core.c 185.2 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121 122 123
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

124 125 126 127 128 129 130
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

131 132 133 134 135 136
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
137 138 139 140
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
141
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
142
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
144

145 146 147
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
148
static atomic_t nr_freq_events __read_mostly;
149

P
Peter Zijlstra 已提交
150 151 152 153
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

154
/*
155
 * perf event paranoia level:
156 157
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
158
 *   1 - disallow cpu events for unpriv
159
 *   2 - disallow kernel profiling for unpriv
160
 */
161
int sysctl_perf_event_paranoid __read_mostly = 1;
162

163 164
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
165 166

/*
167
 * max perf event sample rate
168
 */
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

static atomic_t perf_sample_allowed_ns __read_mostly =
	ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
186
	do_div(tmp, 100);
187 188
	atomic_set(&perf_sample_allowed_ns, tmp);
}
P
Peter Zijlstra 已提交
189

190 191
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
192 193 194 195
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
196
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
197 198 199 200 201

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
220 221 222

	return 0;
}
223

224 225 226 227 228 229 230 231 232 233 234 235
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
DEFINE_PER_CPU(u64, running_sample_length);

void perf_sample_event_took(u64 sample_len_ns)
{
	u64 avg_local_sample_len;
236
	u64 local_samples_len;
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

	if (atomic_read(&perf_sample_allowed_ns) == 0)
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	printk_ratelimited(KERN_WARNING
			"perf samples too long (%lld > %d), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
			avg_local_sample_len,
			atomic_read(&perf_sample_allowed_ns),
			sysctl_perf_event_sample_rate);

	update_perf_cpu_limits();
}

274
static atomic64_t perf_event_id;
275

276 277 278 279
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
280 281 282 283 284
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
285

286
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
287

288
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
289
{
290
	return "pmu";
T
Thomas Gleixner 已提交
291 292
}

293 294 295 296 297
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
298 299 300 301 302 303
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
320 321
#ifdef CONFIG_CGROUP_PERF

322 323 324 325 326 327 328 329 330 331 332
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
333
	struct perf_cgroup_info	__percpu *info;
334 335
};

336 337 338 339 340
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
341 342 343
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
344 345
	return container_of(task_css(task, perf_subsys_id),
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
346 347 348 349 350 351 352 353
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
370 371
}

372
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
373
{
374
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
423 424
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
425
	/*
426 427
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
428
	 */
429
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
430 431
		return;

432 433 434 435 436 437
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
438 439 440
}

static inline void
441 442
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
443 444 445 446
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

447 448 449 450 451 452
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
453 454 455 456
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
457
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
490 491
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
492 493 494 495 496 497 498 499 500

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
501 502
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
503 504 505 506 507 508 509 510 511 512 513

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
514
				WARN_ON_ONCE(cpuctx->cgrp);
515 516 517 518
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
519 520 521 522
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
523 524
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
525 526 527 528 529 530 531 532
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

533 534
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
535
{
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
558 559
}

560 561
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
562
{
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
581 582 583 584 585 586 587 588
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
589 590
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
591

592
	if (!f.file)
S
Stephane Eranian 已提交
593 594
		return -EBADF;

595 596
	rcu_read_lock();

597
	css = css_from_dir(f.file->f_dentry, &perf_subsys);
598 599 600 601
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
602 603 604 605

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

606
	/* must be done before we fput() the file */
607 608 609 610 611
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
612

S
Stephane Eranian 已提交
613 614 615 616 617 618 619 620 621
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
622
out:
623
	rcu_read_unlock();
624
	fdput(f);
S
Stephane Eranian 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

698 699
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
700 701 702
{
}

703 704
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
705 706 707 708 709 710 711 712 713 714 715
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
716 717
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
811
	int timer;
812 813 814 815 816

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

817 818 819 820 821 822 823 824 825
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
848
void perf_pmu_disable(struct pmu *pmu)
849
{
P
Peter Zijlstra 已提交
850 851 852
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
853 854
}

P
Peter Zijlstra 已提交
855
void perf_pmu_enable(struct pmu *pmu)
856
{
P
Peter Zijlstra 已提交
857 858 859
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
860 861
}

862 863 864 865 866 867 868
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
869
static void perf_pmu_rotate_start(struct pmu *pmu)
870
{
P
Peter Zijlstra 已提交
871
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
872
	struct list_head *head = &__get_cpu_var(rotation_list);
873

874
	WARN_ON(!irqs_disabled());
875

876
	if (list_empty(&cpuctx->rotation_list))
877
		list_add(&cpuctx->rotation_list, head);
878 879
}

880
static void get_ctx(struct perf_event_context *ctx)
881
{
882
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
883 884
}

885
static void put_ctx(struct perf_event_context *ctx)
886
{
887 888 889
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
890 891
		if (ctx->task)
			put_task_struct(ctx->task);
892
		kfree_rcu(ctx, rcu_head);
893
	}
894 895
}

896
static void unclone_ctx(struct perf_event_context *ctx)
897 898 899 900 901 902 903
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

926
/*
927
 * If we inherit events we want to return the parent event id
928 929
 * to userspace.
 */
930
static u64 primary_event_id(struct perf_event *event)
931
{
932
	u64 id = event->id;
933

934 935
	if (event->parent)
		id = event->parent->id;
936 937 938 939

	return id;
}

940
/*
941
 * Get the perf_event_context for a task and lock it.
942 943 944
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
945
static struct perf_event_context *
P
Peter Zijlstra 已提交
946
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
947
{
948
	struct perf_event_context *ctx;
949

P
Peter Zijlstra 已提交
950
retry:
951 952 953 954 955 956 957 958 959 960 961
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
962
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
963 964 965 966
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
967
		 * perf_event_task_sched_out, though the
968 969 970 971 972 973
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
974
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
975
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
976
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
977 978
			rcu_read_unlock();
			preempt_enable();
979 980
			goto retry;
		}
981 982

		if (!atomic_inc_not_zero(&ctx->refcount)) {
983
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
984 985
			ctx = NULL;
		}
986 987
	}
	rcu_read_unlock();
988
	preempt_enable();
989 990 991 992 993 994 995 996
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
997 998
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
999
{
1000
	struct perf_event_context *ctx;
1001 1002
	unsigned long flags;

P
Peter Zijlstra 已提交
1003
	ctx = perf_lock_task_context(task, ctxn, &flags);
1004 1005
	if (ctx) {
		++ctx->pin_count;
1006
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1007 1008 1009 1010
	}
	return ctx;
}

1011
static void perf_unpin_context(struct perf_event_context *ctx)
1012 1013 1014
{
	unsigned long flags;

1015
	raw_spin_lock_irqsave(&ctx->lock, flags);
1016
	--ctx->pin_count;
1017
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1018 1019
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1031 1032 1033
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1034 1035 1036 1037

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1038 1039 1040
	return ctx ? ctx->time : 0;
}

1041 1042
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1043
 * The caller of this function needs to hold the ctx->lock.
1044 1045 1046 1047 1048 1049 1050 1051 1052
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1064
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1065 1066
	else if (ctx->is_active)
		run_end = ctx->time;
1067 1068 1069 1070
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1071 1072 1073 1074

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1075
		run_end = perf_event_time(event);
1076 1077

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1078

1079 1080
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1093 1094 1095 1096 1097 1098 1099 1100 1101
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1102
/*
1103
 * Add a event from the lists for its context.
1104 1105
 * Must be called with ctx->mutex and ctx->lock held.
 */
1106
static void
1107
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1108
{
1109 1110
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1111 1112

	/*
1113 1114 1115
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1116
	 */
1117
	if (event->group_leader == event) {
1118 1119
		struct list_head *list;

1120 1121 1122
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1123 1124
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1125
	}
P
Peter Zijlstra 已提交
1126

1127
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1128 1129
		ctx->nr_cgroups++;

1130 1131 1132
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1133
	list_add_rcu(&event->event_entry, &ctx->event_list);
1134
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1135
		perf_pmu_rotate_start(ctx->pmu);
1136 1137
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1138
		ctx->nr_stat++;
1139 1140
}

J
Jiri Olsa 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1189 1190 1191 1192 1193 1194
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1195 1196 1197
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1198 1199 1200
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1201 1202 1203
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

1204 1205 1206 1207 1208 1209 1210 1211 1212
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1213 1214 1215 1216 1217 1218
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1219 1220 1221
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1222 1223 1224 1225 1226 1227 1228 1229 1230
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1231
	event->id_header_size = size;
1232 1233
}

1234 1235
static void perf_group_attach(struct perf_event *event)
{
1236
	struct perf_event *group_leader = event->group_leader, *pos;
1237

P
Peter Zijlstra 已提交
1238 1239 1240 1241 1242 1243
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1255 1256 1257 1258 1259

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1260 1261
}

1262
/*
1263
 * Remove a event from the lists for its context.
1264
 * Must be called with ctx->mutex and ctx->lock held.
1265
 */
1266
static void
1267
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1268
{
1269
	struct perf_cpu_context *cpuctx;
1270 1271 1272 1273
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1274
		return;
1275 1276 1277

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1278
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1279
		ctx->nr_cgroups--;
1280 1281 1282 1283 1284 1285 1286 1287 1288
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1289

1290 1291 1292
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1293 1294
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1295
		ctx->nr_stat--;
1296

1297
	list_del_rcu(&event->event_entry);
1298

1299 1300
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1301

1302
	update_group_times(event);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1313 1314
}

1315
static void perf_group_detach(struct perf_event *event)
1316 1317
{
	struct perf_event *sibling, *tmp;
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1334
		goto out;
1335 1336 1337 1338
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1339

1340
	/*
1341 1342
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1343
	 * to whatever list we are on.
1344
	 */
1345
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1346 1347
		if (list)
			list_move_tail(&sibling->group_entry, list);
1348
		sibling->group_leader = sibling;
1349 1350 1351

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1352
	}
1353 1354 1355 1356 1357 1358

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1359 1360
}

1361 1362 1363
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1364 1365
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1366 1367
}

1368 1369
static void
event_sched_out(struct perf_event *event,
1370
		  struct perf_cpu_context *cpuctx,
1371
		  struct perf_event_context *ctx)
1372
{
1373
	u64 tstamp = perf_event_time(event);
1374 1375 1376 1377 1378 1379 1380 1381 1382
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1383
		delta = tstamp - event->tstamp_stopped;
1384
		event->tstamp_running += delta;
1385
		event->tstamp_stopped = tstamp;
1386 1387
	}

1388
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1389
		return;
1390

1391 1392 1393 1394
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1395
	}
1396
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1397
	event->pmu->del(event, 0);
1398
	event->oncpu = -1;
1399

1400
	if (!is_software_event(event))
1401 1402
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1403 1404
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1405
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1406 1407 1408
		cpuctx->exclusive = 0;
}

1409
static void
1410
group_sched_out(struct perf_event *group_event,
1411
		struct perf_cpu_context *cpuctx,
1412
		struct perf_event_context *ctx)
1413
{
1414
	struct perf_event *event;
1415
	int state = group_event->state;
1416

1417
	event_sched_out(group_event, cpuctx, ctx);
1418 1419 1420 1421

	/*
	 * Schedule out siblings (if any):
	 */
1422 1423
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1424

1425
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1426 1427 1428
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1429
/*
1430
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1431
 *
1432
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1433 1434
 * remove it from the context list.
 */
1435
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1436
{
1437 1438
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1439
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1440

1441
	raw_spin_lock(&ctx->lock);
1442 1443
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1444 1445 1446 1447
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1448
	raw_spin_unlock(&ctx->lock);
1449 1450

	return 0;
T
Thomas Gleixner 已提交
1451 1452 1453 1454
}


/*
1455
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1456
 *
1457
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1458
 * call when the task is on a CPU.
1459
 *
1460 1461
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1462 1463
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1464
 * When called from perf_event_exit_task, it's OK because the
1465
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1466
 */
1467
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1468
{
1469
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1470 1471
	struct task_struct *task = ctx->task;

1472 1473
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1474 1475
	if (!task) {
		/*
1476
		 * Per cpu events are removed via an smp call and
1477
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1478
		 */
1479
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1480 1481 1482 1483
		return;
	}

retry:
1484 1485
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1486

1487
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1488
	/*
1489 1490
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1491
	 */
1492
	if (ctx->is_active) {
1493
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1494 1495 1496 1497
		goto retry;
	}

	/*
1498 1499
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1500
	 */
1501
	list_del_event(event, ctx);
1502
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1503 1504
}

1505
/*
1506
 * Cross CPU call to disable a performance event
1507
 */
1508
int __perf_event_disable(void *info)
1509
{
1510 1511
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1512
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1513 1514

	/*
1515 1516
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1517 1518 1519
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1520
	 */
1521
	if (ctx->task && cpuctx->task_ctx != ctx)
1522
		return -EINVAL;
1523

1524
	raw_spin_lock(&ctx->lock);
1525 1526

	/*
1527
	 * If the event is on, turn it off.
1528 1529
	 * If it is in error state, leave it in error state.
	 */
1530
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1531
		update_context_time(ctx);
S
Stephane Eranian 已提交
1532
		update_cgrp_time_from_event(event);
1533 1534 1535
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1536
		else
1537 1538
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1539 1540
	}

1541
	raw_spin_unlock(&ctx->lock);
1542 1543

	return 0;
1544 1545 1546
}

/*
1547
 * Disable a event.
1548
 *
1549 1550
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1551
 * remains valid.  This condition is satisifed when called through
1552 1553 1554 1555
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1556
 * is the current context on this CPU and preemption is disabled,
1557
 * hence we can't get into perf_event_task_sched_out for this context.
1558
 */
1559
void perf_event_disable(struct perf_event *event)
1560
{
1561
	struct perf_event_context *ctx = event->ctx;
1562 1563 1564 1565
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1566
		 * Disable the event on the cpu that it's on
1567
		 */
1568
		cpu_function_call(event->cpu, __perf_event_disable, event);
1569 1570 1571
		return;
	}

P
Peter Zijlstra 已提交
1572
retry:
1573 1574
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1575

1576
	raw_spin_lock_irq(&ctx->lock);
1577
	/*
1578
	 * If the event is still active, we need to retry the cross-call.
1579
	 */
1580
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1581
		raw_spin_unlock_irq(&ctx->lock);
1582 1583 1584 1585 1586
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1587 1588 1589 1590 1591 1592 1593
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1594 1595 1596
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1597
	}
1598
	raw_spin_unlock_irq(&ctx->lock);
1599
}
1600
EXPORT_SYMBOL_GPL(perf_event_disable);
1601

S
Stephane Eranian 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1637 1638 1639 1640
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1641
static int
1642
event_sched_in(struct perf_event *event,
1643
		 struct perf_cpu_context *cpuctx,
1644
		 struct perf_event_context *ctx)
1645
{
1646 1647
	u64 tstamp = perf_event_time(event);

1648
	if (event->state <= PERF_EVENT_STATE_OFF)
1649 1650
		return 0;

1651
	event->state = PERF_EVENT_STATE_ACTIVE;
1652
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1664 1665 1666 1667 1668
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1669
	if (event->pmu->add(event, PERF_EF_START)) {
1670 1671
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1672 1673 1674
		return -EAGAIN;
	}

1675
	event->tstamp_running += tstamp - event->tstamp_stopped;
1676

S
Stephane Eranian 已提交
1677
	perf_set_shadow_time(event, ctx, tstamp);
1678

1679
	if (!is_software_event(event))
1680
		cpuctx->active_oncpu++;
1681
	ctx->nr_active++;
1682 1683
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1684

1685
	if (event->attr.exclusive)
1686 1687
		cpuctx->exclusive = 1;

1688 1689 1690
	return 0;
}

1691
static int
1692
group_sched_in(struct perf_event *group_event,
1693
	       struct perf_cpu_context *cpuctx,
1694
	       struct perf_event_context *ctx)
1695
{
1696
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1697
	struct pmu *pmu = group_event->pmu;
1698 1699
	u64 now = ctx->time;
	bool simulate = false;
1700

1701
	if (group_event->state == PERF_EVENT_STATE_OFF)
1702 1703
		return 0;

P
Peter Zijlstra 已提交
1704
	pmu->start_txn(pmu);
1705

1706
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1707
		pmu->cancel_txn(pmu);
1708
		perf_cpu_hrtimer_restart(cpuctx);
1709
		return -EAGAIN;
1710
	}
1711 1712 1713 1714

	/*
	 * Schedule in siblings as one group (if any):
	 */
1715
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1716
		if (event_sched_in(event, cpuctx, ctx)) {
1717
			partial_group = event;
1718 1719 1720 1721
			goto group_error;
		}
	}

1722
	if (!pmu->commit_txn(pmu))
1723
		return 0;
1724

1725 1726 1727 1728
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1739
	 */
1740 1741
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1742 1743 1744 1745 1746 1747 1748 1749
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1750
	}
1751
	event_sched_out(group_event, cpuctx, ctx);
1752

P
Peter Zijlstra 已提交
1753
	pmu->cancel_txn(pmu);
1754

1755 1756
	perf_cpu_hrtimer_restart(cpuctx);

1757 1758 1759
	return -EAGAIN;
}

1760
/*
1761
 * Work out whether we can put this event group on the CPU now.
1762
 */
1763
static int group_can_go_on(struct perf_event *event,
1764 1765 1766 1767
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1768
	 * Groups consisting entirely of software events can always go on.
1769
	 */
1770
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1771 1772 1773
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1774
	 * events can go on.
1775 1776 1777 1778 1779
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1780
	 * events on the CPU, it can't go on.
1781
	 */
1782
	if (event->attr.exclusive && cpuctx->active_oncpu)
1783 1784 1785 1786 1787 1788 1789 1790
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1791 1792
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1793
{
1794 1795
	u64 tstamp = perf_event_time(event);

1796
	list_add_event(event, ctx);
1797
	perf_group_attach(event);
1798 1799 1800
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1801 1802
}

1803 1804 1805 1806 1807 1808
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1809

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1822
/*
1823
 * Cross CPU call to install and enable a performance event
1824 1825
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1826
 */
1827
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1828
{
1829 1830
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1831
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1832 1833 1834
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1835
	perf_ctx_lock(cpuctx, task_ctx);
1836
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1837 1838

	/*
1839
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1840
	 */
1841
	if (task_ctx)
1842
		task_ctx_sched_out(task_ctx);
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1857 1858
		task = task_ctx->task;
	}
1859

1860
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1861

1862
	update_context_time(ctx);
S
Stephane Eranian 已提交
1863 1864 1865 1866 1867 1868
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1869

1870
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1871

1872
	/*
1873
	 * Schedule everything back in
1874
	 */
1875
	perf_event_sched_in(cpuctx, task_ctx, task);
1876 1877 1878

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1879 1880

	return 0;
T
Thomas Gleixner 已提交
1881 1882 1883
}

/*
1884
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1885
 *
1886 1887
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1888
 *
1889
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1890 1891 1892 1893
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1894 1895
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1896 1897 1898 1899
			int cpu)
{
	struct task_struct *task = ctx->task;

1900 1901
	lockdep_assert_held(&ctx->mutex);

1902
	event->ctx = ctx;
1903 1904
	if (event->cpu != -1)
		event->cpu = cpu;
1905

T
Thomas Gleixner 已提交
1906 1907
	if (!task) {
		/*
1908
		 * Per cpu events are installed via an smp call and
1909
		 * the install is always successful.
T
Thomas Gleixner 已提交
1910
		 */
1911
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1912 1913 1914 1915
		return;
	}

retry:
1916 1917
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1918

1919
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1920
	/*
1921 1922
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1923
	 */
1924
	if (ctx->is_active) {
1925
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1926 1927 1928 1929
		goto retry;
	}

	/*
1930 1931
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1932
	 */
1933
	add_event_to_ctx(event, ctx);
1934
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1935 1936
}

1937
/*
1938
 * Put a event into inactive state and update time fields.
1939 1940 1941 1942 1943 1944
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1945
static void __perf_event_mark_enabled(struct perf_event *event)
1946
{
1947
	struct perf_event *sub;
1948
	u64 tstamp = perf_event_time(event);
1949

1950
	event->state = PERF_EVENT_STATE_INACTIVE;
1951
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1952
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1953 1954
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1955
	}
1956 1957
}

1958
/*
1959
 * Cross CPU call to enable a performance event
1960
 */
1961
static int __perf_event_enable(void *info)
1962
{
1963 1964 1965
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1966
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1967
	int err;
1968

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
1979
		return -EINVAL;
1980

1981
	raw_spin_lock(&ctx->lock);
1982
	update_context_time(ctx);
1983

1984
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1985
		goto unlock;
S
Stephane Eranian 已提交
1986 1987 1988 1989

	/*
	 * set current task's cgroup time reference point
	 */
1990
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1991

1992
	__perf_event_mark_enabled(event);
1993

S
Stephane Eranian 已提交
1994 1995 1996
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1997
		goto unlock;
S
Stephane Eranian 已提交
1998
	}
1999

2000
	/*
2001
	 * If the event is in a group and isn't the group leader,
2002
	 * then don't put it on unless the group is on.
2003
	 */
2004
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2005
		goto unlock;
2006

2007
	if (!group_can_go_on(event, cpuctx, 1)) {
2008
		err = -EEXIST;
2009
	} else {
2010
		if (event == leader)
2011
			err = group_sched_in(event, cpuctx, ctx);
2012
		else
2013
			err = event_sched_in(event, cpuctx, ctx);
2014
	}
2015 2016 2017

	if (err) {
		/*
2018
		 * If this event can't go on and it's part of a
2019 2020
		 * group, then the whole group has to come off.
		 */
2021
		if (leader != event) {
2022
			group_sched_out(leader, cpuctx, ctx);
2023 2024
			perf_cpu_hrtimer_restart(cpuctx);
		}
2025
		if (leader->attr.pinned) {
2026
			update_group_times(leader);
2027
			leader->state = PERF_EVENT_STATE_ERROR;
2028
		}
2029 2030
	}

P
Peter Zijlstra 已提交
2031
unlock:
2032
	raw_spin_unlock(&ctx->lock);
2033 2034

	return 0;
2035 2036 2037
}

/*
2038
 * Enable a event.
2039
 *
2040 2041
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2042
 * remains valid.  This condition is satisfied when called through
2043 2044
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2045
 */
2046
void perf_event_enable(struct perf_event *event)
2047
{
2048
	struct perf_event_context *ctx = event->ctx;
2049 2050 2051 2052
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2053
		 * Enable the event on the cpu that it's on
2054
		 */
2055
		cpu_function_call(event->cpu, __perf_event_enable, event);
2056 2057 2058
		return;
	}

2059
	raw_spin_lock_irq(&ctx->lock);
2060
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2061 2062 2063
		goto out;

	/*
2064 2065
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2066 2067 2068 2069
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2070 2071
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2072

P
Peter Zijlstra 已提交
2073
retry:
2074
	if (!ctx->is_active) {
2075
		__perf_event_mark_enabled(event);
2076 2077 2078
		goto out;
	}

2079
	raw_spin_unlock_irq(&ctx->lock);
2080 2081 2082

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2083

2084
	raw_spin_lock_irq(&ctx->lock);
2085 2086

	/*
2087
	 * If the context is active and the event is still off,
2088 2089
	 * we need to retry the cross-call.
	 */
2090 2091 2092 2093 2094 2095
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2096
		goto retry;
2097
	}
2098

P
Peter Zijlstra 已提交
2099
out:
2100
	raw_spin_unlock_irq(&ctx->lock);
2101
}
2102
EXPORT_SYMBOL_GPL(perf_event_enable);
2103

2104
int perf_event_refresh(struct perf_event *event, int refresh)
2105
{
2106
	/*
2107
	 * not supported on inherited events
2108
	 */
2109
	if (event->attr.inherit || !is_sampling_event(event))
2110 2111
		return -EINVAL;

2112 2113
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2114 2115

	return 0;
2116
}
2117
EXPORT_SYMBOL_GPL(perf_event_refresh);
2118

2119 2120 2121
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2122
{
2123
	struct perf_event *event;
2124
	int is_active = ctx->is_active;
2125

2126
	ctx->is_active &= ~event_type;
2127
	if (likely(!ctx->nr_events))
2128 2129
		return;

2130
	update_context_time(ctx);
S
Stephane Eranian 已提交
2131
	update_cgrp_time_from_cpuctx(cpuctx);
2132
	if (!ctx->nr_active)
2133
		return;
2134

P
Peter Zijlstra 已提交
2135
	perf_pmu_disable(ctx->pmu);
2136
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2137 2138
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2139
	}
2140

2141
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2142
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2143
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2144
	}
P
Peter Zijlstra 已提交
2145
	perf_pmu_enable(ctx->pmu);
2146 2147
}

2148 2149 2150
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
2151 2152 2153 2154
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
2155
 * in them directly with an fd; we can only enable/disable all
2156
 * events via prctl, or enable/disable all events in a family
2157 2158
 * via ioctl, which will have the same effect on both contexts.
 */
2159 2160
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2161 2162
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2163
		&& ctx1->parent_gen == ctx2->parent_gen
2164
		&& !ctx1->pin_count && !ctx2->pin_count;
2165 2166
}

2167 2168
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2169 2170 2171
{
	u64 value;

2172
	if (!event->attr.inherit_stat)
2173 2174 2175
		return;

	/*
2176
	 * Update the event value, we cannot use perf_event_read()
2177 2178
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2179
	 * we know the event must be on the current CPU, therefore we
2180 2181
	 * don't need to use it.
	 */
2182 2183
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2184 2185
		event->pmu->read(event);
		/* fall-through */
2186

2187 2188
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2189 2190 2191 2192 2193 2194 2195
		break;

	default:
		break;
	}

	/*
2196
	 * In order to keep per-task stats reliable we need to flip the event
2197 2198
	 * values when we flip the contexts.
	 */
2199 2200 2201
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2202

2203 2204
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2205

2206
	/*
2207
	 * Since we swizzled the values, update the user visible data too.
2208
	 */
2209 2210
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2211 2212 2213 2214 2215
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

2216 2217
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2218
{
2219
	struct perf_event *event, *next_event;
2220 2221 2222 2223

	if (!ctx->nr_stat)
		return;

2224 2225
	update_context_time(ctx);

2226 2227
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2228

2229 2230
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2231

2232 2233
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2234

2235
		__perf_event_sync_stat(event, next_event);
2236

2237 2238
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2239 2240 2241
	}
}

2242 2243
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2244
{
P
Peter Zijlstra 已提交
2245
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2246 2247
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
2248
	struct perf_cpu_context *cpuctx;
2249
	int do_switch = 1;
T
Thomas Gleixner 已提交
2250

P
Peter Zijlstra 已提交
2251 2252
	if (likely(!ctx))
		return;
2253

P
Peter Zijlstra 已提交
2254 2255
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2256 2257
		return;

2258 2259
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
2260
	next_ctx = next->perf_event_ctxp[ctxn];
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2272 2273
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2274
		if (context_equiv(ctx, next_ctx)) {
2275 2276
			/*
			 * XXX do we need a memory barrier of sorts
2277
			 * wrt to rcu_dereference() of perf_event_ctxp
2278
			 */
P
Peter Zijlstra 已提交
2279 2280
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2281 2282 2283
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2284

2285
			perf_event_sync_stat(ctx, next_ctx);
2286
		}
2287 2288
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2289
	}
2290
	rcu_read_unlock();
2291

2292
	if (do_switch) {
2293
		raw_spin_lock(&ctx->lock);
2294
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2295
		cpuctx->task_ctx = NULL;
2296
		raw_spin_unlock(&ctx->lock);
2297
	}
T
Thomas Gleixner 已提交
2298 2299
}

P
Peter Zijlstra 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2314 2315
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2316 2317 2318 2319 2320
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2321 2322 2323 2324 2325 2326 2327

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2328
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2329 2330
}

2331
static void task_ctx_sched_out(struct perf_event_context *ctx)
2332
{
P
Peter Zijlstra 已提交
2333
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2334

2335 2336
	if (!cpuctx->task_ctx)
		return;
2337 2338 2339 2340

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2341
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2342 2343 2344
	cpuctx->task_ctx = NULL;
}

2345 2346 2347 2348 2349 2350 2351
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2352 2353
}

2354
static void
2355
ctx_pinned_sched_in(struct perf_event_context *ctx,
2356
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2357
{
2358
	struct perf_event *event;
T
Thomas Gleixner 已提交
2359

2360 2361
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2362
			continue;
2363
		if (!event_filter_match(event))
2364 2365
			continue;

S
Stephane Eranian 已提交
2366 2367 2368 2369
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2370
		if (group_can_go_on(event, cpuctx, 1))
2371
			group_sched_in(event, cpuctx, ctx);
2372 2373 2374 2375 2376

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2377 2378 2379
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2380
		}
2381
	}
2382 2383 2384 2385
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2386
		      struct perf_cpu_context *cpuctx)
2387 2388 2389
{
	struct perf_event *event;
	int can_add_hw = 1;
2390

2391 2392 2393
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2394
			continue;
2395 2396
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2397
		 * of events:
2398
		 */
2399
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2400 2401
			continue;

S
Stephane Eranian 已提交
2402 2403 2404 2405
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2406
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2407
			if (group_sched_in(event, cpuctx, ctx))
2408
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2409
		}
T
Thomas Gleixner 已提交
2410
	}
2411 2412 2413 2414 2415
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2416 2417
	     enum event_type_t event_type,
	     struct task_struct *task)
2418
{
S
Stephane Eranian 已提交
2419
	u64 now;
2420
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2421

2422
	ctx->is_active |= event_type;
2423
	if (likely(!ctx->nr_events))
2424
		return;
2425

S
Stephane Eranian 已提交
2426 2427
	now = perf_clock();
	ctx->timestamp = now;
2428
	perf_cgroup_set_timestamp(task, ctx);
2429 2430 2431 2432
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2433
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2434
		ctx_pinned_sched_in(ctx, cpuctx);
2435 2436

	/* Then walk through the lower prio flexible groups */
2437
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2438
		ctx_flexible_sched_in(ctx, cpuctx);
2439 2440
}

2441
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2442 2443
			     enum event_type_t event_type,
			     struct task_struct *task)
2444 2445 2446
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2447
	ctx_sched_in(ctx, cpuctx, event_type, task);
2448 2449
}

S
Stephane Eranian 已提交
2450 2451
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2452
{
P
Peter Zijlstra 已提交
2453
	struct perf_cpu_context *cpuctx;
2454

P
Peter Zijlstra 已提交
2455
	cpuctx = __get_cpu_context(ctx);
2456 2457 2458
	if (cpuctx->task_ctx == ctx)
		return;

2459
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2460
	perf_pmu_disable(ctx->pmu);
2461 2462 2463 2464 2465 2466 2467
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2468 2469
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2470

2471 2472
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2473 2474 2475
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2476 2477 2478 2479
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2480
	perf_pmu_rotate_start(ctx->pmu);
2481 2482
}

2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2554 2555
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2556 2557 2558 2559 2560 2561 2562 2563 2564
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2565
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2566
	}
S
Stephane Eranian 已提交
2567 2568 2569 2570 2571 2572
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2573
		perf_cgroup_sched_in(prev, task);
2574 2575 2576 2577

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2578 2579
}

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2607
#define REDUCE_FLS(a, b)		\
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2647 2648 2649
	if (!divisor)
		return dividend;

2650 2651 2652
	return div64_u64(dividend, divisor);
}

2653 2654 2655
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2656
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2657
{
2658
	struct hw_perf_event *hwc = &event->hw;
2659
	s64 period, sample_period;
2660 2661
	s64 delta;

2662
	period = perf_calculate_period(event, nsec, count);
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2673

2674
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2675 2676 2677
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2678
		local64_set(&hwc->period_left, 0);
2679 2680 2681

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2682
	}
2683 2684
}

2685 2686 2687 2688 2689 2690 2691
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2692
{
2693 2694
	struct perf_event *event;
	struct hw_perf_event *hwc;
2695
	u64 now, period = TICK_NSEC;
2696
	s64 delta;
2697

2698 2699 2700 2701 2702 2703
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2704 2705
		return;

2706
	raw_spin_lock(&ctx->lock);
2707
	perf_pmu_disable(ctx->pmu);
2708

2709
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2710
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2711 2712
			continue;

2713
		if (!event_filter_match(event))
2714 2715
			continue;

2716
		hwc = &event->hw;
2717

2718
		if (hwc->interrupts == MAX_INTERRUPTS) {
2719
			hwc->interrupts = 0;
2720
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2721
			event->pmu->start(event, 0);
2722 2723
		}

2724
		if (!event->attr.freq || !event->attr.sample_freq)
2725 2726
			continue;

2727 2728 2729 2730 2731
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2732
		now = local64_read(&event->count);
2733 2734
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2735

2736 2737 2738
		/*
		 * restart the event
		 * reload only if value has changed
2739 2740 2741
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2742
		 */
2743
		if (delta > 0)
2744
			perf_adjust_period(event, period, delta, false);
2745 2746

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2747
	}
2748

2749
	perf_pmu_enable(ctx->pmu);
2750
	raw_spin_unlock(&ctx->lock);
2751 2752
}

2753
/*
2754
 * Round-robin a context's events:
2755
 */
2756
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2757
{
2758 2759 2760 2761 2762 2763
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2764 2765
}

2766
/*
2767 2768 2769
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2770
 */
2771
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2772
{
P
Peter Zijlstra 已提交
2773
	struct perf_event_context *ctx = NULL;
2774
	int rotate = 0, remove = 1;
2775

2776
	if (cpuctx->ctx.nr_events) {
2777
		remove = 0;
2778 2779 2780
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2781

P
Peter Zijlstra 已提交
2782
	ctx = cpuctx->task_ctx;
2783
	if (ctx && ctx->nr_events) {
2784
		remove = 0;
2785 2786 2787
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2788

2789
	if (!rotate)
2790 2791
		goto done;

2792
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2793
	perf_pmu_disable(cpuctx->ctx.pmu);
2794

2795 2796 2797
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2798

2799 2800 2801
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2802

2803
	perf_event_sched_in(cpuctx, ctx, current);
2804

2805 2806
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2807
done:
2808 2809
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2810 2811

	return rotate;
2812 2813
}

2814 2815 2816
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2817
	if (atomic_read(&nr_freq_events) ||
2818
	    __this_cpu_read(perf_throttled_count))
2819
		return false;
2820 2821
	else
		return true;
2822 2823 2824
}
#endif

2825 2826 2827 2828
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2829 2830
	struct perf_event_context *ctx;
	int throttled;
2831

2832 2833
	WARN_ON(!irqs_disabled());

2834 2835 2836
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2837
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2838 2839 2840 2841 2842 2843
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2844
	}
T
Thomas Gleixner 已提交
2845 2846
}

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2857
	__perf_event_mark_enabled(event);
2858 2859 2860 2861

	return 1;
}

2862
/*
2863
 * Enable all of a task's events that have been marked enable-on-exec.
2864 2865
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2866
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2867
{
2868
	struct perf_event *event;
2869 2870
	unsigned long flags;
	int enabled = 0;
2871
	int ret;
2872 2873

	local_irq_save(flags);
2874
	if (!ctx || !ctx->nr_events)
2875 2876
		goto out;

2877 2878 2879 2880 2881 2882 2883
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2884
	perf_cgroup_sched_out(current, NULL);
2885

2886
	raw_spin_lock(&ctx->lock);
2887
	task_ctx_sched_out(ctx);
2888

2889
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2890 2891 2892
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2893 2894 2895
	}

	/*
2896
	 * Unclone this context if we enabled any event.
2897
	 */
2898 2899
	if (enabled)
		unclone_ctx(ctx);
2900

2901
	raw_spin_unlock(&ctx->lock);
2902

2903 2904 2905
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2906
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2907
out:
2908 2909 2910
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2911
/*
2912
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2913
 */
2914
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2915
{
2916 2917
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2918
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2919

2920 2921 2922 2923
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2924 2925
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2926 2927 2928 2929
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2930
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2931
	if (ctx->is_active) {
2932
		update_context_time(ctx);
S
Stephane Eranian 已提交
2933 2934
		update_cgrp_time_from_event(event);
	}
2935
	update_event_times(event);
2936 2937
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2938
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2939 2940
}

P
Peter Zijlstra 已提交
2941 2942
static inline u64 perf_event_count(struct perf_event *event)
{
2943
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2944 2945
}

2946
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2947 2948
{
	/*
2949 2950
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2951
	 */
2952 2953 2954 2955
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2956 2957 2958
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2959
		raw_spin_lock_irqsave(&ctx->lock, flags);
2960 2961 2962 2963 2964
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2965
		if (ctx->is_active) {
2966
			update_context_time(ctx);
S
Stephane Eranian 已提交
2967 2968
			update_cgrp_time_from_event(event);
		}
2969
		update_event_times(event);
2970
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2971 2972
	}

P
Peter Zijlstra 已提交
2973
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2974 2975
}

2976
/*
2977
 * Initialize the perf_event context in a task_struct:
2978
 */
2979
static void __perf_event_init_context(struct perf_event_context *ctx)
2980
{
2981
	raw_spin_lock_init(&ctx->lock);
2982
	mutex_init(&ctx->mutex);
2983 2984
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2985 2986
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3002
	}
3003 3004 3005
	ctx->pmu = pmu;

	return ctx;
3006 3007
}

3008 3009 3010 3011 3012
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3013 3014

	rcu_read_lock();
3015
	if (!vpid)
T
Thomas Gleixner 已提交
3016 3017
		task = current;
	else
3018
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3019 3020 3021 3022 3023 3024 3025 3026
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3027 3028 3029 3030
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3031 3032 3033 3034 3035 3036 3037
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3038 3039 3040
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3041
static struct perf_event_context *
M
Matt Helsley 已提交
3042
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3043
{
3044
	struct perf_event_context *ctx;
3045
	struct perf_cpu_context *cpuctx;
3046
	unsigned long flags;
P
Peter Zijlstra 已提交
3047
	int ctxn, err;
T
Thomas Gleixner 已提交
3048

3049
	if (!task) {
3050
		/* Must be root to operate on a CPU event: */
3051
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3052 3053 3054
			return ERR_PTR(-EACCES);

		/*
3055
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3056 3057 3058
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3059
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3060 3061
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3062
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3063
		ctx = &cpuctx->ctx;
3064
		get_ctx(ctx);
3065
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3066 3067 3068 3069

		return ctx;
	}

P
Peter Zijlstra 已提交
3070 3071 3072 3073 3074
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3075
retry:
P
Peter Zijlstra 已提交
3076
	ctx = perf_lock_task_context(task, ctxn, &flags);
3077
	if (ctx) {
3078
		unclone_ctx(ctx);
3079
		++ctx->pin_count;
3080
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3081
	} else {
3082
		ctx = alloc_perf_context(pmu, task);
3083 3084 3085
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3086

3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3097
		else {
3098
			get_ctx(ctx);
3099
			++ctx->pin_count;
3100
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3101
		}
3102 3103 3104
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3105
			put_ctx(ctx);
3106 3107 3108 3109

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3110 3111 3112
		}
	}

T
Thomas Gleixner 已提交
3113
	return ctx;
3114

P
Peter Zijlstra 已提交
3115
errout:
3116
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3117 3118
}

L
Li Zefan 已提交
3119 3120
static void perf_event_free_filter(struct perf_event *event);

3121
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3122
{
3123
	struct perf_event *event;
P
Peter Zijlstra 已提交
3124

3125 3126 3127
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3128
	perf_event_free_filter(event);
3129
	kfree(event);
P
Peter Zijlstra 已提交
3130 3131
}

3132
static void ring_buffer_put(struct ring_buffer *rb);
3133
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3134

3135
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3136
{
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3147

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3161 3162
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3163 3164 3165 3166 3167 3168 3169
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3170

3171 3172
static void __free_event(struct perf_event *event)
{
3173
	if (!event->parent) {
3174 3175
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3176
	}
3177

3178 3179 3180 3181 3182 3183 3184 3185
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	call_rcu(&event->rcu_head, free_event_rcu);
}
3186
static void free_event(struct perf_event *event)
3187
{
3188
	irq_work_sync(&event->pending);
3189

3190
	unaccount_event(event);
3191

3192
	if (event->rb) {
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3209 3210
	}

S
Stephane Eranian 已提交
3211 3212 3213
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3214

3215
	__free_event(event);
3216 3217
}

3218
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3219
{
3220
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3221

3222
	WARN_ON_ONCE(ctx->parent_ctx);
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3236
	raw_spin_lock_irq(&ctx->lock);
3237
	perf_group_detach(event);
3238
	raw_spin_unlock_irq(&ctx->lock);
3239
	perf_remove_from_context(event);
3240
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3241

3242
	free_event(event);
T
Thomas Gleixner 已提交
3243 3244 3245

	return 0;
}
3246
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3247

3248 3249 3250
/*
 * Called when the last reference to the file is gone.
 */
3251
static void put_event(struct perf_event *event)
3252
{
P
Peter Zijlstra 已提交
3253
	struct task_struct *owner;
3254

3255 3256
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3257

P
Peter Zijlstra 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3291 3292 3293 3294 3295 3296 3297
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3298 3299
}

3300
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3301
{
3302
	struct perf_event *child;
3303 3304
	u64 total = 0;

3305 3306 3307
	*enabled = 0;
	*running = 0;

3308
	mutex_lock(&event->child_mutex);
3309
	total += perf_event_read(event);
3310 3311 3312 3313 3314 3315
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3316
		total += perf_event_read(child);
3317 3318 3319
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3320
	mutex_unlock(&event->child_mutex);
3321 3322 3323

	return total;
}
3324
EXPORT_SYMBOL_GPL(perf_event_read_value);
3325

3326
static int perf_event_read_group(struct perf_event *event,
3327 3328
				   u64 read_format, char __user *buf)
{
3329
	struct perf_event *leader = event->group_leader, *sub;
3330 3331
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3332
	u64 values[5];
3333
	u64 count, enabled, running;
3334

3335
	mutex_lock(&ctx->mutex);
3336
	count = perf_event_read_value(leader, &enabled, &running);
3337 3338

	values[n++] = 1 + leader->nr_siblings;
3339 3340 3341 3342
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3343 3344 3345
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3346 3347 3348 3349

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3350
		goto unlock;
3351

3352
	ret = size;
3353

3354
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3355
		n = 0;
3356

3357
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3358 3359 3360 3361 3362
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3363
		if (copy_to_user(buf + ret, values, size)) {
3364 3365 3366
			ret = -EFAULT;
			goto unlock;
		}
3367 3368

		ret += size;
3369
	}
3370 3371
unlock:
	mutex_unlock(&ctx->mutex);
3372

3373
	return ret;
3374 3375
}

3376
static int perf_event_read_one(struct perf_event *event,
3377 3378
				 u64 read_format, char __user *buf)
{
3379
	u64 enabled, running;
3380 3381 3382
	u64 values[4];
	int n = 0;

3383 3384 3385 3386 3387
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3388
	if (read_format & PERF_FORMAT_ID)
3389
		values[n++] = primary_event_id(event);
3390 3391 3392 3393 3394 3395 3396

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3397
/*
3398
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3399 3400
 */
static ssize_t
3401
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3402
{
3403
	u64 read_format = event->attr.read_format;
3404
	int ret;
T
Thomas Gleixner 已提交
3405

3406
	/*
3407
	 * Return end-of-file for a read on a event that is in
3408 3409 3410
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3411
	if (event->state == PERF_EVENT_STATE_ERROR)
3412 3413
		return 0;

3414
	if (count < event->read_size)
3415 3416
		return -ENOSPC;

3417
	WARN_ON_ONCE(event->ctx->parent_ctx);
3418
	if (read_format & PERF_FORMAT_GROUP)
3419
		ret = perf_event_read_group(event, read_format, buf);
3420
	else
3421
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3422

3423
	return ret;
T
Thomas Gleixner 已提交
3424 3425 3426 3427 3428
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3429
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3430

3431
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3432 3433 3434 3435
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3436
	struct perf_event *event = file->private_data;
3437
	struct ring_buffer *rb;
3438
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3439

3440
	/*
3441 3442
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3443 3444
	 */
	mutex_lock(&event->mmap_mutex);
3445 3446
	rb = event->rb;
	if (rb)
3447
		events = atomic_xchg(&rb->poll, 0);
3448 3449
	mutex_unlock(&event->mmap_mutex);

3450
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3451 3452 3453 3454

	return events;
}

3455
static void perf_event_reset(struct perf_event *event)
3456
{
3457
	(void)perf_event_read(event);
3458
	local64_set(&event->count, 0);
3459
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3460 3461
}

3462
/*
3463 3464 3465 3466
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3467
 */
3468 3469
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3470
{
3471
	struct perf_event *child;
P
Peter Zijlstra 已提交
3472

3473 3474 3475 3476
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3477
		func(child);
3478
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3479 3480
}

3481 3482
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3483
{
3484 3485
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3486

3487 3488
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3489
	event = event->group_leader;
3490

3491 3492
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3493
		perf_event_for_each_child(sibling, func);
3494
	mutex_unlock(&ctx->mutex);
3495 3496
}

3497
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3498
{
3499
	struct perf_event_context *ctx = event->ctx;
3500 3501 3502
	int ret = 0;
	u64 value;

3503
	if (!is_sampling_event(event))
3504 3505
		return -EINVAL;

3506
	if (copy_from_user(&value, arg, sizeof(value)))
3507 3508 3509 3510 3511
		return -EFAULT;

	if (!value)
		return -EINVAL;

3512
	raw_spin_lock_irq(&ctx->lock);
3513 3514
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3515 3516 3517 3518
			ret = -EINVAL;
			goto unlock;
		}

3519
		event->attr.sample_freq = value;
3520
	} else {
3521 3522
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3523 3524
	}
unlock:
3525
	raw_spin_unlock_irq(&ctx->lock);
3526 3527 3528 3529

	return ret;
}

3530 3531
static const struct file_operations perf_fops;

3532
static inline int perf_fget_light(int fd, struct fd *p)
3533
{
3534 3535 3536
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3537

3538 3539 3540
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3541
	}
3542 3543
	*p = f;
	return 0;
3544 3545 3546 3547
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3548
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3549

3550 3551
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3552 3553
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3554
	u32 flags = arg;
3555 3556

	switch (cmd) {
3557 3558
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3559
		break;
3560 3561
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3562
		break;
3563 3564
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3565
		break;
P
Peter Zijlstra 已提交
3566

3567 3568
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3569

3570 3571
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3572

3573 3574 3575 3576 3577 3578 3579 3580 3581
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3582
	case PERF_EVENT_IOC_SET_OUTPUT:
3583 3584 3585
	{
		int ret;
		if (arg != -1) {
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3596 3597 3598
		}
		return ret;
	}
3599

L
Li Zefan 已提交
3600 3601 3602
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3603
	default:
P
Peter Zijlstra 已提交
3604
		return -ENOTTY;
3605
	}
P
Peter Zijlstra 已提交
3606 3607

	if (flags & PERF_IOC_FLAG_GROUP)
3608
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3609
	else
3610
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3611 3612

	return 0;
3613 3614
}

3615
int perf_event_task_enable(void)
3616
{
3617
	struct perf_event *event;
3618

3619 3620 3621 3622
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3623 3624 3625 3626

	return 0;
}

3627
int perf_event_task_disable(void)
3628
{
3629
	struct perf_event *event;
3630

3631 3632 3633 3634
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3635 3636 3637 3638

	return 0;
}

3639
static int perf_event_index(struct perf_event *event)
3640
{
P
Peter Zijlstra 已提交
3641 3642 3643
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3644
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3645 3646
		return 0;

3647
	return event->pmu->event_idx(event);
3648 3649
}

3650
static void calc_timer_values(struct perf_event *event,
3651
				u64 *now,
3652 3653
				u64 *enabled,
				u64 *running)
3654
{
3655
	u64 ctx_time;
3656

3657 3658
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3659 3660 3661 3662
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

3683
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3684 3685 3686
{
}

3687 3688 3689 3690 3691
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3692
void perf_event_update_userpage(struct perf_event *event)
3693
{
3694
	struct perf_event_mmap_page *userpg;
3695
	struct ring_buffer *rb;
3696
	u64 enabled, running, now;
3697 3698

	rcu_read_lock();
3699 3700 3701 3702
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3703 3704 3705 3706 3707 3708 3709 3710 3711
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3712
	calc_timer_values(event, &now, &enabled, &running);
3713

3714
	userpg = rb->user_page;
3715 3716 3717 3718 3719
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3720
	++userpg->lock;
3721
	barrier();
3722
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3723
	userpg->offset = perf_event_count(event);
3724
	if (userpg->index)
3725
		userpg->offset -= local64_read(&event->hw.prev_count);
3726

3727
	userpg->time_enabled = enabled +
3728
			atomic64_read(&event->child_total_time_enabled);
3729

3730
	userpg->time_running = running +
3731
			atomic64_read(&event->child_total_time_running);
3732

3733
	arch_perf_update_userpage(userpg, now);
3734

3735
	barrier();
3736
	++userpg->lock;
3737
	preempt_enable();
3738
unlock:
3739
	rcu_read_unlock();
3740 3741
}

3742 3743 3744
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3745
	struct ring_buffer *rb;
3746 3747 3748 3749 3750 3751 3752 3753 3754
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3755 3756
	rb = rcu_dereference(event->rb);
	if (!rb)
3757 3758 3759 3760 3761
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3762
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3777 3778 3779 3780 3781 3782 3783 3784 3785
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3786 3787
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3788 3789 3790
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3791
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3810 3811 3812 3813
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3814 3815 3816
	rcu_read_unlock();
}

3817
static void rb_free_rcu(struct rcu_head *rcu_head)
3818
{
3819
	struct ring_buffer *rb;
3820

3821 3822
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3823 3824
}

3825
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3826
{
3827
	struct ring_buffer *rb;
3828

3829
	rcu_read_lock();
3830 3831 3832 3833
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3834 3835 3836
	}
	rcu_read_unlock();

3837
	return rb;
3838 3839
}

3840
static void ring_buffer_put(struct ring_buffer *rb)
3841
{
3842
	if (!atomic_dec_and_test(&rb->refcount))
3843
		return;
3844

3845
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3846

3847
	call_rcu(&rb->rcu_head, rb_free_rcu);
3848 3849 3850 3851
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3852
	struct perf_event *event = vma->vm_file->private_data;
3853

3854
	atomic_inc(&event->mmap_count);
3855
	atomic_inc(&event->rb->mmap_count);
3856 3857
}

3858 3859 3860 3861 3862 3863 3864 3865
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3866 3867
static void perf_mmap_close(struct vm_area_struct *vma)
{
3868
	struct perf_event *event = vma->vm_file->private_data;
3869

3870 3871 3872 3873
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3874

3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3890

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3907

3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
3923
		}
3924
		mutex_unlock(&event->mmap_mutex);
3925
		put_event(event);
3926

3927 3928 3929 3930 3931
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
3932
	}
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
3949 3950
}

3951
static const struct vm_operations_struct perf_mmap_vmops = {
3952 3953 3954 3955
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3956 3957 3958 3959
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3960
	struct perf_event *event = file->private_data;
3961
	unsigned long user_locked, user_lock_limit;
3962
	struct user_struct *user = current_user();
3963
	unsigned long locked, lock_limit;
3964
	struct ring_buffer *rb;
3965 3966
	unsigned long vma_size;
	unsigned long nr_pages;
3967
	long user_extra, extra;
3968
	int ret = 0, flags = 0;
3969

3970 3971 3972
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3973
	 * same rb.
3974 3975 3976 3977
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3978
	if (!(vma->vm_flags & VM_SHARED))
3979
		return -EINVAL;
3980 3981 3982 3983

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3984
	/*
3985
	 * If we have rb pages ensure they're a power-of-two number, so we
3986 3987 3988
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3989 3990
		return -EINVAL;

3991
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3992 3993
		return -EINVAL;

3994 3995
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3996

3997
	WARN_ON_ONCE(event->ctx->parent_ctx);
3998
again:
3999
	mutex_lock(&event->mmap_mutex);
4000
	if (event->rb) {
4001
		if (event->rb->nr_pages != nr_pages) {
4002
			ret = -EINVAL;
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4016 4017 4018
		goto unlock;
	}

4019
	user_extra = nr_pages + 1;
4020
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4021 4022 4023 4024 4025 4026

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4027
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4028

4029 4030 4031
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4032

4033
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4034
	lock_limit >>= PAGE_SHIFT;
4035
	locked = vma->vm_mm->pinned_vm + extra;
4036

4037 4038
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4039 4040 4041
		ret = -EPERM;
		goto unlock;
	}
4042

4043
	WARN_ON(event->rb);
4044

4045
	if (vma->vm_flags & VM_WRITE)
4046
		flags |= RING_BUFFER_WRITABLE;
4047

4048 4049 4050 4051
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4052
	if (!rb) {
4053
		ret = -ENOMEM;
4054
		goto unlock;
4055
	}
P
Peter Zijlstra 已提交
4056

4057
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4058 4059
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4060

4061
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4062 4063
	vma->vm_mm->pinned_vm += extra;

4064
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
4065
	rcu_assign_pointer(event->rb, rb);
4066

4067
	perf_event_init_userpage(event);
4068 4069
	perf_event_update_userpage(event);

4070
unlock:
4071 4072
	if (!ret)
		atomic_inc(&event->mmap_count);
4073
	mutex_unlock(&event->mmap_mutex);
4074

4075 4076 4077 4078
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4079
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4080
	vma->vm_ops = &perf_mmap_vmops;
4081 4082

	return ret;
4083 4084
}

P
Peter Zijlstra 已提交
4085 4086
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4087
	struct inode *inode = file_inode(filp);
4088
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4089 4090 4091
	int retval;

	mutex_lock(&inode->i_mutex);
4092
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4093 4094 4095 4096 4097 4098 4099 4100
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4101
static const struct file_operations perf_fops = {
4102
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4103 4104 4105
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4106 4107
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4108
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4109
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4110 4111
};

4112
/*
4113
 * Perf event wakeup
4114 4115 4116 4117 4118
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4119
void perf_event_wakeup(struct perf_event *event)
4120
{
4121
	ring_buffer_wakeup(event);
4122

4123 4124 4125
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4126
	}
4127 4128
}

4129
static void perf_pending_event(struct irq_work *entry)
4130
{
4131 4132
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4133

4134 4135 4136
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4137 4138
	}

4139 4140 4141
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4142 4143 4144
	}
}

4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4292 4293 4294
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4310
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4322 4323 4324
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4349 4350 4351

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4352 4353
}

4354 4355 4356
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4357 4358 4359 4360 4361
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4362
static void perf_output_read_one(struct perf_output_handle *handle,
4363 4364
				 struct perf_event *event,
				 u64 enabled, u64 running)
4365
{
4366
	u64 read_format = event->attr.read_format;
4367 4368 4369
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4370
	values[n++] = perf_event_count(event);
4371
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4372
		values[n++] = enabled +
4373
			atomic64_read(&event->child_total_time_enabled);
4374 4375
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4376
		values[n++] = running +
4377
			atomic64_read(&event->child_total_time_running);
4378 4379
	}
	if (read_format & PERF_FORMAT_ID)
4380
		values[n++] = primary_event_id(event);
4381

4382
	__output_copy(handle, values, n * sizeof(u64));
4383 4384 4385
}

/*
4386
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4387 4388
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4389 4390
			    struct perf_event *event,
			    u64 enabled, u64 running)
4391
{
4392 4393
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4394 4395 4396 4397 4398 4399
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4400
		values[n++] = enabled;
4401 4402

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4403
		values[n++] = running;
4404

4405
	if (leader != event)
4406 4407
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4408
	values[n++] = perf_event_count(leader);
4409
	if (read_format & PERF_FORMAT_ID)
4410
		values[n++] = primary_event_id(leader);
4411

4412
	__output_copy(handle, values, n * sizeof(u64));
4413

4414
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4415 4416
		n = 0;

4417 4418
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4419 4420
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4421
		values[n++] = perf_event_count(sub);
4422
		if (read_format & PERF_FORMAT_ID)
4423
			values[n++] = primary_event_id(sub);
4424

4425
		__output_copy(handle, values, n * sizeof(u64));
4426 4427 4428
	}
}

4429 4430 4431
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4432
static void perf_output_read(struct perf_output_handle *handle,
4433
			     struct perf_event *event)
4434
{
4435
	u64 enabled = 0, running = 0, now;
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4447
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4448
		calc_timer_values(event, &now, &enabled, &running);
4449

4450
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4451
		perf_output_read_group(handle, event, enabled, running);
4452
	else
4453
		perf_output_read_one(handle, event, enabled, running);
4454 4455
}

4456 4457 4458
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4459
			struct perf_event *event)
4460 4461 4462 4463 4464
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4465 4466 4467
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4493
		perf_output_read(handle, event);
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4504
			__output_copy(handle, data->callchain, size);
4505 4506 4507 4508 4509 4510 4511 4512 4513
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4514 4515
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4527

4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4562

4563
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4564 4565 4566
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4567
	}
A
Andi Kleen 已提交
4568 4569 4570

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4571 4572 4573

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4588 4589 4590 4591
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4592
			 struct perf_event *event,
4593
			 struct pt_regs *regs)
4594
{
4595
	u64 sample_type = event->attr.sample_type;
4596

4597
	header->type = PERF_RECORD_SAMPLE;
4598
	header->size = sizeof(*header) + event->header_size;
4599 4600 4601

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4602

4603
	__perf_event_header__init_id(header, data, event);
4604

4605
	if (sample_type & PERF_SAMPLE_IP)
4606 4607
		data->ip = perf_instruction_pointer(regs);

4608
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4609
		int size = 1;
4610

4611
		data->callchain = perf_callchain(event, regs);
4612 4613 4614 4615 4616

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4617 4618
	}

4619
	if (sample_type & PERF_SAMPLE_RAW) {
4620 4621 4622 4623 4624 4625 4626 4627
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4628
		header->size += size;
4629
	}
4630 4631 4632 4633 4634 4635 4636 4637 4638

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4682
}
4683

4684
static void perf_event_output(struct perf_event *event,
4685 4686 4687 4688 4689
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4690

4691 4692 4693
	/* protect the callchain buffers */
	rcu_read_lock();

4694
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4695

4696
	if (perf_output_begin(&handle, event, header.size))
4697
		goto exit;
4698

4699
	perf_output_sample(&handle, &header, data, event);
4700

4701
	perf_output_end(&handle);
4702 4703 4704

exit:
	rcu_read_unlock();
4705 4706
}

4707
/*
4708
 * read event_id
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4719
perf_event_read_event(struct perf_event *event,
4720 4721 4722
			struct task_struct *task)
{
	struct perf_output_handle handle;
4723
	struct perf_sample_data sample;
4724
	struct perf_read_event read_event = {
4725
		.header = {
4726
			.type = PERF_RECORD_READ,
4727
			.misc = 0,
4728
			.size = sizeof(read_event) + event->read_size,
4729
		},
4730 4731
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4732
	};
4733
	int ret;
4734

4735
	perf_event_header__init_id(&read_event.header, &sample, event);
4736
	ret = perf_output_begin(&handle, event, read_event.header.size);
4737 4738 4739
	if (ret)
		return;

4740
	perf_output_put(&handle, read_event);
4741
	perf_output_read(&handle, event);
4742
	perf_event__output_id_sample(event, &handle, &sample);
4743

4744 4745 4746
	perf_output_end(&handle);
}

4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4761
		output(event, data);
4762 4763 4764 4765
	}
}

static void
4766
perf_event_aux(perf_event_aux_output_cb output, void *data,
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4779
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4780 4781 4782 4783 4784 4785 4786
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4787
			perf_event_aux_ctx(ctx, output, data);
4788 4789 4790 4791 4792 4793
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4794
		perf_event_aux_ctx(task_ctx, output, data);
4795 4796 4797 4798 4799
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4800
/*
P
Peter Zijlstra 已提交
4801 4802
 * task tracking -- fork/exit
 *
4803
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4804 4805
 */

P
Peter Zijlstra 已提交
4806
struct perf_task_event {
4807
	struct task_struct		*task;
4808
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4809 4810 4811 4812 4813 4814

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4815 4816
		u32				tid;
		u32				ptid;
4817
		u64				time;
4818
	} event_id;
P
Peter Zijlstra 已提交
4819 4820
};

4821 4822
static int perf_event_task_match(struct perf_event *event)
{
4823 4824 4825
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
4826 4827
}

4828
static void perf_event_task_output(struct perf_event *event,
4829
				   void *data)
P
Peter Zijlstra 已提交
4830
{
4831
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4832
	struct perf_output_handle handle;
4833
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4834
	struct task_struct *task = task_event->task;
4835
	int ret, size = task_event->event_id.header.size;
4836

4837 4838 4839
	if (!perf_event_task_match(event))
		return;

4840
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4841

4842
	ret = perf_output_begin(&handle, event,
4843
				task_event->event_id.header.size);
4844
	if (ret)
4845
		goto out;
P
Peter Zijlstra 已提交
4846

4847 4848
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4849

4850 4851
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4852

4853
	perf_output_put(&handle, task_event->event_id);
4854

4855 4856
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4857
	perf_output_end(&handle);
4858 4859
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4860 4861
}

4862 4863
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4864
			      int new)
P
Peter Zijlstra 已提交
4865
{
P
Peter Zijlstra 已提交
4866
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4867

4868 4869 4870
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4871 4872
		return;

P
Peter Zijlstra 已提交
4873
	task_event = (struct perf_task_event){
4874 4875
		.task	  = task,
		.task_ctx = task_ctx,
4876
		.event_id    = {
P
Peter Zijlstra 已提交
4877
			.header = {
4878
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4879
				.misc = 0,
4880
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4881
			},
4882 4883
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4884 4885
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4886
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4887 4888 4889
		},
	};

4890
	perf_event_aux(perf_event_task_output,
4891 4892
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4893 4894
}

4895
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4896
{
4897
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4898 4899
}

4900 4901 4902 4903 4904
/*
 * comm tracking
 */

struct perf_comm_event {
4905 4906
	struct task_struct	*task;
	char			*comm;
4907 4908 4909 4910 4911 4912 4913
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4914
	} event_id;
4915 4916
};

4917 4918 4919 4920 4921
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

4922
static void perf_event_comm_output(struct perf_event *event,
4923
				   void *data)
4924
{
4925
	struct perf_comm_event *comm_event = data;
4926
	struct perf_output_handle handle;
4927
	struct perf_sample_data sample;
4928
	int size = comm_event->event_id.header.size;
4929 4930
	int ret;

4931 4932 4933
	if (!perf_event_comm_match(event))
		return;

4934 4935
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4936
				comm_event->event_id.header.size);
4937 4938

	if (ret)
4939
		goto out;
4940

4941 4942
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4943

4944
	perf_output_put(&handle, comm_event->event_id);
4945
	__output_copy(&handle, comm_event->comm,
4946
				   comm_event->comm_size);
4947 4948 4949

	perf_event__output_id_sample(event, &handle, &sample);

4950
	perf_output_end(&handle);
4951 4952
out:
	comm_event->event_id.header.size = size;
4953 4954
}

4955
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4956
{
4957
	char comm[TASK_COMM_LEN];
4958 4959
	unsigned int size;

4960
	memset(comm, 0, sizeof(comm));
4961
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4962
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4963 4964 4965 4966

	comm_event->comm = comm;
	comm_event->comm_size = size;

4967
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
4968

4969
	perf_event_aux(perf_event_comm_output,
4970 4971
		       comm_event,
		       NULL);
4972 4973
}

4974
void perf_event_comm(struct task_struct *task)
4975
{
4976
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4977 4978
	struct perf_event_context *ctx;
	int ctxn;
4979

4980
	rcu_read_lock();
P
Peter Zijlstra 已提交
4981 4982 4983 4984
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4985

P
Peter Zijlstra 已提交
4986 4987
		perf_event_enable_on_exec(ctx);
	}
4988
	rcu_read_unlock();
4989

4990
	if (!atomic_read(&nr_comm_events))
4991
		return;
4992

4993
	comm_event = (struct perf_comm_event){
4994
		.task	= task,
4995 4996
		/* .comm      */
		/* .comm_size */
4997
		.event_id  = {
4998
			.header = {
4999
				.type = PERF_RECORD_COMM,
5000 5001 5002 5003 5004
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
5005 5006 5007
		},
	};

5008
	perf_event_comm_event(&comm_event);
5009 5010
}

5011 5012 5013 5014 5015
/*
 * mmap tracking
 */

struct perf_mmap_event {
5016 5017 5018 5019
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5020 5021 5022
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5023 5024 5025 5026 5027 5028 5029 5030 5031

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5032
	} event_id;
5033 5034
};

5035 5036 5037 5038 5039 5040 5041 5042
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5043
	       (executable && (event->attr.mmap || event->attr.mmap2));
5044 5045
}

5046
static void perf_event_mmap_output(struct perf_event *event,
5047
				   void *data)
5048
{
5049
	struct perf_mmap_event *mmap_event = data;
5050
	struct perf_output_handle handle;
5051
	struct perf_sample_data sample;
5052
	int size = mmap_event->event_id.header.size;
5053
	int ret;
5054

5055 5056 5057
	if (!perf_event_mmap_match(event, data))
		return;

5058 5059 5060 5061 5062
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5063
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5064 5065
	}

5066 5067
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5068
				mmap_event->event_id.header.size);
5069
	if (ret)
5070
		goto out;
5071

5072 5073
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5074

5075
	perf_output_put(&handle, mmap_event->event_id);
5076 5077 5078 5079 5080 5081 5082 5083

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
	}

5084
	__output_copy(&handle, mmap_event->file_name,
5085
				   mmap_event->file_size);
5086 5087 5088

	perf_event__output_id_sample(event, &handle, &sample);

5089
	perf_output_end(&handle);
5090 5091
out:
	mmap_event->event_id.header.size = size;
5092 5093
}

5094
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5095
{
5096 5097
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5098 5099
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5100 5101 5102
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5103
	const char *name;
5104

5105 5106
	memset(tmp, 0, sizeof(tmp));

5107
	if (file) {
5108 5109
		struct inode *inode;
		dev_t dev;
5110
		/*
5111
		 * d_path works from the end of the rb backwards, so we
5112 5113 5114 5115
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5116 5117 5118 5119
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
5120
		name = d_path(&file->f_path, buf, PATH_MAX);
5121 5122 5123 5124
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
5125 5126 5127 5128 5129 5130 5131
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);

5132
	} else {
5133 5134
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
5135 5136
				       sizeof(tmp) - 1);
			tmp[sizeof(tmp) - 1] = '\0';
5137
			goto got_name;
5138
		}
5139 5140 5141 5142

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
5143 5144 5145 5146 5147 5148 5149 5150
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
5151 5152
		}

5153 5154 5155 5156 5157
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
5158
	size = ALIGN(strlen(name)+1, sizeof(u64));
5159 5160 5161

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5162 5163 5164 5165
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5166

5167 5168 5169
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5170
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5171

5172
	perf_event_aux(perf_event_mmap_output,
5173 5174
		       mmap_event,
		       NULL);
5175

5176 5177 5178
	kfree(buf);
}

5179
void perf_event_mmap(struct vm_area_struct *vma)
5180
{
5181 5182
	struct perf_mmap_event mmap_event;

5183
	if (!atomic_read(&nr_mmap_events))
5184 5185 5186
		return;

	mmap_event = (struct perf_mmap_event){
5187
		.vma	= vma,
5188 5189
		/* .file_name */
		/* .file_size */
5190
		.event_id  = {
5191
			.header = {
5192
				.type = PERF_RECORD_MMAP,
5193
				.misc = PERF_RECORD_MISC_USER,
5194 5195 5196 5197
				/* .size */
			},
			/* .pid */
			/* .tid */
5198 5199
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5200
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5201
		},
5202 5203 5204 5205
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5206 5207
	};

5208
	perf_event_mmap_event(&mmap_event);
5209 5210
}

5211 5212 5213 5214
/*
 * IRQ throttle logging
 */

5215
static void perf_log_throttle(struct perf_event *event, int enable)
5216 5217
{
	struct perf_output_handle handle;
5218
	struct perf_sample_data sample;
5219 5220 5221 5222 5223
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5224
		u64				id;
5225
		u64				stream_id;
5226 5227
	} throttle_event = {
		.header = {
5228
			.type = PERF_RECORD_THROTTLE,
5229 5230 5231
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5232
		.time		= perf_clock(),
5233 5234
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5235 5236
	};

5237
	if (enable)
5238
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5239

5240 5241 5242
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5243
				throttle_event.header.size);
5244 5245 5246 5247
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5248
	perf_event__output_id_sample(event, &handle, &sample);
5249 5250 5251
	perf_output_end(&handle);
}

5252
/*
5253
 * Generic event overflow handling, sampling.
5254 5255
 */

5256
static int __perf_event_overflow(struct perf_event *event,
5257 5258
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5259
{
5260 5261
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5262
	u64 seq;
5263 5264
	int ret = 0;

5265 5266 5267 5268 5269 5270 5271
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5272 5273 5274 5275 5276 5277 5278 5279 5280
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5281 5282
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5283
			tick_nohz_full_kick();
5284 5285
			ret = 1;
		}
5286
	}
5287

5288
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5289
		u64 now = perf_clock();
5290
		s64 delta = now - hwc->freq_time_stamp;
5291

5292
		hwc->freq_time_stamp = now;
5293

5294
		if (delta > 0 && delta < 2*TICK_NSEC)
5295
			perf_adjust_period(event, delta, hwc->last_period, true);
5296 5297
	}

5298 5299
	/*
	 * XXX event_limit might not quite work as expected on inherited
5300
	 * events
5301 5302
	 */

5303 5304
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5305
		ret = 1;
5306
		event->pending_kill = POLL_HUP;
5307 5308
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5309 5310
	}

5311
	if (event->overflow_handler)
5312
		event->overflow_handler(event, data, regs);
5313
	else
5314
		perf_event_output(event, data, regs);
5315

P
Peter Zijlstra 已提交
5316
	if (event->fasync && event->pending_kill) {
5317 5318
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5319 5320
	}

5321
	return ret;
5322 5323
}

5324
int perf_event_overflow(struct perf_event *event,
5325 5326
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5327
{
5328
	return __perf_event_overflow(event, 1, data, regs);
5329 5330
}

5331
/*
5332
 * Generic software event infrastructure
5333 5334
 */

5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5346
/*
5347 5348
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5349 5350 5351 5352
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5353
u64 perf_swevent_set_period(struct perf_event *event)
5354
{
5355
	struct hw_perf_event *hwc = &event->hw;
5356 5357 5358 5359 5360
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5361 5362

again:
5363
	old = val = local64_read(&hwc->period_left);
5364 5365
	if (val < 0)
		return 0;
5366

5367 5368 5369
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5370
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5371
		goto again;
5372

5373
	return nr;
5374 5375
}

5376
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5377
				    struct perf_sample_data *data,
5378
				    struct pt_regs *regs)
5379
{
5380
	struct hw_perf_event *hwc = &event->hw;
5381
	int throttle = 0;
5382

5383 5384
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5385

5386 5387
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5388

5389
	for (; overflow; overflow--) {
5390
		if (__perf_event_overflow(event, throttle,
5391
					    data, regs)) {
5392 5393 5394 5395 5396 5397
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5398
		throttle = 1;
5399
	}
5400 5401
}

P
Peter Zijlstra 已提交
5402
static void perf_swevent_event(struct perf_event *event, u64 nr,
5403
			       struct perf_sample_data *data,
5404
			       struct pt_regs *regs)
5405
{
5406
	struct hw_perf_event *hwc = &event->hw;
5407

5408
	local64_add(nr, &event->count);
5409

5410 5411 5412
	if (!regs)
		return;

5413
	if (!is_sampling_event(event))
5414
		return;
5415

5416 5417 5418 5419 5420 5421
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5422
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5423
		return perf_swevent_overflow(event, 1, data, regs);
5424

5425
	if (local64_add_negative(nr, &hwc->period_left))
5426
		return;
5427

5428
	perf_swevent_overflow(event, 0, data, regs);
5429 5430
}

5431 5432 5433
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5434
	if (event->hw.state & PERF_HES_STOPPED)
5435
		return 1;
P
Peter Zijlstra 已提交
5436

5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5448
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5449
				enum perf_type_id type,
L
Li Zefan 已提交
5450 5451 5452
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5453
{
5454
	if (event->attr.type != type)
5455
		return 0;
5456

5457
	if (event->attr.config != event_id)
5458 5459
		return 0;

5460 5461
	if (perf_exclude_event(event, regs))
		return 0;
5462 5463 5464 5465

	return 1;
}

5466 5467 5468 5469 5470 5471 5472
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5473 5474
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5475
{
5476 5477 5478 5479
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5480

5481 5482
/* For the read side: events when they trigger */
static inline struct hlist_head *
5483
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5484 5485
{
	struct swevent_hlist *hlist;
5486

5487
	hlist = rcu_dereference(swhash->swevent_hlist);
5488 5489 5490
	if (!hlist)
		return NULL;

5491 5492 5493 5494 5495
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5496
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5507
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5508 5509 5510 5511 5512
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5513 5514 5515
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5516
				    u64 nr,
5517 5518
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5519
{
5520
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5521
	struct perf_event *event;
5522
	struct hlist_head *head;
5523

5524
	rcu_read_lock();
5525
	head = find_swevent_head_rcu(swhash, type, event_id);
5526 5527 5528
	if (!head)
		goto end;

5529
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5530
		if (perf_swevent_match(event, type, event_id, data, regs))
5531
			perf_swevent_event(event, nr, data, regs);
5532
	}
5533 5534
end:
	rcu_read_unlock();
5535 5536
}

5537
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5538
{
5539
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5540

5541
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5542
}
I
Ingo Molnar 已提交
5543
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5544

5545
inline void perf_swevent_put_recursion_context(int rctx)
5546
{
5547
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5548

5549
	put_recursion_context(swhash->recursion, rctx);
5550
}
5551

5552
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5553
{
5554
	struct perf_sample_data data;
5555 5556
	int rctx;

5557
	preempt_disable_notrace();
5558 5559 5560
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5561

5562
	perf_sample_data_init(&data, addr, 0);
5563

5564
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5565 5566

	perf_swevent_put_recursion_context(rctx);
5567
	preempt_enable_notrace();
5568 5569
}

5570
static void perf_swevent_read(struct perf_event *event)
5571 5572 5573
{
}

P
Peter Zijlstra 已提交
5574
static int perf_swevent_add(struct perf_event *event, int flags)
5575
{
5576
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5577
	struct hw_perf_event *hwc = &event->hw;
5578 5579
	struct hlist_head *head;

5580
	if (is_sampling_event(event)) {
5581
		hwc->last_period = hwc->sample_period;
5582
		perf_swevent_set_period(event);
5583
	}
5584

P
Peter Zijlstra 已提交
5585 5586
	hwc->state = !(flags & PERF_EF_START);

5587
	head = find_swevent_head(swhash, event);
5588 5589 5590 5591 5592
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5593 5594 5595
	return 0;
}

P
Peter Zijlstra 已提交
5596
static void perf_swevent_del(struct perf_event *event, int flags)
5597
{
5598
	hlist_del_rcu(&event->hlist_entry);
5599 5600
}

P
Peter Zijlstra 已提交
5601
static void perf_swevent_start(struct perf_event *event, int flags)
5602
{
P
Peter Zijlstra 已提交
5603
	event->hw.state = 0;
5604
}
I
Ingo Molnar 已提交
5605

P
Peter Zijlstra 已提交
5606
static void perf_swevent_stop(struct perf_event *event, int flags)
5607
{
P
Peter Zijlstra 已提交
5608
	event->hw.state = PERF_HES_STOPPED;
5609 5610
}

5611 5612
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5613
swevent_hlist_deref(struct swevent_htable *swhash)
5614
{
5615 5616
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5617 5618
}

5619
static void swevent_hlist_release(struct swevent_htable *swhash)
5620
{
5621
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5622

5623
	if (!hlist)
5624 5625
		return;

5626
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5627
	kfree_rcu(hlist, rcu_head);
5628 5629 5630 5631
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5632
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5633

5634
	mutex_lock(&swhash->hlist_mutex);
5635

5636 5637
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5638

5639
	mutex_unlock(&swhash->hlist_mutex);
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5657
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5658 5659
	int err = 0;

5660
	mutex_lock(&swhash->hlist_mutex);
5661

5662
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5663 5664 5665 5666 5667 5668 5669
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5670
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5671
	}
5672
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5673
exit:
5674
	mutex_unlock(&swhash->hlist_mutex);
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5698
fail:
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5709
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5710

5711 5712 5713
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5714

5715 5716
	WARN_ON(event->parent);

5717
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5718 5719 5720 5721 5722
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5723
	u64 event_id = event->attr.config;
5724 5725 5726 5727

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5728 5729 5730 5731 5732 5733
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5734 5735 5736 5737 5738 5739 5740 5741 5742
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5743
	if (event_id >= PERF_COUNT_SW_MAX)
5744 5745 5746 5747 5748 5749 5750 5751 5752
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5753
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5754 5755 5756 5757 5758 5759
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5760 5761 5762 5763 5764
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5765
static struct pmu perf_swevent = {
5766
	.task_ctx_nr	= perf_sw_context,
5767

5768
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5769 5770 5771 5772
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5773
	.read		= perf_swevent_read,
5774 5775

	.event_idx	= perf_swevent_event_idx,
5776 5777
};

5778 5779
#ifdef CONFIG_EVENT_TRACING

5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5794 5795
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5796 5797 5798 5799
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5800 5801 5802 5803 5804 5805 5806 5807 5808
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5809 5810
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5811 5812
{
	struct perf_sample_data data;
5813 5814
	struct perf_event *event;

5815 5816 5817 5818 5819
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5820
	perf_sample_data_init(&data, addr, 0);
5821 5822
	data.raw = &raw;

5823
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5824
		if (perf_tp_event_match(event, &data, regs))
5825
			perf_swevent_event(event, count, &data, regs);
5826
	}
5827

5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5853
	perf_swevent_put_recursion_context(rctx);
5854 5855 5856
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5857
static void tp_perf_event_destroy(struct perf_event *event)
5858
{
5859
	perf_trace_destroy(event);
5860 5861
}

5862
static int perf_tp_event_init(struct perf_event *event)
5863
{
5864 5865
	int err;

5866 5867 5868
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5869 5870 5871 5872 5873 5874
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5875 5876
	err = perf_trace_init(event);
	if (err)
5877
		return err;
5878

5879
	event->destroy = tp_perf_event_destroy;
5880

5881 5882 5883 5884
	return 0;
}

static struct pmu perf_tracepoint = {
5885 5886
	.task_ctx_nr	= perf_sw_context,

5887
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5888 5889 5890 5891
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5892
	.read		= perf_swevent_read,
5893 5894

	.event_idx	= perf_swevent_event_idx,
5895 5896 5897 5898
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5899
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5900
}
L
Li Zefan 已提交
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5925
#else
L
Li Zefan 已提交
5926

5927
static inline void perf_tp_register(void)
5928 5929
{
}
L
Li Zefan 已提交
5930 5931 5932 5933 5934 5935 5936 5937 5938 5939

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5940
#endif /* CONFIG_EVENT_TRACING */
5941

5942
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5943
void perf_bp_event(struct perf_event *bp, void *data)
5944
{
5945 5946 5947
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5948
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5949

P
Peter Zijlstra 已提交
5950
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5951
		perf_swevent_event(bp, 1, &sample, regs);
5952 5953 5954
}
#endif

5955 5956 5957
/*
 * hrtimer based swevent callback
 */
5958

5959
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5960
{
5961 5962 5963 5964 5965
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5966

5967
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5968 5969 5970 5971

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5972
	event->pmu->read(event);
5973

5974
	perf_sample_data_init(&data, 0, event->hw.last_period);
5975 5976 5977
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5978
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5979
			if (__perf_event_overflow(event, 1, &data, regs))
5980 5981
				ret = HRTIMER_NORESTART;
	}
5982

5983 5984
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5985

5986
	return ret;
5987 5988
}

5989
static void perf_swevent_start_hrtimer(struct perf_event *event)
5990
{
5991
	struct hw_perf_event *hwc = &event->hw;
5992 5993 5994 5995
	s64 period;

	if (!is_sampling_event(event))
		return;
5996

5997 5998 5999 6000
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6001

6002 6003 6004 6005 6006
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6007
				ns_to_ktime(period), 0,
6008
				HRTIMER_MODE_REL_PINNED, 0);
6009
}
6010 6011

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6012
{
6013 6014
	struct hw_perf_event *hwc = &event->hw;

6015
	if (is_sampling_event(event)) {
6016
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6017
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6018 6019 6020

		hrtimer_cancel(&hwc->hrtimer);
	}
6021 6022
}

P
Peter Zijlstra 已提交
6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6043
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6044 6045 6046 6047
		event->attr.freq = 0;
	}
}

6048 6049 6050 6051 6052
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6053
{
6054 6055 6056
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6057
	now = local_clock();
6058 6059
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6060 6061
}

P
Peter Zijlstra 已提交
6062
static void cpu_clock_event_start(struct perf_event *event, int flags)
6063
{
P
Peter Zijlstra 已提交
6064
	local64_set(&event->hw.prev_count, local_clock());
6065 6066 6067
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6068
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6069
{
6070 6071 6072
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6073

P
Peter Zijlstra 已提交
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6087 6088 6089 6090
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6091

6092 6093 6094 6095 6096 6097 6098 6099
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6100 6101 6102 6103 6104 6105
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6106 6107
	perf_swevent_init_hrtimer(event);

6108
	return 0;
6109 6110
}

6111
static struct pmu perf_cpu_clock = {
6112 6113
	.task_ctx_nr	= perf_sw_context,

6114
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6115 6116 6117 6118
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6119
	.read		= cpu_clock_event_read,
6120 6121

	.event_idx	= perf_swevent_event_idx,
6122 6123 6124 6125 6126 6127 6128
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6129
{
6130 6131
	u64 prev;
	s64 delta;
6132

6133 6134 6135 6136
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6137

P
Peter Zijlstra 已提交
6138
static void task_clock_event_start(struct perf_event *event, int flags)
6139
{
P
Peter Zijlstra 已提交
6140
	local64_set(&event->hw.prev_count, event->ctx->time);
6141 6142 6143
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6144
static void task_clock_event_stop(struct perf_event *event, int flags)
6145 6146 6147
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6148 6149 6150 6151 6152 6153
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6154

P
Peter Zijlstra 已提交
6155 6156 6157 6158 6159 6160
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6161 6162 6163 6164
}

static void task_clock_event_read(struct perf_event *event)
{
6165 6166 6167
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6168 6169 6170 6171 6172

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6173
{
6174 6175 6176 6177 6178 6179
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6180 6181 6182 6183 6184 6185
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6186 6187
	perf_swevent_init_hrtimer(event);

6188
	return 0;
L
Li Zefan 已提交
6189 6190
}

6191
static struct pmu perf_task_clock = {
6192 6193
	.task_ctx_nr	= perf_sw_context,

6194
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6195 6196 6197 6198
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6199
	.read		= task_clock_event_read,
6200 6201

	.event_idx	= perf_swevent_event_idx,
6202
};
L
Li Zefan 已提交
6203

P
Peter Zijlstra 已提交
6204
static void perf_pmu_nop_void(struct pmu *pmu)
6205 6206
{
}
L
Li Zefan 已提交
6207

P
Peter Zijlstra 已提交
6208
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6209
{
P
Peter Zijlstra 已提交
6210
	return 0;
L
Li Zefan 已提交
6211 6212
}

P
Peter Zijlstra 已提交
6213
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6214
{
P
Peter Zijlstra 已提交
6215
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6216 6217
}

P
Peter Zijlstra 已提交
6218 6219 6220 6221 6222
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6223

P
Peter Zijlstra 已提交
6224
static void perf_pmu_cancel_txn(struct pmu *pmu)
6225
{
P
Peter Zijlstra 已提交
6226
	perf_pmu_enable(pmu);
6227 6228
}

6229 6230 6231 6232 6233
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6234 6235 6236 6237 6238
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
6239
{
P
Peter Zijlstra 已提交
6240
	struct pmu *pmu;
6241

P
Peter Zijlstra 已提交
6242 6243
	if (ctxn < 0)
		return NULL;
6244

P
Peter Zijlstra 已提交
6245 6246 6247 6248
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6249

P
Peter Zijlstra 已提交
6250
	return NULL;
6251 6252
}

6253
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6254
{
6255 6256 6257 6258 6259 6260 6261
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6262 6263
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6264 6265 6266 6267 6268 6269
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6270

P
Peter Zijlstra 已提交
6271
	mutex_lock(&pmus_lock);
6272
	/*
P
Peter Zijlstra 已提交
6273
	 * Like a real lame refcount.
6274
	 */
6275 6276 6277
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6278
			goto out;
6279
		}
P
Peter Zijlstra 已提交
6280
	}
6281

6282
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6283 6284
out:
	mutex_unlock(&pmus_lock);
6285
}
P
Peter Zijlstra 已提交
6286
static struct idr pmu_idr;
6287

P
Peter Zijlstra 已提交
6288 6289 6290 6291 6292 6293 6294 6295
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}

P
Peter Zijlstra 已提交
6340
static struct device_attribute pmu_dev_attrs[] = {
6341 6342 6343
	__ATTR_RO(type),
	__ATTR_RW(perf_event_mux_interval_ms),
	__ATTR_NULL,
P
Peter Zijlstra 已提交
6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6365
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6386
static struct lock_class_key cpuctx_mutex;
6387
static struct lock_class_key cpuctx_lock;
6388

6389
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6390
{
P
Peter Zijlstra 已提交
6391
	int cpu, ret;
6392

6393
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6394 6395 6396 6397
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6398

P
Peter Zijlstra 已提交
6399 6400 6401 6402 6403 6404
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6405 6406 6407
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6408 6409 6410 6411 6412
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6413 6414 6415 6416 6417 6418
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6419
skip_type:
P
Peter Zijlstra 已提交
6420 6421 6422
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6423

W
Wei Yongjun 已提交
6424
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6425 6426
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6427
		goto free_dev;
6428

P
Peter Zijlstra 已提交
6429 6430 6431 6432
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6433
		__perf_event_init_context(&cpuctx->ctx);
6434
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6435
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6436
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6437
		cpuctx->ctx.pmu = pmu;
6438 6439 6440

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6441
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6442
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6443
	}
6444

P
Peter Zijlstra 已提交
6445
got_cpu_context:
P
Peter Zijlstra 已提交
6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6460
		}
6461
	}
6462

P
Peter Zijlstra 已提交
6463 6464 6465 6466 6467
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6468 6469 6470
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6471
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6472 6473
	ret = 0;
unlock:
6474 6475
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6476
	return ret;
P
Peter Zijlstra 已提交
6477

P
Peter Zijlstra 已提交
6478 6479 6480 6481
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6482 6483 6484 6485
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6486 6487 6488
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6489 6490
}

6491
void perf_pmu_unregister(struct pmu *pmu)
6492
{
6493 6494 6495
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6496

6497
	/*
P
Peter Zijlstra 已提交
6498 6499
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6500
	 */
6501
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6502
	synchronize_rcu();
6503

P
Peter Zijlstra 已提交
6504
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6505 6506
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6507 6508
	device_del(pmu->dev);
	put_device(pmu->dev);
6509
	free_pmu_context(pmu);
6510
}
6511

6512 6513 6514 6515
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6516
	int ret;
6517 6518

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6519 6520 6521 6522

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6523
	if (pmu) {
6524
		event->pmu = pmu;
6525 6526 6527
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6528
		goto unlock;
6529
	}
P
Peter Zijlstra 已提交
6530

6531
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6532
		event->pmu = pmu;
6533
		ret = pmu->event_init(event);
6534
		if (!ret)
P
Peter Zijlstra 已提交
6535
			goto unlock;
6536

6537 6538
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6539
			goto unlock;
6540
		}
6541
	}
P
Peter Zijlstra 已提交
6542 6543
	pmu = ERR_PTR(-ENOENT);
unlock:
6544
	srcu_read_unlock(&pmus_srcu, idx);
6545

6546
	return pmu;
6547 6548
}

6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6562 6563
static void account_event(struct perf_event *event)
{
6564 6565 6566
	if (event->parent)
		return;

6567 6568 6569 6570 6571 6572 6573 6574
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6575 6576 6577 6578
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6579
	if (has_branch_stack(event))
6580
		static_key_slow_inc(&perf_sched_events.key);
6581
	if (is_cgroup_event(event))
6582
		static_key_slow_inc(&perf_sched_events.key);
6583 6584

	account_event_cpu(event, event->cpu);
6585 6586
}

T
Thomas Gleixner 已提交
6587
/*
6588
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6589
 */
6590
static struct perf_event *
6591
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6592 6593 6594
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6595 6596
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6597
{
P
Peter Zijlstra 已提交
6598
	struct pmu *pmu;
6599 6600
	struct perf_event *event;
	struct hw_perf_event *hwc;
6601
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6602

6603 6604 6605 6606 6607
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6608
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6609
	if (!event)
6610
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6611

6612
	/*
6613
	 * Single events are their own group leaders, with an
6614 6615 6616
	 * empty sibling list:
	 */
	if (!group_leader)
6617
		group_leader = event;
6618

6619 6620
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6621

6622 6623 6624
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6625 6626
	INIT_LIST_HEAD(&event->rb_entry);

6627
	init_waitqueue_head(&event->waitq);
6628
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6629

6630
	mutex_init(&event->mmap_mutex);
6631

6632
	atomic_long_set(&event->refcount, 1);
6633 6634 6635 6636 6637
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6638

6639
	event->parent		= parent_event;
6640

6641
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6642
	event->id		= atomic64_inc_return(&perf_event_id);
6643

6644
	event->state		= PERF_EVENT_STATE_INACTIVE;
6645

6646 6647
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6648 6649 6650

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6651 6652 6653 6654
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6655
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6656 6657 6658 6659
			event->hw.bp_target = task;
#endif
	}

6660
	if (!overflow_handler && parent_event) {
6661
		overflow_handler = parent_event->overflow_handler;
6662 6663
		context = parent_event->overflow_handler_context;
	}
6664

6665
	event->overflow_handler	= overflow_handler;
6666
	event->overflow_handler_context = context;
6667

J
Jiri Olsa 已提交
6668
	perf_event__state_init(event);
6669

6670
	pmu = NULL;
6671

6672
	hwc = &event->hw;
6673
	hwc->sample_period = attr->sample_period;
6674
	if (attr->freq && attr->sample_freq)
6675
		hwc->sample_period = 1;
6676
	hwc->last_period = hwc->sample_period;
6677

6678
	local64_set(&hwc->period_left, hwc->sample_period);
6679

6680
	/*
6681
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6682
	 */
6683
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6684
		goto err_ns;
6685

6686
	pmu = perf_init_event(event);
6687
	if (!pmu)
6688 6689
		goto err_ns;
	else if (IS_ERR(pmu)) {
6690
		err = PTR_ERR(pmu);
6691
		goto err_ns;
I
Ingo Molnar 已提交
6692
	}
6693

6694
	if (!event->parent) {
6695 6696
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
6697 6698
			if (err)
				goto err_pmu;
6699
		}
6700
	}
6701

6702
	return event;
6703 6704 6705 6706 6707 6708 6709 6710 6711 6712

err_pmu:
	if (event->destroy)
		event->destroy(event);
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6713 6714
}

6715 6716
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6717 6718
{
	u32 size;
6719
	int ret;
6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6744 6745 6746
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6747 6748
	 */
	if (size > sizeof(*attr)) {
6749 6750 6751
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6752

6753 6754
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6755

6756
		for (; addr < end; addr++) {
6757 6758 6759 6760 6761 6762
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6763
		size = sizeof(*attr);
6764 6765 6766 6767 6768 6769
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6770
	if (attr->__reserved_1)
6771 6772 6773 6774 6775 6776 6777 6778
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6807 6808
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6809 6810
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6811
	}
6812

6813
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6814
		ret = perf_reg_validate(attr->sample_regs_user);
6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6833

6834 6835 6836 6837 6838 6839 6840 6841 6842
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6843 6844
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6845
{
6846
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6847 6848
	int ret = -EINVAL;

6849
	if (!output_event)
6850 6851
		goto set;

6852 6853
	/* don't allow circular references */
	if (event == output_event)
6854 6855
		goto out;

6856 6857 6858 6859 6860 6861 6862
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6863
	 * If its not a per-cpu rb, it must be the same task.
6864 6865 6866 6867
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6868
set:
6869
	mutex_lock(&event->mmap_mutex);
6870 6871 6872
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6873

6874 6875
	old_rb = event->rb;

6876
	if (output_event) {
6877 6878 6879
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6880
			goto unlock;
6881 6882
	}

6883 6884
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

6901
	ret = 0;
6902 6903 6904
unlock:
	mutex_unlock(&event->mmap_mutex);

6905 6906 6907 6908
out:
	return ret;
}

T
Thomas Gleixner 已提交
6909
/**
6910
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6911
 *
6912
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6913
 * @pid:		target pid
I
Ingo Molnar 已提交
6914
 * @cpu:		target cpu
6915
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6916
 */
6917 6918
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6919
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6920
{
6921 6922
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6923 6924 6925
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6926
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6927
	struct task_struct *task = NULL;
6928
	struct pmu *pmu;
6929
	int event_fd;
6930
	int move_group = 0;
6931
	int err;
T
Thomas Gleixner 已提交
6932

6933
	/* for future expandability... */
S
Stephane Eranian 已提交
6934
	if (flags & ~PERF_FLAG_ALL)
6935 6936
		return -EINVAL;

6937 6938 6939
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6940

6941 6942 6943 6944 6945
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6946
	if (attr.freq) {
6947
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6948 6949 6950
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6951 6952 6953 6954 6955 6956 6957 6958 6959
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6960
	event_fd = get_unused_fd();
6961 6962 6963
	if (event_fd < 0)
		return event_fd;

6964
	if (group_fd != -1) {
6965 6966
		err = perf_fget_light(group_fd, &group);
		if (err)
6967
			goto err_fd;
6968
		group_leader = group.file->private_data;
6969 6970 6971 6972 6973 6974
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6975
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6976 6977 6978 6979 6980 6981 6982
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6983 6984
	get_online_cpus();

6985 6986
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6987 6988
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6989
		goto err_task;
6990 6991
	}

S
Stephane Eranian 已提交
6992 6993
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6994 6995 6996 6997
		if (err) {
			__free_event(event);
			goto err_task;
		}
S
Stephane Eranian 已提交
6998 6999
	}

7000 7001
	account_event(event);

7002 7003 7004 7005 7006
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7030 7031 7032 7033

	/*
	 * Get the target context (task or percpu):
	 */
7034
	ctx = find_get_context(pmu, task, event->cpu);
7035 7036
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7037
		goto err_alloc;
7038 7039
	}

7040 7041 7042 7043 7044
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7045
	/*
7046
	 * Look up the group leader (we will attach this event to it):
7047
	 */
7048
	if (group_leader) {
7049
		err = -EINVAL;
7050 7051

		/*
I
Ingo Molnar 已提交
7052 7053 7054 7055
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7056
			goto err_context;
I
Ingo Molnar 已提交
7057 7058 7059
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7060
		 */
7061 7062 7063 7064 7065 7066 7067 7068
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7069 7070 7071
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7072
		if (attr.exclusive || attr.pinned)
7073
			goto err_context;
7074 7075 7076 7077 7078
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7079
			goto err_context;
7080
	}
T
Thomas Gleixner 已提交
7081

7082 7083 7084
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7085
		goto err_context;
7086
	}
7087

7088 7089 7090 7091
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7092
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
7093 7094 7095 7096 7097 7098 7099

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7100 7101
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7102
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
7103
			perf_event__state_init(sibling);
7104 7105 7106 7107
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7108
	}
7109

7110
	WARN_ON_ONCE(ctx->parent_ctx);
7111
	mutex_lock(&ctx->mutex);
7112 7113

	if (move_group) {
7114
		synchronize_rcu();
7115
		perf_install_in_context(ctx, group_leader, event->cpu);
7116 7117 7118
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7119
			perf_install_in_context(ctx, sibling, event->cpu);
7120 7121 7122 7123
			get_ctx(ctx);
		}
	}

7124
	perf_install_in_context(ctx, event, event->cpu);
7125
	++ctx->generation;
7126
	perf_unpin_context(ctx);
7127
	mutex_unlock(&ctx->mutex);
7128

7129 7130
	put_online_cpus();

7131
	event->owner = current;
P
Peter Zijlstra 已提交
7132

7133 7134 7135
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7136

7137 7138 7139 7140
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7141
	perf_event__id_header_size(event);
7142

7143 7144 7145 7146 7147 7148
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7149
	fdput(group);
7150 7151
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7152

7153
err_context:
7154
	perf_unpin_context(ctx);
7155
	put_ctx(ctx);
7156
err_alloc:
7157
	free_event(event);
P
Peter Zijlstra 已提交
7158
err_task:
7159
	put_online_cpus();
P
Peter Zijlstra 已提交
7160 7161
	if (task)
		put_task_struct(task);
7162
err_group_fd:
7163
	fdput(group);
7164 7165
err_fd:
	put_unused_fd(event_fd);
7166
	return err;
T
Thomas Gleixner 已提交
7167 7168
}

7169 7170 7171 7172 7173
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7174
 * @task: task to profile (NULL for percpu)
7175 7176 7177
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7178
				 struct task_struct *task,
7179 7180
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7181 7182
{
	struct perf_event_context *ctx;
7183
	struct perf_event *event;
7184
	int err;
7185

7186 7187 7188
	/*
	 * Get the target context (task or percpu):
	 */
7189

7190 7191
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7192 7193 7194 7195
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7196

7197 7198
	account_event(event);

M
Matt Helsley 已提交
7199
	ctx = find_get_context(event->pmu, task, cpu);
7200 7201
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7202
		goto err_free;
7203
	}
7204 7205 7206 7207 7208

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
7209
	perf_unpin_context(ctx);
7210 7211 7212 7213
	mutex_unlock(&ctx->mutex);

	return event;

7214 7215 7216
err_free:
	free_event(event);
err:
7217
	return ERR_PTR(err);
7218
}
7219
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7220

7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
7235
		unaccount_event_cpu(event, src_cpu);
7236
		put_ctx(src_ctx);
7237
		list_add(&event->migrate_entry, &events);
7238 7239 7240 7241 7242 7243
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
7244 7245
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7246 7247
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7248
		account_event_cpu(event, dst_cpu);
7249 7250 7251 7252 7253 7254 7255
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7256
static void sync_child_event(struct perf_event *child_event,
7257
			       struct task_struct *child)
7258
{
7259
	struct perf_event *parent_event = child_event->parent;
7260
	u64 child_val;
7261

7262 7263
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7264

P
Peter Zijlstra 已提交
7265
	child_val = perf_event_count(child_event);
7266 7267 7268 7269

	/*
	 * Add back the child's count to the parent's count:
	 */
7270
	atomic64_add(child_val, &parent_event->child_count);
7271 7272 7273 7274
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7275 7276

	/*
7277
	 * Remove this event from the parent's list
7278
	 */
7279 7280 7281 7282
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7283 7284

	/*
7285
	 * Release the parent event, if this was the last
7286 7287
	 * reference to it.
	 */
7288
	put_event(parent_event);
7289 7290
}

7291
static void
7292 7293
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7294
			 struct task_struct *child)
7295
{
7296 7297 7298 7299 7300
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
7301

7302
	perf_remove_from_context(child_event);
7303

7304
	/*
7305
	 * It can happen that the parent exits first, and has events
7306
	 * that are still around due to the child reference. These
7307
	 * events need to be zapped.
7308
	 */
7309
	if (child_event->parent) {
7310 7311
		sync_child_event(child_event, child);
		free_event(child_event);
7312
	}
7313 7314
}

P
Peter Zijlstra 已提交
7315
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7316
{
7317 7318
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7319
	unsigned long flags;
7320

P
Peter Zijlstra 已提交
7321
	if (likely(!child->perf_event_ctxp[ctxn])) {
7322
		perf_event_task(child, NULL, 0);
7323
		return;
P
Peter Zijlstra 已提交
7324
	}
7325

7326
	local_irq_save(flags);
7327 7328 7329 7330 7331 7332
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7333
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7334 7335 7336

	/*
	 * Take the context lock here so that if find_get_context is
7337
	 * reading child->perf_event_ctxp, we wait until it has
7338 7339
	 * incremented the context's refcount before we do put_ctx below.
	 */
7340
	raw_spin_lock(&child_ctx->lock);
7341
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7342
	child->perf_event_ctxp[ctxn] = NULL;
7343 7344 7345
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7346
	 * the events from it.
7347 7348
	 */
	unclone_ctx(child_ctx);
7349
	update_context_time(child_ctx);
7350
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7351 7352

	/*
7353 7354 7355
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7356
	 */
7357
	perf_event_task(child, child_ctx, 0);
7358

7359 7360 7361
	/*
	 * We can recurse on the same lock type through:
	 *
7362 7363
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7364 7365
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7366 7367 7368
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7369
	mutex_lock(&child_ctx->mutex);
7370

7371
again:
7372 7373 7374 7375 7376
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7377
				 group_entry)
7378
		__perf_event_exit_task(child_event, child_ctx, child);
7379 7380

	/*
7381
	 * If the last event was a group event, it will have appended all
7382 7383 7384
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7385 7386
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7387
		goto again;
7388 7389 7390 7391

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7392 7393
}

P
Peter Zijlstra 已提交
7394 7395 7396 7397 7398
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7399
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7400 7401
	int ctxn;

P
Peter Zijlstra 已提交
7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7417 7418 7419 7420
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7433
	put_event(parent);
7434

7435
	perf_group_detach(event);
7436 7437 7438 7439
	list_del_event(event, ctx);
	free_event(event);
}

7440 7441
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7442
 * perf_event_init_task below, used by fork() in case of fail.
7443
 */
7444
void perf_event_free_task(struct task_struct *task)
7445
{
P
Peter Zijlstra 已提交
7446
	struct perf_event_context *ctx;
7447
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7448
	int ctxn;
7449

P
Peter Zijlstra 已提交
7450 7451 7452 7453
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7454

P
Peter Zijlstra 已提交
7455
		mutex_lock(&ctx->mutex);
7456
again:
P
Peter Zijlstra 已提交
7457 7458 7459
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7460

P
Peter Zijlstra 已提交
7461 7462 7463
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7464

P
Peter Zijlstra 已提交
7465 7466 7467
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7468

P
Peter Zijlstra 已提交
7469
		mutex_unlock(&ctx->mutex);
7470

P
Peter Zijlstra 已提交
7471 7472
		put_ctx(ctx);
	}
7473 7474
}

7475 7476 7477 7478 7479 7480 7481 7482
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7495
	unsigned long flags;
P
Peter Zijlstra 已提交
7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7508
					   child,
P
Peter Zijlstra 已提交
7509
					   group_leader, parent_event,
7510
				           NULL, NULL);
P
Peter Zijlstra 已提交
7511 7512
	if (IS_ERR(child_event))
		return child_event;
7513 7514 7515 7516 7517 7518

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7543 7544
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7545

7546 7547 7548 7549
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7550
	perf_event__id_header_size(child_event);
7551

P
Peter Zijlstra 已提交
7552 7553 7554
	/*
	 * Link it up in the child's context:
	 */
7555
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7556
	add_event_to_ctx(child_event, child_ctx);
7557
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7591 7592 7593 7594 7595
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7596
		   struct task_struct *child, int ctxn,
7597 7598 7599
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7600
	struct perf_event_context *child_ctx;
7601 7602 7603 7604

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7605 7606
	}

7607
	child_ctx = child->perf_event_ctxp[ctxn];
7608 7609 7610 7611 7612 7613 7614
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7615

7616
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7617 7618
		if (!child_ctx)
			return -ENOMEM;
7619

P
Peter Zijlstra 已提交
7620
		child->perf_event_ctxp[ctxn] = child_ctx;
7621 7622 7623 7624 7625 7626 7627 7628 7629
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7630 7631
}

7632
/*
7633
 * Initialize the perf_event context in task_struct
7634
 */
P
Peter Zijlstra 已提交
7635
int perf_event_init_context(struct task_struct *child, int ctxn)
7636
{
7637
	struct perf_event_context *child_ctx, *parent_ctx;
7638 7639
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7640
	struct task_struct *parent = current;
7641
	int inherited_all = 1;
7642
	unsigned long flags;
7643
	int ret = 0;
7644

P
Peter Zijlstra 已提交
7645
	if (likely(!parent->perf_event_ctxp[ctxn]))
7646 7647
		return 0;

7648
	/*
7649 7650
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7651
	 */
P
Peter Zijlstra 已提交
7652
	parent_ctx = perf_pin_task_context(parent, ctxn);
7653

7654 7655 7656 7657 7658 7659 7660
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7661 7662 7663 7664
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7665
	mutex_lock(&parent_ctx->mutex);
7666 7667 7668 7669 7670

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7671
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7672 7673
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7674 7675 7676
		if (ret)
			break;
	}
7677

7678 7679 7680 7681 7682 7683 7684 7685 7686
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7687
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7688 7689
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7690
		if (ret)
7691
			break;
7692 7693
	}

7694 7695 7696
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7697
	child_ctx = child->perf_event_ctxp[ctxn];
7698

7699
	if (child_ctx && inherited_all) {
7700 7701 7702
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7703 7704 7705
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7706
		 */
P
Peter Zijlstra 已提交
7707
		cloned_ctx = parent_ctx->parent_ctx;
7708 7709
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7710
			child_ctx->parent_gen = parent_ctx->parent_gen;
7711 7712 7713 7714 7715
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7716 7717
	}

P
Peter Zijlstra 已提交
7718
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7719
	mutex_unlock(&parent_ctx->mutex);
7720

7721
	perf_unpin_context(parent_ctx);
7722
	put_ctx(parent_ctx);
7723

7724
	return ret;
7725 7726
}

P
Peter Zijlstra 已提交
7727 7728 7729 7730 7731 7732 7733
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7734 7735 7736 7737
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7738 7739 7740 7741 7742 7743 7744 7745 7746
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7747 7748
static void __init perf_event_init_all_cpus(void)
{
7749
	struct swevent_htable *swhash;
7750 7751 7752
	int cpu;

	for_each_possible_cpu(cpu) {
7753 7754
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7755
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7756 7757 7758
	}
}

7759
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7760
{
P
Peter Zijlstra 已提交
7761
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7762

7763
	mutex_lock(&swhash->hlist_mutex);
7764
	if (swhash->hlist_refcount > 0) {
7765 7766
		struct swevent_hlist *hlist;

7767 7768 7769
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7770
	}
7771
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7772 7773
}

P
Peter Zijlstra 已提交
7774
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7775
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7776
{
7777 7778 7779 7780 7781 7782 7783
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7784
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7785
{
P
Peter Zijlstra 已提交
7786
	struct perf_event_context *ctx = __info;
7787
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7788

P
Peter Zijlstra 已提交
7789
	perf_pmu_rotate_stop(ctx->pmu);
7790

7791
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7792
		__perf_remove_from_context(event);
7793
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7794
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7795
}
P
Peter Zijlstra 已提交
7796 7797 7798 7799 7800 7801 7802 7803 7804

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7805
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7806 7807 7808 7809 7810 7811 7812 7813

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7814
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7815
{
7816
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7817

7818 7819 7820
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7821

P
Peter Zijlstra 已提交
7822
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7823 7824
}
#else
7825
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7826 7827
#endif

P
Peter Zijlstra 已提交
7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

7848
static int
T
Thomas Gleixner 已提交
7849 7850 7851 7852
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7853
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7854 7855

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7856
	case CPU_DOWN_FAILED:
7857
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7858 7859
		break;

P
Peter Zijlstra 已提交
7860
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7861
	case CPU_DOWN_PREPARE:
7862
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7863 7864 7865 7866 7867 7868 7869 7870
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7871
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7872
{
7873 7874
	int ret;

P
Peter Zijlstra 已提交
7875 7876
	idr_init(&pmu_idr);

7877
	perf_event_init_all_cpus();
7878
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7879 7880 7881
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7882 7883
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7884
	register_reboot_notifier(&perf_reboot_notifier);
7885 7886 7887

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7888 7889 7890

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7891 7892 7893 7894 7895 7896 7897

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7898
}
P
Peter Zijlstra 已提交
7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7927 7928

#ifdef CONFIG_CGROUP_PERF
7929 7930
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
7931 7932 7933
{
	struct perf_cgroup *jc;

7934
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7947
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
7948
{
7949 7950
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7962 7963
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7964
{
7965 7966
	struct task_struct *task;

7967
	cgroup_taskset_for_each(task, css, tset)
7968
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7969 7970
}

7971 7972
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
7973
			     struct task_struct *task)
S
Stephane Eranian 已提交
7974 7975 7976 7977 7978 7979 7980 7981 7982
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7983
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7984 7985 7986
}

struct cgroup_subsys perf_subsys = {
7987 7988
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7989 7990
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7991
	.exit		= perf_cgroup_exit,
7992
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7993 7994
};
#endif /* CONFIG_CGROUP_PERF */