3745 3746 3747 3748
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3749
	struct perf_event_context *ctx;
3750 3751 3752 3753 3754 3755

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3756

P
Peter Zijlstra 已提交
3757 3758 3759 3760 3761 3762 3763
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3764
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3765 3766 3767 3768
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3769 3770
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3771
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3772
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3773 3774

	_free_event(event);
3775 3776
}

P
Peter Zijlstra 已提交
3777 3778 3779 3780 3781 3782 3783
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3784 3785 3786
/*
 * Called when the last reference to the file is gone.
 */
3787 3788 3789 3790
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3791 3792
}

3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3829
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3830
{
3831
	struct perf_event *child;
3832 3833
	u64 total = 0;

3834 3835 3836
	*enabled = 0;
	*running = 0;

3837
	mutex_lock(&event->child_mutex);
3838

3839
	(void)perf_event_read(event, false);
3840 3841
	total += perf_event_count(event);

3842 3843 3844 3845 3846 3847
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3848
		(void)perf_event_read(child, false);
3849
		total += perf_event_count(child);
3850 3851 3852
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3853
	mutex_unlock(&event->child_mutex);
3854 3855 3856

	return total;
}
3857
EXPORT_SYMBOL_GPL(perf_event_read_value);
3858

3859
static int __perf_read_group_add(struct perf_event *leader,
3860
					u64 read_format, u64 *values)
3861
{
3862 3863
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3864
	int ret;
P
Peter Zijlstra 已提交
3865

3866 3867 3868
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3869

3870 3871 3872 3873 3874 3875 3876 3877 3878
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3879

3880 3881 3882 3883 3884 3885 3886 3887 3888
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3889 3890
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3891

3892 3893 3894 3895 3896
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3897 3898

	return 0;
3899
}
3900

3901 3902 3903 3904 3905
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3906
	int ret;
3907
	u64 *values;
3908

3909
	lockdep_assert_held(&ctx->mutex);
3910

3911 3912 3913
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3914

3915 3916 3917 3918 3919 3920 3921
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3922

3923 3924 3925 3926 3927 3928 3929 3930 3931
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3932

3933
	mutex_unlock(&leader->child_mutex);
3934

3935
	ret = event->read_size;
3936 3937
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3938
	goto out;
3939

3940 3941 3942
unlock:
	mutex_unlock(&leader->child_mutex);
out:
3943
	kfree(values);
3944
	return ret;
3945 3946
}

3947
static int perf_read_one(struct perf_event *event,
3948 3949
				 u64 read_format, char __user *buf)
{
3950
	u64 enabled, running;
3951 3952 3953
	u64 values[4];
	int n = 0;

3954 3955 3956 3957 3958
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3959
	if (read_format & PERF_FORMAT_ID)
3960
		values[n++] = primary_event_id(event);
3961 3962 3963 3964 3965 3966 3967

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3981
/*
3982
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3983 3984
 */
static ssize_t
3985
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3986
{
3987
	u64 read_format = event->attr.read_format;
3988
	int ret;
T
Thomas Gleixner 已提交
3989

3990
	/*
3991
	 * Return end-of-file for a read on a event that is in
3992 3993 3994
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3995
	if (event->state == PERF_EVENT_STATE_ERROR)
3996 3997
		return 0;

3998
	if (count < event->read_size)
3999 4000
		return -ENOSPC;

4001
	WARN_ON_ONCE(event->ctx->parent_ctx);
4002
	if (read_format & PERF_FORMAT_GROUP)
4003
		ret = perf_read_group(event, read_format, buf);
4004
	else
4005
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4006

4007
	return ret;
T
Thomas Gleixner 已提交
4008 4009 4010 4011 4012
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4013
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4014 4015
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4016

P
Peter Zijlstra 已提交
4017
	ctx = perf_event_ctx_lock(event);
4018
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4019 4020 4021
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4022 4023 4024 4025
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4026
	struct perf_event *event = file->private_data;
4027
	struct ring_buffer *rb;
4028
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4029

4030
	poll_wait(file, &event->waitq, wait);
4031

4032
	if (is_event_hup(event))
4033
		return events;
P
Peter Zijlstra 已提交
4034

4035
	/*
4036 4037
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4038 4039
	 */
	mutex_lock(&event->mmap_mutex);
4040 4041
	rb = event->rb;
	if (rb)
4042
		events = atomic_xchg(&rb->poll, 0);
4043
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4044 4045 4046
	return events;
}

P
Peter Zijlstra 已提交
4047
static void _perf_event_reset(struct perf_event *event)
4048
{
4049
	(void)perf_event_read(event, false);
4050
	local64_set(&event->count, 0);
4051
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4052 4053
}

4054
/*
4055 4056 4057 4058
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4059
 */
4060 4061
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4062
{
4063
	struct perf_event *child;
P
Peter Zijlstra 已提交
4064

4065
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4066

4067 4068 4069
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4070
		func(child);
4071
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4072 4073
}

4074 4075
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4076
{
4077 4078
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4079

P
Peter Zijlstra 已提交
4080 4081
	lockdep_assert_held(&ctx->mutex);

4082
	event = event->group_leader;
4083

4084 4085
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4086
		perf_event_for_each_child(sibling, func);
4087 4088
}

4089 4090
struct period_event {
	struct perf_event *event;
4091
	u64 value;
4092
};
4093

4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
static void ___perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	u64 value = pe->value;

	if (event->attr.freq) {
		event->attr.sample_freq = value;
	} else {
		event->attr.sample_period = value;
		event->hw.sample_period = value;
	}

	local64_set(&event->hw.period_left, 0);
}

4110 4111 4112 4113 4114 4115 4116
static int __perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	struct perf_event_context *ctx = event->ctx;
	u64 value = pe->value;
	bool active;
4117

4118
	raw_spin_lock(&ctx->lock);
4119 4120
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4121
	} else {
4122 4123
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4124
	}
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4138
	raw_spin_unlock(&ctx->lock);
4139

4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
	return 0;
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	struct period_event pe = { .event = event, };
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

	pe.value = value;

4162 4163
	event_function_call(event, __perf_event_period,
			    ___perf_event_period, &pe);
4164

4165
	return 0;
4166 4167
}

4168 4169
static const struct file_operations perf_fops;

4170
static inline int perf_fget_light(int fd, struct fd *p)
4171
{
4172 4173 4174
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4175

4176 4177 4178
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4179
	}
4180 4181
	*p = f;
	return 0;
4182 4183 4184 4185
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4186
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4187
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4188

P
Peter Zijlstra 已提交
4189
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4190
{
4191
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4192
	u32 flags = arg;
4193 4194

	switch (cmd) {
4195
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4196
		func = _perf_event_enable;
4197
		break;
4198
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4199
		func = _perf_event_disable;
4200
		break;
4201
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4202
		func = _perf_event_reset;
4203
		break;
P
Peter Zijlstra 已提交
4204

4205
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4206
		return _perf_event_refresh(event, arg);
4207

4208 4209
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4210

4211 4212 4213 4214 4215 4216 4217 4218 4219
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4220
	case PERF_EVENT_IOC_SET_OUTPUT:
4221 4222 4223
	{
		int ret;
		if (arg != -1) {
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4234 4235 4236
		}
		return ret;
	}
4237

L
Li Zefan 已提交
4238 4239 4240
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4241 4242 4243
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4244
	default:
P
Peter Zijlstra 已提交
4245
		return -ENOTTY;
4246
	}
P
Peter Zijlstra 已提交
4247 4248

	if (flags & PERF_IOC_FLAG_GROUP)
4249
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4250
	else
4251
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4252 4253

	return 0;
4254 4255
}

P
Peter Zijlstra 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4289
int perf_event_task_enable(void)
4290
{
P
Peter Zijlstra 已提交
4291
	struct perf_event_context *ctx;
4292
	struct perf_event *event;
4293

4294
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4295 4296 4297 4298 4299
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4300
	mutex_unlock(&current->perf_event_mutex);
4301 4302 4303 4304

	return 0;
}

4305
int perf_event_task_disable(void)
4306
{
P
Peter Zijlstra 已提交
4307
	struct perf_event_context *ctx;
4308
	struct perf_event *event;
4309

4310
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4311 4312 4313 4314 4315
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4316
	mutex_unlock(&current->perf_event_mutex);
4317 4318 4319 4320

	return 0;
}

4321
static int perf_event_index(struct perf_event *event)
4322
{
P
Peter Zijlstra 已提交
4323 4324 4325
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4326
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4327 4328
		return 0;

4329
	return event->pmu->event_idx(event);
4330 4331
}

4332
static void calc_timer_values(struct perf_event *event,
4333
				u64 *now,
4334 4335
				u64 *enabled,
				u64 *running)
4336
{
4337
	u64 ctx_time;
4338

4339 4340
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4341 4342 4343 4344
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4360 4361
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4362 4363 4364 4365 4366

unlock:
	rcu_read_unlock();
}

4367 4368
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4369 4370 4371
{
}

4372 4373 4374 4375 4376
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4377
void perf_event_update_userpage(struct perf_event *event)
4378
{
4379
	struct perf_event_mmap_page *userpg;
4380
	struct ring_buffer *rb;
4381
	u64 enabled, running, now;
4382 4383

	rcu_read_lock();
4384 4385 4386 4387
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4388 4389 4390 4391 4392 4393 4394 4395 4396
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4397
	calc_timer_values(event, &now, &enabled, &running);
4398

4399
	userpg = rb->user_page;
4400 4401 4402 4403 4404
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4405
	++userpg->lock;
4406
	barrier();
4407
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4408
	userpg->offset = perf_event_count(event);
4409
	if (userpg->index)
4410
		userpg->offset -= local64_read(&event->hw.prev_count);
4411

4412
	userpg->time_enabled = enabled +
4413
			atomic64_read(&event->child_total_time_enabled);
4414

4415
	userpg->time_running = running +
4416
			atomic64_read(&event->child_total_time_running);
4417

4418
	arch_perf_update_userpage(event, userpg, now);
4419

4420
	barrier();
4421
	++userpg->lock;
4422
	preempt_enable();
4423
unlock:
4424
	rcu_read_unlock();
4425 4426
}

4427 4428 4429
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4430
	struct ring_buffer *rb;
4431 4432 4433 4434 4435 4436 4437 4438 4439
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4440 4441
	rb = rcu_dereference(event->rb);
	if (!rb)
4442 4443 4444 4445 4446
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4447
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4462 4463 4464
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4465
	struct ring_buffer *old_rb = NULL;
4466 4467
	unsigned long flags;

4468 4469 4470 4471 4472 4473
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4474

4475 4476 4477 4478
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4479

4480 4481
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4482
	}
4483

4484
	if (rb) {
4485 4486 4487 4488 4489
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4506 4507 4508 4509 4510 4511 4512 4513
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4514 4515 4516 4517
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4518 4519 4520
	rcu_read_unlock();
}

4521
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4522
{
4523
	struct ring_buffer *rb;
4524

4525
	rcu_read_lock();
4526 4527 4528 4529
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4530 4531 4532
	}
	rcu_read_unlock();

4533
	return rb;
4534 4535
}

4536
void ring_buffer_put(struct ring_buffer *rb)
4537
{
4538
	if (!atomic_dec_and_test(&rb->refcount))
4539
		return;
4540

4541
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4542

4543
	call_rcu(&rb->rcu_head, rb_free_rcu);
4544 4545 4546 4547
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4548
	struct perf_event *event = vma->vm_file->private_data;
4549

4550
	atomic_inc(&event->mmap_count);
4551
	atomic_inc(&event->rb->mmap_count);
4552

4553 4554 4555
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4556 4557
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4558 4559
}

4560 4561 4562 4563 4564 4565 4566 4567
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4568 4569
static void perf_mmap_close(struct vm_area_struct *vma)
{
4570
	struct perf_event *event = vma->vm_file->private_data;
4571

4572
	struct ring_buffer *rb = ring_buffer_get(event);
4573 4574 4575
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4576

4577 4578 4579
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4594 4595 4596
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4597
		goto out_put;
4598

4599
	ring_buffer_attach(event, NULL);
4600 4601 4602
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4603 4604
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4605

4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4622

4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4634 4635 4636
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4637
		mutex_unlock(&event->mmap_mutex);
4638
		put_event(event);
4639

4640 4641 4642 4643 4644
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4645
	}
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4661
out_put:
4662
	ring_buffer_put(rb); /* could be last */
4663 4664
}

4665
static const struct vm_operations_struct perf_mmap_vmops = {
4666
	.open		= perf_mmap_open,
4667
	.close		= perf_mmap_close, /* non mergable */
4668 4669
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4670 4671 4672 4673
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4674
	struct perf_event *event = file->private_data;
4675
	unsigned long user_locked, user_lock_limit;
4676
	struct user_struct *user = current_user();
4677
	unsigned long locked, lock_limit;
4678
	struct ring_buffer *rb = NULL;
4679 4680
	unsigned long vma_size;
	unsigned long nr_pages;
4681
	long user_extra = 0, extra = 0;
4682
	int ret = 0, flags = 0;
4683

4684 4685 4686
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4687
	 * same rb.
4688 4689 4690 4691
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4692
	if (!(vma->vm_flags & VM_SHARED))
4693
		return -EINVAL;
4694 4695

	vma_size = vma->vm_end - vma->vm_start;
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4756

4757
	/*
4758
	 * If we have rb pages ensure they're a power-of-two number, so we
4759 4760
	 * can do bitmasks instead of modulo.
	 */
4761
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4762 4763
		return -EINVAL;

4764
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4765 4766
		return -EINVAL;

4767
	WARN_ON_ONCE(event->ctx->parent_ctx);
4768
again:
4769
	mutex_lock(&event->mmap_mutex);
4770
	if (event->rb) {
4771
		if (event->rb->nr_pages != nr_pages) {
4772
			ret = -EINVAL;
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4786 4787 4788
		goto unlock;
	}

4789
	user_extra = nr_pages + 1;
4790 4791

accounting:
4792
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4793 4794 4795 4796 4797 4798

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4799
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4800

4801 4802
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4803

4804
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4805
	lock_limit >>= PAGE_SHIFT;
4806
	locked = vma->vm_mm->pinned_vm + extra;
4807

4808 4809
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4810 4811 4812
		ret = -EPERM;
		goto unlock;
	}
4813

4814
	WARN_ON(!rb && event->rb);
4815

4816
	if (vma->vm_flags & VM_WRITE)
4817
		flags |= RING_BUFFER_WRITABLE;
4818

4819
	if (!rb) {
4820 4821 4822
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4823

4824 4825 4826 4827
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4828

4829 4830 4831
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4832

4833
		ring_buffer_attach(event, rb);
4834

4835 4836 4837
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4838 4839
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4840 4841 4842
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4843

4844
unlock:
4845 4846 4847 4848
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4849
		atomic_inc(&event->mmap_count);
4850 4851 4852 4853
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4854
	mutex_unlock(&event->mmap_mutex);
4855

4856 4857 4858 4859
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4860
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4861
	vma->vm_ops = &perf_mmap_vmops;
4862

4863 4864 4865
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4866
	return ret;
4867 4868
}

P
Peter Zijlstra 已提交
4869 4870
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4871
	struct inode *inode = file_inode(filp);
4872
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4873 4874 4875
	int retval;

	mutex_lock(&inode->i_mutex);
4876
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4877 4878 4879 4880 4881 4882 4883 4884
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4885
static const struct file_operations perf_fops = {
4886
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4887 4888 4889
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4890
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4891
	.compat_ioctl		= perf_compat_ioctl,
4892
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4893
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4894 4895
};

4896
/*
4897
 * Perf event wakeup
4898 4899 4900 4901 4902
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4903 4904 4905 4906 4907 4908 4909 4910
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4911
void perf_event_wakeup(struct perf_event *event)
4912
{
4913
	ring_buffer_wakeup(event);
4914

4915
	if (event->pending_kill) {
4916
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4917
		event->pending_kill = 0;
4918
	}
4919 4920
}

4921
static void perf_pending_event(struct irq_work *entry)
4922
{
4923 4924
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4925 4926 4927 4928 4929 4930 4931
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4932

4933 4934 4935
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4936 4937
	}

4938 4939 4940
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4941
	}
4942 4943 4944

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4945 4946
}

4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4983
static void perf_sample_regs_user(struct perf_regs *regs_user,
4984 4985
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4986
{
4987 4988
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4989
		regs_user->regs = regs;
4990 4991
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4992 4993 4994
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4995 4996 4997
	}
}

4998 4999 5000 5001 5002 5003 5004 5005
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5101 5102 5103
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5117
		data->time = perf_event_clock(event);
5118

5119
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5131 5132 5133
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5158 5159 5160

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5161 5162
}

5163 5164 5165
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5166 5167 5168 5169 5170
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5171
static void perf_output_read_one(struct perf_output_handle *handle,
5172 5173
				 struct perf_event *event,
				 u64 enabled, u64 running)
5174
{
5175
	u64 read_format = event->attr.read_format;
5176 5177 5178
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5179
	values[n++] = perf_event_count(event);
5180
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5181
		values[n++] = enabled +
5182
			atomic64_read(&event->child_total_time_enabled);
5183 5184
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5185
		values[n++] = running +
5186
			atomic64_read(&event->child_total_time_running);
5187 5188
	}
	if (read_format & PERF_FORMAT_ID)
5189
		values[n++] = primary_event_id(event);
5190

5191
	__output_copy(handle, values, n * sizeof(u64));
5192 5193 5194
}

/*
5195
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5196 5197
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5198 5199
			    struct perf_event *event,
			    u64 enabled, u64 running)
5200
{
5201 5202
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5203 5204 5205 5206 5207 5208
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5209
		values[n++] = enabled;
5210 5211

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5212
		values[n++] = running;
5213

5214
	if (leader != event)
5215 5216
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5217
	values[n++] = perf_event_count(leader);
5218
	if (read_format & PERF_FORMAT_ID)
5219
		values[n++] = primary_event_id(leader);
5220

5221
	__output_copy(handle, values, n * sizeof(u64));
5222

5223
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5224 5225
		n = 0;

5226 5227
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5228 5229
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5230
		values[n++] = perf_event_count(sub);
5231
		if (read_format & PERF_FORMAT_ID)
5232
			values[n++] = primary_event_id(sub);
5233

5234
		__output_copy(handle, values, n * sizeof(u64));
5235 5236 5237
	}
}

5238 5239 5240
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5241
static void perf_output_read(struct perf_output_handle *handle,
5242
			     struct perf_event *event)
5243
{
5244
	u64 enabled = 0, running = 0, now;
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5256
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5257
		calc_timer_values(event, &now, &enabled, &running);
5258

5259
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5260
		perf_output_read_group(handle, event, enabled, running);
5261
	else
5262
		perf_output_read_one(handle, event, enabled, running);
5263 5264
}

5265 5266 5267
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5268
			struct perf_event *event)
5269 5270 5271 5272 5273
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5274 5275 5276
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5302
		perf_output_read(handle, event);
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5313
			__output_copy(handle, data->callchain, size);
5314 5315 5316 5317 5318 5319 5320 5321
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5322 5323 5324 5325 5326 5327 5328 5329 5330
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5342

5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5377

5378
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5379 5380 5381
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5382
	}
A
Andi Kleen 已提交
5383 5384 5385

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5386 5387 5388

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5389

A
Andi Kleen 已提交
5390 5391 5392
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5423 5424 5425 5426
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5427
			 struct perf_event *event,
5428
			 struct pt_regs *regs)
5429
{
5430
	u64 sample_type = event->attr.sample_type;
5431

5432
	header->type = PERF_RECORD_SAMPLE;
5433
	header->size = sizeof(*header) + event->header_size;
5434 5435 5436

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5437

5438
	__perf_event_header__init_id(header, data, event);
5439

5440
	if (sample_type & PERF_SAMPLE_IP)
5441 5442
		data->ip = perf_instruction_pointer(regs);

5443
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5444
		int size = 1;
5445

5446
		data->callchain = perf_callchain(event, regs);
5447 5448 5449 5450 5451

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5452 5453
	}

5454
	if (sample_type & PERF_SAMPLE_RAW) {
5455 5456 5457 5458 5459 5460 5461
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5462
		header->size += round_up(size, sizeof(u64));
5463
	}
5464 5465 5466 5467 5468 5469 5470 5471 5472

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5473

5474
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5475 5476
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5477

5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5501
						     data->regs_user.regs);
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5529
}
5530

5531 5532 5533
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5534 5535 5536
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5537

5538 5539 5540
	/* protect the callchain buffers */
	rcu_read_lock();

5541
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5542

5543
	if (perf_output_begin(&handle, event, header.size))
5544
		goto exit;
5545

5546
	perf_output_sample(&handle, &header, data, event);
5547

5548
	perf_output_end(&handle);
5549 5550 5551

exit:
	rcu_read_unlock();
5552 5553
}

5554
/*
5555
 * read event_id
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5566
perf_event_read_event(struct perf_event *event,
5567 5568 5569
			struct task_struct *task)
{
	struct perf_output_handle handle;
5570
	struct perf_sample_data sample;
5571
	struct perf_read_event read_event = {
5572
		.header = {
5573
			.type = PERF_RECORD_READ,
5574
			.misc = 0,
5575
			.size = sizeof(read_event) + event->read_size,
5576
		},
5577 5578
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5579
	};
5580
	int ret;
5581

5582
	perf_event_header__init_id(&read_event.header, &sample, event);
5583
	ret = perf_output_begin(&handle, event, read_event.header.size);
5584 5585 5586
	if (ret)
		return;

5587
	perf_output_put(&handle, read_event);
5588
	perf_output_read(&handle, event);
5589
	perf_event__output_id_sample(event, &handle, &sample);
5590

5591 5592 5593
	perf_output_end(&handle);
}

5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5608
		output(event, data);
5609 5610 5611
	}
}

J
Jiri Olsa 已提交
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5623
static void
5624
perf_event_aux(perf_event_aux_output_cb output, void *data,
5625 5626 5627 5628 5629 5630 5631
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5643 5644 5645 5646 5647
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5648
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5649 5650 5651 5652 5653
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5654
			perf_event_aux_ctx(ctx, output, data);
5655 5656 5657 5658 5659 5660
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5661
/*
P
Peter Zijlstra 已提交
5662 5663
 * task tracking -- fork/exit
 *
5664
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5665 5666
 */

P
Peter Zijlstra 已提交
5667
struct perf_task_event {
5668
	struct task_struct		*task;
5669
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5670 5671 5672 5673 5674 5675

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5676 5677
		u32				tid;
		u32				ptid;
5678
		u64				time;
5679
	} event_id;
P
Peter Zijlstra 已提交
5680 5681
};

5682 5683
static int perf_event_task_match(struct perf_event *event)
{
5684 5685 5686
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5687 5688
}

5689
static void perf_event_task_output(struct perf_event *event,
5690
				   void *data)
P
Peter Zijlstra 已提交
5691
{
5692
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5693
	struct perf_output_handle handle;
5694
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5695
	struct task_struct *task = task_event->task;
5696
	int ret, size = task_event->event_id.header.size;
5697

5698 5699 5700
	if (!perf_event_task_match(event))
		return;

5701
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5702

5703
	ret = perf_output_begin(&handle, event,
5704
				task_event->event_id.header.size);
5705
	if (ret)
5706
		goto out;
P
Peter Zijlstra 已提交
5707

5708 5709
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5710

5711 5712
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5713

5714 5715
	task_event->event_id.time = perf_event_clock(event);

5716
	perf_output_put(&handle, task_event->event_id);
5717

5718 5719
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5720
	perf_output_end(&handle);
5721 5722
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5723 5724
}

5725 5726
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5727
			      int new)
P
Peter Zijlstra 已提交
5728
{
P
Peter Zijlstra 已提交
5729
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5730

5731 5732 5733
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5734 5735
		return;

P
Peter Zijlstra 已提交
5736
	task_event = (struct perf_task_event){
5737 5738
		.task	  = task,
		.task_ctx = task_ctx,
5739
		.event_id    = {
P
Peter Zijlstra 已提交
5740
			.header = {
5741
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5742
				.misc = 0,
5743
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5744
			},
5745 5746
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5747 5748
			/* .tid  */
			/* .ptid */
5749
			/* .time */
P
Peter Zijlstra 已提交
5750 5751 5752
		},
	};

5753
	perf_event_aux(perf_event_task_output,
5754 5755
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5756 5757
}

5758
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5759
{
5760
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5761 5762
}

5763 5764 5765 5766 5767
/*
 * comm tracking
 */

struct perf_comm_event {
5768 5769
	struct task_struct	*task;
	char			*comm;
5770 5771 5772 5773 5774 5775 5776
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5777
	} event_id;
5778 5779
};

5780 5781 5782 5783 5784
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5785
static void perf_event_comm_output(struct perf_event *event,
5786
				   void *data)
5787
{
5788
	struct perf_comm_event *comm_event = data;
5789
	struct perf_output_handle handle;
5790
	struct perf_sample_data sample;
5791
	int size = comm_event->event_id.header.size;
5792 5793
	int ret;

5794 5795 5796
	if (!perf_event_comm_match(event))
		return;

5797 5798
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5799
				comm_event->event_id.header.size);
5800 5801

	if (ret)
5802
		goto out;
5803

5804 5805
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5806

5807
	perf_output_put(&handle, comm_event->event_id);
5808
	__output_copy(&handle, comm_event->comm,
5809
				   comm_event->comm_size);
5810 5811 5812

	perf_event__output_id_sample(event, &handle, &sample);

5813
	perf_output_end(&handle);
5814 5815
out:
	comm_event->event_id.header.size = size;
5816 5817
}

5818
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5819
{
5820
	char comm[TASK_COMM_LEN];
5821 5822
	unsigned int size;

5823
	memset(comm, 0, sizeof(comm));
5824
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5825
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5826 5827 5828 5829

	comm_event->comm = comm;
	comm_event->comm_size = size;

5830
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5831

5832
	perf_event_aux(perf_event_comm_output,
5833 5834
		       comm_event,
		       NULL);
5835 5836
}

5837
void perf_event_comm(struct task_struct *task, bool exec)
5838
{
5839 5840
	struct perf_comm_event comm_event;

5841
	if (!atomic_read(&nr_comm_events))
5842
		return;
5843

5844
	comm_event = (struct perf_comm_event){
5845
		.task	= task,
5846 5847
		/* .comm      */
		/* .comm_size */
5848
		.event_id  = {
5849
			.header = {
5850
				.type = PERF_RECORD_COMM,
5851
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5852 5853 5854 5855
				/* .size */
			},
			/* .pid */
			/* .tid */
5856 5857 5858
		},
	};

5859
	perf_event_comm_event(&comm_event);
5860 5861
}

5862 5863 5864 5865 5866
/*
 * mmap tracking
 */

struct perf_mmap_event {
5867 5868 5869 5870
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5871 5872 5873
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5874
	u32			prot, flags;
5875 5876 5877 5878 5879 5880 5881 5882 5883

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5884
	} event_id;
5885 5886
};

5887 5888 5889 5890 5891 5892 5893 5894
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5895
	       (executable && (event->attr.mmap || event->attr.mmap2));
5896 5897
}

5898
static void perf_event_mmap_output(struct perf_event *event,
5899
				   void *data)
5900
{
5901
	struct perf_mmap_event *mmap_event = data;
5902
	struct perf_output_handle handle;
5903
	struct perf_sample_data sample;
5904
	int size = mmap_event->event_id.header.size;
5905
	int ret;
5906

5907 5908 5909
	if (!perf_event_mmap_match(event, data))
		return;

5910 5911 5912 5913 5914
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5915
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5916 5917
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5918 5919
	}

5920 5921
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5922
				mmap_event->event_id.header.size);
5923
	if (ret)
5924
		goto out;
5925

5926 5927
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5928

5929
	perf_output_put(&handle, mmap_event->event_id);
5930 5931 5932 5933 5934 5935

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5936 5937
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5938 5939
	}

5940
	__output_copy(&handle, mmap_event->file_name,
5941
				   mmap_event->file_size);
5942 5943 5944

	perf_event__output_id_sample(event, &handle, &sample);

5945
	perf_output_end(&handle);
5946 5947
out:
	mmap_event->event_id.header.size = size;
5948 5949
}

5950
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5951
{
5952 5953
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5954 5955
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5956
	u32 prot = 0, flags = 0;
5957 5958 5959
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5960
	char *name;
5961

5962
	if (file) {
5963 5964
		struct inode *inode;
		dev_t dev;
5965

5966
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5967
		if (!buf) {
5968 5969
			name = "//enomem";
			goto cpy_name;
5970
		}
5971
		/*
5972
		 * d_path() works from the end of the rb backwards, so we
5973 5974 5975
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5976
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5977
		if (IS_ERR(name)) {
5978 5979
			name = "//toolong";
			goto cpy_name;
5980
		}
5981 5982 5983 5984 5985 5986
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6009
		goto got_name;
6010
	} else {
6011 6012 6013 6014 6015 6016
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6017
		name = (char *)arch_vma_name(vma);
6018 6019
		if (name)
			goto cpy_name;
6020

6021
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6022
				vma->vm_end >= vma->vm_mm->brk) {
6023 6024
			name = "[heap]";
			goto cpy_name;
6025 6026
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6027
				vma->vm_end >= vma->vm_mm->start_stack) {
6028 6029
			name = "[stack]";
			goto cpy_name;
6030 6031
		}

6032 6033
		name = "//anon";
		goto cpy_name;
6034 6035
	}

6036 6037 6038
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6039
got_name:
6040 6041 6042 6043 6044 6045 6046 6047
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6048 6049 6050

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6051 6052 6053 6054
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6055 6056
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6057

6058 6059 6060
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6061
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6062

6063
	perf_event_aux(perf_event_mmap_output,
6064 6065
		       mmap_event,
		       NULL);
6066

6067 6068 6069
	kfree(buf);
}

6070
void perf_event_mmap(struct vm_area_struct *vma)
6071
{
6072 6073
	struct perf_mmap_event mmap_event;

6074
	if (!atomic_read(&nr_mmap_events))
6075 6076 6077
		return;

	mmap_event = (struct perf_mmap_event){
6078
		.vma	= vma,
6079 6080
		/* .file_name */
		/* .file_size */
6081
		.event_id  = {
6082
			.header = {
6083
				.type = PERF_RECORD_MMAP,
6084
				.misc = PERF_RECORD_MISC_USER,
6085 6086 6087 6088
				/* .size */
			},
			/* .pid */
			/* .tid */
6089 6090
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6091
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6092
		},
6093 6094 6095 6096
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6097 6098
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6099 6100
	};

6101
	perf_event_mmap_event(&mmap_event);
6102 6103
}

A
Alexander Shishkin 已提交
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6256 6257 6258 6259
/*
 * IRQ throttle logging
 */

6260
static void perf_log_throttle(struct perf_event *event, int enable)
6261 6262
{
	struct perf_output_handle handle;
6263
	struct perf_sample_data sample;
6264 6265 6266 6267 6268
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6269
		u64				id;
6270
		u64				stream_id;
6271 6272
	} throttle_event = {
		.header = {
6273
			.type = PERF_RECORD_THROTTLE,
6274 6275 6276
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6277
		.time		= perf_event_clock(event),
6278 6279
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6280 6281
	};

6282
	if (enable)
6283
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6284

6285 6286 6287
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6288
				throttle_event.header.size);
6289 6290 6291 6292
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6293
	perf_event__output_id_sample(event, &handle, &sample);
6294 6295 6296
	perf_output_end(&handle);
}

6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6333
/*
6334
 * Generic event overflow handling, sampling.
6335 6336
 */

6337
static int __perf_event_overflow(struct perf_event *event,
6338 6339
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6340
{
6341 6342
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6343
	u64 seq;
6344 6345
	int ret = 0;

6346 6347 6348 6349 6350 6351 6352
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6353 6354 6355 6356 6357 6358 6359 6360 6361
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6362 6363
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6364
			tick_nohz_full_kick();
6365 6366
			ret = 1;
		}
6367
	}
6368

6369
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6370
		u64 now = perf_clock();
6371
		s64 delta = now - hwc->freq_time_stamp;
6372

6373
		hwc->freq_time_stamp = now;
6374

6375
		if (delta > 0 && delta < 2*TICK_NSEC)
6376
			perf_adjust_period(event, delta, hwc->last_period, true);
6377 6378
	}

6379 6380
	/*
	 * XXX event_limit might not quite work as expected on inherited
6381
	 * events
6382 6383
	 */

6384 6385
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6386
		ret = 1;
6387
		event->pending_kill = POLL_HUP;
6388 6389
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6390 6391
	}

6392
	if (event->overflow_handler)
6393
		event->overflow_handler(event, data, regs);
6394
	else
6395
		perf_event_output(event, data, regs);
6396

6397
	if (*perf_event_fasync(event) && event->pending_kill) {
6398 6399
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6400 6401
	}

6402
	return ret;
6403 6404
}

6405
int perf_event_overflow(struct perf_event *event,
6406 6407
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6408
{
6409
	return __perf_event_overflow(event, 1, data, regs);
6410 6411
}

6412
/*
6413
 * Generic software event infrastructure
6414 6415
 */

6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6427
/*
6428 6429
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6430 6431 6432 6433
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6434
u64 perf_swevent_set_period(struct perf_event *event)
6435
{
6436
	struct hw_perf_event *hwc = &event->hw;
6437 6438 6439 6440 6441
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6442 6443

again:
6444
	old = val = local64_read(&hwc->period_left);
6445 6446
	if (val < 0)
		return 0;
6447

6448 6449 6450
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6451
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6452
		goto again;
6453

6454
	return nr;
6455 6456
}

6457
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6458
				    struct perf_sample_data *data,
6459
				    struct pt_regs *regs)
6460
{
6461
	struct hw_perf_event *hwc = &event->hw;
6462
	int throttle = 0;
6463

6464 6465
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6466

6467 6468
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6469

6470
	for (; overflow; overflow--) {
6471
		if (__perf_event_overflow(event, throttle,
6472
					    data, regs)) {
6473 6474 6475 6476 6477 6478
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6479
		throttle = 1;
6480
	}
6481 6482
}

P
Peter Zijlstra 已提交
6483
static void perf_swevent_event(struct perf_event *event, u64 nr,
6484
			       struct perf_sample_data *data,
6485
			       struct pt_regs *regs)
6486
{
6487
	struct hw_perf_event *hwc = &event->hw;
6488

6489
	local64_add(nr, &event->count);
6490

6491 6492 6493
	if (!regs)
		return;

6494
	if (!is_sampling_event(event))
6495
		return;
6496

6497 6498 6499 6500 6501 6502
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6503
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6504
		return perf_swevent_overflow(event, 1, data, regs);
6505

6506
	if (local64_add_negative(nr, &hwc->period_left))
6507
		return;
6508

6509
	perf_swevent_overflow(event, 0, data, regs);
6510 6511
}

6512 6513 6514
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6515
	if (event->hw.state & PERF_HES_STOPPED)
6516
		return 1;
P
Peter Zijlstra 已提交
6517

6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6529
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6530
				enum perf_type_id type,
L
Li Zefan 已提交
6531 6532 6533
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6534
{
6535
	if (event->attr.type != type)
6536
		return 0;
6537

6538
	if (event->attr.config != event_id)
6539 6540
		return 0;

6541 6542
	if (perf_exclude_event(event, regs))
		return 0;
6543 6544 6545 6546

	return 1;
}

6547 6548 6549 6550 6551 6552 6553
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6554 6555
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6556
{
6557 6558 6559 6560
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6561

6562 6563
/* For the read side: events when they trigger */
static inline struct hlist_head *
6564
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6565 6566
{
	struct swevent_hlist *hlist;
6567

6568
	hlist = rcu_dereference(swhash->swevent_hlist);
6569 6570 6571
	if (!hlist)
		return NULL;

6572 6573 6574 6575 6576
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6577
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6588
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6589 6590 6591 6592 6593
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6594 6595 6596
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6597
				    u64 nr,
6598 6599
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6600
{
6601
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6602
	struct perf_event *event;
6603
	struct hlist_head *head;
6604

6605
	rcu_read_lock();
6606
	head = find_swevent_head_rcu(swhash, type, event_id);
6607 6608 6609
	if (!head)
		goto end;

6610
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6611
		if (perf_swevent_match(event, type, event_id, data, regs))
6612
			perf_swevent_event(event, nr, data, regs);
6613
	}
6614 6615
end:
	rcu_read_unlock();
6616 6617
}

6618 6619
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6620
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6621
{
6622
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6623

6624
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6625
}
I
Ingo Molnar 已提交
6626
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6627

6628
inline void perf_swevent_put_recursion_context(int rctx)
6629
{
6630
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6631

6632
	put_recursion_context(swhash->recursion, rctx);
6633
}
6634

6635
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6636
{
6637
	struct perf_sample_data data;
6638

6639
	if (WARN_ON_ONCE(!regs))
6640
		return;
6641

6642
	perf_sample_data_init(&data, addr, 0);
6643
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6656 6657

	perf_swevent_put_recursion_context(rctx);
6658
fail:
6659
	preempt_enable_notrace();
6660 6661
}

6662
static void perf_swevent_read(struct perf_event *event)
6663 6664 6665
{
}

P
Peter Zijlstra 已提交
6666
static int perf_swevent_add(struct perf_event *event, int flags)
6667
{
6668
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6669
	struct hw_perf_event *hwc = &event->hw;
6670 6671
	struct hlist_head *head;

6672
	if (is_sampling_event(event)) {
6673
		hwc->last_period = hwc->sample_period;
6674
		perf_swevent_set_period(event);
6675
	}
6676

P
Peter Zijlstra 已提交
6677 6678
	hwc->state = !(flags & PERF_EF_START);

6679
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6680
	if (WARN_ON_ONCE(!head))
6681 6682 6683
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6684
	perf_event_update_userpage(event);
6685

6686 6687 6688
	return 0;
}

P
Peter Zijlstra 已提交
6689
static void perf_swevent_del(struct perf_event *event, int flags)
6690
{
6691
	hlist_del_rcu(&event->hlist_entry);
6692 6693
}

P
Peter Zijlstra 已提交
6694
static void perf_swevent_start(struct perf_event *event, int flags)
6695
{
P
Peter Zijlstra 已提交
6696
	event->hw.state = 0;
6697
}
I
Ingo Molnar 已提交
6698

P
Peter Zijlstra 已提交
6699
static void perf_swevent_stop(struct perf_event *event, int flags)
6700
{
P
Peter Zijlstra 已提交
6701
	event->hw.state = PERF_HES_STOPPED;
6702 6703
}

6704 6705
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6706
swevent_hlist_deref(struct swevent_htable *swhash)
6707
{
6708 6709
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6710 6711
}

6712
static void swevent_hlist_release(struct swevent_htable *swhash)
6713
{
6714
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6715

6716
	if (!hlist)
6717 6718
		return;

6719
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6720
	kfree_rcu(hlist, rcu_head);
6721 6722 6723 6724
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6725
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6726

6727
	mutex_lock(&swhash->hlist_mutex);
6728

6729 6730
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6731

6732
	mutex_unlock(&swhash->hlist_mutex);
6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6745
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6746 6747
	int err = 0;

6748 6749
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6750 6751 6752 6753 6754 6755 6756
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6757
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6758
	}
6759
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6760
exit:
6761
	mutex_unlock(&swhash->hlist_mutex);
6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6782
fail:
6783 6784 6785 6786 6787 6788 6789 6790 6791 6792
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6793
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6794

6795 6796 6797
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6798

6799 6800
	WARN_ON(event->parent);

6801
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6802 6803 6804 6805 6806
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6807
	u64 event_id = event->attr.config;
6808 6809 6810 6811

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6812 6813 6814 6815 6816 6817
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6818 6819 6820 6821 6822 6823 6824 6825 6826
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6827
	if (event_id >= PERF_COUNT_SW_MAX)
6828 6829 6830 6831 6832 6833 6834 6835 6836
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6837
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6838 6839 6840 6841 6842 6843 6844
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6845
	.task_ctx_nr	= perf_sw_context,
6846

6847 6848
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6849
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6850 6851 6852 6853
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6854 6855 6856
	.read		= perf_swevent_read,
};

6857 6858
#ifdef CONFIG_EVENT_TRACING

6859 6860 6861 6862 6863
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6864 6865 6866 6867
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6868 6869 6870 6871 6872 6873 6874 6875 6876
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6877 6878
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6879 6880 6881 6882
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6883 6884 6885 6886 6887 6888 6889 6890 6891
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6892 6893
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6894 6895
{
	struct perf_sample_data data;
6896 6897
	struct perf_event *event;

6898 6899 6900 6901 6902
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6903
	perf_sample_data_init(&data, addr, 0);
6904 6905
	data.raw = &raw;

6906
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6907
		if (perf_tp_event_match(event, &data, regs))
6908
			perf_swevent_event(event, count, &data, regs);
6909
	}
6910

6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6936
	perf_swevent_put_recursion_context(rctx);
6937 6938 6939
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6940
static void tp_perf_event_destroy(struct perf_event *event)
6941
{
6942
	perf_trace_destroy(event);
6943 6944
}

6945
static int perf_tp_event_init(struct perf_event *event)
6946
{
6947 6948
	int err;

6949 6950 6951
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6952 6953 6954 6955 6956 6957
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6958 6959
	err = perf_trace_init(event);
	if (err)
6960
		return err;
6961

6962
	event->destroy = tp_perf_event_destroy;
6963

6964 6965 6966 6967
	return 0;
}

static struct pmu perf_tracepoint = {
6968 6969
	.task_ctx_nr	= perf_sw_context,

6970
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6971 6972 6973 6974
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6975 6976 6977 6978 6979
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6980
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6981
}
L
Li Zefan 已提交
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7006 7007 7008 7009 7010 7011 7012 7013 7014 7015
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7016 7017
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7018 7019 7020 7021 7022 7023
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7024
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7049
#else
L
Li Zefan 已提交
7050

7051
static inline void perf_tp_register(void)
7052 7053
{
}
L
Li Zefan 已提交
7054 7055 7056 7057 7058 7059 7060 7061 7062 7063

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7064 7065 7066 7067 7068 7069 7070 7071
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7072
#endif /* CONFIG_EVENT_TRACING */
7073

7074
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7075
void perf_bp_event(struct perf_event *bp, void *data)
7076
{
7077 7078 7079
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7080
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7081

P
Peter Zijlstra 已提交
7082
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7083
		perf_swevent_event(bp, 1, &sample, regs);
7084 7085 7086
}
#endif

7087 7088 7089
/*
 * hrtimer based swevent callback
 */
7090

7091
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7092
{
7093 7094 7095 7096 7097
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7098

7099
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7100 7101 7102 7103

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7104
	event->pmu->read(event);
7105

7106
	perf_sample_data_init(&data, 0, event->hw.last_period);
7107 7108 7109
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7110
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7111
			if (__perf_event_overflow(event, 1, &data, regs))
7112 7113
				ret = HRTIMER_NORESTART;
	}
7114

7115 7116
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7117

7118
	return ret;
7119 7120
}

7121
static void perf_swevent_start_hrtimer(struct perf_event *event)
7122
{
7123
	struct hw_perf_event *hwc = &event->hw;
7124 7125 7126 7127
	s64 period;

	if (!is_sampling_event(event))
		return;
7128

7129 7130 7131 7132
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7133

7134 7135 7136 7137
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7138 7139
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7140
}
7141 7142

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7143
{
7144 7145
	struct hw_perf_event *hwc = &event->hw;

7146
	if (is_sampling_event(event)) {
7147
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7148
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7149 7150 7151

		hrtimer_cancel(&hwc->hrtimer);
	}
7152 7153
}

P
Peter Zijlstra 已提交
7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7174
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7175 7176 7177 7178
		event->attr.freq = 0;
	}
}

7179 7180 7181 7182 7183
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7184
{
7185 7186 7187
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7188
	now = local_clock();
7189 7190
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7191 7192
}

P
Peter Zijlstra 已提交
7193
static void cpu_clock_event_start(struct perf_event *event, int flags)
7194
{
P
Peter Zijlstra 已提交
7195
	local64_set(&event->hw.prev_count, local_clock());
7196 7197 7198
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7199
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7200
{
7201 7202 7203
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7204

P
Peter Zijlstra 已提交
7205 7206 7207 7208
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7209
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7210 7211 7212 7213 7214 7215 7216 7217 7218

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7219 7220 7221 7222
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7223

7224 7225 7226 7227 7228 7229 7230 7231
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7232 7233 7234 7235 7236 7237
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7238 7239
	perf_swevent_init_hrtimer(event);

7240
	return 0;
7241 7242
}

7243
static struct pmu perf_cpu_clock = {
7244 7245
	.task_ctx_nr	= perf_sw_context,

7246 7247
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7248
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7249 7250 7251 7252
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7253 7254 7255 7256 7257 7258 7259 7260
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7261
{
7262 7263
	u64 prev;
	s64 delta;
7264

7265 7266 7267 7268
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7269

P
Peter Zijlstra 已提交
7270
static void task_clock_event_start(struct perf_event *event, int flags)
7271
{
P
Peter Zijlstra 已提交
7272
	local64_set(&event->hw.prev_count, event->ctx->time);
7273 7274 7275
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7276
static void task_clock_event_stop(struct perf_event *event, int flags)
7277 7278 7279
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7280 7281 7282 7283 7284 7285
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7286
	perf_event_update_userpage(event);
7287

P
Peter Zijlstra 已提交
7288 7289 7290 7291 7292 7293
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7294 7295 7296 7297
}

static void task_clock_event_read(struct perf_event *event)
{
7298 7299 7300
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7301 7302 7303 7304 7305

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7306
{
7307 7308 7309 7310 7311 7312
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7313 7314 7315 7316 7317 7318
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7319 7320
	perf_swevent_init_hrtimer(event);

7321
	return 0;
L
Li Zefan 已提交
7322 7323
}

7324
static struct pmu perf_task_clock = {
7325 7326
	.task_ctx_nr	= perf_sw_context,

7327 7328
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7329
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7330 7331 7332 7333
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7334 7335
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7336

P
Peter Zijlstra 已提交
7337
static void perf_pmu_nop_void(struct pmu *pmu)
7338 7339
{
}
L
Li Zefan 已提交
7340

7341 7342 7343 7344
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7345
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7346
{
P
Peter Zijlstra 已提交
7347
	return 0;
L
Li Zefan 已提交
7348 7349
}

7350
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7351 7352

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7353
{
7354 7355 7356 7357 7358
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7359
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7360 7361
}

P
Peter Zijlstra 已提交
7362 7363
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7364 7365 7366 7367 7368 7369 7370
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7371 7372 7373
	perf_pmu_enable(pmu);
	return 0;
}
7374

P
Peter Zijlstra 已提交
7375
static void perf_pmu_cancel_txn(struct pmu *pmu)
7376
{
7377 7378 7379 7380 7381 7382 7383
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7384
	perf_pmu_enable(pmu);
7385 7386
}

7387 7388
static int perf_event_idx_default(struct perf_event *event)
{
7389
	return 0;
7390 7391
}

P
Peter Zijlstra 已提交
7392 7393 7394 7395
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7396
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7397
{
P
Peter Zijlstra 已提交
7398
	struct pmu *pmu;
7399

P
Peter Zijlstra 已提交
7400 7401
	if (ctxn < 0)
		return NULL;
7402

P
Peter Zijlstra 已提交
7403 7404 7405 7406
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7407

P
Peter Zijlstra 已提交
7408
	return NULL;
7409 7410
}

7411
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7412
{
7413 7414 7415 7416 7417 7418 7419
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7420 7421
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7422 7423 7424 7425 7426 7427
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7428

P
Peter Zijlstra 已提交
7429
	mutex_lock(&pmus_lock);
7430
	/*
P
Peter Zijlstra 已提交
7431
	 * Like a real lame refcount.
7432
	 */
7433 7434 7435
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7436
			goto out;
7437
		}
P
Peter Zijlstra 已提交
7438
	}
7439

7440
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7441 7442
out:
	mutex_unlock(&pmus_lock);
7443
}
P
Peter Zijlstra 已提交
7444
static struct idr pmu_idr;
7445

P
Peter Zijlstra 已提交
7446 7447 7448 7449 7450 7451 7452
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7453
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7454

7455 7456 7457 7458 7459 7460 7461 7462 7463 7464
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7465 7466
static DEFINE_MUTEX(mux_interval_mutex);

7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7486
	mutex_lock(&mux_interval_mutex);
7487 7488 7489
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7490 7491
	get_online_cpus();
	for_each_online_cpu(cpu) {
7492 7493 7494 7495
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7496 7497
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7498
	}
7499 7500
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7501 7502 7503

	return count;
}
7504
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7505

7506 7507 7508 7509
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7510
};
7511
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7512 7513 7514 7515

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7516
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7532
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7553
static struct lock_class_key cpuctx_mutex;
7554
static struct lock_class_key cpuctx_lock;
7555

7556
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7557
{
P
Peter Zijlstra 已提交
7558
	int cpu, ret;
7559

7560
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7561 7562 7563 7564
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7565

P
Peter Zijlstra 已提交
7566 7567 7568 7569 7570 7571
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7572 7573 7574
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7575 7576 7577 7578 7579
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7580 7581 7582 7583 7584 7585
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7586
skip_type:
P
Peter Zijlstra 已提交
7587 7588 7589
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7590

W
Wei Yongjun 已提交
7591
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7592 7593
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7594
		goto free_dev;
7595

P
Peter Zijlstra 已提交
7596 7597 7598 7599
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7600
		__perf_event_init_context(&cpuctx->ctx);
7601
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7602
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7603
		cpuctx->ctx.pmu = pmu;
7604

7605
		__perf_mux_hrtimer_init(cpuctx, cpu);
7606

7607
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7608
	}
7609

P
Peter Zijlstra 已提交
7610
got_cpu_context:
P
Peter Zijlstra 已提交
7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7622
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7623 7624
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7625
		}
7626
	}
7627

P
Peter Zijlstra 已提交
7628 7629 7630 7631 7632
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7633 7634 7635
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7636
	list_add_rcu(&pmu->entry, &pmus);
7637
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7638 7639
	ret = 0;
unlock:
7640 7641
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7642
	return ret;
P
Peter Zijlstra 已提交
7643

P
Peter Zijlstra 已提交
7644 7645 7646 7647
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7648 7649 7650 7651
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7652 7653 7654
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7655
}
7656
EXPORT_SYMBOL_GPL(perf_pmu_register);
7657

7658
void perf_pmu_unregister(struct pmu *pmu)
7659
{
7660 7661 7662
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7663

7664
	/*
P
Peter Zijlstra 已提交
7665 7666
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7667
	 */
7668
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7669
	synchronize_rcu();
7670

P
Peter Zijlstra 已提交
7671
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7672 7673
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7674 7675
	device_del(pmu->dev);
	put_device(pmu->dev);
7676
	free_pmu_context(pmu);
7677
}
7678
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7679

7680 7681
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7682
	struct perf_event_context *ctx = NULL;
7683 7684 7685 7686
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7687 7688

	if (event->group_leader != event) {
7689 7690 7691 7692 7693 7694
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7695 7696 7697
		BUG_ON(!ctx);
	}

7698 7699
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7700 7701 7702 7703

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7704 7705 7706 7707 7708 7709
	if (ret)
		module_put(pmu->module);

	return ret;
}

7710
static struct pmu *perf_init_event(struct perf_event *event)
7711 7712 7713
{
	struct pmu *pmu = NULL;
	int idx;
7714
	int ret;
7715 7716

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7717 7718 7719 7720

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7721
	if (pmu) {
7722
		ret = perf_try_init_event(pmu, event);
7723 7724
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7725
		goto unlock;
7726
	}
P
Peter Zijlstra 已提交
7727

7728
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7729
		ret = perf_try_init_event(pmu, event);
7730
		if (!ret)
P
Peter Zijlstra 已提交
7731
			goto unlock;
7732

7733 7734
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7735
			goto unlock;
7736
		}
7737
	}
P
Peter Zijlstra 已提交
7738 7739
	pmu = ERR_PTR(-ENOENT);
unlock:
7740
	srcu_read_unlock(&pmus_srcu, idx);
7741

7742
	return pmu;
7743 7744
}

7745 7746 7747 7748 7749 7750 7751 7752 7753
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7754 7755
static void account_event(struct perf_event *event)
{
7756 7757 7758
	if (event->parent)
		return;

7759 7760 7761 7762 7763 7764 7765 7766
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7767 7768 7769 7770
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7771 7772 7773 7774
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
		static_key_slow_inc(&perf_sched_events.key);
	}
7775
	if (has_branch_stack(event))
7776
		static_key_slow_inc(&perf_sched_events.key);
7777
	if (is_cgroup_event(event))
7778
		static_key_slow_inc(&perf_sched_events.key);
7779 7780

	account_event_cpu(event, event->cpu);
7781 7782
}

T
Thomas Gleixner 已提交
7783
/*
7784
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7785
 */
7786
static struct perf_event *
7787
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7788 7789 7790
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7791
		 perf_overflow_handler_t overflow_handler,
7792
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7793
{
P
Peter Zijlstra 已提交
7794
	struct pmu *pmu;
7795 7796
	struct perf_event *event;
	struct hw_perf_event *hwc;
7797
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7798

7799 7800 7801 7802 7803
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7804
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7805
	if (!event)
7806
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7807

7808
	/*
7809
	 * Single events are their own group leaders, with an
7810 7811 7812
	 * empty sibling list:
	 */
	if (!group_leader)
7813
		group_leader = event;
7814

7815 7816
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7817

7818 7819 7820
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7821
	INIT_LIST_HEAD(&event->rb_entry);
7822
	INIT_LIST_HEAD(&event->active_entry);
7823 7824
	INIT_HLIST_NODE(&event->hlist_entry);

7825

7826
	init_waitqueue_head(&event->waitq);
7827
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7828

7829
	mutex_init(&event->mmap_mutex);
7830

7831
	atomic_long_set(&event->refcount, 1);
7832 7833 7834 7835 7836
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7837

7838
	event->parent		= parent_event;
7839

7840
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7841
	event->id		= atomic64_inc_return(&perf_event_id);
7842

7843
	event->state		= PERF_EVENT_STATE_INACTIVE;
7844

7845 7846 7847
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7848 7849 7850
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7851
		 */
7852
		event->hw.target = task;
7853 7854
	}

7855 7856 7857 7858
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7859
	if (!overflow_handler && parent_event) {
7860
		overflow_handler = parent_event->overflow_handler;
7861 7862
		context = parent_event->overflow_handler_context;
	}
7863

7864
	event->overflow_handler	= overflow_handler;
7865
	event->overflow_handler_context = context;
7866

J
Jiri Olsa 已提交
7867
	perf_event__state_init(event);
7868

7869
	pmu = NULL;
7870

7871
	hwc = &event->hw;
7872
	hwc->sample_period = attr->sample_period;
7873
	if (attr->freq && attr->sample_freq)
7874
		hwc->sample_period = 1;
7875
	hwc->last_period = hwc->sample_period;
7876

7877
	local64_set(&hwc->period_left, hwc->sample_period);
7878

7879
	/*
7880
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7881
	 */
7882
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7883
		goto err_ns;
7884 7885 7886

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7887

7888 7889 7890 7891 7892 7893
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7894
	pmu = perf_init_event(event);
7895
	if (!pmu)
7896 7897
		goto err_ns;
	else if (IS_ERR(pmu)) {
7898
		err = PTR_ERR(pmu);
7899
		goto err_ns;
I
Ingo Molnar 已提交
7900
	}
7901

7902 7903 7904 7905
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7906
	if (!event->parent) {
7907 7908
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7909
			if (err)
7910
				goto err_per_task;
7911
		}
7912
	}
7913

7914
	return event;
7915

7916 7917 7918
err_per_task:
	exclusive_event_destroy(event);

7919 7920 7921
err_pmu:
	if (event->destroy)
		event->destroy(event);
7922
	module_put(pmu->module);
7923
err_ns:
7924 7925
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7926 7927 7928 7929 7930
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7931 7932
}

7933 7934
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7935 7936
{
	u32 size;
7937
	int ret;
7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7962 7963 7964
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7965 7966
	 */
	if (size > sizeof(*attr)) {
7967 7968 7969
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7970

7971 7972
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7973

7974
		for (; addr < end; addr++) {
7975 7976 7977 7978 7979 7980
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7981
		size = sizeof(*attr);
7982 7983 7984 7985 7986 7987
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7988
	if (attr->__reserved_1)
7989 7990 7991 7992 7993 7994 7995 7996
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8025 8026
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8027 8028
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8029
	}
8030

8031
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8032
		ret = perf_reg_validate(attr->sample_regs_user);
8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8051

8052 8053
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8054 8055 8056 8057 8058 8059 8060 8061 8062
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8063 8064
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8065
{
8066
	struct ring_buffer *rb = NULL;
8067 8068
	int ret = -EINVAL;

8069
	if (!output_event)
8070 8071
		goto set;

8072 8073
	/* don't allow circular references */
	if (event == output_event)
8074 8075
		goto out;

8076 8077 8078 8079 8080 8081 8082
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8083
	 * If its not a per-cpu rb, it must be the same task.
8084 8085 8086 8087
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8088 8089 8090 8091 8092 8093
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8094 8095 8096 8097 8098 8099 8100
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8101
set:
8102
	mutex_lock(&event->mmap_mutex);
8103 8104 8105
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8106

8107
	if (output_event) {
8108 8109 8110
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8111
			goto unlock;
8112 8113
	}

8114
	ring_buffer_attach(event, rb);
8115

8116
	ret = 0;
8117 8118 8119
unlock:
	mutex_unlock(&event->mmap_mutex);

8120 8121 8122 8123
out:
	return ret;
}

P
Peter Zijlstra 已提交
8124 8125 8126 8127 8128 8129 8130 8131 8132
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8170
/**
8171
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8172
 *
8173
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8174
 * @pid:		target pid
I
Ingo Molnar 已提交
8175
 * @cpu:		target cpu
8176
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8177
 */
8178 8179
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8180
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8181
{
8182 8183
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8184
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8185
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8186
	struct file *event_file = NULL;
8187
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8188
	struct task_struct *task = NULL;
8189
	struct pmu *pmu;
8190
	int event_fd;
8191
	int move_group = 0;
8192
	int err;
8193
	int f_flags = O_RDWR;
8194
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8195

8196
	/* for future expandability... */
S
Stephane Eranian 已提交
8197
	if (flags & ~PERF_FLAG_ALL)
8198 8199
		return -EINVAL;

8200 8201 8202
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8203

8204 8205 8206 8207 8208
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8209
	if (attr.freq) {
8210
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8211
			return -EINVAL;
8212 8213 8214
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8215 8216
	}

S
Stephane Eranian 已提交
8217 8218 8219 8220 8221 8222 8223 8224 8225
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8226 8227 8228 8229
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8230 8231 8232
	if (event_fd < 0)
		return event_fd;

8233
	if (group_fd != -1) {
8234 8235
		err = perf_fget_light(group_fd, &group);
		if (err)
8236
			goto err_fd;
8237
		group_leader = group.file->private_data;
8238 8239 8240 8241 8242 8243
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8244
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8245 8246 8247 8248 8249 8250 8251
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8252 8253 8254 8255 8256 8257
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8258 8259
	get_online_cpus();

8260 8261 8262
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8263
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8264
				 NULL, NULL, cgroup_fd);
8265 8266
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8267
		goto err_cpus;
8268 8269
	}

8270 8271 8272 8273 8274 8275 8276
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8277 8278
	account_event(event);

8279 8280 8281 8282 8283
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8284

8285 8286 8287 8288 8289 8290
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8313 8314 8315 8316

	/*
	 * Get the target context (task or percpu):
	 */
8317
	ctx = find_get_context(pmu, task, event);
8318 8319
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8320
		goto err_alloc;
8321 8322
	}

8323 8324 8325 8326 8327
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8328 8329 8330 8331 8332
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8333
	/*
8334
	 * Look up the group leader (we will attach this event to it):
8335
	 */
8336
	if (group_leader) {
8337
		err = -EINVAL;
8338 8339

		/*
I
Ingo Molnar 已提交
8340 8341 8342 8343
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8344
			goto err_context;
8345 8346 8347 8348 8349

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8350 8351 8352
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8353
		 */
8354
		if (move_group) {
8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8368 8369 8370 8371 8372 8373
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8374 8375 8376
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8377
		if (attr.exclusive || attr.pinned)
8378
			goto err_context;
8379 8380 8381 8382 8383
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8384
			goto err_context;
8385
	}
T
Thomas Gleixner 已提交
8386

8387 8388
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8389 8390
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8391
		goto err_context;
8392
	}
8393

8394
	if (move_group) {
P
Peter Zijlstra 已提交
8395
		gctx = group_leader->ctx;
8396 8397 8398 8399 8400
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8401 8402 8403 8404 8405
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8406 8407 8408 8409 8410 8411 8412
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8413

8414 8415 8416
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8417

8418 8419 8420
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8421 8422 8423 8424
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8425
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8426

8427 8428
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8429
			perf_remove_from_context(sibling, false);
8430 8431 8432
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8433 8434 8435 8436
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8437
		synchronize_rcu();
P
Peter Zijlstra 已提交
8438

8439 8440 8441 8442 8443 8444 8445 8446 8447 8448
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8449 8450
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8451
			perf_event__state_init(sibling);
8452
			perf_install_in_context(ctx, sibling, sibling->cpu);
8453 8454
			get_ctx(ctx);
		}
8455 8456 8457 8458 8459 8460 8461 8462 8463

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8464

8465 8466 8467 8468 8469 8470
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8471 8472
	}

8473 8474 8475 8476 8477 8478 8479 8480 8481
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

8482
	perf_install_in_context(ctx, event, event->cpu);
8483
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8484

8485
	if (move_group)
P
Peter Zijlstra 已提交
8486
		mutex_unlock(&gctx->mutex);
8487
	mutex_unlock(&ctx->mutex);
8488

8489 8490
	put_online_cpus();

8491
	event->owner = current;
P
Peter Zijlstra 已提交
8492

8493 8494 8495
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8496

8497 8498 8499 8500 8501 8502
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8503
	fdput(group);
8504 8505
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8506

8507 8508 8509 8510 8511 8512
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8513
err_context:
8514
	perf_unpin_context(ctx);
8515
	put_ctx(ctx);
8516
err_alloc:
8517
	free_event(event);
8518
err_cpus:
8519
	put_online_cpus();
8520
err_task:
P
Peter Zijlstra 已提交
8521 8522
	if (task)
		put_task_struct(task);
8523
err_group_fd:
8524
	fdput(group);
8525 8526
err_fd:
	put_unused_fd(event_fd);
8527
	return err;
T
Thomas Gleixner 已提交
8528 8529
}

8530 8531 8532 8533 8534
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8535
 * @task: task to profile (NULL for percpu)
8536 8537 8538
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8539
				 struct task_struct *task,
8540 8541
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8542 8543
{
	struct perf_event_context *ctx;
8544
	struct perf_event *event;
8545
	int err;
8546

8547 8548 8549
	/*
	 * Get the target context (task or percpu):
	 */
8550

8551
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8552
				 overflow_handler, context, -1);
8553 8554 8555 8556
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8557

8558 8559 8560
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8561 8562
	account_event(event);

8563
	ctx = find_get_context(event->pmu, task, event);
8564 8565
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8566
		goto err_free;
8567
	}
8568 8569 8570

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8571 8572 8573 8574 8575 8576 8577 8578
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8579
	perf_install_in_context(ctx, event, cpu);
8580
	perf_unpin_context(ctx);
8581 8582 8583 8584
	mutex_unlock(&ctx->mutex);

	return event;

8585 8586 8587
err_free:
	free_event(event);
err:
8588
	return ERR_PTR(err);
8589
}
8590
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8591

8592 8593 8594 8595 8596 8597 8598 8599 8600 8601
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8602 8603 8604 8605 8606
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8607 8608
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8609
		perf_remove_from_context(event, false);
8610
		unaccount_event_cpu(event, src_cpu);
8611
		put_ctx(src_ctx);
8612
		list_add(&event->migrate_entry, &events);
8613 8614
	}

8615 8616 8617
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8618 8619
	synchronize_rcu();

8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8644 8645
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8646 8647
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8648
		account_event_cpu(event, dst_cpu);
8649 8650 8651 8652
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8653
	mutex_unlock(&src_ctx->mutex);
8654 8655 8656
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8657
static void sync_child_event(struct perf_event *child_event,
8658
			       struct task_struct *child)
8659
{
8660
	struct perf_event *parent_event = child_event->parent;
8661
	u64 child_val;
8662

8663 8664
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8665

P
Peter Zijlstra 已提交
8666
	child_val = perf_event_count(child_event);
8667 8668 8669 8670

	/*
	 * Add back the child's count to the parent's count:
	 */
8671
	atomic64_add(child_val, &parent_event->child_count);
8672 8673 8674 8675
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8676 8677

	/*
8678
	 * Remove this event from the parent's list
8679
	 */
8680 8681 8682 8683
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8684

8685 8686 8687 8688 8689 8690
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8691
	/*
8692
	 * Release the parent event, if this was the last
8693 8694
	 * reference to it.
	 */
8695
	put_event(parent_event);
8696 8697
}

8698
static void
8699 8700
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8701
			 struct task_struct *child)
8702
{
8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8716

8717
	/*
8718
	 * It can happen that the parent exits first, and has events
8719
	 * that are still around due to the child reference. These
8720
	 * events need to be zapped.
8721
	 */
8722
	if (child_event->parent) {
8723 8724
		sync_child_event(child_event, child);
		free_event(child_event);
8725 8726 8727
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8728
	}
8729 8730
}

P
Peter Zijlstra 已提交
8731
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8732
{
8733
	struct perf_event *child_event, *next;
8734
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8735
	unsigned long flags;
8736

J
Jiri Olsa 已提交
8737
	if (likely(!child->perf_event_ctxp[ctxn]))
8738 8739
		return;

8740
	local_irq_save(flags);
8741 8742 8743 8744 8745 8746
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8747
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8748 8749 8750

	/*
	 * Take the context lock here so that if find_get_context is
8751
	 * reading child->perf_event_ctxp, we wait until it has
8752 8753
	 * incremented the context's refcount before we do put_ctx below.
	 */
8754
	raw_spin_lock(&child_ctx->lock);
8755
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
8756
	child->perf_event_ctxp[ctxn] = NULL;
8757

8758 8759 8760
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8761
	 * the events from it.
8762
	 */
8763
	clone_ctx = unclone_ctx(child_ctx);
8764
	update_context_time(child_ctx);
8765
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8766

8767 8768
	if (clone_ctx)
		put_ctx(clone_ctx);
8769

P
Peter Zijlstra 已提交
8770
	/*
8771 8772 8773
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8774
	 */
8775
	perf_event_task(child, child_ctx, 0);
8776

8777 8778 8779
	/*
	 * We can recurse on the same lock type through:
	 *
8780 8781
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8782 8783
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8784 8785 8786
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8787
	mutex_lock(&child_ctx->mutex);
8788

8789
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8790
		__perf_event_exit_task(child_event, child_ctx, child);
8791

8792 8793 8794
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8795 8796
}

P
Peter Zijlstra 已提交
8797 8798 8799 8800 8801
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8802
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8803 8804
	int ctxn;

P
Peter Zijlstra 已提交
8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8820 8821
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8822 8823 8824 8825 8826 8827 8828 8829

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8830 8831
}

8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8844
	put_event(parent);
8845

P
Peter Zijlstra 已提交
8846
	raw_spin_lock_irq(&ctx->lock);
8847
	perf_group_detach(event);
8848
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8849
	raw_spin_unlock_irq(&ctx->lock);
8850 8851 8852
	free_event(event);
}

8853
/*
P
Peter Zijlstra 已提交
8854
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8855
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8856 8857 8858
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8859
 */
8860
void perf_event_free_task(struct task_struct *task)
8861
{
P
Peter Zijlstra 已提交
8862
	struct perf_event_context *ctx;
8863
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8864
	int ctxn;
8865

P
Peter Zijlstra 已提交
8866 8867 8868 8869
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8870

P
Peter Zijlstra 已提交
8871
		mutex_lock(&ctx->mutex);
8872
again:
P
Peter Zijlstra 已提交
8873 8874 8875
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8876

P
Peter Zijlstra 已提交
8877 8878 8879
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8880

P
Peter Zijlstra 已提交
8881 8882 8883
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8884

P
Peter Zijlstra 已提交
8885
		mutex_unlock(&ctx->mutex);
8886

P
Peter Zijlstra 已提交
8887 8888
		put_ctx(ctx);
	}
8889 8890
}

8891 8892 8893 8894 8895 8896 8897 8898
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923
struct perf_event *perf_event_get(unsigned int fd)
{
	int err;
	struct fd f;
	struct perf_event *event;

	err = perf_fget_light(fd, &f);
	if (err)
		return ERR_PTR(err);

	event = f.file->private_data;
	atomic_long_inc(&event->refcount);
	fdput(f);

	return event;
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8935
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8936
	struct perf_event *child_event;
8937
	unsigned long flags;
P
Peter Zijlstra 已提交
8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8950
					   child,
P
Peter Zijlstra 已提交
8951
					   group_leader, parent_event,
8952
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8953 8954
	if (IS_ERR(child_event))
		return child_event;
8955

8956 8957
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8958 8959 8960 8961
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8962 8963 8964 8965 8966 8967 8968
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8969
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8986 8987
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8988

8989 8990 8991 8992
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8993
	perf_event__id_header_size(child_event);
8994

P
Peter Zijlstra 已提交
8995 8996 8997
	/*
	 * Link it up in the child's context:
	 */
8998
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8999
	add_event_to_ctx(child_event, child_ctx);
9000
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9034 9035 9036 9037 9038
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9039
		   struct task_struct *child, int ctxn,
9040 9041 9042
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9043
	struct perf_event_context *child_ctx;
9044 9045 9046 9047

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9048 9049
	}

9050
	child_ctx = child->perf_event_ctxp[ctxn];
9051 9052 9053 9054 9055 9056 9057
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9058

9059
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9060 9061
		if (!child_ctx)
			return -ENOMEM;
9062

P
Peter Zijlstra 已提交
9063
		child->perf_event_ctxp[ctxn] = child_ctx;
9064 9065 9066 9067 9068 9069 9070 9071 9072
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9073 9074
}

9075
/*
9076
 * Initialize the perf_event context in task_struct
9077
 */
9078
static int perf_event_init_context(struct task_struct *child, int ctxn)
9079
{
9080
	struct perf_event_context *child_ctx, *parent_ctx;
9081 9082
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9083
	struct task_struct *parent = current;
9084
	int inherited_all = 1;
9085
	unsigned long flags;
9086
	int ret = 0;
9087

P
Peter Zijlstra 已提交
9088
	if (likely(!parent->perf_event_ctxp[ctxn]))
9089 9090
		return 0;

9091
	/*
9092 9093
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9094
	 */
P
Peter Zijlstra 已提交
9095
	parent_ctx = perf_pin_task_context(parent, ctxn);
9096 9097
	if (!parent_ctx)
		return 0;
9098

9099 9100 9101 9102 9103 9104 9105
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9106 9107 9108 9109
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9110
	mutex_lock(&parent_ctx->mutex);
9111 9112 9113 9114 9115

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9116
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9117 9118
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9119 9120 9121
		if (ret)
			break;
	}
9122

9123 9124 9125 9126 9127 9128 9129 9130 9131
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9132
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9133 9134
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9135
		if (ret)
9136
			break;
9137 9138
	}

9139 9140 9141
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9142
	child_ctx = child->perf_event_ctxp[ctxn];
9143

9144
	if (child_ctx && inherited_all) {
9145 9146 9147
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9148 9149 9150
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9151
		 */
P
Peter Zijlstra 已提交
9152
		cloned_ctx = parent_ctx->parent_ctx;
9153 9154
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9155
			child_ctx->parent_gen = parent_ctx->parent_gen;
9156 9157 9158 9159 9160
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9161 9162
	}

P
Peter Zijlstra 已提交
9163
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9164
	mutex_unlock(&parent_ctx->mutex);
9165

9166
	perf_unpin_context(parent_ctx);
9167
	put_ctx(parent_ctx);
9168

9169
	return ret;
9170 9171
}

P
Peter Zijlstra 已提交
9172 9173 9174 9175 9176 9177 9178
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9179 9180 9181 9182
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9183 9184
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9185 9186
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9187
			return ret;
P
Peter Zijlstra 已提交
9188
		}
P
Peter Zijlstra 已提交
9189 9190 9191 9192 9193
	}

	return 0;
}

9194 9195
static void __init perf_event_init_all_cpus(void)
{
9196
	struct swevent_htable *swhash;
9197 9198 9199
	int cpu;

	for_each_possible_cpu(cpu) {
9200 9201
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9202
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9203 9204 9205
	}
}

9206
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9207
{
P
Peter Zijlstra 已提交
9208
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9209

9210
	mutex_lock(&swhash->hlist_mutex);
9211
	if (swhash->hlist_refcount > 0) {
9212 9213
		struct swevent_hlist *hlist;

9214 9215 9216
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9217
	}
9218
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9219 9220
}

9221
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9222
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9223
{
9224
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
9225
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
9226

P
Peter Zijlstra 已提交
9227
	rcu_read_lock();
9228 9229
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
9230
	rcu_read_unlock();
T
Thomas Gleixner 已提交
9231
}
P
Peter Zijlstra 已提交
9232 9233 9234 9235 9236 9237 9238 9239 9240

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9241
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9242 9243 9244 9245 9246 9247 9248 9249

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9250
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9251
{
P
Peter Zijlstra 已提交
9252
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9253 9254
}
#else
9255
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9256 9257
#endif

P
Peter Zijlstra 已提交
9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9278
static int
T
Thomas Gleixner 已提交
9279 9280 9281 9282
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9283
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9284 9285

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9286
	case CPU_DOWN_FAILED:
9287
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9288 9289
		break;

P
Peter Zijlstra 已提交
9290
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9291
	case CPU_DOWN_PREPARE:
9292
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9293 9294 9295 9296 9297 9298 9299 9300
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9301
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9302
{
9303 9304
	int ret;

P
Peter Zijlstra 已提交
9305 9306
	idr_init(&pmu_idr);

9307
	perf_event_init_all_cpus();
9308
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9309 9310 9311
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9312 9313
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9314
	register_reboot_notifier(&perf_reboot_notifier);
9315 9316 9317

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9318 9319 9320

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9321 9322 9323 9324 9325 9326 9327

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9328
}
P
Peter Zijlstra 已提交
9329

9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9369 9370

#ifdef CONFIG_CGROUP_PERF
9371 9372
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9373 9374 9375
{
	struct perf_cgroup *jc;

9376
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9389
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9390
{
9391 9392
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9393 9394 9395 9396 9397 9398 9399
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9400
	rcu_read_lock();
S
Stephane Eranian 已提交
9401
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9402
	rcu_read_unlock();
S
Stephane Eranian 已提交
9403 9404 9405
	return 0;
}

9406
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9407
{
9408
	struct task_struct *task;
9409
	struct cgroup_subsys_state *css;
9410

9411
	cgroup_taskset_for_each(task, css, tset)
9412
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9413 9414
}

9415
struct cgroup_subsys perf_event_cgrp_subsys = {
9416 9417
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9418
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9419 9420
};
#endif /* CONFIG_CGROUP_PERF */