core.c 216.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
136 137
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
138 139
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
140

141 142 143 144 145 146 147
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

148 149 150 151 152 153
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
154 155 156 157
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
158
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
159
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
161

162 163 164
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
165
static atomic_t nr_freq_events __read_mostly;
166
static atomic_t nr_switch_events __read_mostly;
167

P
Peter Zijlstra 已提交
168 169 170 171
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

172
/*
173
 * perf event paranoia level:
174 175
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
176
 *   1 - disallow cpu events for unpriv
177
 *   2 - disallow kernel profiling for unpriv
178
 */
179
int sysctl_perf_event_paranoid __read_mostly = 1;
180

181 182
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 184

/*
185
 * max perf event sample rate
186
 */
187 188 189 190 191 192 193 194 195
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
196 197
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198 199 200 201 202 203

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
204
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
205
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206
}
P
Peter Zijlstra 已提交
207

208 209
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
210 211 212 213
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
214
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
215 216 217 218 219

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
238 239 240

	return 0;
}
241

242 243 244 245 246 247 248
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
249
static DEFINE_PER_CPU(u64, running_sample_length);
250

251
static void perf_duration_warn(struct irq_work *w)
252
{
253
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254
	u64 avg_local_sample_len;
255
	u64 local_samples_len;
256

257
	local_samples_len = __this_cpu_read(running_sample_length);
258 259 260 261 262
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
263
			avg_local_sample_len, allowed_ns >> 1,
264 265 266 267 268 269 270
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
271
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 273
	u64 avg_local_sample_len;
	u64 local_samples_len;
274

P
Peter Zijlstra 已提交
275
	if (allowed_ns == 0)
276 277 278
		return;

	/* decay the counter by 1 average sample */
279
	local_samples_len = __this_cpu_read(running_sample_length);
280 281
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
282
	__this_cpu_write(running_sample_length, local_samples_len);
283 284 285 286 287 288 289 290

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
291
	if (avg_local_sample_len <= allowed_ns)
292 293 294 295 296 297 298 299 300 301
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
302

303 304 305 306 307 308
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
309 310
}

311
static atomic64_t perf_event_id;
312

313 314 315 316
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
317 318 319 320 321
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
322

323
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
324

325
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
326
{
327
	return "pmu";
T
Thomas Gleixner 已提交
328 329
}

330 331 332 333 334
static inline u64 perf_clock(void)
{
	return local_clock();
}

335 336 337 338 339
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
340 341 342 343 344 345
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
362 363 364 365 366 367 368 369
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
386 387 388 389
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
390
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
429 430
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
431
	/*
432 433
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
434
	 */
435
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
436 437
		return;

438 439 440 441 442 443
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
444 445 446
}

static inline void
447 448
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
449 450 451 452
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

453 454 455 456 457 458
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
459 460 461 462
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
463
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 497
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
498 499 500 501 502 503 504 505 506

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
507 508
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
509 510 511 512 513 514 515 516 517 518 519

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
520
				WARN_ON_ONCE(cpuctx->cgrp);
521 522 523 524
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
525 526 527 528
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
529 530
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
531 532 533 534 535 536 537 538
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

539 540
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
541
{
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
564 565
}

566 567
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
568
{
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
587 588 589 590 591 592 593 594
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
595 596
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
597

598
	if (!f.file)
S
Stephane Eranian 已提交
599 600
		return -EBADF;

A
Al Viro 已提交
601
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
602
					 &perf_event_cgrp_subsys);
603 604 605 606
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
620
out:
621
	fdput(f);
S
Stephane Eranian 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

695 696
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
697 698 699
{
}

700 701
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
702 703 704 705 706 707 708 709 710 711 712
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
713 714
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

745 746 747 748 749 750 751 752
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
753
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 755 756 757 758 759 760 761 762
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
763 764
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
765
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
766 767 768
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
769

P
Peter Zijlstra 已提交
770
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 772
}

773
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774
{
775
	struct hrtimer *timer = &cpuctx->hrtimer;
776
	struct pmu *pmu = cpuctx->ctx.pmu;
777
	u64 interval;
778 779 780 781 782

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

783 784 785 786
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
787 788 789
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790

791
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792

P
Peter Zijlstra 已提交
793 794
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795
	timer->function = perf_mux_hrtimer_handler;
796 797
}

798
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799
{
800
	struct hrtimer *timer = &cpuctx->hrtimer;
801
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
802
	unsigned long flags;
803 804 805

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
806
		return 0;
807

P
Peter Zijlstra 已提交
808 809 810 811 812 813 814
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815

816
	return 0;
817 818
}

P
Peter Zijlstra 已提交
819
void perf_pmu_disable(struct pmu *pmu)
820
{
P
Peter Zijlstra 已提交
821 822 823
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
824 825
}

P
Peter Zijlstra 已提交
826
void perf_pmu_enable(struct pmu *pmu)
827
{
P
Peter Zijlstra 已提交
828 829 830
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
831 832
}

833
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834 835

/*
836 837 838 839
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
840
 */
841
static void perf_event_ctx_activate(struct perf_event_context *ctx)
842
{
843
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
844

845
	WARN_ON(!irqs_disabled());
846

847 848 849 850 851 852 853 854 855 856 857 858
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
859 860
}

861
static void get_ctx(struct perf_event_context *ctx)
862
{
863
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 865
}

866 867 868 869 870 871 872 873 874
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

875
static void put_ctx(struct perf_event_context *ctx)
876
{
877 878 879
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
880 881
		if (ctx->task)
			put_task_struct(ctx->task);
882
		call_rcu(&ctx->rcu_head, free_ctx);
883
	}
884 885
}

P
Peter Zijlstra 已提交
886 887 888 889 890 891 892
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
947 948
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
949 950 951 952 953 954 955 956 957 958 959 960
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
961
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
962 963 964 965 966 967 968 969 970
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
971 972 973 974 975 976
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
977 978 979 980 981 982 983
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

984 985 986 987 988 989 990
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
991
{
992 993 994 995 996
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
997
		ctx->parent_ctx = NULL;
998
	ctx->generation++;
999 1000

	return parent_ctx;
1001 1002
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1025
/*
1026
 * If we inherit events we want to return the parent event id
1027 1028
 * to userspace.
 */
1029
static u64 primary_event_id(struct perf_event *event)
1030
{
1031
	u64 id = event->id;
1032

1033 1034
	if (event->parent)
		id = event->parent->id;
1035 1036 1037 1038

	return id;
}

1039
/*
1040
 * Get the perf_event_context for a task and lock it.
1041 1042 1043
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1044
static struct perf_event_context *
P
Peter Zijlstra 已提交
1045
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046
{
1047
	struct perf_event_context *ctx;
1048

P
Peter Zijlstra 已提交
1049
retry:
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1061
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 1063 1064 1065
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1066
		 * perf_event_task_sched_out, though the
1067 1068 1069 1070 1071 1072
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1073
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1074
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1076 1077
			rcu_read_unlock();
			preempt_enable();
1078 1079
			goto retry;
		}
1080 1081

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1082
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1083 1084
			ctx = NULL;
		}
1085 1086
	}
	rcu_read_unlock();
1087
	preempt_enable();
1088 1089 1090 1091 1092 1093 1094 1095
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1096 1097
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1098
{
1099
	struct perf_event_context *ctx;
1100 1101
	unsigned long flags;

P
Peter Zijlstra 已提交
1102
	ctx = perf_lock_task_context(task, ctxn, &flags);
1103 1104
	if (ctx) {
		++ctx->pin_count;
1105
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1106 1107 1108 1109
	}
	return ctx;
}

1110
static void perf_unpin_context(struct perf_event_context *ctx)
1111 1112 1113
{
	unsigned long flags;

1114
	raw_spin_lock_irqsave(&ctx->lock, flags);
1115
	--ctx->pin_count;
1116
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1130 1131 1132
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1133 1134 1135 1136

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1137 1138 1139
	return ctx ? ctx->time : 0;
}

1140 1141
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1142
 * The caller of this function needs to hold the ctx->lock.
1143 1144 1145 1146 1147 1148 1149 1150 1151
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1163
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1164 1165
	else if (ctx->is_active)
		run_end = ctx->time;
1166 1167 1168 1169
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1170 1171 1172 1173

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1174
		run_end = perf_event_time(event);
1175 1176

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1177

1178 1179
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1192 1193 1194 1195 1196 1197 1198 1199 1200
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1201
/*
1202
 * Add a event from the lists for its context.
1203 1204
 * Must be called with ctx->mutex and ctx->lock held.
 */
1205
static void
1206
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1207
{
1208 1209
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1210 1211

	/*
1212 1213 1214
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1215
	 */
1216
	if (event->group_leader == event) {
1217 1218
		struct list_head *list;

1219 1220 1221
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1222 1223
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1224
	}
P
Peter Zijlstra 已提交
1225

1226
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1227 1228
		ctx->nr_cgroups++;

1229 1230 1231
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1232
		ctx->nr_stat++;
1233 1234

	ctx->generation++;
1235 1236
}

J
Jiri Olsa 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1285 1286 1287 1288 1289 1290
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1291 1292 1293
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1294 1295 1296
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1297 1298 1299
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1300 1301 1302
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1303 1304 1305 1306 1307 1308 1309 1310 1311
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1312 1313 1314 1315 1316 1317
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1318 1319 1320
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1321 1322 1323 1324 1325 1326 1327 1328 1329
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1330
	event->id_header_size = size;
1331 1332
}

1333 1334
static void perf_group_attach(struct perf_event *event)
{
1335
	struct perf_event *group_leader = event->group_leader, *pos;
1336

P
Peter Zijlstra 已提交
1337 1338 1339 1340 1341 1342
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1343 1344 1345 1346 1347
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1348 1349
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1350 1351 1352 1353 1354 1355
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1356 1357 1358 1359 1360

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1361 1362
}

1363
/*
1364
 * Remove a event from the lists for its context.
1365
 * Must be called with ctx->mutex and ctx->lock held.
1366
 */
1367
static void
1368
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1369
{
1370
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1371 1372 1373 1374

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1375 1376 1377 1378
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1379
		return;
1380 1381 1382

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1383
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1384
		ctx->nr_cgroups--;
1385 1386 1387 1388 1389 1390 1391 1392 1393
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1394

1395 1396
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1397
		ctx->nr_stat--;
1398

1399
	list_del_rcu(&event->event_entry);
1400

1401 1402
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1403

1404
	update_group_times(event);
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1415 1416

	ctx->generation++;
1417 1418
}

1419
static void perf_group_detach(struct perf_event *event)
1420 1421
{
	struct perf_event *sibling, *tmp;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1438
		goto out;
1439 1440 1441 1442
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1443

1444
	/*
1445 1446
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1447
	 * to whatever list we are on.
1448
	 */
1449
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1450 1451
		if (list)
			list_move_tail(&sibling->group_entry, list);
1452
		sibling->group_leader = sibling;
1453 1454 1455

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1456 1457

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1458
	}
1459 1460 1461 1462 1463 1464

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1465 1466
}

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1506 1507 1508 1509 1510 1511
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1512 1513 1514
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1515
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1516
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1517 1518
}

1519 1520
static void
event_sched_out(struct perf_event *event,
1521
		  struct perf_cpu_context *cpuctx,
1522
		  struct perf_event_context *ctx)
1523
{
1524
	u64 tstamp = perf_event_time(event);
1525
	u64 delta;
P
Peter Zijlstra 已提交
1526 1527 1528 1529

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1530 1531 1532 1533 1534 1535 1536 1537
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1538
		delta = tstamp - event->tstamp_stopped;
1539
		event->tstamp_running += delta;
1540
		event->tstamp_stopped = tstamp;
1541 1542
	}

1543
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1544
		return;
1545

1546 1547
	perf_pmu_disable(event->pmu);

1548 1549 1550 1551
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1552
	}
1553
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1554
	event->pmu->del(event, 0);
1555
	event->oncpu = -1;
1556

1557
	if (!is_software_event(event))
1558
		cpuctx->active_oncpu--;
1559 1560
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1561 1562
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1563
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1564
		cpuctx->exclusive = 0;
1565

1566 1567 1568
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1569
	perf_pmu_enable(event->pmu);
1570 1571
}

1572
static void
1573
group_sched_out(struct perf_event *group_event,
1574
		struct perf_cpu_context *cpuctx,
1575
		struct perf_event_context *ctx)
1576
{
1577
	struct perf_event *event;
1578
	int state = group_event->state;
1579

1580
	event_sched_out(group_event, cpuctx, ctx);
1581 1582 1583 1584

	/*
	 * Schedule out siblings (if any):
	 */
1585 1586
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1587

1588
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1589 1590 1591
		cpuctx->exclusive = 0;
}

1592 1593 1594 1595 1596
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1597
/*
1598
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1599
 *
1600
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1601 1602
 * remove it from the context list.
 */
1603
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1604
{
1605 1606
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1607
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1608
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1609

1610
	raw_spin_lock(&ctx->lock);
1611
	event_sched_out(event, cpuctx, ctx);
1612 1613
	if (re->detach_group)
		perf_group_detach(event);
1614
	list_del_event(event, ctx);
1615 1616 1617 1618
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1619
	raw_spin_unlock(&ctx->lock);
1620 1621

	return 0;
T
Thomas Gleixner 已提交
1622 1623 1624 1625
}


/*
1626
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1627
 *
1628
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1629
 * call when the task is on a CPU.
1630
 *
1631 1632
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1633 1634
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1635
 * When called from perf_event_exit_task, it's OK because the
1636
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1637
 */
1638
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1639
{
1640
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1641
	struct task_struct *task = ctx->task;
1642 1643 1644 1645
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1646

1647 1648
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1649 1650
	if (!task) {
		/*
1651 1652 1653 1654
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1655
		 */
1656
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1657 1658 1659 1660
		return;
	}

retry:
1661
	if (!task_function_call(task, __perf_remove_from_context, &re))
1662
		return;
T
Thomas Gleixner 已提交
1663

1664
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1665
	/*
1666 1667
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1668
	 */
1669
	if (ctx->is_active) {
1670
		raw_spin_unlock_irq(&ctx->lock);
1671 1672 1673 1674 1675
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1676 1677 1678 1679
		goto retry;
	}

	/*
1680 1681
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1682
	 */
1683 1684
	if (detach_group)
		perf_group_detach(event);
1685
	list_del_event(event, ctx);
1686
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1687 1688
}

1689
/*
1690
 * Cross CPU call to disable a performance event
1691
 */
1692
int __perf_event_disable(void *info)
1693
{
1694 1695
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1696
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1697 1698

	/*
1699 1700
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1701 1702 1703
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1704
	 */
1705
	if (ctx->task && cpuctx->task_ctx != ctx)
1706
		return -EINVAL;
1707

1708
	raw_spin_lock(&ctx->lock);
1709 1710

	/*
1711
	 * If the event is on, turn it off.
1712 1713
	 * If it is in error state, leave it in error state.
	 */
1714
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1715
		update_context_time(ctx);
S
Stephane Eranian 已提交
1716
		update_cgrp_time_from_event(event);
1717 1718 1719
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1720
		else
1721 1722
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1723 1724
	}

1725
	raw_spin_unlock(&ctx->lock);
1726 1727

	return 0;
1728 1729 1730
}

/*
1731
 * Disable a event.
1732
 *
1733 1734
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1735
 * remains valid.  This condition is satisifed when called through
1736 1737 1738 1739
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1740
 * is the current context on this CPU and preemption is disabled,
1741
 * hence we can't get into perf_event_task_sched_out for this context.
1742
 */
P
Peter Zijlstra 已提交
1743
static void _perf_event_disable(struct perf_event *event)
1744
{
1745
	struct perf_event_context *ctx = event->ctx;
1746 1747 1748 1749
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1750
		 * Disable the event on the cpu that it's on
1751
		 */
1752
		cpu_function_call(event->cpu, __perf_event_disable, event);
1753 1754 1755
		return;
	}

P
Peter Zijlstra 已提交
1756
retry:
1757 1758
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1759

1760
	raw_spin_lock_irq(&ctx->lock);
1761
	/*
1762
	 * If the event is still active, we need to retry the cross-call.
1763
	 */
1764
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1765
		raw_spin_unlock_irq(&ctx->lock);
1766 1767 1768 1769 1770
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1771 1772 1773 1774 1775 1776 1777
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1778 1779 1780
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1781
	}
1782
	raw_spin_unlock_irq(&ctx->lock);
1783
}
P
Peter Zijlstra 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1797
EXPORT_SYMBOL_GPL(perf_event_disable);
1798

S
Stephane Eranian 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1834 1835 1836
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1837
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1838

1839
static int
1840
event_sched_in(struct perf_event *event,
1841
		 struct perf_cpu_context *cpuctx,
1842
		 struct perf_event_context *ctx)
1843
{
1844
	u64 tstamp = perf_event_time(event);
1845
	int ret = 0;
1846

1847 1848
	lockdep_assert_held(&ctx->lock);

1849
	if (event->state <= PERF_EVENT_STATE_OFF)
1850 1851
		return 0;

1852
	event->state = PERF_EVENT_STATE_ACTIVE;
1853
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1865 1866 1867 1868 1869
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1870 1871
	perf_pmu_disable(event->pmu);

1872 1873
	perf_set_shadow_time(event, ctx, tstamp);

1874 1875
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1876
	if (event->pmu->add(event, PERF_EF_START)) {
1877 1878
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1879 1880
		ret = -EAGAIN;
		goto out;
1881 1882
	}

1883 1884
	event->tstamp_running += tstamp - event->tstamp_stopped;

1885
	if (!is_software_event(event))
1886
		cpuctx->active_oncpu++;
1887 1888
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1889 1890
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1891

1892
	if (event->attr.exclusive)
1893 1894
		cpuctx->exclusive = 1;

1895 1896 1897
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1898 1899 1900 1901
out:
	perf_pmu_enable(event->pmu);

	return ret;
1902 1903
}

1904
static int
1905
group_sched_in(struct perf_event *group_event,
1906
	       struct perf_cpu_context *cpuctx,
1907
	       struct perf_event_context *ctx)
1908
{
1909
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1910
	struct pmu *pmu = ctx->pmu;
1911 1912
	u64 now = ctx->time;
	bool simulate = false;
1913

1914
	if (group_event->state == PERF_EVENT_STATE_OFF)
1915 1916
		return 0;

1917
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1918

1919
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1920
		pmu->cancel_txn(pmu);
1921
		perf_mux_hrtimer_restart(cpuctx);
1922
		return -EAGAIN;
1923
	}
1924 1925 1926 1927

	/*
	 * Schedule in siblings as one group (if any):
	 */
1928
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1929
		if (event_sched_in(event, cpuctx, ctx)) {
1930
			partial_group = event;
1931 1932 1933 1934
			goto group_error;
		}
	}

1935
	if (!pmu->commit_txn(pmu))
1936
		return 0;
1937

1938 1939 1940 1941
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1952
	 */
1953 1954
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1955 1956 1957 1958 1959 1960 1961 1962
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1963
	}
1964
	event_sched_out(group_event, cpuctx, ctx);
1965

P
Peter Zijlstra 已提交
1966
	pmu->cancel_txn(pmu);
1967

1968
	perf_mux_hrtimer_restart(cpuctx);
1969

1970 1971 1972
	return -EAGAIN;
}

1973
/*
1974
 * Work out whether we can put this event group on the CPU now.
1975
 */
1976
static int group_can_go_on(struct perf_event *event,
1977 1978 1979 1980
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1981
	 * Groups consisting entirely of software events can always go on.
1982
	 */
1983
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1984 1985 1986
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1987
	 * events can go on.
1988 1989 1990 1991 1992
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1993
	 * events on the CPU, it can't go on.
1994
	 */
1995
	if (event->attr.exclusive && cpuctx->active_oncpu)
1996 1997 1998 1999 2000 2001 2002 2003
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2004 2005
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2006
{
2007 2008
	u64 tstamp = perf_event_time(event);

2009
	list_add_event(event, ctx);
2010
	perf_group_attach(event);
2011 2012 2013
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2014 2015
}

2016 2017 2018 2019 2020 2021
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2022

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2035
/*
2036
 * Cross CPU call to install and enable a performance event
2037 2038
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2039
 */
2040
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2041
{
2042 2043
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2044
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2045 2046 2047
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2048
	perf_ctx_lock(cpuctx, task_ctx);
2049
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2050 2051

	/*
2052
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2053
	 */
2054
	if (task_ctx)
2055
		task_ctx_sched_out(task_ctx);
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2070 2071
		task = task_ctx->task;
	}
2072

2073
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2074

2075
	update_context_time(ctx);
S
Stephane Eranian 已提交
2076 2077 2078 2079 2080 2081
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2082

2083
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2084

2085
	/*
2086
	 * Schedule everything back in
2087
	 */
2088
	perf_event_sched_in(cpuctx, task_ctx, task);
2089 2090 2091

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2092 2093

	return 0;
T
Thomas Gleixner 已提交
2094 2095 2096
}

/*
2097
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2098
 *
2099 2100
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2101
 *
2102
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2103 2104 2105 2106
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2107 2108
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2109 2110 2111 2112
			int cpu)
{
	struct task_struct *task = ctx->task;

2113 2114
	lockdep_assert_held(&ctx->mutex);

2115
	event->ctx = ctx;
2116 2117
	if (event->cpu != -1)
		event->cpu = cpu;
2118

T
Thomas Gleixner 已提交
2119 2120
	if (!task) {
		/*
2121
		 * Per cpu events are installed via an smp call and
2122
		 * the install is always successful.
T
Thomas Gleixner 已提交
2123
		 */
2124
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2125 2126 2127 2128
		return;
	}

retry:
2129 2130
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2131

2132
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2133
	/*
2134 2135
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2136
	 */
2137
	if (ctx->is_active) {
2138
		raw_spin_unlock_irq(&ctx->lock);
2139 2140 2141 2142 2143
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2144 2145 2146 2147
		goto retry;
	}

	/*
2148 2149
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2150
	 */
2151
	add_event_to_ctx(event, ctx);
2152
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2153 2154
}

2155
/*
2156
 * Put a event into inactive state and update time fields.
2157 2158 2159 2160 2161 2162
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2163
static void __perf_event_mark_enabled(struct perf_event *event)
2164
{
2165
	struct perf_event *sub;
2166
	u64 tstamp = perf_event_time(event);
2167

2168
	event->state = PERF_EVENT_STATE_INACTIVE;
2169
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2170
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2171 2172
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2173
	}
2174 2175
}

2176
/*
2177
 * Cross CPU call to enable a performance event
2178
 */
2179
static int __perf_event_enable(void *info)
2180
{
2181 2182 2183
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2184
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2185
	int err;
2186

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2197
		return -EINVAL;
2198

2199
	raw_spin_lock(&ctx->lock);
2200
	update_context_time(ctx);
2201

2202
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2203
		goto unlock;
S
Stephane Eranian 已提交
2204 2205 2206 2207

	/*
	 * set current task's cgroup time reference point
	 */
2208
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2209

2210
	__perf_event_mark_enabled(event);
2211

S
Stephane Eranian 已提交
2212 2213 2214
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2215
		goto unlock;
S
Stephane Eranian 已提交
2216
	}
2217

2218
	/*
2219
	 * If the event is in a group and isn't the group leader,
2220
	 * then don't put it on unless the group is on.
2221
	 */
2222
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2223
		goto unlock;
2224

2225
	if (!group_can_go_on(event, cpuctx, 1)) {
2226
		err = -EEXIST;
2227
	} else {
2228
		if (event == leader)
2229
			err = group_sched_in(event, cpuctx, ctx);
2230
		else
2231
			err = event_sched_in(event, cpuctx, ctx);
2232
	}
2233 2234 2235

	if (err) {
		/*
2236
		 * If this event can't go on and it's part of a
2237 2238
		 * group, then the whole group has to come off.
		 */
2239
		if (leader != event) {
2240
			group_sched_out(leader, cpuctx, ctx);
2241
			perf_mux_hrtimer_restart(cpuctx);
2242
		}
2243
		if (leader->attr.pinned) {
2244
			update_group_times(leader);
2245
			leader->state = PERF_EVENT_STATE_ERROR;
2246
		}
2247 2248
	}

P
Peter Zijlstra 已提交
2249
unlock:
2250
	raw_spin_unlock(&ctx->lock);
2251 2252

	return 0;
2253 2254 2255
}

/*
2256
 * Enable a event.
2257
 *
2258 2259
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2260
 * remains valid.  This condition is satisfied when called through
2261 2262
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2263
 */
P
Peter Zijlstra 已提交
2264
static void _perf_event_enable(struct perf_event *event)
2265
{
2266
	struct perf_event_context *ctx = event->ctx;
2267 2268 2269 2270
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2271
		 * Enable the event on the cpu that it's on
2272
		 */
2273
		cpu_function_call(event->cpu, __perf_event_enable, event);
2274 2275 2276
		return;
	}

2277
	raw_spin_lock_irq(&ctx->lock);
2278
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2279 2280 2281
		goto out;

	/*
2282 2283
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2284 2285 2286 2287
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2288 2289
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2290

P
Peter Zijlstra 已提交
2291
retry:
2292
	if (!ctx->is_active) {
2293
		__perf_event_mark_enabled(event);
2294 2295 2296
		goto out;
	}

2297
	raw_spin_unlock_irq(&ctx->lock);
2298 2299 2300

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2301

2302
	raw_spin_lock_irq(&ctx->lock);
2303 2304

	/*
2305
	 * If the context is active and the event is still off,
2306 2307
	 * we need to retry the cross-call.
	 */
2308 2309 2310 2311 2312 2313
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2314
		goto retry;
2315
	}
2316

P
Peter Zijlstra 已提交
2317
out:
2318
	raw_spin_unlock_irq(&ctx->lock);
2319
}
P
Peter Zijlstra 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2332
EXPORT_SYMBOL_GPL(perf_event_enable);
2333

P
Peter Zijlstra 已提交
2334
static int _perf_event_refresh(struct perf_event *event, int refresh)
2335
{
2336
	/*
2337
	 * not supported on inherited events
2338
	 */
2339
	if (event->attr.inherit || !is_sampling_event(event))
2340 2341
		return -EINVAL;

2342
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2343
	_perf_event_enable(event);
2344 2345

	return 0;
2346
}
P
Peter Zijlstra 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2362
EXPORT_SYMBOL_GPL(perf_event_refresh);
2363

2364 2365 2366
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2367
{
2368
	struct perf_event *event;
2369
	int is_active = ctx->is_active;
2370

2371
	ctx->is_active &= ~event_type;
2372
	if (likely(!ctx->nr_events))
2373 2374
		return;

2375
	update_context_time(ctx);
S
Stephane Eranian 已提交
2376
	update_cgrp_time_from_cpuctx(cpuctx);
2377
	if (!ctx->nr_active)
2378
		return;
2379

P
Peter Zijlstra 已提交
2380
	perf_pmu_disable(ctx->pmu);
2381
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2382 2383
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2384
	}
2385

2386
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2387
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2388
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2389
	}
P
Peter Zijlstra 已提交
2390
	perf_pmu_enable(ctx->pmu);
2391 2392
}

2393
/*
2394 2395 2396 2397 2398 2399
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2400
 */
2401 2402
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2403
{
2404 2405 2406
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2429 2430
}

2431 2432
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2433 2434 2435
{
	u64 value;

2436
	if (!event->attr.inherit_stat)
2437 2438 2439
		return;

	/*
2440
	 * Update the event value, we cannot use perf_event_read()
2441 2442
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2443
	 * we know the event must be on the current CPU, therefore we
2444 2445
	 * don't need to use it.
	 */
2446 2447
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2448 2449
		event->pmu->read(event);
		/* fall-through */
2450

2451 2452
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2453 2454 2455 2456 2457 2458 2459
		break;

	default:
		break;
	}

	/*
2460
	 * In order to keep per-task stats reliable we need to flip the event
2461 2462
	 * values when we flip the contexts.
	 */
2463 2464 2465
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2466

2467 2468
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2469

2470
	/*
2471
	 * Since we swizzled the values, update the user visible data too.
2472
	 */
2473 2474
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2475 2476
}

2477 2478
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2479
{
2480
	struct perf_event *event, *next_event;
2481 2482 2483 2484

	if (!ctx->nr_stat)
		return;

2485 2486
	update_context_time(ctx);

2487 2488
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2489

2490 2491
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2492

2493 2494
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2495

2496
		__perf_event_sync_stat(event, next_event);
2497

2498 2499
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2500 2501 2502
	}
}

2503 2504
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2505
{
P
Peter Zijlstra 已提交
2506
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2507
	struct perf_event_context *next_ctx;
2508
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2509
	struct perf_cpu_context *cpuctx;
2510
	int do_switch = 1;
T
Thomas Gleixner 已提交
2511

P
Peter Zijlstra 已提交
2512 2513
	if (likely(!ctx))
		return;
2514

P
Peter Zijlstra 已提交
2515 2516
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2517 2518
		return;

2519
	rcu_read_lock();
P
Peter Zijlstra 已提交
2520
	next_ctx = next->perf_event_ctxp[ctxn];
2521 2522 2523 2524 2525 2526 2527
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2528
	if (!parent && !next_parent)
2529 2530 2531
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2532 2533 2534 2535 2536 2537 2538 2539 2540
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2541 2542
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2543
		if (context_equiv(ctx, next_ctx)) {
2544 2545
			/*
			 * XXX do we need a memory barrier of sorts
2546
			 * wrt to rcu_dereference() of perf_event_ctxp
2547
			 */
P
Peter Zijlstra 已提交
2548 2549
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2550 2551
			ctx->task = next;
			next_ctx->task = task;
2552 2553 2554

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2555
			do_switch = 0;
2556

2557
			perf_event_sync_stat(ctx, next_ctx);
2558
		}
2559 2560
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2561
	}
2562
unlock:
2563
	rcu_read_unlock();
2564

2565
	if (do_switch) {
2566
		raw_spin_lock(&ctx->lock);
2567
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2568
		cpuctx->task_ctx = NULL;
2569
		raw_spin_unlock(&ctx->lock);
2570
	}
T
Thomas Gleixner 已提交
2571 2572
}

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2623 2624 2625
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2640 2641
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2642 2643 2644
{
	int ctxn;

2645 2646 2647
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2648 2649 2650
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2651 2652
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2653 2654 2655 2656 2657 2658

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2659
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2660
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2661 2662
}

2663
static void task_ctx_sched_out(struct perf_event_context *ctx)
2664
{
P
Peter Zijlstra 已提交
2665
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2666

2667 2668
	if (!cpuctx->task_ctx)
		return;
2669 2670 2671 2672

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2673
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2674 2675 2676
	cpuctx->task_ctx = NULL;
}

2677 2678 2679 2680 2681 2682 2683
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2684 2685
}

2686
static void
2687
ctx_pinned_sched_in(struct perf_event_context *ctx,
2688
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2689
{
2690
	struct perf_event *event;
T
Thomas Gleixner 已提交
2691

2692 2693
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2694
			continue;
2695
		if (!event_filter_match(event))
2696 2697
			continue;

S
Stephane Eranian 已提交
2698 2699 2700 2701
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2702
		if (group_can_go_on(event, cpuctx, 1))
2703
			group_sched_in(event, cpuctx, ctx);
2704 2705 2706 2707 2708

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2709 2710 2711
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2712
		}
2713
	}
2714 2715 2716 2717
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2718
		      struct perf_cpu_context *cpuctx)
2719 2720 2721
{
	struct perf_event *event;
	int can_add_hw = 1;
2722

2723 2724 2725
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2726
			continue;
2727 2728
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2729
		 * of events:
2730
		 */
2731
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2732 2733
			continue;

S
Stephane Eranian 已提交
2734 2735 2736 2737
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2738
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2739
			if (group_sched_in(event, cpuctx, ctx))
2740
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2741
		}
T
Thomas Gleixner 已提交
2742
	}
2743 2744 2745 2746 2747
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2748 2749
	     enum event_type_t event_type,
	     struct task_struct *task)
2750
{
S
Stephane Eranian 已提交
2751
	u64 now;
2752
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2753

2754
	ctx->is_active |= event_type;
2755
	if (likely(!ctx->nr_events))
2756
		return;
2757

S
Stephane Eranian 已提交
2758 2759
	now = perf_clock();
	ctx->timestamp = now;
2760
	perf_cgroup_set_timestamp(task, ctx);
2761 2762 2763 2764
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2765
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2766
		ctx_pinned_sched_in(ctx, cpuctx);
2767 2768

	/* Then walk through the lower prio flexible groups */
2769
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2770
		ctx_flexible_sched_in(ctx, cpuctx);
2771 2772
}

2773
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2774 2775
			     enum event_type_t event_type,
			     struct task_struct *task)
2776 2777 2778
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2779
	ctx_sched_in(ctx, cpuctx, event_type, task);
2780 2781
}

S
Stephane Eranian 已提交
2782 2783
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2784
{
P
Peter Zijlstra 已提交
2785
	struct perf_cpu_context *cpuctx;
2786

P
Peter Zijlstra 已提交
2787
	cpuctx = __get_cpu_context(ctx);
2788 2789 2790
	if (cpuctx->task_ctx == ctx)
		return;

2791
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2792
	perf_pmu_disable(ctx->pmu);
2793 2794 2795 2796 2797 2798 2799
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2800 2801
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2802

2803 2804
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2805 2806
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2807 2808
}

P
Peter Zijlstra 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2820 2821
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2822 2823 2824 2825 2826 2827 2828 2829 2830
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2831
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2832
	}
S
Stephane Eranian 已提交
2833 2834 2835 2836 2837
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2838
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2839
		perf_cgroup_sched_in(prev, task);
2840

2841 2842 2843
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2844 2845
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2846 2847
}

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2875
#define REDUCE_FLS(a, b)		\
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2915 2916 2917
	if (!divisor)
		return dividend;

2918 2919 2920
	return div64_u64(dividend, divisor);
}

2921 2922 2923
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2924
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2925
{
2926
	struct hw_perf_event *hwc = &event->hw;
2927
	s64 period, sample_period;
2928 2929
	s64 delta;

2930
	period = perf_calculate_period(event, nsec, count);
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2941

2942
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2943 2944 2945
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2946
		local64_set(&hwc->period_left, 0);
2947 2948 2949

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2950
	}
2951 2952
}

2953 2954 2955 2956 2957 2958 2959
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2960
{
2961 2962
	struct perf_event *event;
	struct hw_perf_event *hwc;
2963
	u64 now, period = TICK_NSEC;
2964
	s64 delta;
2965

2966 2967 2968 2969 2970 2971
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2972 2973
		return;

2974
	raw_spin_lock(&ctx->lock);
2975
	perf_pmu_disable(ctx->pmu);
2976

2977
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2978
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2979 2980
			continue;

2981
		if (!event_filter_match(event))
2982 2983
			continue;

2984 2985
		perf_pmu_disable(event->pmu);

2986
		hwc = &event->hw;
2987

2988
		if (hwc->interrupts == MAX_INTERRUPTS) {
2989
			hwc->interrupts = 0;
2990
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2991
			event->pmu->start(event, 0);
2992 2993
		}

2994
		if (!event->attr.freq || !event->attr.sample_freq)
2995
			goto next;
2996

2997 2998 2999 3000 3001
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3002
		now = local64_read(&event->count);
3003 3004
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3005

3006 3007 3008
		/*
		 * restart the event
		 * reload only if value has changed
3009 3010 3011
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3012
		 */
3013
		if (delta > 0)
3014
			perf_adjust_period(event, period, delta, false);
3015 3016

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3017 3018
	next:
		perf_pmu_enable(event->pmu);
3019
	}
3020

3021
	perf_pmu_enable(ctx->pmu);
3022
	raw_spin_unlock(&ctx->lock);
3023 3024
}

3025
/*
3026
 * Round-robin a context's events:
3027
 */
3028
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3029
{
3030 3031 3032 3033 3034 3035
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3036 3037
}

3038
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3039
{
P
Peter Zijlstra 已提交
3040
	struct perf_event_context *ctx = NULL;
3041
	int rotate = 0;
3042

3043 3044 3045 3046
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3047

P
Peter Zijlstra 已提交
3048
	ctx = cpuctx->task_ctx;
3049 3050 3051 3052
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3053

3054
	if (!rotate)
3055 3056
		goto done;

3057
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3058
	perf_pmu_disable(cpuctx->ctx.pmu);
3059

3060 3061 3062
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3063

3064 3065 3066
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3067

3068
	perf_event_sched_in(cpuctx, ctx, current);
3069

3070 3071
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3072
done:
3073 3074

	return rotate;
3075 3076
}

3077 3078 3079
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3080
	if (atomic_read(&nr_freq_events) ||
3081
	    __this_cpu_read(perf_throttled_count))
3082
		return false;
3083 3084
	else
		return true;
3085 3086 3087
}
#endif

3088 3089
void perf_event_task_tick(void)
{
3090 3091
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3092
	int throttled;
3093

3094 3095
	WARN_ON(!irqs_disabled());

3096 3097 3098
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3099
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3100
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3101 3102
}

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3113
	__perf_event_mark_enabled(event);
3114 3115 3116 3117

	return 1;
}

3118
/*
3119
 * Enable all of a task's events that have been marked enable-on-exec.
3120 3121
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3122
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3123
{
3124
	struct perf_event_context *clone_ctx = NULL;
3125
	struct perf_event *event;
3126 3127
	unsigned long flags;
	int enabled = 0;
3128
	int ret;
3129 3130

	local_irq_save(flags);
3131
	if (!ctx || !ctx->nr_events)
3132 3133
		goto out;

3134 3135 3136 3137 3138 3139 3140
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3141
	perf_cgroup_sched_out(current, NULL);
3142

3143
	raw_spin_lock(&ctx->lock);
3144
	task_ctx_sched_out(ctx);
3145

3146
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3147 3148 3149
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3150 3151 3152
	}

	/*
3153
	 * Unclone this context if we enabled any event.
3154
	 */
3155
	if (enabled)
3156
		clone_ctx = unclone_ctx(ctx);
3157

3158
	raw_spin_unlock(&ctx->lock);
3159

3160 3161 3162
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3163
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3164
out:
3165
	local_irq_restore(flags);
3166 3167 3168

	if (clone_ctx)
		put_ctx(clone_ctx);
3169 3170
}

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3187
/*
3188
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3189
 */
3190
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3191
{
3192 3193
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3194
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3195

3196 3197 3198 3199
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3200 3201
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3202 3203 3204 3205
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3206
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3207
	if (ctx->is_active) {
3208
		update_context_time(ctx);
S
Stephane Eranian 已提交
3209 3210
		update_cgrp_time_from_event(event);
	}
3211
	update_event_times(event);
3212 3213
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3214
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3215 3216
}

P
Peter Zijlstra 已提交
3217 3218
static inline u64 perf_event_count(struct perf_event *event)
{
3219 3220 3221 3222
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3223 3224
}

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3278
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3279 3280
{
	/*
3281 3282
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3283
	 */
3284 3285 3286 3287
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3288 3289 3290
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3291
		raw_spin_lock_irqsave(&ctx->lock, flags);
3292 3293 3294 3295 3296
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3297
		if (ctx->is_active) {
3298
			update_context_time(ctx);
S
Stephane Eranian 已提交
3299 3300
			update_cgrp_time_from_event(event);
		}
3301
		update_event_times(event);
3302
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3303 3304
	}

P
Peter Zijlstra 已提交
3305
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3306 3307
}

3308
/*
3309
 * Initialize the perf_event context in a task_struct:
3310
 */
3311
static void __perf_event_init_context(struct perf_event_context *ctx)
3312
{
3313
	raw_spin_lock_init(&ctx->lock);
3314
	mutex_init(&ctx->mutex);
3315
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3316 3317
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3318 3319
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3320
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3336
	}
3337 3338 3339
	ctx->pmu = pmu;

	return ctx;
3340 3341
}

3342 3343 3344 3345 3346
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3347 3348

	rcu_read_lock();
3349
	if (!vpid)
T
Thomas Gleixner 已提交
3350 3351
		task = current;
	else
3352
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3353 3354 3355 3356 3357 3358 3359 3360
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3361 3362 3363 3364
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3365 3366 3367 3368 3369 3370 3371
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3372 3373 3374
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3375
static struct perf_event_context *
3376 3377
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3378
{
3379
	struct perf_event_context *ctx, *clone_ctx = NULL;
3380
	struct perf_cpu_context *cpuctx;
3381
	void *task_ctx_data = NULL;
3382
	unsigned long flags;
P
Peter Zijlstra 已提交
3383
	int ctxn, err;
3384
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3385

3386
	if (!task) {
3387
		/* Must be root to operate on a CPU event: */
3388
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3389 3390 3391
			return ERR_PTR(-EACCES);

		/*
3392
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3393 3394 3395
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3396
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3397 3398
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3399
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3400
		ctx = &cpuctx->ctx;
3401
		get_ctx(ctx);
3402
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3403 3404 3405 3406

		return ctx;
	}

P
Peter Zijlstra 已提交
3407 3408 3409 3410 3411
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3412 3413 3414 3415 3416 3417 3418 3419
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3420
retry:
P
Peter Zijlstra 已提交
3421
	ctx = perf_lock_task_context(task, ctxn, &flags);
3422
	if (ctx) {
3423
		clone_ctx = unclone_ctx(ctx);
3424
		++ctx->pin_count;
3425 3426 3427 3428 3429

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3430
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3431 3432 3433

		if (clone_ctx)
			put_ctx(clone_ctx);
3434
	} else {
3435
		ctx = alloc_perf_context(pmu, task);
3436 3437 3438
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3439

3440 3441 3442 3443 3444
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3455
		else {
3456
			get_ctx(ctx);
3457
			++ctx->pin_count;
3458
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3459
		}
3460 3461 3462
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3463
			put_ctx(ctx);
3464 3465 3466 3467

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3468 3469 3470
		}
	}

3471
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3472
	return ctx;
3473

P
Peter Zijlstra 已提交
3474
errout:
3475
	kfree(task_ctx_data);
3476
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3477 3478
}

L
Li Zefan 已提交
3479
static void perf_event_free_filter(struct perf_event *event);
3480
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3481

3482
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3483
{
3484
	struct perf_event *event;
P
Peter Zijlstra 已提交
3485

3486 3487 3488
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3489
	perf_event_free_filter(event);
3490
	kfree(event);
P
Peter Zijlstra 已提交
3491 3492
}

3493 3494
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3495

3496
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3497
{
3498 3499 3500 3501 3502 3503
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3504

3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3518 3519
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3520 3521 3522 3523
	if (event->attr.context_switch) {
		static_key_slow_dec_deferred(&perf_sched_events);
		atomic_dec(&nr_switch_events);
	}
3524 3525 3526 3527 3528 3529 3530
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3531

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3617 3618
static void __free_event(struct perf_event *event)
{
3619
	if (!event->parent) {
3620 3621
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3622
	}
3623

3624 3625
	perf_event_free_bpf_prog(event);

3626 3627 3628 3629 3630 3631
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3632 3633
	if (event->pmu) {
		exclusive_event_destroy(event);
3634
		module_put(event->pmu->module);
3635
	}
3636

3637 3638
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3639 3640

static void _free_event(struct perf_event *event)
3641
{
3642
	irq_work_sync(&event->pending);
3643

3644
	unaccount_event(event);
3645

3646
	if (event->rb) {
3647 3648 3649 3650 3651 3652 3653
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3654
		ring_buffer_attach(event, NULL);
3655
		mutex_unlock(&event->mmap_mutex);
3656 3657
	}

S
Stephane Eranian 已提交
3658 3659 3660
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3661
	__free_event(event);
3662 3663
}

P
Peter Zijlstra 已提交
3664 3665 3666 3667 3668
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3669
{
P
Peter Zijlstra 已提交
3670 3671 3672 3673 3674 3675
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3676

P
Peter Zijlstra 已提交
3677
	_free_event(event);
T
Thomas Gleixner 已提交
3678 3679
}

3680
/*
3681
 * Remove user event from the owner task.
3682
 */
3683
static void perf_remove_from_owner(struct perf_event *event)
3684
{
P
Peter Zijlstra 已提交
3685
	struct task_struct *owner;
3686

P
Peter Zijlstra 已提交
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3728 3729 3730 3731
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3732
	struct perf_event_context *ctx;
3733 3734 3735 3736 3737 3738

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3739

P
Peter Zijlstra 已提交
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3752 3753
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3754
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3755
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3756 3757

	_free_event(event);
3758 3759
}

P
Peter Zijlstra 已提交
3760 3761 3762 3763 3764 3765 3766
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3767 3768 3769
/*
 * Called when the last reference to the file is gone.
 */
3770 3771 3772 3773
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3774 3775
}

3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3812
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3813
{
3814
	struct perf_event *child;
3815 3816
	u64 total = 0;

3817 3818 3819
	*enabled = 0;
	*running = 0;

3820
	mutex_lock(&event->child_mutex);
3821
	total += perf_event_read(event);
3822 3823 3824 3825 3826 3827
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3828
		total += perf_event_read(child);
3829 3830 3831
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3832
	mutex_unlock(&event->child_mutex);
3833 3834 3835

	return total;
}
3836
EXPORT_SYMBOL_GPL(perf_event_read_value);
3837

3838
static int perf_event_read_group(struct perf_event *event,
3839 3840
				   u64 read_format, char __user *buf)
{
3841
	struct perf_event *leader = event->group_leader, *sub;
3842
	struct perf_event_context *ctx = leader->ctx;
P
Peter Zijlstra 已提交
3843
	int n = 0, size = 0, ret;
3844
	u64 count, enabled, running;
P
Peter Zijlstra 已提交
3845 3846 3847
	u64 values[5];

	lockdep_assert_held(&ctx->mutex);
3848

3849
	count = perf_event_read_value(leader, &enabled, &running);
3850 3851

	values[n++] = 1 + leader->nr_siblings;
3852 3853 3854 3855
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3856 3857 3858
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3859 3860 3861 3862

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
P
Peter Zijlstra 已提交
3863
		return -EFAULT;
3864

3865
	ret = size;
3866

3867
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3868
		n = 0;
3869

3870
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3871 3872 3873 3874 3875
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3876
		if (copy_to_user(buf + ret, values, size)) {
P
Peter Zijlstra 已提交
3877
			return -EFAULT;
3878
		}
3879 3880

		ret += size;
3881 3882
	}

3883
	return ret;
3884 3885
}

3886
static int perf_event_read_one(struct perf_event *event,
3887 3888
				 u64 read_format, char __user *buf)
{
3889
	u64 enabled, running;
3890 3891 3892
	u64 values[4];
	int n = 0;

3893 3894 3895 3896 3897
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3898
	if (read_format & PERF_FORMAT_ID)
3899
		values[n++] = primary_event_id(event);
3900 3901 3902 3903 3904 3905 3906

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3920
/*
3921
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3922 3923
 */
static ssize_t
3924
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3925
{
3926
	u64 read_format = event->attr.read_format;
3927
	int ret;
T
Thomas Gleixner 已提交
3928

3929
	/*
3930
	 * Return end-of-file for a read on a event that is in
3931 3932 3933
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3934
	if (event->state == PERF_EVENT_STATE_ERROR)
3935 3936
		return 0;

3937
	if (count < event->read_size)
3938 3939
		return -ENOSPC;

3940
	WARN_ON_ONCE(event->ctx->parent_ctx);
3941
	if (read_format & PERF_FORMAT_GROUP)
3942
		ret = perf_event_read_group(event, read_format, buf);
3943
	else
3944
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3945

3946
	return ret;
T
Thomas Gleixner 已提交
3947 3948 3949 3950 3951
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3952
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3953 3954
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3955

P
Peter Zijlstra 已提交
3956 3957 3958 3959 3960
	ctx = perf_event_ctx_lock(event);
	ret = perf_read_hw(event, buf, count);
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
3961 3962 3963 3964
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3965
	struct perf_event *event = file->private_data;
3966
	struct ring_buffer *rb;
3967
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3968

3969
	poll_wait(file, &event->waitq, wait);
3970

3971
	if (is_event_hup(event))
3972
		return events;
P
Peter Zijlstra 已提交
3973

3974
	/*
3975 3976
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3977 3978
	 */
	mutex_lock(&event->mmap_mutex);
3979 3980
	rb = event->rb;
	if (rb)
3981
		events = atomic_xchg(&rb->poll, 0);
3982
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
3983 3984 3985
	return events;
}

P
Peter Zijlstra 已提交
3986
static void _perf_event_reset(struct perf_event *event)
3987
{
3988
	(void)perf_event_read(event);
3989
	local64_set(&event->count, 0);
3990
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3991 3992
}

3993
/*
3994 3995 3996 3997
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3998
 */
3999 4000
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4001
{
4002
	struct perf_event *child;
P
Peter Zijlstra 已提交
4003

4004
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4005

4006 4007 4008
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4009
		func(child);
4010
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4011 4012
}

4013 4014
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4015
{
4016 4017
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4018

P
Peter Zijlstra 已提交
4019 4020
	lockdep_assert_held(&ctx->mutex);

4021
	event = event->group_leader;
4022

4023 4024
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4025
		perf_event_for_each_child(sibling, func);
4026 4027
}

4028 4029
struct period_event {
	struct perf_event *event;
4030
	u64 value;
4031
};
4032

4033 4034 4035 4036 4037 4038 4039
static int __perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	struct perf_event_context *ctx = event->ctx;
	u64 value = pe->value;
	bool active;
4040

4041
	raw_spin_lock(&ctx->lock);
4042 4043
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4044
	} else {
4045 4046
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4047
	}
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4061
	raw_spin_unlock(&ctx->lock);
4062

4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
	return 0;
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	struct period_event pe = { .event = event, };
	struct perf_event_context *ctx = event->ctx;
	struct task_struct *task;
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

	task = ctx->task;
	pe.value = value;

	if (!task) {
		cpu_function_call(event->cpu, __perf_event_period, &pe);
		return 0;
	}

retry:
	if (!task_function_call(task, __perf_event_period, &pe))
		return 0;

	raw_spin_lock_irq(&ctx->lock);
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		task = ctx->task;
		goto retry;
	}

	__perf_event_period(&pe);
4105
	raw_spin_unlock_irq(&ctx->lock);
4106

4107
	return 0;
4108 4109
}

4110 4111
static const struct file_operations perf_fops;

4112
static inline int perf_fget_light(int fd, struct fd *p)
4113
{
4114 4115 4116
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4117

4118 4119 4120
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4121
	}
4122 4123
	*p = f;
	return 0;
4124 4125 4126 4127
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4128
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4129
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4130

P
Peter Zijlstra 已提交
4131
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4132
{
4133
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4134
	u32 flags = arg;
4135 4136

	switch (cmd) {
4137
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4138
		func = _perf_event_enable;
4139
		break;
4140
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4141
		func = _perf_event_disable;
4142
		break;
4143
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4144
		func = _perf_event_reset;
4145
		break;
P
Peter Zijlstra 已提交
4146

4147
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4148
		return _perf_event_refresh(event, arg);
4149

4150 4151
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4152

4153 4154 4155 4156 4157 4158 4159 4160 4161
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4162
	case PERF_EVENT_IOC_SET_OUTPUT:
4163 4164 4165
	{
		int ret;
		if (arg != -1) {
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4176 4177 4178
		}
		return ret;
	}
4179

L
Li Zefan 已提交
4180 4181 4182
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4183 4184 4185
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4186
	default:
P
Peter Zijlstra 已提交
4187
		return -ENOTTY;
4188
	}
P
Peter Zijlstra 已提交
4189 4190

	if (flags & PERF_IOC_FLAG_GROUP)
4191
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4192
	else
4193
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4194 4195

	return 0;
4196 4197
}

P
Peter Zijlstra 已提交
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4231
int perf_event_task_enable(void)
4232
{
P
Peter Zijlstra 已提交
4233
	struct perf_event_context *ctx;
4234
	struct perf_event *event;
4235

4236
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4237 4238 4239 4240 4241
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4242
	mutex_unlock(&current->perf_event_mutex);
4243 4244 4245 4246

	return 0;
}

4247
int perf_event_task_disable(void)
4248
{
P
Peter Zijlstra 已提交
4249
	struct perf_event_context *ctx;
4250
	struct perf_event *event;
4251

4252
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4253 4254 4255 4256 4257
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4258
	mutex_unlock(&current->perf_event_mutex);
4259 4260 4261 4262

	return 0;
}

4263
static int perf_event_index(struct perf_event *event)
4264
{
P
Peter Zijlstra 已提交
4265 4266 4267
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4268
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4269 4270
		return 0;

4271
	return event->pmu->event_idx(event);
4272 4273
}

4274
static void calc_timer_values(struct perf_event *event,
4275
				u64 *now,
4276 4277
				u64 *enabled,
				u64 *running)
4278
{
4279
	u64 ctx_time;
4280

4281 4282
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4283 4284 4285 4286
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4302 4303
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4304 4305 4306 4307 4308

unlock:
	rcu_read_unlock();
}

4309 4310
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4311 4312 4313
{
}

4314 4315 4316 4317 4318
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4319
void perf_event_update_userpage(struct perf_event *event)
4320
{
4321
	struct perf_event_mmap_page *userpg;
4322
	struct ring_buffer *rb;
4323
	u64 enabled, running, now;
4324 4325

	rcu_read_lock();
4326 4327 4328 4329
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4330 4331 4332 4333 4334 4335 4336 4337 4338
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4339
	calc_timer_values(event, &now, &enabled, &running);
4340

4341
	userpg = rb->user_page;
4342 4343 4344 4345 4346
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4347
	++userpg->lock;
4348
	barrier();
4349
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4350
	userpg->offset = perf_event_count(event);
4351
	if (userpg->index)
4352
		userpg->offset -= local64_read(&event->hw.prev_count);
4353

4354
	userpg->time_enabled = enabled +
4355
			atomic64_read(&event->child_total_time_enabled);
4356

4357
	userpg->time_running = running +
4358
			atomic64_read(&event->child_total_time_running);
4359

4360
	arch_perf_update_userpage(event, userpg, now);
4361

4362
	barrier();
4363
	++userpg->lock;
4364
	preempt_enable();
4365
unlock:
4366
	rcu_read_unlock();
4367 4368
}

4369 4370 4371
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4372
	struct ring_buffer *rb;
4373 4374 4375 4376 4377 4378 4379 4380 4381
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4382 4383
	rb = rcu_dereference(event->rb);
	if (!rb)
4384 4385 4386 4387 4388
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4389
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4404 4405 4406
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4407
	struct ring_buffer *old_rb = NULL;
4408 4409
	unsigned long flags;

4410 4411 4412 4413 4414 4415
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4416

4417 4418 4419 4420
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4421

4422 4423
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4424
	}
4425

4426
	if (rb) {
4427 4428 4429 4430 4431
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4448 4449 4450 4451 4452 4453 4454 4455
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4456 4457 4458 4459
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4460 4461 4462
	rcu_read_unlock();
}

4463
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4464
{
4465
	struct ring_buffer *rb;
4466

4467
	rcu_read_lock();
4468 4469 4470 4471
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4472 4473 4474
	}
	rcu_read_unlock();

4475
	return rb;
4476 4477
}

4478
void ring_buffer_put(struct ring_buffer *rb)
4479
{
4480
	if (!atomic_dec_and_test(&rb->refcount))
4481
		return;
4482

4483
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4484

4485
	call_rcu(&rb->rcu_head, rb_free_rcu);
4486 4487 4488 4489
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4490
	struct perf_event *event = vma->vm_file->private_data;
4491

4492
	atomic_inc(&event->mmap_count);
4493
	atomic_inc(&event->rb->mmap_count);
4494

4495 4496 4497
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4498 4499
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4500 4501
}

4502 4503 4504 4505 4506 4507 4508 4509
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4510 4511
static void perf_mmap_close(struct vm_area_struct *vma)
{
4512
	struct perf_event *event = vma->vm_file->private_data;
4513

4514
	struct ring_buffer *rb = ring_buffer_get(event);
4515 4516 4517
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4518

4519 4520 4521
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4536 4537 4538
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4539
		goto out_put;
4540

4541
	ring_buffer_attach(event, NULL);
4542 4543 4544
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4545 4546
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4547

4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4564

4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4576 4577 4578
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4579
		mutex_unlock(&event->mmap_mutex);
4580
		put_event(event);
4581

4582 4583 4584 4585 4586
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4587
	}
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4603
out_put:
4604
	ring_buffer_put(rb); /* could be last */
4605 4606
}

4607
static const struct vm_operations_struct perf_mmap_vmops = {
4608
	.open		= perf_mmap_open,
4609
	.close		= perf_mmap_close, /* non mergable */
4610 4611
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4612 4613 4614 4615
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4616
	struct perf_event *event = file->private_data;
4617
	unsigned long user_locked, user_lock_limit;
4618
	struct user_struct *user = current_user();
4619
	unsigned long locked, lock_limit;
4620
	struct ring_buffer *rb = NULL;
4621 4622
	unsigned long vma_size;
	unsigned long nr_pages;
4623
	long user_extra = 0, extra = 0;
4624
	int ret = 0, flags = 0;
4625

4626 4627 4628
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4629
	 * same rb.
4630 4631 4632 4633
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4634
	if (!(vma->vm_flags & VM_SHARED))
4635
		return -EINVAL;
4636 4637

	vma_size = vma->vm_end - vma->vm_start;
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4698

4699
	/*
4700
	 * If we have rb pages ensure they're a power-of-two number, so we
4701 4702
	 * can do bitmasks instead of modulo.
	 */
4703
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4704 4705
		return -EINVAL;

4706
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4707 4708
		return -EINVAL;

4709
	WARN_ON_ONCE(event->ctx->parent_ctx);
4710
again:
4711
	mutex_lock(&event->mmap_mutex);
4712
	if (event->rb) {
4713
		if (event->rb->nr_pages != nr_pages) {
4714
			ret = -EINVAL;
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4728 4729 4730
		goto unlock;
	}

4731
	user_extra = nr_pages + 1;
4732 4733

accounting:
4734
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4735 4736 4737 4738 4739 4740

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4741
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4742

4743 4744
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4745

4746
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4747
	lock_limit >>= PAGE_SHIFT;
4748
	locked = vma->vm_mm->pinned_vm + extra;
4749

4750 4751
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4752 4753 4754
		ret = -EPERM;
		goto unlock;
	}
4755

4756
	WARN_ON(!rb && event->rb);
4757

4758
	if (vma->vm_flags & VM_WRITE)
4759
		flags |= RING_BUFFER_WRITABLE;
4760

4761
	if (!rb) {
4762 4763 4764
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4765

4766 4767 4768 4769
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4770

4771 4772 4773
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4774

4775
		ring_buffer_attach(event, rb);
4776

4777 4778 4779
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4780 4781
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4782 4783 4784
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4785

4786
unlock:
4787 4788 4789 4790
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4791
		atomic_inc(&event->mmap_count);
4792 4793 4794 4795
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4796
	mutex_unlock(&event->mmap_mutex);
4797

4798 4799 4800 4801
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4802
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4803
	vma->vm_ops = &perf_mmap_vmops;
4804

4805 4806 4807
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4808
	return ret;
4809 4810
}

P
Peter Zijlstra 已提交
4811 4812
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4813
	struct inode *inode = file_inode(filp);
4814
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4815 4816 4817
	int retval;

	mutex_lock(&inode->i_mutex);
4818
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4819 4820 4821 4822 4823 4824 4825 4826
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4827
static const struct file_operations perf_fops = {
4828
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4829 4830 4831
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4832
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4833
	.compat_ioctl		= perf_compat_ioctl,
4834
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4835
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4836 4837
};

4838
/*
4839
 * Perf event wakeup
4840 4841 4842 4843 4844
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4845 4846 4847 4848 4849 4850 4851 4852
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4853
void perf_event_wakeup(struct perf_event *event)
4854
{
4855
	ring_buffer_wakeup(event);
4856

4857
	if (event->pending_kill) {
4858
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4859
		event->pending_kill = 0;
4860
	}
4861 4862
}

4863
static void perf_pending_event(struct irq_work *entry)
4864
{
4865 4866
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4867 4868 4869 4870 4871 4872 4873
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4874

4875 4876 4877
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4878 4879
	}

4880 4881 4882
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4883
	}
4884 4885 4886

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4887 4888
}

4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4925
static void perf_sample_regs_user(struct perf_regs *regs_user,
4926 4927
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4928
{
4929 4930
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4931
		regs_user->regs = regs;
4932 4933
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4934 4935 4936
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4937 4938 4939
	}
}

4940 4941 4942 4943 4944 4945 4946 4947
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5043 5044 5045
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5059
		data->time = perf_event_clock(event);
5060

5061
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5073 5074 5075
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5100 5101 5102

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5103 5104
}

5105 5106 5107
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5108 5109 5110 5111 5112
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5113
static void perf_output_read_one(struct perf_output_handle *handle,
5114 5115
				 struct perf_event *event,
				 u64 enabled, u64 running)
5116
{
5117
	u64 read_format = event->attr.read_format;
5118 5119 5120
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5121
	values[n++] = perf_event_count(event);
5122
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5123
		values[n++] = enabled +
5124
			atomic64_read(&event->child_total_time_enabled);
5125 5126
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5127
		values[n++] = running +
5128
			atomic64_read(&event->child_total_time_running);
5129 5130
	}
	if (read_format & PERF_FORMAT_ID)
5131
		values[n++] = primary_event_id(event);
5132

5133
	__output_copy(handle, values, n * sizeof(u64));
5134 5135 5136
}

/*
5137
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5138 5139
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5140 5141
			    struct perf_event *event,
			    u64 enabled, u64 running)
5142
{
5143 5144
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5145 5146 5147 5148 5149 5150
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5151
		values[n++] = enabled;
5152 5153

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5154
		values[n++] = running;
5155

5156
	if (leader != event)
5157 5158
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5159
	values[n++] = perf_event_count(leader);
5160
	if (read_format & PERF_FORMAT_ID)
5161
		values[n++] = primary_event_id(leader);
5162

5163
	__output_copy(handle, values, n * sizeof(u64));
5164

5165
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5166 5167
		n = 0;

5168 5169
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5170 5171
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5172
		values[n++] = perf_event_count(sub);
5173
		if (read_format & PERF_FORMAT_ID)
5174
			values[n++] = primary_event_id(sub);
5175

5176
		__output_copy(handle, values, n * sizeof(u64));
5177 5178 5179
	}
}

5180 5181 5182
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5183
static void perf_output_read(struct perf_output_handle *handle,
5184
			     struct perf_event *event)
5185
{
5186
	u64 enabled = 0, running = 0, now;
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5198
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5199
		calc_timer_values(event, &now, &enabled, &running);
5200

5201
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5202
		perf_output_read_group(handle, event, enabled, running);
5203
	else
5204
		perf_output_read_one(handle, event, enabled, running);
5205 5206
}

5207 5208 5209
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5210
			struct perf_event *event)
5211 5212 5213 5214 5215
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5216 5217 5218
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5244
		perf_output_read(handle, event);
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5255
			__output_copy(handle, data->callchain, size);
5256 5257 5258 5259 5260 5261 5262 5263 5264
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
5265 5266
			__output_copy(handle, data->raw->data,
					   data->raw->size);
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5278

5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5313

5314
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5315 5316 5317
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5318
	}
A
Andi Kleen 已提交
5319 5320 5321

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5322 5323 5324

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5325

A
Andi Kleen 已提交
5326 5327 5328
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5359 5360 5361 5362
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5363
			 struct perf_event *event,
5364
			 struct pt_regs *regs)
5365
{
5366
	u64 sample_type = event->attr.sample_type;
5367

5368
	header->type = PERF_RECORD_SAMPLE;
5369
	header->size = sizeof(*header) + event->header_size;
5370 5371 5372

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5373

5374
	__perf_event_header__init_id(header, data, event);
5375

5376
	if (sample_type & PERF_SAMPLE_IP)
5377 5378
		data->ip = perf_instruction_pointer(regs);

5379
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5380
		int size = 1;
5381

5382
		data->callchain = perf_callchain(event, regs);
5383 5384 5385 5386 5387

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5388 5389
	}

5390
	if (sample_type & PERF_SAMPLE_RAW) {
5391 5392 5393 5394 5395 5396 5397 5398
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5399
		header->size += size;
5400
	}
5401 5402 5403 5404 5405 5406 5407 5408 5409

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5410

5411
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5412 5413
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5414

5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5438
						     data->regs_user.regs);
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5466
}
5467

5468 5469 5470
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5471 5472 5473
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5474

5475 5476 5477
	/* protect the callchain buffers */
	rcu_read_lock();

5478
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5479

5480
	if (perf_output_begin(&handle, event, header.size))
5481
		goto exit;
5482

5483
	perf_output_sample(&handle, &header, data, event);
5484

5485
	perf_output_end(&handle);
5486 5487 5488

exit:
	rcu_read_unlock();
5489 5490
}

5491
/*
5492
 * read event_id
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5503
perf_event_read_event(struct perf_event *event,
5504 5505 5506
			struct task_struct *task)
{
	struct perf_output_handle handle;
5507
	struct perf_sample_data sample;
5508
	struct perf_read_event read_event = {
5509
		.header = {
5510
			.type = PERF_RECORD_READ,
5511
			.misc = 0,
5512
			.size = sizeof(read_event) + event->read_size,
5513
		},
5514 5515
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5516
	};
5517
	int ret;
5518

5519
	perf_event_header__init_id(&read_event.header, &sample, event);
5520
	ret = perf_output_begin(&handle, event, read_event.header.size);
5521 5522 5523
	if (ret)
		return;

5524
	perf_output_put(&handle, read_event);
5525
	perf_output_read(&handle, event);
5526
	perf_event__output_id_sample(event, &handle, &sample);
5527

5528 5529 5530
	perf_output_end(&handle);
}

5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5545
		output(event, data);
5546 5547 5548 5549
	}
}

static void
5550
perf_event_aux(perf_event_aux_output_cb output, void *data,
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5563
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5564 5565 5566 5567 5568 5569 5570
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5571
			perf_event_aux_ctx(ctx, output, data);
5572 5573 5574 5575 5576 5577
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5578
		perf_event_aux_ctx(task_ctx, output, data);
5579 5580 5581 5582 5583
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5584
/*
P
Peter Zijlstra 已提交
5585 5586
 * task tracking -- fork/exit
 *
5587
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5588 5589
 */

P
Peter Zijlstra 已提交
5590
struct perf_task_event {
5591
	struct task_struct		*task;
5592
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5593 5594 5595 5596 5597 5598

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5599 5600
		u32				tid;
		u32				ptid;
5601
		u64				time;
5602
	} event_id;
P
Peter Zijlstra 已提交
5603 5604
};

5605 5606
static int perf_event_task_match(struct perf_event *event)
{
5607 5608 5609
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5610 5611
}

5612
static void perf_event_task_output(struct perf_event *event,
5613
				   void *data)
P
Peter Zijlstra 已提交
5614
{
5615
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5616
	struct perf_output_handle handle;
5617
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5618
	struct task_struct *task = task_event->task;
5619
	int ret, size = task_event->event_id.header.size;
5620

5621 5622 5623
	if (!perf_event_task_match(event))
		return;

5624
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5625

5626
	ret = perf_output_begin(&handle, event,
5627
				task_event->event_id.header.size);
5628
	if (ret)
5629
		goto out;
P
Peter Zijlstra 已提交
5630

5631 5632
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5633

5634 5635
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5636

5637 5638
	task_event->event_id.time = perf_event_clock(event);

5639
	perf_output_put(&handle, task_event->event_id);
5640

5641 5642
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5643
	perf_output_end(&handle);
5644 5645
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5646 5647
}

5648 5649
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5650
			      int new)
P
Peter Zijlstra 已提交
5651
{
P
Peter Zijlstra 已提交
5652
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5653

5654 5655 5656
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5657 5658
		return;

P
Peter Zijlstra 已提交
5659
	task_event = (struct perf_task_event){
5660 5661
		.task	  = task,
		.task_ctx = task_ctx,
5662
		.event_id    = {
P
Peter Zijlstra 已提交
5663
			.header = {
5664
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5665
				.misc = 0,
5666
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5667
			},
5668 5669
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5670 5671
			/* .tid  */
			/* .ptid */
5672
			/* .time */
P
Peter Zijlstra 已提交
5673 5674 5675
		},
	};

5676
	perf_event_aux(perf_event_task_output,
5677 5678
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5679 5680
}

5681
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5682
{
5683
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5684 5685
}

5686 5687 5688 5689 5690
/*
 * comm tracking
 */

struct perf_comm_event {
5691 5692
	struct task_struct	*task;
	char			*comm;
5693 5694 5695 5696 5697 5698 5699
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5700
	} event_id;
5701 5702
};

5703 5704 5705 5706 5707
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5708
static void perf_event_comm_output(struct perf_event *event,
5709
				   void *data)
5710
{
5711
	struct perf_comm_event *comm_event = data;
5712
	struct perf_output_handle handle;
5713
	struct perf_sample_data sample;
5714
	int size = comm_event->event_id.header.size;
5715 5716
	int ret;

5717 5718 5719
	if (!perf_event_comm_match(event))
		return;

5720 5721
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5722
				comm_event->event_id.header.size);
5723 5724

	if (ret)
5725
		goto out;
5726

5727 5728
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5729

5730
	perf_output_put(&handle, comm_event->event_id);
5731
	__output_copy(&handle, comm_event->comm,
5732
				   comm_event->comm_size);
5733 5734 5735

	perf_event__output_id_sample(event, &handle, &sample);

5736
	perf_output_end(&handle);
5737 5738
out:
	comm_event->event_id.header.size = size;
5739 5740
}

5741
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5742
{
5743
	char comm[TASK_COMM_LEN];
5744 5745
	unsigned int size;

5746
	memset(comm, 0, sizeof(comm));
5747
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5748
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5749 5750 5751 5752

	comm_event->comm = comm;
	comm_event->comm_size = size;

5753
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5754

5755
	perf_event_aux(perf_event_comm_output,
5756 5757
		       comm_event,
		       NULL);
5758 5759
}

5760
void perf_event_comm(struct task_struct *task, bool exec)
5761
{
5762 5763
	struct perf_comm_event comm_event;

5764
	if (!atomic_read(&nr_comm_events))
5765
		return;
5766

5767
	comm_event = (struct perf_comm_event){
5768
		.task	= task,
5769 5770
		/* .comm      */
		/* .comm_size */
5771
		.event_id  = {
5772
			.header = {
5773
				.type = PERF_RECORD_COMM,
5774
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5775 5776 5777 5778
				/* .size */
			},
			/* .pid */
			/* .tid */
5779 5780 5781
		},
	};

5782
	perf_event_comm_event(&comm_event);
5783 5784
}

5785 5786 5787 5788 5789
/*
 * mmap tracking
 */

struct perf_mmap_event {
5790 5791 5792 5793
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5794 5795 5796
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5797
	u32			prot, flags;
5798 5799 5800 5801 5802 5803 5804 5805 5806

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5807
	} event_id;
5808 5809
};

5810 5811 5812 5813 5814 5815 5816 5817
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5818
	       (executable && (event->attr.mmap || event->attr.mmap2));
5819 5820
}

5821
static void perf_event_mmap_output(struct perf_event *event,
5822
				   void *data)
5823
{
5824
	struct perf_mmap_event *mmap_event = data;
5825
	struct perf_output_handle handle;
5826
	struct perf_sample_data sample;
5827
	int size = mmap_event->event_id.header.size;
5828
	int ret;
5829

5830 5831 5832
	if (!perf_event_mmap_match(event, data))
		return;

5833 5834 5835 5836 5837
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5838
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5839 5840
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5841 5842
	}

5843 5844
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5845
				mmap_event->event_id.header.size);
5846
	if (ret)
5847
		goto out;
5848

5849 5850
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5851

5852
	perf_output_put(&handle, mmap_event->event_id);
5853 5854 5855 5856 5857 5858

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5859 5860
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5861 5862
	}

5863
	__output_copy(&handle, mmap_event->file_name,
5864
				   mmap_event->file_size);
5865 5866 5867

	perf_event__output_id_sample(event, &handle, &sample);

5868
	perf_output_end(&handle);
5869 5870
out:
	mmap_event->event_id.header.size = size;
5871 5872
}

5873
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5874
{
5875 5876
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5877 5878
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5879
	u32 prot = 0, flags = 0;
5880 5881 5882
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5883
	char *name;
5884

5885
	if (file) {
5886 5887
		struct inode *inode;
		dev_t dev;
5888

5889
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5890
		if (!buf) {
5891 5892
			name = "//enomem";
			goto cpy_name;
5893
		}
5894
		/*
5895
		 * d_path() works from the end of the rb backwards, so we
5896 5897 5898
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5899
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5900
		if (IS_ERR(name)) {
5901 5902
			name = "//toolong";
			goto cpy_name;
5903
		}
5904 5905 5906 5907 5908 5909
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5932
		goto got_name;
5933
	} else {
5934 5935 5936 5937 5938 5939
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5940
		name = (char *)arch_vma_name(vma);
5941 5942
		if (name)
			goto cpy_name;
5943

5944
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5945
				vma->vm_end >= vma->vm_mm->brk) {
5946 5947
			name = "[heap]";
			goto cpy_name;
5948 5949
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5950
				vma->vm_end >= vma->vm_mm->start_stack) {
5951 5952
			name = "[stack]";
			goto cpy_name;
5953 5954
		}

5955 5956
		name = "//anon";
		goto cpy_name;
5957 5958
	}

5959 5960 5961
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5962
got_name:
5963 5964 5965 5966 5967 5968 5969 5970
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5971 5972 5973

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5974 5975 5976 5977
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5978 5979
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5980

5981 5982 5983
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5984
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5985

5986
	perf_event_aux(perf_event_mmap_output,
5987 5988
		       mmap_event,
		       NULL);
5989

5990 5991 5992
	kfree(buf);
}

5993
void perf_event_mmap(struct vm_area_struct *vma)
5994
{
5995 5996
	struct perf_mmap_event mmap_event;

5997
	if (!atomic_read(&nr_mmap_events))
5998 5999 6000
		return;

	mmap_event = (struct perf_mmap_event){
6001
		.vma	= vma,
6002 6003
		/* .file_name */
		/* .file_size */
6004
		.event_id  = {
6005
			.header = {
6006
				.type = PERF_RECORD_MMAP,
6007
				.misc = PERF_RECORD_MISC_USER,
6008 6009 6010 6011
				/* .size */
			},
			/* .pid */
			/* .tid */
6012 6013
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6014
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6015
		},
6016 6017 6018 6019
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6020 6021
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6022 6023
	};

6024
	perf_event_mmap_event(&mmap_event);
6025 6026
}

A
Alexander Shishkin 已提交
6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6179 6180 6181 6182
/*
 * IRQ throttle logging
 */

6183
static void perf_log_throttle(struct perf_event *event, int enable)
6184 6185
{
	struct perf_output_handle handle;
6186
	struct perf_sample_data sample;
6187 6188 6189 6190 6191
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6192
		u64				id;
6193
		u64				stream_id;
6194 6195
	} throttle_event = {
		.header = {
6196
			.type = PERF_RECORD_THROTTLE,
6197 6198 6199
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6200
		.time		= perf_event_clock(event),
6201 6202
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6203 6204
	};

6205
	if (enable)
6206
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6207

6208 6209 6210
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6211
				throttle_event.header.size);
6212 6213 6214 6215
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6216
	perf_event__output_id_sample(event, &handle, &sample);
6217 6218 6219
	perf_output_end(&handle);
}

6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6256
/*
6257
 * Generic event overflow handling, sampling.
6258 6259
 */

6260
static int __perf_event_overflow(struct perf_event *event,
6261 6262
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6263
{
6264 6265
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6266
	u64 seq;
6267 6268
	int ret = 0;

6269 6270 6271 6272 6273 6274 6275
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6276 6277 6278 6279 6280 6281 6282 6283 6284
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6285 6286
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6287
			tick_nohz_full_kick();
6288 6289
			ret = 1;
		}
6290
	}
6291

6292
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6293
		u64 now = perf_clock();
6294
		s64 delta = now - hwc->freq_time_stamp;
6295

6296
		hwc->freq_time_stamp = now;
6297

6298
		if (delta > 0 && delta < 2*TICK_NSEC)
6299
			perf_adjust_period(event, delta, hwc->last_period, true);
6300 6301
	}

6302 6303
	/*
	 * XXX event_limit might not quite work as expected on inherited
6304
	 * events
6305 6306
	 */

6307 6308
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6309
		ret = 1;
6310
		event->pending_kill = POLL_HUP;
6311 6312
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6313 6314
	}

6315
	if (event->overflow_handler)
6316
		event->overflow_handler(event, data, regs);
6317
	else
6318
		perf_event_output(event, data, regs);
6319

6320
	if (*perf_event_fasync(event) && event->pending_kill) {
6321 6322
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6323 6324
	}

6325
	return ret;
6326 6327
}

6328
int perf_event_overflow(struct perf_event *event,
6329 6330
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6331
{
6332
	return __perf_event_overflow(event, 1, data, regs);
6333 6334
}

6335
/*
6336
 * Generic software event infrastructure
6337 6338
 */

6339 6340 6341 6342 6343 6344 6345
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
6346 6347 6348

	/* Keeps track of cpu being initialized/exited */
	bool				online;
6349 6350 6351 6352
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6353
/*
6354 6355
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6356 6357 6358 6359
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6360
u64 perf_swevent_set_period(struct perf_event *event)
6361
{
6362
	struct hw_perf_event *hwc = &event->hw;
6363 6364 6365 6366 6367
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6368 6369

again:
6370
	old = val = local64_read(&hwc->period_left);
6371 6372
	if (val < 0)
		return 0;
6373

6374 6375 6376
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6377
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6378
		goto again;
6379

6380
	return nr;
6381 6382
}

6383
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6384
				    struct perf_sample_data *data,
6385
				    struct pt_regs *regs)
6386
{
6387
	struct hw_perf_event *hwc = &event->hw;
6388
	int throttle = 0;
6389

6390 6391
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6392

6393 6394
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6395

6396
	for (; overflow; overflow--) {
6397
		if (__perf_event_overflow(event, throttle,
6398
					    data, regs)) {
6399 6400 6401 6402 6403 6404
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6405
		throttle = 1;
6406
	}
6407 6408
}

P
Peter Zijlstra 已提交
6409
static void perf_swevent_event(struct perf_event *event, u64 nr,
6410
			       struct perf_sample_data *data,
6411
			       struct pt_regs *regs)
6412
{
6413
	struct hw_perf_event *hwc = &event->hw;
6414

6415
	local64_add(nr, &event->count);
6416

6417 6418 6419
	if (!regs)
		return;

6420
	if (!is_sampling_event(event))
6421
		return;
6422

6423 6424 6425 6426 6427 6428
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6429
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6430
		return perf_swevent_overflow(event, 1, data, regs);
6431

6432
	if (local64_add_negative(nr, &hwc->period_left))
6433
		return;
6434

6435
	perf_swevent_overflow(event, 0, data, regs);
6436 6437
}

6438 6439 6440
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6441
	if (event->hw.state & PERF_HES_STOPPED)
6442
		return 1;
P
Peter Zijlstra 已提交
6443

6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6455
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6456
				enum perf_type_id type,
L
Li Zefan 已提交
6457 6458 6459
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6460
{
6461
	if (event->attr.type != type)
6462
		return 0;
6463

6464
	if (event->attr.config != event_id)
6465 6466
		return 0;

6467 6468
	if (perf_exclude_event(event, regs))
		return 0;
6469 6470 6471 6472

	return 1;
}

6473 6474 6475 6476 6477 6478 6479
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6480 6481
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6482
{
6483 6484 6485 6486
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6487

6488 6489
/* For the read side: events when they trigger */
static inline struct hlist_head *
6490
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6491 6492
{
	struct swevent_hlist *hlist;
6493

6494
	hlist = rcu_dereference(swhash->swevent_hlist);
6495 6496 6497
	if (!hlist)
		return NULL;

6498 6499 6500 6501 6502
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6503
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6514
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6515 6516 6517 6518 6519
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6520 6521 6522
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6523
				    u64 nr,
6524 6525
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6526
{
6527
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6528
	struct perf_event *event;
6529
	struct hlist_head *head;
6530

6531
	rcu_read_lock();
6532
	head = find_swevent_head_rcu(swhash, type, event_id);
6533 6534 6535
	if (!head)
		goto end;

6536
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6537
		if (perf_swevent_match(event, type, event_id, data, regs))
6538
			perf_swevent_event(event, nr, data, regs);
6539
	}
6540 6541
end:
	rcu_read_unlock();
6542 6543
}

6544 6545
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6546
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6547
{
6548
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6549

6550
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6551
}
I
Ingo Molnar 已提交
6552
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6553

6554
inline void perf_swevent_put_recursion_context(int rctx)
6555
{
6556
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6557

6558
	put_recursion_context(swhash->recursion, rctx);
6559
}
6560

6561
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6562
{
6563
	struct perf_sample_data data;
6564

6565
	if (WARN_ON_ONCE(!regs))
6566
		return;
6567

6568
	perf_sample_data_init(&data, addr, 0);
6569
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6582 6583

	perf_swevent_put_recursion_context(rctx);
6584
fail:
6585
	preempt_enable_notrace();
6586 6587
}

6588
static void perf_swevent_read(struct perf_event *event)
6589 6590 6591
{
}

P
Peter Zijlstra 已提交
6592
static int perf_swevent_add(struct perf_event *event, int flags)
6593
{
6594
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6595
	struct hw_perf_event *hwc = &event->hw;
6596 6597
	struct hlist_head *head;

6598
	if (is_sampling_event(event)) {
6599
		hwc->last_period = hwc->sample_period;
6600
		perf_swevent_set_period(event);
6601
	}
6602

P
Peter Zijlstra 已提交
6603 6604
	hwc->state = !(flags & PERF_EF_START);

6605
	head = find_swevent_head(swhash, event);
6606 6607 6608 6609 6610 6611
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6612
		return -EINVAL;
6613
	}
6614 6615

	hlist_add_head_rcu(&event->hlist_entry, head);
6616
	perf_event_update_userpage(event);
6617

6618 6619 6620
	return 0;
}

P
Peter Zijlstra 已提交
6621
static void perf_swevent_del(struct perf_event *event, int flags)
6622
{
6623
	hlist_del_rcu(&event->hlist_entry);
6624 6625
}

P
Peter Zijlstra 已提交
6626
static void perf_swevent_start(struct perf_event *event, int flags)
6627
{
P
Peter Zijlstra 已提交
6628
	event->hw.state = 0;
6629
}
I
Ingo Molnar 已提交
6630

P
Peter Zijlstra 已提交
6631
static void perf_swevent_stop(struct perf_event *event, int flags)
6632
{
P
Peter Zijlstra 已提交
6633
	event->hw.state = PERF_HES_STOPPED;
6634 6635
}

6636 6637
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6638
swevent_hlist_deref(struct swevent_htable *swhash)
6639
{
6640 6641
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6642 6643
}

6644
static void swevent_hlist_release(struct swevent_htable *swhash)
6645
{
6646
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6647

6648
	if (!hlist)
6649 6650
		return;

6651
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6652
	kfree_rcu(hlist, rcu_head);
6653 6654 6655 6656
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6657
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6658

6659
	mutex_lock(&swhash->hlist_mutex);
6660

6661 6662
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6663

6664
	mutex_unlock(&swhash->hlist_mutex);
6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6677
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6678 6679
	int err = 0;

6680
	mutex_lock(&swhash->hlist_mutex);
6681

6682
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6683 6684 6685 6686 6687 6688 6689
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6690
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6691
	}
6692
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6693
exit:
6694
	mutex_unlock(&swhash->hlist_mutex);
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6715
fail:
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6726
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6727

6728 6729 6730
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6731

6732 6733
	WARN_ON(event->parent);

6734
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6735 6736 6737 6738 6739
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6740
	u64 event_id = event->attr.config;
6741 6742 6743 6744

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6745 6746 6747 6748 6749 6750
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6751 6752 6753 6754 6755 6756 6757 6758 6759
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6760
	if (event_id >= PERF_COUNT_SW_MAX)
6761 6762 6763 6764 6765 6766 6767 6768 6769
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6770
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6771 6772 6773 6774 6775 6776 6777
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6778
	.task_ctx_nr	= perf_sw_context,
6779

6780 6781
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6782
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6783 6784 6785 6786
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6787 6788 6789
	.read		= perf_swevent_read,
};

6790 6791
#ifdef CONFIG_EVENT_TRACING

6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6806 6807
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6808 6809 6810 6811
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6812 6813 6814 6815 6816 6817 6818 6819 6820
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6821 6822
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6823 6824
{
	struct perf_sample_data data;
6825 6826
	struct perf_event *event;

6827 6828 6829 6830 6831
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6832
	perf_sample_data_init(&data, addr, 0);
6833 6834
	data.raw = &raw;

6835
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6836
		if (perf_tp_event_match(event, &data, regs))
6837
			perf_swevent_event(event, count, &data, regs);
6838
	}
6839

6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6865
	perf_swevent_put_recursion_context(rctx);
6866 6867 6868
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6869
static void tp_perf_event_destroy(struct perf_event *event)
6870
{
6871
	perf_trace_destroy(event);
6872 6873
}

6874
static int perf_tp_event_init(struct perf_event *event)
6875
{
6876 6877
	int err;

6878 6879 6880
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6881 6882 6883 6884 6885 6886
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6887 6888
	err = perf_trace_init(event);
	if (err)
6889
		return err;
6890

6891
	event->destroy = tp_perf_event_destroy;
6892

6893 6894 6895 6896
	return 0;
}

static struct pmu perf_tracepoint = {
6897 6898
	.task_ctx_nr	= perf_sw_context,

6899
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6900 6901 6902 6903
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6904 6905 6906 6907 6908
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6909
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6910
}
L
Li Zefan 已提交
6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

6945 6946
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
6947 6948 6949 6950 6951 6952
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

6953
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

6978
#else
L
Li Zefan 已提交
6979

6980
static inline void perf_tp_register(void)
6981 6982
{
}
L
Li Zefan 已提交
6983 6984 6985 6986 6987 6988 6989 6990 6991 6992

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6993 6994 6995 6996 6997 6998 6999 7000
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7001
#endif /* CONFIG_EVENT_TRACING */
7002

7003
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7004
void perf_bp_event(struct perf_event *bp, void *data)
7005
{
7006 7007 7008
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7009
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7010

P
Peter Zijlstra 已提交
7011
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7012
		perf_swevent_event(bp, 1, &sample, regs);
7013 7014 7015
}
#endif

7016 7017 7018
/*
 * hrtimer based swevent callback
 */
7019

7020
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7021
{
7022 7023 7024 7025 7026
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7027

7028
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7029 7030 7031 7032

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7033
	event->pmu->read(event);
7034

7035
	perf_sample_data_init(&data, 0, event->hw.last_period);
7036 7037 7038
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7039
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7040
			if (__perf_event_overflow(event, 1, &data, regs))
7041 7042
				ret = HRTIMER_NORESTART;
	}
7043

7044 7045
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7046

7047
	return ret;
7048 7049
}

7050
static void perf_swevent_start_hrtimer(struct perf_event *event)
7051
{
7052
	struct hw_perf_event *hwc = &event->hw;
7053 7054 7055 7056
	s64 period;

	if (!is_sampling_event(event))
		return;
7057

7058 7059 7060 7061
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7062

7063 7064 7065 7066
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7067 7068
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7069
}
7070 7071

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7072
{
7073 7074
	struct hw_perf_event *hwc = &event->hw;

7075
	if (is_sampling_event(event)) {
7076
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7077
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7078 7079 7080

		hrtimer_cancel(&hwc->hrtimer);
	}
7081 7082
}

P
Peter Zijlstra 已提交
7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7103
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7104 7105 7106 7107
		event->attr.freq = 0;
	}
}

7108 7109 7110 7111 7112
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7113
{
7114 7115 7116
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7117
	now = local_clock();
7118 7119
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7120 7121
}

P
Peter Zijlstra 已提交
7122
static void cpu_clock_event_start(struct perf_event *event, int flags)
7123
{
P
Peter Zijlstra 已提交
7124
	local64_set(&event->hw.prev_count, local_clock());
7125 7126 7127
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7128
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7129
{
7130 7131 7132
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7133

P
Peter Zijlstra 已提交
7134 7135 7136 7137
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7138
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7139 7140 7141 7142 7143 7144 7145 7146 7147

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7148 7149 7150 7151
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7152

7153 7154 7155 7156 7157 7158 7159 7160
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7161 7162 7163 7164 7165 7166
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7167 7168
	perf_swevent_init_hrtimer(event);

7169
	return 0;
7170 7171
}

7172
static struct pmu perf_cpu_clock = {
7173 7174
	.task_ctx_nr	= perf_sw_context,

7175 7176
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7177
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7178 7179 7180 7181
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7182 7183 7184 7185 7186 7187 7188 7189
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7190
{
7191 7192
	u64 prev;
	s64 delta;
7193

7194 7195 7196 7197
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7198

P
Peter Zijlstra 已提交
7199
static void task_clock_event_start(struct perf_event *event, int flags)
7200
{
P
Peter Zijlstra 已提交
7201
	local64_set(&event->hw.prev_count, event->ctx->time);
7202 7203 7204
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7205
static void task_clock_event_stop(struct perf_event *event, int flags)
7206 7207 7208
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7209 7210 7211 7212 7213 7214
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7215
	perf_event_update_userpage(event);
7216

P
Peter Zijlstra 已提交
7217 7218 7219 7220 7221 7222
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7223 7224 7225 7226
}

static void task_clock_event_read(struct perf_event *event)
{
7227 7228 7229
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7230 7231 7232 7233 7234

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7235
{
7236 7237 7238 7239 7240 7241
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7242 7243 7244 7245 7246 7247
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7248 7249
	perf_swevent_init_hrtimer(event);

7250
	return 0;
L
Li Zefan 已提交
7251 7252
}

7253
static struct pmu perf_task_clock = {
7254 7255
	.task_ctx_nr	= perf_sw_context,

7256 7257
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7258
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7259 7260 7261 7262
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7263 7264
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7265

P
Peter Zijlstra 已提交
7266
static void perf_pmu_nop_void(struct pmu *pmu)
7267 7268
{
}
L
Li Zefan 已提交
7269

7270 7271 7272 7273
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7274
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7275
{
P
Peter Zijlstra 已提交
7276
	return 0;
L
Li Zefan 已提交
7277 7278
}

7279 7280 7281
DEFINE_PER_CPU(unsigned int, nop_txn_flags);

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7282
{
7283 7284 7285 7286 7287
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7288
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7289 7290
}

P
Peter Zijlstra 已提交
7291 7292
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7293 7294 7295 7296 7297 7298 7299
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7300 7301 7302
	perf_pmu_enable(pmu);
	return 0;
}
7303

P
Peter Zijlstra 已提交
7304
static void perf_pmu_cancel_txn(struct pmu *pmu)
7305
{
7306 7307 7308 7309 7310 7311 7312
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7313
	perf_pmu_enable(pmu);
7314 7315
}

7316 7317
static int perf_event_idx_default(struct perf_event *event)
{
7318
	return 0;
7319 7320
}

P
Peter Zijlstra 已提交
7321 7322 7323 7324
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7325
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7326
{
P
Peter Zijlstra 已提交
7327
	struct pmu *pmu;
7328

P
Peter Zijlstra 已提交
7329 7330
	if (ctxn < 0)
		return NULL;
7331

P
Peter Zijlstra 已提交
7332 7333 7334 7335
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7336

P
Peter Zijlstra 已提交
7337
	return NULL;
7338 7339
}

7340
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7341
{
7342 7343 7344 7345 7346 7347 7348
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7349 7350
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7351 7352 7353 7354 7355 7356
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7357

P
Peter Zijlstra 已提交
7358
	mutex_lock(&pmus_lock);
7359
	/*
P
Peter Zijlstra 已提交
7360
	 * Like a real lame refcount.
7361
	 */
7362 7363 7364
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7365
			goto out;
7366
		}
P
Peter Zijlstra 已提交
7367
	}
7368

7369
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7370 7371
out:
	mutex_unlock(&pmus_lock);
7372
}
P
Peter Zijlstra 已提交
7373
static struct idr pmu_idr;
7374

P
Peter Zijlstra 已提交
7375 7376 7377 7378 7379 7380 7381
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7382
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7383

7384 7385 7386 7387 7388 7389 7390 7391 7392 7393
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7394 7395
static DEFINE_MUTEX(mux_interval_mutex);

7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7415
	mutex_lock(&mux_interval_mutex);
7416 7417 7418
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7419 7420
	get_online_cpus();
	for_each_online_cpu(cpu) {
7421 7422 7423 7424
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7425 7426
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7427
	}
7428 7429
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7430 7431 7432

	return count;
}
7433
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7434

7435 7436 7437 7438
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7439
};
7440
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7441 7442 7443 7444

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7445
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7461
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7482
static struct lock_class_key cpuctx_mutex;
7483
static struct lock_class_key cpuctx_lock;
7484

7485
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7486
{
P
Peter Zijlstra 已提交
7487
	int cpu, ret;
7488

7489
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7490 7491 7492 7493
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7494

P
Peter Zijlstra 已提交
7495 7496 7497 7498 7499 7500
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7501 7502 7503
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7504 7505 7506 7507 7508
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7509 7510 7511 7512 7513 7514
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7515
skip_type:
P
Peter Zijlstra 已提交
7516 7517 7518
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7519

W
Wei Yongjun 已提交
7520
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7521 7522
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7523
		goto free_dev;
7524

P
Peter Zijlstra 已提交
7525 7526 7527 7528
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7529
		__perf_event_init_context(&cpuctx->ctx);
7530
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7531
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7532
		cpuctx->ctx.pmu = pmu;
7533

7534
		__perf_mux_hrtimer_init(cpuctx, cpu);
7535

7536
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7537
	}
7538

P
Peter Zijlstra 已提交
7539
got_cpu_context:
P
Peter Zijlstra 已提交
7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7551
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7552 7553
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7554
		}
7555
	}
7556

P
Peter Zijlstra 已提交
7557 7558 7559 7560 7561
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7562 7563 7564
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7565
	list_add_rcu(&pmu->entry, &pmus);
7566
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7567 7568
	ret = 0;
unlock:
7569 7570
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7571
	return ret;
P
Peter Zijlstra 已提交
7572

P
Peter Zijlstra 已提交
7573 7574 7575 7576
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7577 7578 7579 7580
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7581 7582 7583
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7584
}
7585
EXPORT_SYMBOL_GPL(perf_pmu_register);
7586

7587
void perf_pmu_unregister(struct pmu *pmu)
7588
{
7589 7590 7591
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7592

7593
	/*
P
Peter Zijlstra 已提交
7594 7595
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7596
	 */
7597
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7598
	synchronize_rcu();
7599

P
Peter Zijlstra 已提交
7600
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7601 7602
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7603 7604
	device_del(pmu->dev);
	put_device(pmu->dev);
7605
	free_pmu_context(pmu);
7606
}
7607
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7608

7609 7610
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7611
	struct perf_event_context *ctx = NULL;
7612 7613 7614 7615
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7616 7617

	if (event->group_leader != event) {
7618 7619 7620 7621 7622 7623
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7624 7625 7626
		BUG_ON(!ctx);
	}

7627 7628
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7629 7630 7631 7632

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7633 7634 7635 7636 7637 7638
	if (ret)
		module_put(pmu->module);

	return ret;
}

7639 7640 7641 7642
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
7643
	int ret;
7644 7645

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7646 7647 7648 7649

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7650
	if (pmu) {
7651
		ret = perf_try_init_event(pmu, event);
7652 7653
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7654
		goto unlock;
7655
	}
P
Peter Zijlstra 已提交
7656

7657
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7658
		ret = perf_try_init_event(pmu, event);
7659
		if (!ret)
P
Peter Zijlstra 已提交
7660
			goto unlock;
7661

7662 7663
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7664
			goto unlock;
7665
		}
7666
	}
P
Peter Zijlstra 已提交
7667 7668
	pmu = ERR_PTR(-ENOENT);
unlock:
7669
	srcu_read_unlock(&pmus_srcu, idx);
7670

7671
	return pmu;
7672 7673
}

7674 7675 7676 7677 7678 7679 7680 7681 7682
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7683 7684
static void account_event(struct perf_event *event)
{
7685 7686 7687
	if (event->parent)
		return;

7688 7689 7690 7691 7692 7693 7694 7695
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7696 7697 7698 7699
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7700 7701 7702 7703
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
		static_key_slow_inc(&perf_sched_events.key);
	}
7704
	if (has_branch_stack(event))
7705
		static_key_slow_inc(&perf_sched_events.key);
7706
	if (is_cgroup_event(event))
7707
		static_key_slow_inc(&perf_sched_events.key);
7708 7709

	account_event_cpu(event, event->cpu);
7710 7711
}

T
Thomas Gleixner 已提交
7712
/*
7713
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7714
 */
7715
static struct perf_event *
7716
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7717 7718 7719
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7720
		 perf_overflow_handler_t overflow_handler,
7721
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7722
{
P
Peter Zijlstra 已提交
7723
	struct pmu *pmu;
7724 7725
	struct perf_event *event;
	struct hw_perf_event *hwc;
7726
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7727

7728 7729 7730 7731 7732
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7733
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7734
	if (!event)
7735
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7736

7737
	/*
7738
	 * Single events are their own group leaders, with an
7739 7740 7741
	 * empty sibling list:
	 */
	if (!group_leader)
7742
		group_leader = event;
7743

7744 7745
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7746

7747 7748 7749
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7750
	INIT_LIST_HEAD(&event->rb_entry);
7751
	INIT_LIST_HEAD(&event->active_entry);
7752 7753
	INIT_HLIST_NODE(&event->hlist_entry);

7754

7755
	init_waitqueue_head(&event->waitq);
7756
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7757

7758
	mutex_init(&event->mmap_mutex);
7759

7760
	atomic_long_set(&event->refcount, 1);
7761 7762 7763 7764 7765
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7766

7767
	event->parent		= parent_event;
7768

7769
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7770
	event->id		= atomic64_inc_return(&perf_event_id);
7771

7772
	event->state		= PERF_EVENT_STATE_INACTIVE;
7773

7774 7775 7776
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7777 7778 7779
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7780
		 */
7781
		event->hw.target = task;
7782 7783
	}

7784 7785 7786 7787
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7788
	if (!overflow_handler && parent_event) {
7789
		overflow_handler = parent_event->overflow_handler;
7790 7791
		context = parent_event->overflow_handler_context;
	}
7792

7793
	event->overflow_handler	= overflow_handler;
7794
	event->overflow_handler_context = context;
7795

J
Jiri Olsa 已提交
7796
	perf_event__state_init(event);
7797

7798
	pmu = NULL;
7799

7800
	hwc = &event->hw;
7801
	hwc->sample_period = attr->sample_period;
7802
	if (attr->freq && attr->sample_freq)
7803
		hwc->sample_period = 1;
7804
	hwc->last_period = hwc->sample_period;
7805

7806
	local64_set(&hwc->period_left, hwc->sample_period);
7807

7808
	/*
7809
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7810
	 */
7811
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7812
		goto err_ns;
7813 7814 7815

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7816

7817 7818 7819 7820 7821 7822
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7823
	pmu = perf_init_event(event);
7824
	if (!pmu)
7825 7826
		goto err_ns;
	else if (IS_ERR(pmu)) {
7827
		err = PTR_ERR(pmu);
7828
		goto err_ns;
I
Ingo Molnar 已提交
7829
	}
7830

7831 7832 7833 7834
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7835
	if (!event->parent) {
7836 7837
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7838
			if (err)
7839
				goto err_per_task;
7840
		}
7841
	}
7842

7843
	return event;
7844

7845 7846 7847
err_per_task:
	exclusive_event_destroy(event);

7848 7849 7850
err_pmu:
	if (event->destroy)
		event->destroy(event);
7851
	module_put(pmu->module);
7852
err_ns:
7853 7854
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7855 7856 7857 7858 7859
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7860 7861
}

7862 7863
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7864 7865
{
	u32 size;
7866
	int ret;
7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7891 7892 7893
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7894 7895
	 */
	if (size > sizeof(*attr)) {
7896 7897 7898
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7899

7900 7901
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7902

7903
		for (; addr < end; addr++) {
7904 7905 7906 7907 7908 7909
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7910
		size = sizeof(*attr);
7911 7912 7913 7914 7915 7916
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7917
	if (attr->__reserved_1)
7918 7919 7920 7921 7922 7923 7924 7925
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7954 7955
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7956 7957
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7958
	}
7959

7960
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7961
		ret = perf_reg_validate(attr->sample_regs_user);
7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7980

7981 7982
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
7983 7984 7985 7986 7987 7988 7989 7990 7991
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7992 7993
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7994
{
7995
	struct ring_buffer *rb = NULL;
7996 7997
	int ret = -EINVAL;

7998
	if (!output_event)
7999 8000
		goto set;

8001 8002
	/* don't allow circular references */
	if (event == output_event)
8003 8004
		goto out;

8005 8006 8007 8008 8009 8010 8011
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8012
	 * If its not a per-cpu rb, it must be the same task.
8013 8014 8015 8016
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8017 8018 8019 8020 8021 8022
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8023 8024 8025 8026 8027 8028 8029
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8030
set:
8031
	mutex_lock(&event->mmap_mutex);
8032 8033 8034
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8035

8036
	if (output_event) {
8037 8038 8039
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8040
			goto unlock;
8041 8042
	}

8043
	ring_buffer_attach(event, rb);
8044

8045
	ret = 0;
8046 8047 8048
unlock:
	mutex_unlock(&event->mmap_mutex);

8049 8050 8051 8052
out:
	return ret;
}

P
Peter Zijlstra 已提交
8053 8054 8055 8056 8057 8058 8059 8060 8061
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8099
/**
8100
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8101
 *
8102
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8103
 * @pid:		target pid
I
Ingo Molnar 已提交
8104
 * @cpu:		target cpu
8105
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8106
 */
8107 8108
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8109
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8110
{
8111 8112
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8113
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8114
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8115
	struct file *event_file = NULL;
8116
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8117
	struct task_struct *task = NULL;
8118
	struct pmu *pmu;
8119
	int event_fd;
8120
	int move_group = 0;
8121
	int err;
8122
	int f_flags = O_RDWR;
8123
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8124

8125
	/* for future expandability... */
S
Stephane Eranian 已提交
8126
	if (flags & ~PERF_FLAG_ALL)
8127 8128
		return -EINVAL;

8129 8130 8131
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8132

8133 8134 8135 8136 8137
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8138
	if (attr.freq) {
8139
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8140
			return -EINVAL;
8141 8142 8143
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8144 8145
	}

S
Stephane Eranian 已提交
8146 8147 8148 8149 8150 8151 8152 8153 8154
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8155 8156 8157 8158
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8159 8160 8161
	if (event_fd < 0)
		return event_fd;

8162
	if (group_fd != -1) {
8163 8164
		err = perf_fget_light(group_fd, &group);
		if (err)
8165
			goto err_fd;
8166
		group_leader = group.file->private_data;
8167 8168 8169 8170 8171 8172
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8173
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8174 8175 8176 8177 8178 8179 8180
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8181 8182 8183 8184 8185 8186
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8187 8188
	get_online_cpus();

8189 8190 8191
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8192
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8193
				 NULL, NULL, cgroup_fd);
8194 8195
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8196
		goto err_cpus;
8197 8198
	}

8199 8200 8201 8202 8203 8204 8205
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8206 8207
	account_event(event);

8208 8209 8210 8211 8212
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8213

8214 8215 8216 8217 8218 8219
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8242 8243 8244 8245

	/*
	 * Get the target context (task or percpu):
	 */
8246
	ctx = find_get_context(pmu, task, event);
8247 8248
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8249
		goto err_alloc;
8250 8251
	}

8252 8253 8254 8255 8256
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8257 8258 8259 8260 8261
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8262
	/*
8263
	 * Look up the group leader (we will attach this event to it):
8264
	 */
8265
	if (group_leader) {
8266
		err = -EINVAL;
8267 8268

		/*
I
Ingo Molnar 已提交
8269 8270 8271 8272
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8273
			goto err_context;
8274 8275 8276 8277 8278

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8279 8280 8281
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8282
		 */
8283
		if (move_group) {
8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8297 8298 8299 8300 8301 8302
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8303 8304 8305
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8306
		if (attr.exclusive || attr.pinned)
8307
			goto err_context;
8308 8309 8310 8311 8312
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8313
			goto err_context;
8314
	}
T
Thomas Gleixner 已提交
8315

8316 8317
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8318 8319
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8320
		goto err_context;
8321
	}
8322

8323
	if (move_group) {
P
Peter Zijlstra 已提交
8324 8325 8326 8327 8328 8329 8330
		gctx = group_leader->ctx;

		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8331

8332
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8333

8334 8335
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8336
			perf_remove_from_context(sibling, false);
8337 8338
			put_ctx(gctx);
		}
P
Peter Zijlstra 已提交
8339 8340
	} else {
		mutex_lock(&ctx->mutex);
8341
	}
8342

8343
	WARN_ON_ONCE(ctx->parent_ctx);
8344 8345

	if (move_group) {
P
Peter Zijlstra 已提交
8346 8347 8348 8349
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8350
		synchronize_rcu();
P
Peter Zijlstra 已提交
8351

8352 8353 8354 8355 8356 8357 8358 8359 8360 8361
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8362 8363
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8364
			perf_event__state_init(sibling);
8365
			perf_install_in_context(ctx, sibling, sibling->cpu);
8366 8367
			get_ctx(ctx);
		}
8368 8369 8370 8371 8372 8373 8374 8375 8376

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8377 8378
	}

8379 8380 8381 8382 8383 8384 8385
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
		mutex_unlock(&ctx->mutex);
		fput(event_file);
		goto err_context;
	}

8386
	perf_install_in_context(ctx, event, event->cpu);
8387
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8388 8389 8390 8391 8392

	if (move_group) {
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
	}
8393
	mutex_unlock(&ctx->mutex);
8394

8395 8396
	put_online_cpus();

8397
	event->owner = current;
P
Peter Zijlstra 已提交
8398

8399 8400 8401
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8402

8403 8404 8405 8406
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
8407
	perf_event__id_header_size(event);
8408

8409 8410 8411 8412 8413 8414
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8415
	fdput(group);
8416 8417
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8418

8419
err_context:
8420
	perf_unpin_context(ctx);
8421
	put_ctx(ctx);
8422
err_alloc:
8423
	free_event(event);
8424
err_cpus:
8425
	put_online_cpus();
8426
err_task:
P
Peter Zijlstra 已提交
8427 8428
	if (task)
		put_task_struct(task);
8429
err_group_fd:
8430
	fdput(group);
8431 8432
err_fd:
	put_unused_fd(event_fd);
8433
	return err;
T
Thomas Gleixner 已提交
8434 8435
}

8436 8437 8438 8439 8440
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8441
 * @task: task to profile (NULL for percpu)
8442 8443 8444
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8445
				 struct task_struct *task,
8446 8447
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8448 8449
{
	struct perf_event_context *ctx;
8450
	struct perf_event *event;
8451
	int err;
8452

8453 8454 8455
	/*
	 * Get the target context (task or percpu):
	 */
8456

8457
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8458
				 overflow_handler, context, -1);
8459 8460 8461 8462
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8463

8464 8465 8466
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8467 8468
	account_event(event);

8469
	ctx = find_get_context(event->pmu, task, event);
8470 8471
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8472
		goto err_free;
8473
	}
8474 8475 8476

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8477 8478 8479 8480 8481 8482 8483 8484
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8485
	perf_install_in_context(ctx, event, cpu);
8486
	perf_unpin_context(ctx);
8487 8488 8489 8490
	mutex_unlock(&ctx->mutex);

	return event;

8491 8492 8493
err_free:
	free_event(event);
err:
8494
	return ERR_PTR(err);
8495
}
8496
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8497

8498 8499 8500 8501 8502 8503 8504 8505 8506 8507
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8508 8509 8510 8511 8512
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8513 8514
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8515
		perf_remove_from_context(event, false);
8516
		unaccount_event_cpu(event, src_cpu);
8517
		put_ctx(src_ctx);
8518
		list_add(&event->migrate_entry, &events);
8519 8520
	}

8521 8522 8523
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8524 8525
	synchronize_rcu();

8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8550 8551
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8552 8553
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8554
		account_event_cpu(event, dst_cpu);
8555 8556 8557 8558
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8559
	mutex_unlock(&src_ctx->mutex);
8560 8561 8562
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8563
static void sync_child_event(struct perf_event *child_event,
8564
			       struct task_struct *child)
8565
{
8566
	struct perf_event *parent_event = child_event->parent;
8567
	u64 child_val;
8568

8569 8570
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8571

P
Peter Zijlstra 已提交
8572
	child_val = perf_event_count(child_event);
8573 8574 8575 8576

	/*
	 * Add back the child's count to the parent's count:
	 */
8577
	atomic64_add(child_val, &parent_event->child_count);
8578 8579 8580 8581
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8582 8583

	/*
8584
	 * Remove this event from the parent's list
8585
	 */
8586 8587 8588 8589
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8590

8591 8592 8593 8594 8595 8596
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8597
	/*
8598
	 * Release the parent event, if this was the last
8599 8600
	 * reference to it.
	 */
8601
	put_event(parent_event);
8602 8603
}

8604
static void
8605 8606
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8607
			 struct task_struct *child)
8608
{
8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8622

8623
	/*
8624
	 * It can happen that the parent exits first, and has events
8625
	 * that are still around due to the child reference. These
8626
	 * events need to be zapped.
8627
	 */
8628
	if (child_event->parent) {
8629 8630
		sync_child_event(child_event, child);
		free_event(child_event);
8631 8632 8633
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8634
	}
8635 8636
}

P
Peter Zijlstra 已提交
8637
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8638
{
8639
	struct perf_event *child_event, *next;
8640
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8641
	unsigned long flags;
8642

P
Peter Zijlstra 已提交
8643
	if (likely(!child->perf_event_ctxp[ctxn])) {
8644
		perf_event_task(child, NULL, 0);
8645
		return;
P
Peter Zijlstra 已提交
8646
	}
8647

8648
	local_irq_save(flags);
8649 8650 8651 8652 8653 8654
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8655
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8656 8657 8658

	/*
	 * Take the context lock here so that if find_get_context is
8659
	 * reading child->perf_event_ctxp, we wait until it has
8660 8661
	 * incremented the context's refcount before we do put_ctx below.
	 */
8662
	raw_spin_lock(&child_ctx->lock);
8663
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
8664
	child->perf_event_ctxp[ctxn] = NULL;
8665

8666 8667 8668
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8669
	 * the events from it.
8670
	 */
8671
	clone_ctx = unclone_ctx(child_ctx);
8672
	update_context_time(child_ctx);
8673
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8674

8675 8676
	if (clone_ctx)
		put_ctx(clone_ctx);
8677

P
Peter Zijlstra 已提交
8678
	/*
8679 8680 8681
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8682
	 */
8683
	perf_event_task(child, child_ctx, 0);
8684

8685 8686 8687
	/*
	 * We can recurse on the same lock type through:
	 *
8688 8689
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8690 8691
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8692 8693 8694
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8695
	mutex_lock(&child_ctx->mutex);
8696

8697
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8698
		__perf_event_exit_task(child_event, child_ctx, child);
8699

8700 8701 8702
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8703 8704
}

P
Peter Zijlstra 已提交
8705 8706 8707 8708 8709
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8710
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8711 8712
	int ctxn;

P
Peter Zijlstra 已提交
8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8728 8729 8730 8731
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8744
	put_event(parent);
8745

P
Peter Zijlstra 已提交
8746
	raw_spin_lock_irq(&ctx->lock);
8747
	perf_group_detach(event);
8748
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8749
	raw_spin_unlock_irq(&ctx->lock);
8750 8751 8752
	free_event(event);
}

8753
/*
P
Peter Zijlstra 已提交
8754
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8755
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8756 8757 8758
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8759
 */
8760
void perf_event_free_task(struct task_struct *task)
8761
{
P
Peter Zijlstra 已提交
8762
	struct perf_event_context *ctx;
8763
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8764
	int ctxn;
8765

P
Peter Zijlstra 已提交
8766 8767 8768 8769
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8770

P
Peter Zijlstra 已提交
8771
		mutex_lock(&ctx->mutex);
8772
again:
P
Peter Zijlstra 已提交
8773 8774 8775
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8776

P
Peter Zijlstra 已提交
8777 8778 8779
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8780

P
Peter Zijlstra 已提交
8781 8782 8783
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8784

P
Peter Zijlstra 已提交
8785
		mutex_unlock(&ctx->mutex);
8786

P
Peter Zijlstra 已提交
8787 8788
		put_ctx(ctx);
	}
8789 8790
}

8791 8792 8793 8794 8795 8796 8797 8798
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823
struct perf_event *perf_event_get(unsigned int fd)
{
	int err;
	struct fd f;
	struct perf_event *event;

	err = perf_fget_light(fd, &f);
	if (err)
		return ERR_PTR(err);

	event = f.file->private_data;
	atomic_long_inc(&event->refcount);
	fdput(f);

	return event;
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8835
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8836
	struct perf_event *child_event;
8837
	unsigned long flags;
P
Peter Zijlstra 已提交
8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8850
					   child,
P
Peter Zijlstra 已提交
8851
					   group_leader, parent_event,
8852
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8853 8854
	if (IS_ERR(child_event))
		return child_event;
8855

8856 8857
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8858 8859 8860 8861
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8862 8863 8864 8865 8866 8867 8868
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8869
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8886 8887
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8888

8889 8890 8891 8892
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8893
	perf_event__id_header_size(child_event);
8894

P
Peter Zijlstra 已提交
8895 8896 8897
	/*
	 * Link it up in the child's context:
	 */
8898
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8899
	add_event_to_ctx(child_event, child_ctx);
8900
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
8934 8935 8936 8937 8938
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
8939
		   struct task_struct *child, int ctxn,
8940 8941 8942
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
8943
	struct perf_event_context *child_ctx;
8944 8945 8946 8947

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
8948 8949
	}

8950
	child_ctx = child->perf_event_ctxp[ctxn];
8951 8952 8953 8954 8955 8956 8957
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
8958

8959
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8960 8961
		if (!child_ctx)
			return -ENOMEM;
8962

P
Peter Zijlstra 已提交
8963
		child->perf_event_ctxp[ctxn] = child_ctx;
8964 8965 8966 8967 8968 8969 8970 8971 8972
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
8973 8974
}

8975
/*
8976
 * Initialize the perf_event context in task_struct
8977
 */
8978
static int perf_event_init_context(struct task_struct *child, int ctxn)
8979
{
8980
	struct perf_event_context *child_ctx, *parent_ctx;
8981 8982
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
8983
	struct task_struct *parent = current;
8984
	int inherited_all = 1;
8985
	unsigned long flags;
8986
	int ret = 0;
8987

P
Peter Zijlstra 已提交
8988
	if (likely(!parent->perf_event_ctxp[ctxn]))
8989 8990
		return 0;

8991
	/*
8992 8993
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
8994
	 */
P
Peter Zijlstra 已提交
8995
	parent_ctx = perf_pin_task_context(parent, ctxn);
8996 8997
	if (!parent_ctx)
		return 0;
8998

8999 9000 9001 9002 9003 9004 9005
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9006 9007 9008 9009
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9010
	mutex_lock(&parent_ctx->mutex);
9011 9012 9013 9014 9015

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9016
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9017 9018
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9019 9020 9021
		if (ret)
			break;
	}
9022

9023 9024 9025 9026 9027 9028 9029 9030 9031
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9032
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9033 9034
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9035
		if (ret)
9036
			break;
9037 9038
	}

9039 9040 9041
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9042
	child_ctx = child->perf_event_ctxp[ctxn];
9043

9044
	if (child_ctx && inherited_all) {
9045 9046 9047
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9048 9049 9050
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9051
		 */
P
Peter Zijlstra 已提交
9052
		cloned_ctx = parent_ctx->parent_ctx;
9053 9054
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9055
			child_ctx->parent_gen = parent_ctx->parent_gen;
9056 9057 9058 9059 9060
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9061 9062
	}

P
Peter Zijlstra 已提交
9063
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9064
	mutex_unlock(&parent_ctx->mutex);
9065

9066
	perf_unpin_context(parent_ctx);
9067
	put_ctx(parent_ctx);
9068

9069
	return ret;
9070 9071
}

P
Peter Zijlstra 已提交
9072 9073 9074 9075 9076 9077 9078
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9079 9080 9081 9082
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9083 9084
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9085 9086
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9087
			return ret;
P
Peter Zijlstra 已提交
9088
		}
P
Peter Zijlstra 已提交
9089 9090 9091 9092 9093
	}

	return 0;
}

9094 9095
static void __init perf_event_init_all_cpus(void)
{
9096
	struct swevent_htable *swhash;
9097 9098 9099
	int cpu;

	for_each_possible_cpu(cpu) {
9100 9101
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9102
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9103 9104 9105
	}
}

9106
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9107
{
P
Peter Zijlstra 已提交
9108
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9109

9110
	mutex_lock(&swhash->hlist_mutex);
9111
	swhash->online = true;
9112
	if (swhash->hlist_refcount > 0) {
9113 9114
		struct swevent_hlist *hlist;

9115 9116 9117
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9118
	}
9119
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9120 9121
}

9122
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9123
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9124
{
9125
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
9126
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
9127

P
Peter Zijlstra 已提交
9128
	rcu_read_lock();
9129 9130
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
9131
	rcu_read_unlock();
T
Thomas Gleixner 已提交
9132
}
P
Peter Zijlstra 已提交
9133 9134 9135 9136 9137 9138 9139 9140 9141

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9142
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9143 9144 9145 9146 9147 9148 9149 9150

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9151
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9152
{
9153
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9154

P
Peter Zijlstra 已提交
9155 9156
	perf_event_exit_cpu_context(cpu);

9157
	mutex_lock(&swhash->hlist_mutex);
9158
	swhash->online = false;
9159 9160
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9161 9162
}
#else
9163
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9164 9165
#endif

P
Peter Zijlstra 已提交
9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9186
static int
T
Thomas Gleixner 已提交
9187 9188 9189 9190
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9191
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9192 9193

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9194
	case CPU_DOWN_FAILED:
9195
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9196 9197
		break;

P
Peter Zijlstra 已提交
9198
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9199
	case CPU_DOWN_PREPARE:
9200
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9201 9202 9203 9204 9205 9206 9207 9208
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9209
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9210
{
9211 9212
	int ret;

P
Peter Zijlstra 已提交
9213 9214
	idr_init(&pmu_idr);

9215
	perf_event_init_all_cpus();
9216
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9217 9218 9219
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9220 9221
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9222
	register_reboot_notifier(&perf_reboot_notifier);
9223 9224 9225

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9226 9227 9228

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9229 9230 9231 9232 9233 9234 9235

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9236
}
P
Peter Zijlstra 已提交
9237

9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9277 9278

#ifdef CONFIG_CGROUP_PERF
9279 9280
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9281 9282 9283
{
	struct perf_cgroup *jc;

9284
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9297
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9298
{
9299 9300
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

9312 9313
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9314
{
9315 9316
	struct task_struct *task;

9317
	cgroup_taskset_for_each(task, tset)
9318
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9319 9320
}

9321 9322
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
9323
			     struct task_struct *task)
S
Stephane Eranian 已提交
9324
{
9325
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9326 9327
}

9328
struct cgroup_subsys perf_event_cgrp_subsys = {
9329 9330
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9331
	.exit		= perf_cgroup_exit,
9332
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9333 9334
};
#endif /* CONFIG_CGROUP_PERF */