core.c 219.7 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
136 137
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
138 139
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
140

141 142 143 144 145 146 147
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

148 149 150 151 152 153
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
154 155 156 157
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
158
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
159
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
161

162 163 164
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
165
static atomic_t nr_freq_events __read_mostly;
166
static atomic_t nr_switch_events __read_mostly;
167

P
Peter Zijlstra 已提交
168 169 170 171
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

172
/*
173
 * perf event paranoia level:
174 175
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
176
 *   1 - disallow cpu events for unpriv
177
 *   2 - disallow kernel profiling for unpriv
178
 */
179
int sysctl_perf_event_paranoid __read_mostly = 1;
180

181 182
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 184

/*
185
 * max perf event sample rate
186
 */
187 188 189 190 191 192 193 194 195
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
196 197
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198

199
static void update_perf_cpu_limits(void)
200 201 202 203
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
204
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
205
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206
}
P
Peter Zijlstra 已提交
207

208 209
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
210 211 212 213
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
214
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
215 216 217 218 219

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
238 239 240

	return 0;
}
241

242 243 244 245 246 247 248
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
249
static DEFINE_PER_CPU(u64, running_sample_length);
250

251
static void perf_duration_warn(struct irq_work *w)
252
{
253
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254
	u64 avg_local_sample_len;
255
	u64 local_samples_len;
256

257
	local_samples_len = __this_cpu_read(running_sample_length);
258 259 260 261 262
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
263
			avg_local_sample_len, allowed_ns >> 1,
264 265 266 267 268 269 270
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
271
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 273
	u64 avg_local_sample_len;
	u64 local_samples_len;
274

P
Peter Zijlstra 已提交
275
	if (allowed_ns == 0)
276 277 278
		return;

	/* decay the counter by 1 average sample */
279
	local_samples_len = __this_cpu_read(running_sample_length);
280 281
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
282
	__this_cpu_write(running_sample_length, local_samples_len);
283 284 285 286 287 288 289 290

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
291
	if (avg_local_sample_len <= allowed_ns)
292 293 294 295 296 297 298 299 300 301
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
302

303 304 305 306 307 308
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
309 310
}

311
static atomic64_t perf_event_id;
312

313 314 315 316
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
317 318 319 320 321
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
322

323
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
324

325
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
326
{
327
	return "pmu";
T
Thomas Gleixner 已提交
328 329
}

330 331 332 333 334
static inline u64 perf_clock(void)
{
	return local_clock();
}

335 336 337 338 339
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
340 341 342 343 344 345
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
362 363 364 365 366 367 368 369
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
386 387 388 389
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
390
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
429 430
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
431
	/*
432 433
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
434
	 */
435
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
436 437
		return;

438 439 440 441 442 443
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
444 445 446
}

static inline void
447 448
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
449 450 451 452
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

453 454 455 456 457 458
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
459 460 461 462
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
463
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
464 465 466 467 468 469 470 471 472 473 474
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
475
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 497
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
498 499 500 501 502 503 504 505 506

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
507 508
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
509 510 511 512 513 514 515 516 517 518 519

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
520
				WARN_ON_ONCE(cpuctx->cgrp);
521 522 523 524
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
525 526 527 528
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
529 530
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
531 532 533 534 535 536 537 538
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

539 540
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
541
{
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
564 565
}

566 567
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
568
{
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
587 588 589 590 591 592 593 594
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
595 596
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
597

598
	if (!f.file)
S
Stephane Eranian 已提交
599 600
		return -EBADF;

A
Al Viro 已提交
601
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
602
					 &perf_event_cgrp_subsys);
603 604 605 606
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
620
out:
621
	fdput(f);
S
Stephane Eranian 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

695 696
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
697 698 699
{
}

700 701
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
702 703 704 705 706 707 708 709 710 711 712
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
713 714
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

745 746 747 748 749 750 751 752
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
753
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 755 756 757 758 759 760 761 762
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
763 764
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
765
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
766 767 768
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
769

P
Peter Zijlstra 已提交
770
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 772
}

773
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774
{
775
	struct hrtimer *timer = &cpuctx->hrtimer;
776
	struct pmu *pmu = cpuctx->ctx.pmu;
777
	u64 interval;
778 779 780 781 782

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

783 784 785 786
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
787 788 789
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790

791
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792

P
Peter Zijlstra 已提交
793 794
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795
	timer->function = perf_mux_hrtimer_handler;
796 797
}

798
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799
{
800
	struct hrtimer *timer = &cpuctx->hrtimer;
801
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
802
	unsigned long flags;
803 804 805

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
806
		return 0;
807

P
Peter Zijlstra 已提交
808 809 810 811 812 813 814
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815

816
	return 0;
817 818
}

P
Peter Zijlstra 已提交
819
void perf_pmu_disable(struct pmu *pmu)
820
{
P
Peter Zijlstra 已提交
821 822 823
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
824 825
}

P
Peter Zijlstra 已提交
826
void perf_pmu_enable(struct pmu *pmu)
827
{
P
Peter Zijlstra 已提交
828 829 830
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
831 832
}

833
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834 835

/*
836 837 838 839
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
840
 */
841
static void perf_event_ctx_activate(struct perf_event_context *ctx)
842
{
843
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
844

845
	WARN_ON(!irqs_disabled());
846

847 848 849 850 851 852 853 854 855 856 857 858
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
859 860
}

861
static void get_ctx(struct perf_event_context *ctx)
862
{
863
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 865
}

866 867 868 869 870 871 872 873 874
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

875
static void put_ctx(struct perf_event_context *ctx)
876
{
877 878 879
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
880 881
		if (ctx->task)
			put_task_struct(ctx->task);
882
		call_rcu(&ctx->rcu_head, free_ctx);
883
	}
884 885
}

P
Peter Zijlstra 已提交
886 887 888 889 890 891 892
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
947 948
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
949 950 951 952 953 954 955 956 957 958 959 960
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
961
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
962 963 964 965 966 967 968 969 970
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
971 972 973 974 975 976
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
977 978 979 980 981 982 983
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

984 985 986 987 988 989 990
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
991
{
992 993 994 995 996
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
997
		ctx->parent_ctx = NULL;
998
	ctx->generation++;
999 1000

	return parent_ctx;
1001 1002
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1025
/*
1026
 * If we inherit events we want to return the parent event id
1027 1028
 * to userspace.
 */
1029
static u64 primary_event_id(struct perf_event *event)
1030
{
1031
	u64 id = event->id;
1032

1033 1034
	if (event->parent)
		id = event->parent->id;
1035 1036 1037 1038

	return id;
}

1039
/*
1040
 * Get the perf_event_context for a task and lock it.
1041 1042 1043
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1044
static struct perf_event_context *
P
Peter Zijlstra 已提交
1045
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046
{
1047
	struct perf_event_context *ctx;
1048

P
Peter Zijlstra 已提交
1049
retry:
1050 1051 1052
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053
	 * part of the read side critical section was irqs-enabled -- see
1054 1055 1056
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057
	 * side critical section has interrupts disabled.
1058
	 */
1059
	local_irq_save(*flags);
1060
	rcu_read_lock();
P
Peter Zijlstra 已提交
1061
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 1063 1064 1065
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1066
		 * perf_event_task_sched_out, though the
1067 1068 1069 1070 1071 1072
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1073
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1074
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075
			raw_spin_unlock(&ctx->lock);
1076
			rcu_read_unlock();
1077
			local_irq_restore(*flags);
1078 1079
			goto retry;
		}
1080 1081

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1082
			raw_spin_unlock(&ctx->lock);
1083 1084
			ctx = NULL;
		}
1085 1086
	}
	rcu_read_unlock();
1087 1088
	if (!ctx)
		local_irq_restore(*flags);
1089 1090 1091 1092 1093 1094 1095 1096
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1097 1098
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1099
{
1100
	struct perf_event_context *ctx;
1101 1102
	unsigned long flags;

P
Peter Zijlstra 已提交
1103
	ctx = perf_lock_task_context(task, ctxn, &flags);
1104 1105
	if (ctx) {
		++ctx->pin_count;
1106
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1107 1108 1109 1110
	}
	return ctx;
}

1111
static void perf_unpin_context(struct perf_event_context *ctx)
1112 1113 1114
{
	unsigned long flags;

1115
	raw_spin_lock_irqsave(&ctx->lock, flags);
1116
	--ctx->pin_count;
1117
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1118 1119
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1131 1132 1133
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1134 1135 1136 1137

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1138 1139 1140
	return ctx ? ctx->time : 0;
}

1141 1142
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1143
 * The caller of this function needs to hold the ctx->lock.
1144 1145 1146 1147 1148 1149 1150 1151 1152
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1164
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1165 1166
	else if (ctx->is_active)
		run_end = ctx->time;
1167 1168 1169 1170
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1171 1172 1173 1174

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1175
		run_end = perf_event_time(event);
1176 1177

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1178

1179 1180
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1193 1194 1195 1196 1197 1198 1199 1200 1201
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1202
/*
1203
 * Add a event from the lists for its context.
1204 1205
 * Must be called with ctx->mutex and ctx->lock held.
 */
1206
static void
1207
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1208
{
1209 1210
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1211 1212

	/*
1213 1214 1215
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1216
	 */
1217
	if (event->group_leader == event) {
1218 1219
		struct list_head *list;

1220 1221 1222
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1223 1224
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1225
	}
P
Peter Zijlstra 已提交
1226

1227
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1228 1229
		ctx->nr_cgroups++;

1230 1231 1232
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1233
		ctx->nr_stat++;
1234 1235

	ctx->generation++;
1236 1237
}

J
Jiri Olsa 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1247
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1263
		nr += nr_siblings;
1264 1265 1266 1267 1268 1269 1270
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1271
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1272 1273 1274 1275 1276 1277 1278
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1279 1280 1281 1282 1283 1284
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1285 1286 1287
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1288 1289 1290
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1291 1292 1293
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1294 1295 1296
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1297 1298 1299
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1311 1312 1313 1314 1315 1316
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1317 1318 1319 1320 1321 1322
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1323 1324 1325
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1326 1327 1328 1329 1330 1331 1332 1333 1334
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1335
	event->id_header_size = size;
1336 1337
}

P
Peter Zijlstra 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1359 1360
static void perf_group_attach(struct perf_event *event)
{
1361
	struct perf_event *group_leader = event->group_leader, *pos;
1362

P
Peter Zijlstra 已提交
1363 1364 1365 1366 1367 1368
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1369 1370 1371 1372 1373
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1374 1375
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1376 1377 1378 1379 1380 1381
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1382 1383 1384 1385 1386

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1387 1388
}

1389
/*
1390
 * Remove a event from the lists for its context.
1391
 * Must be called with ctx->mutex and ctx->lock held.
1392
 */
1393
static void
1394
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1395
{
1396
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1397 1398 1399 1400

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1401 1402 1403 1404
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1405
		return;
1406 1407 1408

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1409
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1410
		ctx->nr_cgroups--;
1411 1412 1413 1414 1415 1416 1417 1418 1419
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1420

1421 1422
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1423
		ctx->nr_stat--;
1424

1425
	list_del_rcu(&event->event_entry);
1426

1427 1428
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1429

1430
	update_group_times(event);
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1441 1442

	ctx->generation++;
1443 1444
}

1445
static void perf_group_detach(struct perf_event *event)
1446 1447
{
	struct perf_event *sibling, *tmp;
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1464
		goto out;
1465 1466 1467 1468
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1469

1470
	/*
1471 1472
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1473
	 * to whatever list we are on.
1474
	 */
1475
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1476 1477
		if (list)
			list_move_tail(&sibling->group_entry, list);
1478
		sibling->group_leader = sibling;
1479 1480 1481

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1482 1483

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1484
	}
1485 1486 1487 1488 1489 1490

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1491 1492
}

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1532 1533 1534 1535 1536 1537
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1538 1539 1540
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1541
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1542
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1543 1544
}

1545 1546
static void
event_sched_out(struct perf_event *event,
1547
		  struct perf_cpu_context *cpuctx,
1548
		  struct perf_event_context *ctx)
1549
{
1550
	u64 tstamp = perf_event_time(event);
1551
	u64 delta;
P
Peter Zijlstra 已提交
1552 1553 1554 1555

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1556 1557 1558 1559 1560 1561 1562 1563
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1564
		delta = tstamp - event->tstamp_stopped;
1565
		event->tstamp_running += delta;
1566
		event->tstamp_stopped = tstamp;
1567 1568
	}

1569
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1570
		return;
1571

1572 1573
	perf_pmu_disable(event->pmu);

1574 1575 1576 1577
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1578
	}
1579
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1580
	event->pmu->del(event, 0);
1581
	event->oncpu = -1;
1582

1583
	if (!is_software_event(event))
1584
		cpuctx->active_oncpu--;
1585 1586
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1587 1588
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1589
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1590
		cpuctx->exclusive = 0;
1591

1592 1593 1594
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1595
	perf_pmu_enable(event->pmu);
1596 1597
}

1598
static void
1599
group_sched_out(struct perf_event *group_event,
1600
		struct perf_cpu_context *cpuctx,
1601
		struct perf_event_context *ctx)
1602
{
1603
	struct perf_event *event;
1604
	int state = group_event->state;
1605

1606
	event_sched_out(group_event, cpuctx, ctx);
1607 1608 1609 1610

	/*
	 * Schedule out siblings (if any):
	 */
1611 1612
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1613

1614
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1615 1616 1617
		cpuctx->exclusive = 0;
}

1618 1619 1620 1621 1622
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1623
/*
1624
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1625
 *
1626
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1627 1628
 * remove it from the context list.
 */
1629
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1630
{
1631 1632
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1633
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1634
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1635

1636
	raw_spin_lock(&ctx->lock);
1637
	event_sched_out(event, cpuctx, ctx);
1638 1639
	if (re->detach_group)
		perf_group_detach(event);
1640
	list_del_event(event, ctx);
1641 1642 1643 1644
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1645
	raw_spin_unlock(&ctx->lock);
1646 1647

	return 0;
T
Thomas Gleixner 已提交
1648 1649 1650 1651
}


/*
1652
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1653
 *
1654
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1655
 * call when the task is on a CPU.
1656
 *
1657 1658
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1659 1660
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1661
 * When called from perf_event_exit_task, it's OK because the
1662
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1663
 */
1664
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1665
{
1666
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1667
	struct task_struct *task = ctx->task;
1668 1669 1670 1671
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1672

1673 1674
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1675 1676
	if (!task) {
		/*
1677 1678 1679 1680
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1681
		 */
1682
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1683 1684 1685 1686
		return;
	}

retry:
1687
	if (!task_function_call(task, __perf_remove_from_context, &re))
1688
		return;
T
Thomas Gleixner 已提交
1689

1690
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1691
	/*
1692 1693
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1694
	 */
1695
	if (ctx->is_active) {
1696
		raw_spin_unlock_irq(&ctx->lock);
1697 1698 1699 1700 1701
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1702 1703 1704 1705
		goto retry;
	}

	/*
1706 1707
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1708
	 */
1709 1710
	if (detach_group)
		perf_group_detach(event);
1711
	list_del_event(event, ctx);
1712
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1713 1714
}

1715
/*
1716
 * Cross CPU call to disable a performance event
1717
 */
1718
int __perf_event_disable(void *info)
1719
{
1720 1721
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1722
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1723 1724

	/*
1725 1726
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1727 1728 1729
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1730
	 */
1731
	if (ctx->task && cpuctx->task_ctx != ctx)
1732
		return -EINVAL;
1733

1734
	raw_spin_lock(&ctx->lock);
1735 1736

	/*
1737
	 * If the event is on, turn it off.
1738 1739
	 * If it is in error state, leave it in error state.
	 */
1740
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1741
		update_context_time(ctx);
S
Stephane Eranian 已提交
1742
		update_cgrp_time_from_event(event);
1743 1744 1745
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1746
		else
1747 1748
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1749 1750
	}

1751
	raw_spin_unlock(&ctx->lock);
1752 1753

	return 0;
1754 1755 1756
}

/*
1757
 * Disable a event.
1758
 *
1759 1760
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1761
 * remains valid.  This condition is satisifed when called through
1762 1763 1764 1765
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1766
 * is the current context on this CPU and preemption is disabled,
1767
 * hence we can't get into perf_event_task_sched_out for this context.
1768
 */
P
Peter Zijlstra 已提交
1769
static void _perf_event_disable(struct perf_event *event)
1770
{
1771
	struct perf_event_context *ctx = event->ctx;
1772 1773 1774 1775
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1776
		 * Disable the event on the cpu that it's on
1777
		 */
1778
		cpu_function_call(event->cpu, __perf_event_disable, event);
1779 1780 1781
		return;
	}

P
Peter Zijlstra 已提交
1782
retry:
1783 1784
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1785

1786
	raw_spin_lock_irq(&ctx->lock);
1787
	/*
1788
	 * If the event is still active, we need to retry the cross-call.
1789
	 */
1790
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1791
		raw_spin_unlock_irq(&ctx->lock);
1792 1793 1794 1795 1796
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1797 1798 1799 1800 1801 1802 1803
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1804 1805 1806
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1807
	}
1808
	raw_spin_unlock_irq(&ctx->lock);
1809
}
P
Peter Zijlstra 已提交
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1823
EXPORT_SYMBOL_GPL(perf_event_disable);
1824

S
Stephane Eranian 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1860 1861 1862
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1863
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1864

1865
static int
1866
event_sched_in(struct perf_event *event,
1867
		 struct perf_cpu_context *cpuctx,
1868
		 struct perf_event_context *ctx)
1869
{
1870
	u64 tstamp = perf_event_time(event);
1871
	int ret = 0;
1872

1873 1874
	lockdep_assert_held(&ctx->lock);

1875
	if (event->state <= PERF_EVENT_STATE_OFF)
1876 1877
		return 0;

1878
	event->state = PERF_EVENT_STATE_ACTIVE;
1879
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1891 1892 1893 1894 1895
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1896 1897
	perf_pmu_disable(event->pmu);

1898 1899
	perf_set_shadow_time(event, ctx, tstamp);

1900 1901
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1902
	if (event->pmu->add(event, PERF_EF_START)) {
1903 1904
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1905 1906
		ret = -EAGAIN;
		goto out;
1907 1908
	}

1909 1910
	event->tstamp_running += tstamp - event->tstamp_stopped;

1911
	if (!is_software_event(event))
1912
		cpuctx->active_oncpu++;
1913 1914
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1915 1916
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1917

1918
	if (event->attr.exclusive)
1919 1920
		cpuctx->exclusive = 1;

1921 1922 1923
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1924 1925 1926 1927
out:
	perf_pmu_enable(event->pmu);

	return ret;
1928 1929
}

1930
static int
1931
group_sched_in(struct perf_event *group_event,
1932
	       struct perf_cpu_context *cpuctx,
1933
	       struct perf_event_context *ctx)
1934
{
1935
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1936
	struct pmu *pmu = ctx->pmu;
1937 1938
	u64 now = ctx->time;
	bool simulate = false;
1939

1940
	if (group_event->state == PERF_EVENT_STATE_OFF)
1941 1942
		return 0;

1943
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1944

1945
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1946
		pmu->cancel_txn(pmu);
1947
		perf_mux_hrtimer_restart(cpuctx);
1948
		return -EAGAIN;
1949
	}
1950 1951 1952 1953

	/*
	 * Schedule in siblings as one group (if any):
	 */
1954
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1955
		if (event_sched_in(event, cpuctx, ctx)) {
1956
			partial_group = event;
1957 1958 1959 1960
			goto group_error;
		}
	}

1961
	if (!pmu->commit_txn(pmu))
1962
		return 0;
1963

1964 1965 1966 1967
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1978
	 */
1979 1980
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1981 1982 1983 1984 1985 1986 1987 1988
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1989
	}
1990
	event_sched_out(group_event, cpuctx, ctx);
1991

P
Peter Zijlstra 已提交
1992
	pmu->cancel_txn(pmu);
1993

1994
	perf_mux_hrtimer_restart(cpuctx);
1995

1996 1997 1998
	return -EAGAIN;
}

1999
/*
2000
 * Work out whether we can put this event group on the CPU now.
2001
 */
2002
static int group_can_go_on(struct perf_event *event,
2003 2004 2005 2006
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2007
	 * Groups consisting entirely of software events can always go on.
2008
	 */
2009
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2010 2011 2012
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2013
	 * events can go on.
2014 2015 2016 2017 2018
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2019
	 * events on the CPU, it can't go on.
2020
	 */
2021
	if (event->attr.exclusive && cpuctx->active_oncpu)
2022 2023 2024 2025 2026 2027 2028 2029
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2030 2031
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2032
{
2033 2034
	u64 tstamp = perf_event_time(event);

2035
	list_add_event(event, ctx);
2036
	perf_group_attach(event);
2037 2038 2039
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2040 2041
}

2042 2043 2044 2045 2046 2047
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2048

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2061
/*
2062
 * Cross CPU call to install and enable a performance event
2063 2064
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2065
 */
2066
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2067
{
2068 2069
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2070
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2071 2072 2073
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2074
	perf_ctx_lock(cpuctx, task_ctx);
2075
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2076 2077

	/*
2078
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2079
	 */
2080
	if (task_ctx)
2081
		task_ctx_sched_out(task_ctx);
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2096 2097
		task = task_ctx->task;
	}
2098

2099
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2100

2101
	update_context_time(ctx);
S
Stephane Eranian 已提交
2102 2103 2104 2105 2106 2107
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2108

2109
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2110

2111
	/*
2112
	 * Schedule everything back in
2113
	 */
2114
	perf_event_sched_in(cpuctx, task_ctx, task);
2115 2116 2117

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2118 2119

	return 0;
T
Thomas Gleixner 已提交
2120 2121 2122
}

/*
2123
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2124
 *
2125 2126
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2127
 *
2128
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2129 2130 2131 2132
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2133 2134
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2135 2136 2137 2138
			int cpu)
{
	struct task_struct *task = ctx->task;

2139 2140
	lockdep_assert_held(&ctx->mutex);

2141
	event->ctx = ctx;
2142 2143
	if (event->cpu != -1)
		event->cpu = cpu;
2144

T
Thomas Gleixner 已提交
2145 2146
	if (!task) {
		/*
2147
		 * Per cpu events are installed via an smp call and
2148
		 * the install is always successful.
T
Thomas Gleixner 已提交
2149
		 */
2150
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2151 2152 2153 2154
		return;
	}

retry:
2155 2156
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2157

2158
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2159
	/*
2160 2161
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2162
	 */
2163
	if (ctx->is_active) {
2164
		raw_spin_unlock_irq(&ctx->lock);
2165 2166 2167 2168 2169
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2170 2171 2172 2173
		goto retry;
	}

	/*
2174 2175
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2176
	 */
2177
	add_event_to_ctx(event, ctx);
2178
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2179 2180
}

2181
/*
2182
 * Put a event into inactive state and update time fields.
2183 2184 2185 2186 2187 2188
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2189
static void __perf_event_mark_enabled(struct perf_event *event)
2190
{
2191
	struct perf_event *sub;
2192
	u64 tstamp = perf_event_time(event);
2193

2194
	event->state = PERF_EVENT_STATE_INACTIVE;
2195
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2196
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2197 2198
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2199
	}
2200 2201
}

2202
/*
2203
 * Cross CPU call to enable a performance event
2204
 */
2205
static int __perf_event_enable(void *info)
2206
{
2207 2208 2209
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2210
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2211
	int err;
2212

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2223
		return -EINVAL;
2224

2225
	raw_spin_lock(&ctx->lock);
2226
	update_context_time(ctx);
2227

2228
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2229
		goto unlock;
S
Stephane Eranian 已提交
2230 2231 2232 2233

	/*
	 * set current task's cgroup time reference point
	 */
2234
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2235

2236
	__perf_event_mark_enabled(event);
2237

S
Stephane Eranian 已提交
2238 2239 2240
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2241
		goto unlock;
S
Stephane Eranian 已提交
2242
	}
2243

2244
	/*
2245
	 * If the event is in a group and isn't the group leader,
2246
	 * then don't put it on unless the group is on.
2247
	 */
2248
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2249
		goto unlock;
2250

2251
	if (!group_can_go_on(event, cpuctx, 1)) {
2252
		err = -EEXIST;
2253
	} else {
2254
		if (event == leader)
2255
			err = group_sched_in(event, cpuctx, ctx);
2256
		else
2257
			err = event_sched_in(event, cpuctx, ctx);
2258
	}
2259 2260 2261

	if (err) {
		/*
2262
		 * If this event can't go on and it's part of a
2263 2264
		 * group, then the whole group has to come off.
		 */
2265
		if (leader != event) {
2266
			group_sched_out(leader, cpuctx, ctx);
2267
			perf_mux_hrtimer_restart(cpuctx);
2268
		}
2269
		if (leader->attr.pinned) {
2270
			update_group_times(leader);
2271
			leader->state = PERF_EVENT_STATE_ERROR;
2272
		}
2273 2274
	}

P
Peter Zijlstra 已提交
2275
unlock:
2276
	raw_spin_unlock(&ctx->lock);
2277 2278

	return 0;
2279 2280 2281
}

/*
2282
 * Enable a event.
2283
 *
2284 2285
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2286
 * remains valid.  This condition is satisfied when called through
2287 2288
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2289
 */
P
Peter Zijlstra 已提交
2290
static void _perf_event_enable(struct perf_event *event)
2291
{
2292
	struct perf_event_context *ctx = event->ctx;
2293 2294 2295 2296
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2297
		 * Enable the event on the cpu that it's on
2298
		 */
2299
		cpu_function_call(event->cpu, __perf_event_enable, event);
2300 2301 2302
		return;
	}

2303
	raw_spin_lock_irq(&ctx->lock);
2304
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2305 2306 2307
		goto out;

	/*
2308 2309
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2310 2311 2312 2313
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2314 2315
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2316

P
Peter Zijlstra 已提交
2317
retry:
2318
	if (!ctx->is_active) {
2319
		__perf_event_mark_enabled(event);
2320 2321 2322
		goto out;
	}

2323
	raw_spin_unlock_irq(&ctx->lock);
2324 2325 2326

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2327

2328
	raw_spin_lock_irq(&ctx->lock);
2329 2330

	/*
2331
	 * If the context is active and the event is still off,
2332 2333
	 * we need to retry the cross-call.
	 */
2334 2335 2336 2337 2338 2339
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2340
		goto retry;
2341
	}
2342

P
Peter Zijlstra 已提交
2343
out:
2344
	raw_spin_unlock_irq(&ctx->lock);
2345
}
P
Peter Zijlstra 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2358
EXPORT_SYMBOL_GPL(perf_event_enable);
2359

P
Peter Zijlstra 已提交
2360
static int _perf_event_refresh(struct perf_event *event, int refresh)
2361
{
2362
	/*
2363
	 * not supported on inherited events
2364
	 */
2365
	if (event->attr.inherit || !is_sampling_event(event))
2366 2367
		return -EINVAL;

2368
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2369
	_perf_event_enable(event);
2370 2371

	return 0;
2372
}
P
Peter Zijlstra 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2388
EXPORT_SYMBOL_GPL(perf_event_refresh);
2389

2390 2391 2392
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2393
{
2394
	struct perf_event *event;
2395
	int is_active = ctx->is_active;
2396

2397
	ctx->is_active &= ~event_type;
2398
	if (likely(!ctx->nr_events))
2399 2400
		return;

2401
	update_context_time(ctx);
S
Stephane Eranian 已提交
2402
	update_cgrp_time_from_cpuctx(cpuctx);
2403
	if (!ctx->nr_active)
2404
		return;
2405

P
Peter Zijlstra 已提交
2406
	perf_pmu_disable(ctx->pmu);
2407
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2408 2409
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2410
	}
2411

2412
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2413
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2414
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2415
	}
P
Peter Zijlstra 已提交
2416
	perf_pmu_enable(ctx->pmu);
2417 2418
}

2419
/*
2420 2421 2422 2423 2424 2425
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2426
 */
2427 2428
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2429
{
2430 2431 2432
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2455 2456
}

2457 2458
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2459 2460 2461
{
	u64 value;

2462
	if (!event->attr.inherit_stat)
2463 2464 2465
		return;

	/*
2466
	 * Update the event value, we cannot use perf_event_read()
2467 2468
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2469
	 * we know the event must be on the current CPU, therefore we
2470 2471
	 * don't need to use it.
	 */
2472 2473
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2474 2475
		event->pmu->read(event);
		/* fall-through */
2476

2477 2478
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2479 2480 2481 2482 2483 2484 2485
		break;

	default:
		break;
	}

	/*
2486
	 * In order to keep per-task stats reliable we need to flip the event
2487 2488
	 * values when we flip the contexts.
	 */
2489 2490 2491
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2492

2493 2494
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2495

2496
	/*
2497
	 * Since we swizzled the values, update the user visible data too.
2498
	 */
2499 2500
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2501 2502
}

2503 2504
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2505
{
2506
	struct perf_event *event, *next_event;
2507 2508 2509 2510

	if (!ctx->nr_stat)
		return;

2511 2512
	update_context_time(ctx);

2513 2514
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2515

2516 2517
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2518

2519 2520
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2521

2522
		__perf_event_sync_stat(event, next_event);
2523

2524 2525
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2526 2527 2528
	}
}

2529 2530
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2531
{
P
Peter Zijlstra 已提交
2532
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2533
	struct perf_event_context *next_ctx;
2534
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2535
	struct perf_cpu_context *cpuctx;
2536
	int do_switch = 1;
T
Thomas Gleixner 已提交
2537

P
Peter Zijlstra 已提交
2538 2539
	if (likely(!ctx))
		return;
2540

P
Peter Zijlstra 已提交
2541 2542
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2543 2544
		return;

2545
	rcu_read_lock();
P
Peter Zijlstra 已提交
2546
	next_ctx = next->perf_event_ctxp[ctxn];
2547 2548 2549 2550 2551 2552 2553
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2554
	if (!parent && !next_parent)
2555 2556 2557
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2558 2559 2560 2561 2562 2563 2564 2565 2566
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2567 2568
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2569
		if (context_equiv(ctx, next_ctx)) {
2570 2571
			/*
			 * XXX do we need a memory barrier of sorts
2572
			 * wrt to rcu_dereference() of perf_event_ctxp
2573
			 */
P
Peter Zijlstra 已提交
2574 2575
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2576 2577
			ctx->task = next;
			next_ctx->task = task;
2578 2579 2580

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2581
			do_switch = 0;
2582

2583
			perf_event_sync_stat(ctx, next_ctx);
2584
		}
2585 2586
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2587
	}
2588
unlock:
2589
	rcu_read_unlock();
2590

2591
	if (do_switch) {
2592
		raw_spin_lock(&ctx->lock);
2593
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2594
		cpuctx->task_ctx = NULL;
2595
		raw_spin_unlock(&ctx->lock);
2596
	}
T
Thomas Gleixner 已提交
2597 2598
}

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2649 2650 2651
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2666 2667
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2668 2669 2670
{
	int ctxn;

2671 2672 2673
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2674 2675 2676
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2677 2678
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2679 2680 2681 2682 2683 2684

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2685
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2686
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2687 2688
}

2689
static void task_ctx_sched_out(struct perf_event_context *ctx)
2690
{
P
Peter Zijlstra 已提交
2691
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2692

2693 2694
	if (!cpuctx->task_ctx)
		return;
2695 2696 2697 2698

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2699
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2700 2701 2702
	cpuctx->task_ctx = NULL;
}

2703 2704 2705 2706 2707 2708 2709
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2710 2711
}

2712
static void
2713
ctx_pinned_sched_in(struct perf_event_context *ctx,
2714
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2715
{
2716
	struct perf_event *event;
T
Thomas Gleixner 已提交
2717

2718 2719
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2720
			continue;
2721
		if (!event_filter_match(event))
2722 2723
			continue;

S
Stephane Eranian 已提交
2724 2725 2726 2727
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2728
		if (group_can_go_on(event, cpuctx, 1))
2729
			group_sched_in(event, cpuctx, ctx);
2730 2731 2732 2733 2734

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2735 2736 2737
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2738
		}
2739
	}
2740 2741 2742 2743
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2744
		      struct perf_cpu_context *cpuctx)
2745 2746 2747
{
	struct perf_event *event;
	int can_add_hw = 1;
2748

2749 2750 2751
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2752
			continue;
2753 2754
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2755
		 * of events:
2756
		 */
2757
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2758 2759
			continue;

S
Stephane Eranian 已提交
2760 2761 2762 2763
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2764
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2765
			if (group_sched_in(event, cpuctx, ctx))
2766
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2767
		}
T
Thomas Gleixner 已提交
2768
	}
2769 2770 2771 2772 2773
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2774 2775
	     enum event_type_t event_type,
	     struct task_struct *task)
2776
{
S
Stephane Eranian 已提交
2777
	u64 now;
2778
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2779

2780
	ctx->is_active |= event_type;
2781
	if (likely(!ctx->nr_events))
2782
		return;
2783

S
Stephane Eranian 已提交
2784 2785
	now = perf_clock();
	ctx->timestamp = now;
2786
	perf_cgroup_set_timestamp(task, ctx);
2787 2788 2789 2790
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2791
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2792
		ctx_pinned_sched_in(ctx, cpuctx);
2793 2794

	/* Then walk through the lower prio flexible groups */
2795
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2796
		ctx_flexible_sched_in(ctx, cpuctx);
2797 2798
}

2799
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2800 2801
			     enum event_type_t event_type,
			     struct task_struct *task)
2802 2803 2804
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2805
	ctx_sched_in(ctx, cpuctx, event_type, task);
2806 2807
}

S
Stephane Eranian 已提交
2808 2809
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2810
{
P
Peter Zijlstra 已提交
2811
	struct perf_cpu_context *cpuctx;
2812

P
Peter Zijlstra 已提交
2813
	cpuctx = __get_cpu_context(ctx);
2814 2815 2816
	if (cpuctx->task_ctx == ctx)
		return;

2817
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2818
	perf_pmu_disable(ctx->pmu);
2819 2820 2821 2822 2823 2824 2825
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2826 2827
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2828

2829 2830
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2831 2832
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2833 2834
}

P
Peter Zijlstra 已提交
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2846 2847
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2848 2849 2850 2851 2852 2853 2854 2855 2856
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2857
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2858
	}
S
Stephane Eranian 已提交
2859 2860 2861 2862 2863
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2864
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2865
		perf_cgroup_sched_in(prev, task);
2866

2867 2868 2869
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2870 2871
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2872 2873
}

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2901
#define REDUCE_FLS(a, b)		\
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2941 2942 2943
	if (!divisor)
		return dividend;

2944 2945 2946
	return div64_u64(dividend, divisor);
}

2947 2948 2949
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2950
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2951
{
2952
	struct hw_perf_event *hwc = &event->hw;
2953
	s64 period, sample_period;
2954 2955
	s64 delta;

2956
	period = perf_calculate_period(event, nsec, count);
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2967

2968
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2969 2970 2971
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2972
		local64_set(&hwc->period_left, 0);
2973 2974 2975

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2976
	}
2977 2978
}

2979 2980 2981 2982 2983 2984 2985
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2986
{
2987 2988
	struct perf_event *event;
	struct hw_perf_event *hwc;
2989
	u64 now, period = TICK_NSEC;
2990
	s64 delta;
2991

2992 2993 2994 2995 2996 2997
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2998 2999
		return;

3000
	raw_spin_lock(&ctx->lock);
3001
	perf_pmu_disable(ctx->pmu);
3002

3003
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3004
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3005 3006
			continue;

3007
		if (!event_filter_match(event))
3008 3009
			continue;

3010 3011
		perf_pmu_disable(event->pmu);

3012
		hwc = &event->hw;
3013

3014
		if (hwc->interrupts == MAX_INTERRUPTS) {
3015
			hwc->interrupts = 0;
3016
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3017
			event->pmu->start(event, 0);
3018 3019
		}

3020
		if (!event->attr.freq || !event->attr.sample_freq)
3021
			goto next;
3022

3023 3024 3025 3026 3027
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3028
		now = local64_read(&event->count);
3029 3030
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3031

3032 3033 3034
		/*
		 * restart the event
		 * reload only if value has changed
3035 3036 3037
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3038
		 */
3039
		if (delta > 0)
3040
			perf_adjust_period(event, period, delta, false);
3041 3042

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3043 3044
	next:
		perf_pmu_enable(event->pmu);
3045
	}
3046

3047
	perf_pmu_enable(ctx->pmu);
3048
	raw_spin_unlock(&ctx->lock);
3049 3050
}

3051
/*
3052
 * Round-robin a context's events:
3053
 */
3054
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3055
{
3056 3057 3058 3059 3060 3061
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3062 3063
}

3064
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3065
{
P
Peter Zijlstra 已提交
3066
	struct perf_event_context *ctx = NULL;
3067
	int rotate = 0;
3068

3069 3070 3071 3072
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3073

P
Peter Zijlstra 已提交
3074
	ctx = cpuctx->task_ctx;
3075 3076 3077 3078
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3079

3080
	if (!rotate)
3081 3082
		goto done;

3083
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3084
	perf_pmu_disable(cpuctx->ctx.pmu);
3085

3086 3087 3088
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3089

3090 3091 3092
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3093

3094
	perf_event_sched_in(cpuctx, ctx, current);
3095

3096 3097
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3098
done:
3099 3100

	return rotate;
3101 3102
}

3103 3104 3105
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3106
	if (atomic_read(&nr_freq_events) ||
3107
	    __this_cpu_read(perf_throttled_count))
3108
		return false;
3109 3110
	else
		return true;
3111 3112 3113
}
#endif

3114 3115
void perf_event_task_tick(void)
{
3116 3117
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3118
	int throttled;
3119

3120 3121
	WARN_ON(!irqs_disabled());

3122 3123 3124
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3125
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3126
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3127 3128
}

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3139
	__perf_event_mark_enabled(event);
3140 3141 3142 3143

	return 1;
}

3144
/*
3145
 * Enable all of a task's events that have been marked enable-on-exec.
3146 3147
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3148
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3149
{
3150
	struct perf_event_context *clone_ctx = NULL;
3151
	struct perf_event *event;
3152 3153
	unsigned long flags;
	int enabled = 0;
3154
	int ret;
3155 3156

	local_irq_save(flags);
3157
	if (!ctx || !ctx->nr_events)
3158 3159
		goto out;

3160 3161 3162 3163 3164 3165 3166
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3167
	perf_cgroup_sched_out(current, NULL);
3168

3169
	raw_spin_lock(&ctx->lock);
3170
	task_ctx_sched_out(ctx);
3171

3172
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3173 3174 3175
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3176 3177 3178
	}

	/*
3179
	 * Unclone this context if we enabled any event.
3180
	 */
3181
	if (enabled)
3182
		clone_ctx = unclone_ctx(ctx);
3183

3184
	raw_spin_unlock(&ctx->lock);
3185

3186 3187 3188
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3189
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3190
out:
3191
	local_irq_restore(flags);
3192 3193 3194

	if (clone_ctx)
		put_ctx(clone_ctx);
3195 3196
}

3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

3213 3214 3215
struct perf_read_data {
	struct perf_event *event;
	bool group;
3216
	int ret;
3217 3218
};

T
Thomas Gleixner 已提交
3219
/*
3220
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3221
 */
3222
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3223
{
3224 3225
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3226
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3227
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3228
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3229

3230 3231 3232 3233
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3234 3235
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3236 3237 3238 3239
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3240
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3241
	if (ctx->is_active) {
3242
		update_context_time(ctx);
S
Stephane Eranian 已提交
3243 3244
		update_cgrp_time_from_event(event);
	}
3245

3246
	update_event_times(event);
3247 3248
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3249

3250 3251 3252
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3253
		goto unlock;
3254 3255 3256 3257 3258
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3259 3260 3261

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3262 3263 3264 3265 3266
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3267
			sub->pmu->read(sub);
3268
		}
3269
	}
3270 3271

	data->ret = pmu->commit_txn(pmu);
3272 3273

unlock:
3274
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3275 3276
}

P
Peter Zijlstra 已提交
3277 3278
static inline u64 perf_event_count(struct perf_event *event)
{
3279 3280 3281 3282
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3283 3284
}

3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3338
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3339
{
3340 3341
	int ret = 0;

T
Thomas Gleixner 已提交
3342
	/*
3343 3344
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3345
	 */
3346
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3347 3348 3349
		struct perf_read_data data = {
			.event = event,
			.group = group,
3350
			.ret = 0,
3351
		};
3352
		smp_call_function_single(event->oncpu,
3353
					 __perf_event_read, &data, 1);
3354
		ret = data.ret;
3355
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3356 3357 3358
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3359
		raw_spin_lock_irqsave(&ctx->lock, flags);
3360 3361 3362 3363 3364
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3365
		if (ctx->is_active) {
3366
			update_context_time(ctx);
S
Stephane Eranian 已提交
3367 3368
			update_cgrp_time_from_event(event);
		}
3369 3370 3371 3372
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3373
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3374
	}
3375 3376

	return ret;
T
Thomas Gleixner 已提交
3377 3378
}

3379
/*
3380
 * Initialize the perf_event context in a task_struct:
3381
 */
3382
static void __perf_event_init_context(struct perf_event_context *ctx)
3383
{
3384
	raw_spin_lock_init(&ctx->lock);
3385
	mutex_init(&ctx->mutex);
3386
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3387 3388
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3389 3390
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3391
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3407
	}
3408 3409 3410
	ctx->pmu = pmu;

	return ctx;
3411 3412
}

3413 3414 3415 3416 3417
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3418 3419

	rcu_read_lock();
3420
	if (!vpid)
T
Thomas Gleixner 已提交
3421 3422
		task = current;
	else
3423
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3424 3425 3426 3427 3428 3429 3430 3431
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3432 3433 3434 3435
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3436 3437 3438 3439 3440 3441 3442
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3443 3444 3445
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3446
static struct perf_event_context *
3447 3448
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3449
{
3450
	struct perf_event_context *ctx, *clone_ctx = NULL;
3451
	struct perf_cpu_context *cpuctx;
3452
	void *task_ctx_data = NULL;
3453
	unsigned long flags;
P
Peter Zijlstra 已提交
3454
	int ctxn, err;
3455
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3456

3457
	if (!task) {
3458
		/* Must be root to operate on a CPU event: */
3459
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3460 3461 3462
			return ERR_PTR(-EACCES);

		/*
3463
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3464 3465 3466
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3467
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3468 3469
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3470
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3471
		ctx = &cpuctx->ctx;
3472
		get_ctx(ctx);
3473
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3474 3475 3476 3477

		return ctx;
	}

P
Peter Zijlstra 已提交
3478 3479 3480 3481 3482
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3483 3484 3485 3486 3487 3488 3489 3490
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3491
retry:
P
Peter Zijlstra 已提交
3492
	ctx = perf_lock_task_context(task, ctxn, &flags);
3493
	if (ctx) {
3494
		clone_ctx = unclone_ctx(ctx);
3495
		++ctx->pin_count;
3496 3497 3498 3499 3500

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3501
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3502 3503 3504

		if (clone_ctx)
			put_ctx(clone_ctx);
3505
	} else {
3506
		ctx = alloc_perf_context(pmu, task);
3507 3508 3509
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3510

3511 3512 3513 3514 3515
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3526
		else {
3527
			get_ctx(ctx);
3528
			++ctx->pin_count;
3529
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3530
		}
3531 3532 3533
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3534
			put_ctx(ctx);
3535 3536 3537 3538

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3539 3540 3541
		}
	}

3542
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3543
	return ctx;
3544

P
Peter Zijlstra 已提交
3545
errout:
3546
	kfree(task_ctx_data);
3547
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3548 3549
}

L
Li Zefan 已提交
3550
static void perf_event_free_filter(struct perf_event *event);
3551
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3552

3553
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3554
{
3555
	struct perf_event *event;
P
Peter Zijlstra 已提交
3556

3557 3558 3559
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3560
	perf_event_free_filter(event);
3561
	kfree(event);
P
Peter Zijlstra 已提交
3562 3563
}

3564 3565
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3566

3567
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3568
{
3569 3570 3571 3572 3573 3574
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3575

3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3589 3590
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3591 3592 3593 3594
	if (event->attr.context_switch) {
		static_key_slow_dec_deferred(&perf_sched_events);
		atomic_dec(&nr_switch_events);
	}
3595 3596 3597 3598 3599 3600 3601
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3602

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3688 3689
static void __free_event(struct perf_event *event)
{
3690
	if (!event->parent) {
3691 3692
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3693
	}
3694

3695 3696
	perf_event_free_bpf_prog(event);

3697 3698 3699 3700 3701 3702
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3703 3704
	if (event->pmu) {
		exclusive_event_destroy(event);
3705
		module_put(event->pmu->module);
3706
	}
3707

3708 3709
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3710 3711

static void _free_event(struct perf_event *event)
3712
{
3713
	irq_work_sync(&event->pending);
3714

3715
	unaccount_event(event);
3716

3717
	if (event->rb) {
3718 3719 3720 3721 3722 3723 3724
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3725
		ring_buffer_attach(event, NULL);
3726
		mutex_unlock(&event->mmap_mutex);
3727 3728
	}

S
Stephane Eranian 已提交
3729 3730 3731
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3732
	__free_event(event);
3733 3734
}

P
Peter Zijlstra 已提交
3735 3736 3737 3738 3739
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3740
{
P
Peter Zijlstra 已提交
3741 3742 3743 3744 3745 3746
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3747

P
Peter Zijlstra 已提交
3748
	_free_event(event);
T
Thomas Gleixner 已提交
3749 3750
}

3751
/*
3752
 * Remove user event from the owner task.
3753
 */
3754
static void perf_remove_from_owner(struct perf_event *event)
3755
{
P
Peter Zijlstra 已提交
3756
	struct task_struct *owner;
3757

P
Peter Zijlstra 已提交
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3799 3800 3801 3802
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3803
	struct perf_event_context *ctx;
3804 3805 3806 3807 3808 3809

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3810

P
Peter Zijlstra 已提交
3811 3812 3813 3814 3815 3816 3817
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3818
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3819 3820 3821 3822
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3823 3824
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3825
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3826
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3827 3828

	_free_event(event);
3829 3830
}

P
Peter Zijlstra 已提交
3831 3832 3833 3834 3835 3836 3837
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3838 3839 3840
/*
 * Called when the last reference to the file is gone.
 */
3841 3842 3843 3844
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3845 3846
}

3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3883
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3884
{
3885
	struct perf_event *child;
3886 3887
	u64 total = 0;

3888 3889 3890
	*enabled = 0;
	*running = 0;

3891
	mutex_lock(&event->child_mutex);
3892

3893
	(void)perf_event_read(event, false);
3894 3895
	total += perf_event_count(event);

3896 3897 3898 3899 3900 3901
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3902
		(void)perf_event_read(child, false);
3903
		total += perf_event_count(child);
3904 3905 3906
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3907
	mutex_unlock(&event->child_mutex);
3908 3909 3910

	return total;
}
3911
EXPORT_SYMBOL_GPL(perf_event_read_value);
3912

3913
static int __perf_read_group_add(struct perf_event *leader,
3914
					u64 read_format, u64 *values)
3915
{
3916 3917
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3918
	int ret;
P
Peter Zijlstra 已提交
3919

3920 3921 3922
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3923

3924 3925 3926 3927 3928 3929 3930 3931 3932
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3933

3934 3935 3936 3937 3938 3939 3940 3941 3942
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3943 3944
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3945

3946 3947 3948 3949 3950
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3951 3952

	return 0;
3953
}
3954

3955 3956 3957 3958 3959
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3960
	int ret;
3961
	u64 *values;
3962

3963
	lockdep_assert_held(&ctx->mutex);
3964

3965 3966 3967
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3968

3969 3970 3971 3972 3973 3974 3975
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3976

3977 3978 3979 3980 3981 3982 3983 3984 3985
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3986

3987
	mutex_unlock(&leader->child_mutex);
3988

3989
	ret = event->read_size;
3990 3991
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3992
	goto out;
3993

3994 3995 3996
unlock:
	mutex_unlock(&leader->child_mutex);
out:
3997
	kfree(values);
3998
	return ret;
3999 4000
}

4001
static int perf_read_one(struct perf_event *event,
4002 4003
				 u64 read_format, char __user *buf)
{
4004
	u64 enabled, running;
4005 4006 4007
	u64 values[4];
	int n = 0;

4008 4009 4010 4011 4012
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4013
	if (read_format & PERF_FORMAT_ID)
4014
		values[n++] = primary_event_id(event);
4015 4016 4017 4018 4019 4020 4021

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4035
/*
4036
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4037 4038
 */
static ssize_t
4039
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4040
{
4041
	u64 read_format = event->attr.read_format;
4042
	int ret;
T
Thomas Gleixner 已提交
4043

4044
	/*
4045
	 * Return end-of-file for a read on a event that is in
4046 4047 4048
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4049
	if (event->state == PERF_EVENT_STATE_ERROR)
4050 4051
		return 0;

4052
	if (count < event->read_size)
4053 4054
		return -ENOSPC;

4055
	WARN_ON_ONCE(event->ctx->parent_ctx);
4056
	if (read_format & PERF_FORMAT_GROUP)
4057
		ret = perf_read_group(event, read_format, buf);
4058
	else
4059
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4060

4061
	return ret;
T
Thomas Gleixner 已提交
4062 4063 4064 4065 4066
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4067
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4068 4069
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4070

P
Peter Zijlstra 已提交
4071
	ctx = perf_event_ctx_lock(event);
4072
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4073 4074 4075
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4076 4077 4078 4079
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4080
	struct perf_event *event = file->private_data;
4081
	struct ring_buffer *rb;
4082
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4083

4084
	poll_wait(file, &event->waitq, wait);
4085

4086
	if (is_event_hup(event))
4087
		return events;
P
Peter Zijlstra 已提交
4088

4089
	/*
4090 4091
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4092 4093
	 */
	mutex_lock(&event->mmap_mutex);
4094 4095
	rb = event->rb;
	if (rb)
4096
		events = atomic_xchg(&rb->poll, 0);
4097
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4098 4099 4100
	return events;
}

P
Peter Zijlstra 已提交
4101
static void _perf_event_reset(struct perf_event *event)
4102
{
4103
	(void)perf_event_read(event, false);
4104
	local64_set(&event->count, 0);
4105
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4106 4107
}

4108
/*
4109 4110 4111 4112
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4113
 */
4114 4115
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4116
{
4117
	struct perf_event *child;
P
Peter Zijlstra 已提交
4118

4119
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4120

4121 4122 4123
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4124
		func(child);
4125
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4126 4127
}

4128 4129
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4130
{
4131 4132
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4133

P
Peter Zijlstra 已提交
4134 4135
	lockdep_assert_held(&ctx->mutex);

4136
	event = event->group_leader;
4137

4138 4139
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4140
		perf_event_for_each_child(sibling, func);
4141 4142
}

4143 4144
struct period_event {
	struct perf_event *event;
4145
	u64 value;
4146
};
4147

4148 4149 4150 4151 4152 4153 4154
static int __perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	struct perf_event_context *ctx = event->ctx;
	u64 value = pe->value;
	bool active;
4155

4156
	raw_spin_lock(&ctx->lock);
4157 4158
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4159
	} else {
4160 4161
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4162
	}
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4176
	raw_spin_unlock(&ctx->lock);
4177

4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
	return 0;
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	struct period_event pe = { .event = event, };
	struct perf_event_context *ctx = event->ctx;
	struct task_struct *task;
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

	task = ctx->task;
	pe.value = value;

	if (!task) {
		cpu_function_call(event->cpu, __perf_event_period, &pe);
		return 0;
	}

retry:
	if (!task_function_call(task, __perf_event_period, &pe))
		return 0;

	raw_spin_lock_irq(&ctx->lock);
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		task = ctx->task;
		goto retry;
	}

	__perf_event_period(&pe);
4220
	raw_spin_unlock_irq(&ctx->lock);
4221

4222
	return 0;
4223 4224
}

4225 4226
static const struct file_operations perf_fops;

4227
static inline int perf_fget_light(int fd, struct fd *p)
4228
{
4229 4230 4231
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4232

4233 4234 4235
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4236
	}
4237 4238
	*p = f;
	return 0;
4239 4240 4241 4242
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4243
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4244
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4245

P
Peter Zijlstra 已提交
4246
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4247
{
4248
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4249
	u32 flags = arg;
4250 4251

	switch (cmd) {
4252
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4253
		func = _perf_event_enable;
4254
		break;
4255
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4256
		func = _perf_event_disable;
4257
		break;
4258
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4259
		func = _perf_event_reset;
4260
		break;
P
Peter Zijlstra 已提交
4261

4262
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4263
		return _perf_event_refresh(event, arg);
4264

4265 4266
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4267

4268 4269 4270 4271 4272 4273 4274 4275 4276
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4277
	case PERF_EVENT_IOC_SET_OUTPUT:
4278 4279 4280
	{
		int ret;
		if (arg != -1) {
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4291 4292 4293
		}
		return ret;
	}
4294

L
Li Zefan 已提交
4295 4296 4297
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4298 4299 4300
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4301
	default:
P
Peter Zijlstra 已提交
4302
		return -ENOTTY;
4303
	}
P
Peter Zijlstra 已提交
4304 4305

	if (flags & PERF_IOC_FLAG_GROUP)
4306
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4307
	else
4308
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4309 4310

	return 0;
4311 4312
}

P
Peter Zijlstra 已提交
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4346
int perf_event_task_enable(void)
4347
{
P
Peter Zijlstra 已提交
4348
	struct perf_event_context *ctx;
4349
	struct perf_event *event;
4350

4351
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4352 4353 4354 4355 4356
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4357
	mutex_unlock(&current->perf_event_mutex);
4358 4359 4360 4361

	return 0;
}

4362
int perf_event_task_disable(void)
4363
{
P
Peter Zijlstra 已提交
4364
	struct perf_event_context *ctx;
4365
	struct perf_event *event;
4366

4367
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4368 4369 4370 4371 4372
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4373
	mutex_unlock(&current->perf_event_mutex);
4374 4375 4376 4377

	return 0;
}

4378
static int perf_event_index(struct perf_event *event)
4379
{
P
Peter Zijlstra 已提交
4380 4381 4382
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4383
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4384 4385
		return 0;

4386
	return event->pmu->event_idx(event);
4387 4388
}

4389
static void calc_timer_values(struct perf_event *event,
4390
				u64 *now,
4391 4392
				u64 *enabled,
				u64 *running)
4393
{
4394
	u64 ctx_time;
4395

4396 4397
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4398 4399 4400 4401
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4417 4418
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4419 4420 4421 4422 4423

unlock:
	rcu_read_unlock();
}

4424 4425
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4426 4427 4428
{
}

4429 4430 4431 4432 4433
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4434
void perf_event_update_userpage(struct perf_event *event)
4435
{
4436
	struct perf_event_mmap_page *userpg;
4437
	struct ring_buffer *rb;
4438
	u64 enabled, running, now;
4439 4440

	rcu_read_lock();
4441 4442 4443 4444
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4445 4446 4447 4448 4449 4450 4451 4452 4453
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4454
	calc_timer_values(event, &now, &enabled, &running);
4455

4456
	userpg = rb->user_page;
4457 4458 4459 4460 4461
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4462
	++userpg->lock;
4463
	barrier();
4464
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4465
	userpg->offset = perf_event_count(event);
4466
	if (userpg->index)
4467
		userpg->offset -= local64_read(&event->hw.prev_count);
4468

4469
	userpg->time_enabled = enabled +
4470
			atomic64_read(&event->child_total_time_enabled);
4471

4472
	userpg->time_running = running +
4473
			atomic64_read(&event->child_total_time_running);
4474

4475
	arch_perf_update_userpage(event, userpg, now);
4476

4477
	barrier();
4478
	++userpg->lock;
4479
	preempt_enable();
4480
unlock:
4481
	rcu_read_unlock();
4482 4483
}

4484 4485 4486
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4487
	struct ring_buffer *rb;
4488 4489 4490 4491 4492 4493 4494 4495 4496
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4497 4498
	rb = rcu_dereference(event->rb);
	if (!rb)
4499 4500 4501 4502 4503
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4504
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4519 4520 4521
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4522
	struct ring_buffer *old_rb = NULL;
4523 4524
	unsigned long flags;

4525 4526 4527 4528 4529 4530
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4531

4532 4533 4534 4535
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4536

4537 4538
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4539
	}
4540

4541
	if (rb) {
4542 4543 4544 4545 4546
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4563 4564 4565 4566 4567 4568 4569 4570
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4571 4572 4573 4574
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4575 4576 4577
	rcu_read_unlock();
}

4578
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4579
{
4580
	struct ring_buffer *rb;
4581

4582
	rcu_read_lock();
4583 4584 4585 4586
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4587 4588 4589
	}
	rcu_read_unlock();

4590
	return rb;
4591 4592
}

4593
void ring_buffer_put(struct ring_buffer *rb)
4594
{
4595
	if (!atomic_dec_and_test(&rb->refcount))
4596
		return;
4597

4598
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4599

4600
	call_rcu(&rb->rcu_head, rb_free_rcu);
4601 4602 4603 4604
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4605
	struct perf_event *event = vma->vm_file->private_data;
4606

4607
	atomic_inc(&event->mmap_count);
4608
	atomic_inc(&event->rb->mmap_count);
4609

4610 4611 4612
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4613 4614
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4615 4616
}

4617 4618 4619 4620 4621 4622 4623 4624
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4625 4626
static void perf_mmap_close(struct vm_area_struct *vma)
{
4627
	struct perf_event *event = vma->vm_file->private_data;
4628

4629
	struct ring_buffer *rb = ring_buffer_get(event);
4630 4631 4632
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4633

4634 4635 4636
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4651 4652 4653
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4654
		goto out_put;
4655

4656
	ring_buffer_attach(event, NULL);
4657 4658 4659
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4660 4661
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4662

4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4679

4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4691 4692 4693
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4694
		mutex_unlock(&event->mmap_mutex);
4695
		put_event(event);
4696

4697 4698 4699 4700 4701
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4702
	}
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4718
out_put:
4719
	ring_buffer_put(rb); /* could be last */
4720 4721
}

4722
static const struct vm_operations_struct perf_mmap_vmops = {
4723
	.open		= perf_mmap_open,
4724
	.close		= perf_mmap_close, /* non mergable */
4725 4726
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4727 4728 4729 4730
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4731
	struct perf_event *event = file->private_data;
4732
	unsigned long user_locked, user_lock_limit;
4733
	struct user_struct *user = current_user();
4734
	unsigned long locked, lock_limit;
4735
	struct ring_buffer *rb = NULL;
4736 4737
	unsigned long vma_size;
	unsigned long nr_pages;
4738
	long user_extra = 0, extra = 0;
4739
	int ret = 0, flags = 0;
4740

4741 4742 4743
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4744
	 * same rb.
4745 4746 4747 4748
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4749
	if (!(vma->vm_flags & VM_SHARED))
4750
		return -EINVAL;
4751 4752

	vma_size = vma->vm_end - vma->vm_start;
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4813

4814
	/*
4815
	 * If we have rb pages ensure they're a power-of-two number, so we
4816 4817
	 * can do bitmasks instead of modulo.
	 */
4818
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4819 4820
		return -EINVAL;

4821
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4822 4823
		return -EINVAL;

4824
	WARN_ON_ONCE(event->ctx->parent_ctx);
4825
again:
4826
	mutex_lock(&event->mmap_mutex);
4827
	if (event->rb) {
4828
		if (event->rb->nr_pages != nr_pages) {
4829
			ret = -EINVAL;
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4843 4844 4845
		goto unlock;
	}

4846
	user_extra = nr_pages + 1;
4847 4848

accounting:
4849
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4850 4851 4852 4853 4854 4855

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4856
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4857

4858 4859
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4860

4861
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4862
	lock_limit >>= PAGE_SHIFT;
4863
	locked = vma->vm_mm->pinned_vm + extra;
4864

4865 4866
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4867 4868 4869
		ret = -EPERM;
		goto unlock;
	}
4870

4871
	WARN_ON(!rb && event->rb);
4872

4873
	if (vma->vm_flags & VM_WRITE)
4874
		flags |= RING_BUFFER_WRITABLE;
4875

4876
	if (!rb) {
4877 4878 4879
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4880

4881 4882 4883 4884
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4885

4886 4887 4888
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4889

4890
		ring_buffer_attach(event, rb);
4891

4892 4893 4894
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4895 4896
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4897 4898 4899
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4900

4901
unlock:
4902 4903 4904 4905
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4906
		atomic_inc(&event->mmap_count);
4907 4908 4909 4910
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4911
	mutex_unlock(&event->mmap_mutex);
4912

4913 4914 4915 4916
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4917
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4918
	vma->vm_ops = &perf_mmap_vmops;
4919

4920 4921 4922
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4923
	return ret;
4924 4925
}

P
Peter Zijlstra 已提交
4926 4927
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4928
	struct inode *inode = file_inode(filp);
4929
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4930 4931 4932
	int retval;

	mutex_lock(&inode->i_mutex);
4933
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4934 4935 4936 4937 4938 4939 4940 4941
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4942
static const struct file_operations perf_fops = {
4943
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4944 4945 4946
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4947
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4948
	.compat_ioctl		= perf_compat_ioctl,
4949
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4950
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4951 4952
};

4953
/*
4954
 * Perf event wakeup
4955 4956 4957 4958 4959
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4960 4961 4962 4963 4964 4965 4966 4967
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4968
void perf_event_wakeup(struct perf_event *event)
4969
{
4970
	ring_buffer_wakeup(event);
4971

4972
	if (event->pending_kill) {
4973
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4974
		event->pending_kill = 0;
4975
	}
4976 4977
}

4978
static void perf_pending_event(struct irq_work *entry)
4979
{
4980 4981
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4982 4983 4984 4985 4986 4987 4988
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4989

4990 4991 4992
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4993 4994
	}

4995 4996 4997
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4998
	}
4999 5000 5001

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5002 5003
}

5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5040
static void perf_sample_regs_user(struct perf_regs *regs_user,
5041 5042
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5043
{
5044 5045
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5046
		regs_user->regs = regs;
5047 5048
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5049 5050 5051
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5052 5053 5054
	}
}

5055 5056 5057 5058 5059 5060 5061 5062
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5158 5159 5160
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5174
		data->time = perf_event_clock(event);
5175

5176
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5188 5189 5190
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5215 5216 5217

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5218 5219
}

5220 5221 5222
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5223 5224 5225 5226 5227
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5228
static void perf_output_read_one(struct perf_output_handle *handle,
5229 5230
				 struct perf_event *event,
				 u64 enabled, u64 running)
5231
{
5232
	u64 read_format = event->attr.read_format;
5233 5234 5235
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5236
	values[n++] = perf_event_count(event);
5237
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5238
		values[n++] = enabled +
5239
			atomic64_read(&event->child_total_time_enabled);
5240 5241
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5242
		values[n++] = running +
5243
			atomic64_read(&event->child_total_time_running);
5244 5245
	}
	if (read_format & PERF_FORMAT_ID)
5246
		values[n++] = primary_event_id(event);
5247

5248
	__output_copy(handle, values, n * sizeof(u64));
5249 5250 5251
}

/*
5252
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5253 5254
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5255 5256
			    struct perf_event *event,
			    u64 enabled, u64 running)
5257
{
5258 5259
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5260 5261 5262 5263 5264 5265
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5266
		values[n++] = enabled;
5267 5268

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5269
		values[n++] = running;
5270

5271
	if (leader != event)
5272 5273
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5274
	values[n++] = perf_event_count(leader);
5275
	if (read_format & PERF_FORMAT_ID)
5276
		values[n++] = primary_event_id(leader);
5277

5278
	__output_copy(handle, values, n * sizeof(u64));
5279

5280
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5281 5282
		n = 0;

5283 5284
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5285 5286
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5287
		values[n++] = perf_event_count(sub);
5288
		if (read_format & PERF_FORMAT_ID)
5289
			values[n++] = primary_event_id(sub);
5290

5291
		__output_copy(handle, values, n * sizeof(u64));
5292 5293 5294
	}
}

5295 5296 5297
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5298
static void perf_output_read(struct perf_output_handle *handle,
5299
			     struct perf_event *event)
5300
{
5301
	u64 enabled = 0, running = 0, now;
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5313
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5314
		calc_timer_values(event, &now, &enabled, &running);
5315

5316
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5317
		perf_output_read_group(handle, event, enabled, running);
5318
	else
5319
		perf_output_read_one(handle, event, enabled, running);
5320 5321
}

5322 5323 5324
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5325
			struct perf_event *event)
5326 5327 5328 5329 5330
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5331 5332 5333
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5359
		perf_output_read(handle, event);
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5370
			__output_copy(handle, data->callchain, size);
5371 5372 5373 5374 5375 5376 5377 5378 5379
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
5380 5381
			__output_copy(handle, data->raw->data,
					   data->raw->size);
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5393

5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5428

5429
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5430 5431 5432
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5433
	}
A
Andi Kleen 已提交
5434 5435 5436

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5437 5438 5439

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5440

A
Andi Kleen 已提交
5441 5442 5443
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5474 5475 5476 5477
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5478
			 struct perf_event *event,
5479
			 struct pt_regs *regs)
5480
{
5481
	u64 sample_type = event->attr.sample_type;
5482

5483
	header->type = PERF_RECORD_SAMPLE;
5484
	header->size = sizeof(*header) + event->header_size;
5485 5486 5487

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5488

5489
	__perf_event_header__init_id(header, data, event);
5490

5491
	if (sample_type & PERF_SAMPLE_IP)
5492 5493
		data->ip = perf_instruction_pointer(regs);

5494
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5495
		int size = 1;
5496

5497
		data->callchain = perf_callchain(event, regs);
5498 5499 5500 5501 5502

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5503 5504
	}

5505
	if (sample_type & PERF_SAMPLE_RAW) {
5506 5507 5508 5509 5510 5511 5512 5513
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5514
		header->size += size;
5515
	}
5516 5517 5518 5519 5520 5521 5522 5523 5524

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5525

5526
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5527 5528
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5529

5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5553
						     data->regs_user.regs);
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5581
}
5582

5583 5584 5585
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5586 5587 5588
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5589

5590 5591 5592
	/* protect the callchain buffers */
	rcu_read_lock();

5593
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5594

5595
	if (perf_output_begin(&handle, event, header.size))
5596
		goto exit;
5597

5598
	perf_output_sample(&handle, &header, data, event);
5599

5600
	perf_output_end(&handle);
5601 5602 5603

exit:
	rcu_read_unlock();
5604 5605
}

5606
/*
5607
 * read event_id
5608 5609 5610 5611 5612 5613 5614 5615 5616 5617
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5618
perf_event_read_event(struct perf_event *event,
5619 5620 5621
			struct task_struct *task)
{
	struct perf_output_handle handle;
5622
	struct perf_sample_data sample;
5623
	struct perf_read_event read_event = {
5624
		.header = {
5625
			.type = PERF_RECORD_READ,
5626
			.misc = 0,
5627
			.size = sizeof(read_event) + event->read_size,
5628
		},
5629 5630
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5631
	};
5632
	int ret;
5633

5634
	perf_event_header__init_id(&read_event.header, &sample, event);
5635
	ret = perf_output_begin(&handle, event, read_event.header.size);
5636 5637 5638
	if (ret)
		return;

5639
	perf_output_put(&handle, read_event);
5640
	perf_output_read(&handle, event);
5641
	perf_event__output_id_sample(event, &handle, &sample);
5642

5643 5644 5645
	perf_output_end(&handle);
}

5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5660
		output(event, data);
5661 5662 5663 5664
	}
}

static void
5665
perf_event_aux(perf_event_aux_output_cb output, void *data,
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5678
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5679 5680 5681 5682 5683 5684 5685
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5686
			perf_event_aux_ctx(ctx, output, data);
5687 5688 5689 5690 5691 5692
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5693
		perf_event_aux_ctx(task_ctx, output, data);
5694 5695 5696 5697 5698
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5699
/*
P
Peter Zijlstra 已提交
5700 5701
 * task tracking -- fork/exit
 *
5702
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5703 5704
 */

P
Peter Zijlstra 已提交
5705
struct perf_task_event {
5706
	struct task_struct		*task;
5707
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5708 5709 5710 5711 5712 5713

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5714 5715
		u32				tid;
		u32				ptid;
5716
		u64				time;
5717
	} event_id;
P
Peter Zijlstra 已提交
5718 5719
};

5720 5721
static int perf_event_task_match(struct perf_event *event)
{
5722 5723 5724
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5725 5726
}

5727
static void perf_event_task_output(struct perf_event *event,
5728
				   void *data)
P
Peter Zijlstra 已提交
5729
{
5730
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5731
	struct perf_output_handle handle;
5732
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5733
	struct task_struct *task = task_event->task;
5734
	int ret, size = task_event->event_id.header.size;
5735

5736 5737 5738
	if (!perf_event_task_match(event))
		return;

5739
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5740

5741
	ret = perf_output_begin(&handle, event,
5742
				task_event->event_id.header.size);
5743
	if (ret)
5744
		goto out;
P
Peter Zijlstra 已提交
5745

5746 5747
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5748

5749 5750
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5751

5752 5753
	task_event->event_id.time = perf_event_clock(event);

5754
	perf_output_put(&handle, task_event->event_id);
5755

5756 5757
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5758
	perf_output_end(&handle);
5759 5760
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5761 5762
}

5763 5764
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5765
			      int new)
P
Peter Zijlstra 已提交
5766
{
P
Peter Zijlstra 已提交
5767
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5768

5769 5770 5771
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5772 5773
		return;

P
Peter Zijlstra 已提交
5774
	task_event = (struct perf_task_event){
5775 5776
		.task	  = task,
		.task_ctx = task_ctx,
5777
		.event_id    = {
P
Peter Zijlstra 已提交
5778
			.header = {
5779
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5780
				.misc = 0,
5781
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5782
			},
5783 5784
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5785 5786
			/* .tid  */
			/* .ptid */
5787
			/* .time */
P
Peter Zijlstra 已提交
5788 5789 5790
		},
	};

5791
	perf_event_aux(perf_event_task_output,
5792 5793
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5794 5795
}

5796
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5797
{
5798
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5799 5800
}

5801 5802 5803 5804 5805
/*
 * comm tracking
 */

struct perf_comm_event {
5806 5807
	struct task_struct	*task;
	char			*comm;
5808 5809 5810 5811 5812 5813 5814
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5815
	} event_id;
5816 5817
};

5818 5819 5820 5821 5822
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5823
static void perf_event_comm_output(struct perf_event *event,
5824
				   void *data)
5825
{
5826
	struct perf_comm_event *comm_event = data;
5827
	struct perf_output_handle handle;
5828
	struct perf_sample_data sample;
5829
	int size = comm_event->event_id.header.size;
5830 5831
	int ret;

5832 5833 5834
	if (!perf_event_comm_match(event))
		return;

5835 5836
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5837
				comm_event->event_id.header.size);
5838 5839

	if (ret)
5840
		goto out;
5841

5842 5843
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5844

5845
	perf_output_put(&handle, comm_event->event_id);
5846
	__output_copy(&handle, comm_event->comm,
5847
				   comm_event->comm_size);
5848 5849 5850

	perf_event__output_id_sample(event, &handle, &sample);

5851
	perf_output_end(&handle);
5852 5853
out:
	comm_event->event_id.header.size = size;
5854 5855
}

5856
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5857
{
5858
	char comm[TASK_COMM_LEN];
5859 5860
	unsigned int size;

5861
	memset(comm, 0, sizeof(comm));
5862
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5863
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5864 5865 5866 5867

	comm_event->comm = comm;
	comm_event->comm_size = size;

5868
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5869

5870
	perf_event_aux(perf_event_comm_output,
5871 5872
		       comm_event,
		       NULL);
5873 5874
}

5875
void perf_event_comm(struct task_struct *task, bool exec)
5876
{
5877 5878
	struct perf_comm_event comm_event;

5879
	if (!atomic_read(&nr_comm_events))
5880
		return;
5881

5882
	comm_event = (struct perf_comm_event){
5883
		.task	= task,
5884 5885
		/* .comm      */
		/* .comm_size */
5886
		.event_id  = {
5887
			.header = {
5888
				.type = PERF_RECORD_COMM,
5889
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5890 5891 5892 5893
				/* .size */
			},
			/* .pid */
			/* .tid */
5894 5895 5896
		},
	};

5897
	perf_event_comm_event(&comm_event);
5898 5899
}

5900 5901 5902 5903 5904
/*
 * mmap tracking
 */

struct perf_mmap_event {
5905 5906 5907 5908
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5909 5910 5911
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5912
	u32			prot, flags;
5913 5914 5915 5916 5917 5918 5919 5920 5921

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5922
	} event_id;
5923 5924
};

5925 5926 5927 5928 5929 5930 5931 5932
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5933
	       (executable && (event->attr.mmap || event->attr.mmap2));
5934 5935
}

5936
static void perf_event_mmap_output(struct perf_event *event,
5937
				   void *data)
5938
{
5939
	struct perf_mmap_event *mmap_event = data;
5940
	struct perf_output_handle handle;
5941
	struct perf_sample_data sample;
5942
	int size = mmap_event->event_id.header.size;
5943
	int ret;
5944

5945 5946 5947
	if (!perf_event_mmap_match(event, data))
		return;

5948 5949 5950 5951 5952
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5953
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5954 5955
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5956 5957
	}

5958 5959
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5960
				mmap_event->event_id.header.size);
5961
	if (ret)
5962
		goto out;
5963

5964 5965
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5966

5967
	perf_output_put(&handle, mmap_event->event_id);
5968 5969 5970 5971 5972 5973

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5974 5975
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5976 5977
	}

5978
	__output_copy(&handle, mmap_event->file_name,
5979
				   mmap_event->file_size);
5980 5981 5982

	perf_event__output_id_sample(event, &handle, &sample);

5983
	perf_output_end(&handle);
5984 5985
out:
	mmap_event->event_id.header.size = size;
5986 5987
}

5988
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5989
{
5990 5991
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5992 5993
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5994
	u32 prot = 0, flags = 0;
5995 5996 5997
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5998
	char *name;
5999

6000
	if (file) {
6001 6002
		struct inode *inode;
		dev_t dev;
6003

6004
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6005
		if (!buf) {
6006 6007
			name = "//enomem";
			goto cpy_name;
6008
		}
6009
		/*
6010
		 * d_path() works from the end of the rb backwards, so we
6011 6012 6013
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6014
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6015
		if (IS_ERR(name)) {
6016 6017
			name = "//toolong";
			goto cpy_name;
6018
		}
6019 6020 6021 6022 6023 6024
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6047
		goto got_name;
6048
	} else {
6049 6050 6051 6052 6053 6054
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6055
		name = (char *)arch_vma_name(vma);
6056 6057
		if (name)
			goto cpy_name;
6058

6059
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6060
				vma->vm_end >= vma->vm_mm->brk) {
6061 6062
			name = "[heap]";
			goto cpy_name;
6063 6064
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6065
				vma->vm_end >= vma->vm_mm->start_stack) {
6066 6067
			name = "[stack]";
			goto cpy_name;
6068 6069
		}

6070 6071
		name = "//anon";
		goto cpy_name;
6072 6073
	}

6074 6075 6076
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6077
got_name:
6078 6079 6080 6081 6082 6083 6084 6085
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6086 6087 6088

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6089 6090 6091 6092
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6093 6094
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6095

6096 6097 6098
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6099
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6100

6101
	perf_event_aux(perf_event_mmap_output,
6102 6103
		       mmap_event,
		       NULL);
6104

6105 6106 6107
	kfree(buf);
}

6108
void perf_event_mmap(struct vm_area_struct *vma)
6109
{
6110 6111
	struct perf_mmap_event mmap_event;

6112
	if (!atomic_read(&nr_mmap_events))
6113 6114 6115
		return;

	mmap_event = (struct perf_mmap_event){
6116
		.vma	= vma,
6117 6118
		/* .file_name */
		/* .file_size */
6119
		.event_id  = {
6120
			.header = {
6121
				.type = PERF_RECORD_MMAP,
6122
				.misc = PERF_RECORD_MISC_USER,
6123 6124 6125 6126
				/* .size */
			},
			/* .pid */
			/* .tid */
6127 6128
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6129
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6130
		},
6131 6132 6133 6134
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6135 6136
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6137 6138
	};

6139
	perf_event_mmap_event(&mmap_event);
6140 6141
}

A
Alexander Shishkin 已提交
6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6294 6295 6296 6297
/*
 * IRQ throttle logging
 */

6298
static void perf_log_throttle(struct perf_event *event, int enable)
6299 6300
{
	struct perf_output_handle handle;
6301
	struct perf_sample_data sample;
6302 6303 6304 6305 6306
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6307
		u64				id;
6308
		u64				stream_id;
6309 6310
	} throttle_event = {
		.header = {
6311
			.type = PERF_RECORD_THROTTLE,
6312 6313 6314
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6315
		.time		= perf_event_clock(event),
6316 6317
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6318 6319
	};

6320
	if (enable)
6321
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6322

6323 6324 6325
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6326
				throttle_event.header.size);
6327 6328 6329 6330
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6331
	perf_event__output_id_sample(event, &handle, &sample);
6332 6333 6334
	perf_output_end(&handle);
}

6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6371
/*
6372
 * Generic event overflow handling, sampling.
6373 6374
 */

6375
static int __perf_event_overflow(struct perf_event *event,
6376 6377
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6378
{
6379 6380
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6381
	u64 seq;
6382 6383
	int ret = 0;

6384 6385 6386 6387 6388 6389 6390
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6391 6392 6393 6394 6395 6396 6397 6398 6399
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6400 6401
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6402
			tick_nohz_full_kick();
6403 6404
			ret = 1;
		}
6405
	}
6406

6407
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6408
		u64 now = perf_clock();
6409
		s64 delta = now - hwc->freq_time_stamp;
6410

6411
		hwc->freq_time_stamp = now;
6412

6413
		if (delta > 0 && delta < 2*TICK_NSEC)
6414
			perf_adjust_period(event, delta, hwc->last_period, true);
6415 6416
	}

6417 6418
	/*
	 * XXX event_limit might not quite work as expected on inherited
6419
	 * events
6420 6421
	 */

6422 6423
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6424
		ret = 1;
6425
		event->pending_kill = POLL_HUP;
6426 6427
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6428 6429
	}

6430
	if (event->overflow_handler)
6431
		event->overflow_handler(event, data, regs);
6432
	else
6433
		perf_event_output(event, data, regs);
6434

6435
	if (*perf_event_fasync(event) && event->pending_kill) {
6436 6437
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6438 6439
	}

6440
	return ret;
6441 6442
}

6443
int perf_event_overflow(struct perf_event *event,
6444 6445
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6446
{
6447
	return __perf_event_overflow(event, 1, data, regs);
6448 6449
}

6450
/*
6451
 * Generic software event infrastructure
6452 6453
 */

6454 6455 6456 6457 6458 6459 6460
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
6461 6462 6463

	/* Keeps track of cpu being initialized/exited */
	bool				online;
6464 6465 6466 6467
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6468
/*
6469 6470
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6471 6472 6473 6474
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6475
u64 perf_swevent_set_period(struct perf_event *event)
6476
{
6477
	struct hw_perf_event *hwc = &event->hw;
6478 6479 6480 6481 6482
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6483 6484

again:
6485
	old = val = local64_read(&hwc->period_left);
6486 6487
	if (val < 0)
		return 0;
6488

6489 6490 6491
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6492
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6493
		goto again;
6494

6495
	return nr;
6496 6497
}

6498
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6499
				    struct perf_sample_data *data,
6500
				    struct pt_regs *regs)
6501
{
6502
	struct hw_perf_event *hwc = &event->hw;
6503
	int throttle = 0;
6504

6505 6506
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6507

6508 6509
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6510

6511
	for (; overflow; overflow--) {
6512
		if (__perf_event_overflow(event, throttle,
6513
					    data, regs)) {
6514 6515 6516 6517 6518 6519
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6520
		throttle = 1;
6521
	}
6522 6523
}

P
Peter Zijlstra 已提交
6524
static void perf_swevent_event(struct perf_event *event, u64 nr,
6525
			       struct perf_sample_data *data,
6526
			       struct pt_regs *regs)
6527
{
6528
	struct hw_perf_event *hwc = &event->hw;
6529

6530
	local64_add(nr, &event->count);
6531

6532 6533 6534
	if (!regs)
		return;

6535
	if (!is_sampling_event(event))
6536
		return;
6537

6538 6539 6540 6541 6542 6543
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6544
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6545
		return perf_swevent_overflow(event, 1, data, regs);
6546

6547
	if (local64_add_negative(nr, &hwc->period_left))
6548
		return;
6549

6550
	perf_swevent_overflow(event, 0, data, regs);
6551 6552
}

6553 6554 6555
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6556
	if (event->hw.state & PERF_HES_STOPPED)
6557
		return 1;
P
Peter Zijlstra 已提交
6558

6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6570
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6571
				enum perf_type_id type,
L
Li Zefan 已提交
6572 6573 6574
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6575
{
6576
	if (event->attr.type != type)
6577
		return 0;
6578

6579
	if (event->attr.config != event_id)
6580 6581
		return 0;

6582 6583
	if (perf_exclude_event(event, regs))
		return 0;
6584 6585 6586 6587

	return 1;
}

6588 6589 6590 6591 6592 6593 6594
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6595 6596
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6597
{
6598 6599 6600 6601
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6602

6603 6604
/* For the read side: events when they trigger */
static inline struct hlist_head *
6605
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6606 6607
{
	struct swevent_hlist *hlist;
6608

6609
	hlist = rcu_dereference(swhash->swevent_hlist);
6610 6611 6612
	if (!hlist)
		return NULL;

6613 6614 6615 6616 6617
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6618
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6619 6620 6621 6622 6623 6624 6625 6626 6627 6628
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6629
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6630 6631 6632 6633 6634
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6635 6636 6637
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6638
				    u64 nr,
6639 6640
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6641
{
6642
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6643
	struct perf_event *event;
6644
	struct hlist_head *head;
6645

6646
	rcu_read_lock();
6647
	head = find_swevent_head_rcu(swhash, type, event_id);
6648 6649 6650
	if (!head)
		goto end;

6651
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6652
		if (perf_swevent_match(event, type, event_id, data, regs))
6653
			perf_swevent_event(event, nr, data, regs);
6654
	}
6655 6656
end:
	rcu_read_unlock();
6657 6658
}

6659 6660
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6661
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6662
{
6663
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6664

6665
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6666
}
I
Ingo Molnar 已提交
6667
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6668

6669
inline void perf_swevent_put_recursion_context(int rctx)
6670
{
6671
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6672

6673
	put_recursion_context(swhash->recursion, rctx);
6674
}
6675

6676
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6677
{
6678
	struct perf_sample_data data;
6679

6680
	if (WARN_ON_ONCE(!regs))
6681
		return;
6682

6683
	perf_sample_data_init(&data, addr, 0);
6684
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6697 6698

	perf_swevent_put_recursion_context(rctx);
6699
fail:
6700
	preempt_enable_notrace();
6701 6702
}

6703
static void perf_swevent_read(struct perf_event *event)
6704 6705 6706
{
}

P
Peter Zijlstra 已提交
6707
static int perf_swevent_add(struct perf_event *event, int flags)
6708
{
6709
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6710
	struct hw_perf_event *hwc = &event->hw;
6711 6712
	struct hlist_head *head;

6713
	if (is_sampling_event(event)) {
6714
		hwc->last_period = hwc->sample_period;
6715
		perf_swevent_set_period(event);
6716
	}
6717

P
Peter Zijlstra 已提交
6718 6719
	hwc->state = !(flags & PERF_EF_START);

6720
	head = find_swevent_head(swhash, event);
6721 6722 6723 6724 6725 6726
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6727
		return -EINVAL;
6728
	}
6729 6730

	hlist_add_head_rcu(&event->hlist_entry, head);
6731
	perf_event_update_userpage(event);
6732

6733 6734 6735
	return 0;
}

P
Peter Zijlstra 已提交
6736
static void perf_swevent_del(struct perf_event *event, int flags)
6737
{
6738
	hlist_del_rcu(&event->hlist_entry);
6739 6740
}

P
Peter Zijlstra 已提交
6741
static void perf_swevent_start(struct perf_event *event, int flags)
6742
{
P
Peter Zijlstra 已提交
6743
	event->hw.state = 0;
6744
}
I
Ingo Molnar 已提交
6745

P
Peter Zijlstra 已提交
6746
static void perf_swevent_stop(struct perf_event *event, int flags)
6747
{
P
Peter Zijlstra 已提交
6748
	event->hw.state = PERF_HES_STOPPED;
6749 6750
}

6751 6752
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6753
swevent_hlist_deref(struct swevent_htable *swhash)
6754
{
6755 6756
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6757 6758
}

6759
static void swevent_hlist_release(struct swevent_htable *swhash)
6760
{
6761
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6762

6763
	if (!hlist)
6764 6765
		return;

6766
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6767
	kfree_rcu(hlist, rcu_head);
6768 6769 6770 6771
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6772
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6773

6774
	mutex_lock(&swhash->hlist_mutex);
6775

6776 6777
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6778

6779
	mutex_unlock(&swhash->hlist_mutex);
6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6792
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6793 6794
	int err = 0;

6795
	mutex_lock(&swhash->hlist_mutex);
6796

6797
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6798 6799 6800 6801 6802 6803 6804
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6805
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6806
	}
6807
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6808
exit:
6809
	mutex_unlock(&swhash->hlist_mutex);
6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6830
fail:
6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6841
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6842

6843 6844 6845
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6846

6847 6848
	WARN_ON(event->parent);

6849
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6850 6851 6852 6853 6854
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6855
	u64 event_id = event->attr.config;
6856 6857 6858 6859

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6860 6861 6862 6863 6864 6865
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6866 6867 6868 6869 6870 6871 6872 6873 6874
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6875
	if (event_id >= PERF_COUNT_SW_MAX)
6876 6877 6878 6879 6880 6881 6882 6883 6884
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6885
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6886 6887 6888 6889 6890 6891 6892
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6893
	.task_ctx_nr	= perf_sw_context,
6894

6895 6896
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6897
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6898 6899 6900 6901
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6902 6903 6904
	.read		= perf_swevent_read,
};

6905 6906
#ifdef CONFIG_EVENT_TRACING

6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6921 6922
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6923 6924 6925 6926
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6927 6928 6929 6930 6931 6932 6933 6934 6935
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6936 6937
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6938 6939
{
	struct perf_sample_data data;
6940 6941
	struct perf_event *event;

6942 6943 6944 6945 6946
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6947
	perf_sample_data_init(&data, addr, 0);
6948 6949
	data.raw = &raw;

6950
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6951
		if (perf_tp_event_match(event, &data, regs))
6952
			perf_swevent_event(event, count, &data, regs);
6953
	}
6954

6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6980
	perf_swevent_put_recursion_context(rctx);
6981 6982 6983
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6984
static void tp_perf_event_destroy(struct perf_event *event)
6985
{
6986
	perf_trace_destroy(event);
6987 6988
}

6989
static int perf_tp_event_init(struct perf_event *event)
6990
{
6991 6992
	int err;

6993 6994 6995
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6996 6997 6998 6999 7000 7001
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7002 7003
	err = perf_trace_init(event);
	if (err)
7004
		return err;
7005

7006
	event->destroy = tp_perf_event_destroy;
7007

7008 7009 7010 7011
	return 0;
}

static struct pmu perf_tracepoint = {
7012 7013
	.task_ctx_nr	= perf_sw_context,

7014
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7015 7016 7017 7018
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7019 7020 7021 7022 7023
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7024
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7025
}
L
Li Zefan 已提交
7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7050 7051 7052 7053 7054 7055 7056 7057 7058 7059
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7060 7061
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7062 7063 7064 7065 7066 7067
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7068
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7093
#else
L
Li Zefan 已提交
7094

7095
static inline void perf_tp_register(void)
7096 7097
{
}
L
Li Zefan 已提交
7098 7099 7100 7101 7102 7103 7104 7105 7106 7107

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7108 7109 7110 7111 7112 7113 7114 7115
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7116
#endif /* CONFIG_EVENT_TRACING */
7117

7118
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7119
void perf_bp_event(struct perf_event *bp, void *data)
7120
{
7121 7122 7123
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7124
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7125

P
Peter Zijlstra 已提交
7126
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7127
		perf_swevent_event(bp, 1, &sample, regs);
7128 7129 7130
}
#endif

7131 7132 7133
/*
 * hrtimer based swevent callback
 */
7134

7135
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7136
{
7137 7138 7139 7140 7141
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7142

7143
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7144 7145 7146 7147

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7148
	event->pmu->read(event);
7149

7150
	perf_sample_data_init(&data, 0, event->hw.last_period);
7151 7152 7153
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7154
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7155
			if (__perf_event_overflow(event, 1, &data, regs))
7156 7157
				ret = HRTIMER_NORESTART;
	}
7158

7159 7160
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7161

7162
	return ret;
7163 7164
}

7165
static void perf_swevent_start_hrtimer(struct perf_event *event)
7166
{
7167
	struct hw_perf_event *hwc = &event->hw;
7168 7169 7170 7171
	s64 period;

	if (!is_sampling_event(event))
		return;
7172

7173 7174 7175 7176
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7177

7178 7179 7180 7181
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7182 7183
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7184
}
7185 7186

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7187
{
7188 7189
	struct hw_perf_event *hwc = &event->hw;

7190
	if (is_sampling_event(event)) {
7191
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7192
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7193 7194 7195

		hrtimer_cancel(&hwc->hrtimer);
	}
7196 7197
}

P
Peter Zijlstra 已提交
7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7218
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7219 7220 7221 7222
		event->attr.freq = 0;
	}
}

7223 7224 7225 7226 7227
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7228
{
7229 7230 7231
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7232
	now = local_clock();
7233 7234
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7235 7236
}

P
Peter Zijlstra 已提交
7237
static void cpu_clock_event_start(struct perf_event *event, int flags)
7238
{
P
Peter Zijlstra 已提交
7239
	local64_set(&event->hw.prev_count, local_clock());
7240 7241 7242
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7243
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7244
{
7245 7246 7247
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7248

P
Peter Zijlstra 已提交
7249 7250 7251 7252
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7253
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7254 7255 7256 7257 7258 7259 7260 7261 7262

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7263 7264 7265 7266
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7267

7268 7269 7270 7271 7272 7273 7274 7275
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7276 7277 7278 7279 7280 7281
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7282 7283
	perf_swevent_init_hrtimer(event);

7284
	return 0;
7285 7286
}

7287
static struct pmu perf_cpu_clock = {
7288 7289
	.task_ctx_nr	= perf_sw_context,

7290 7291
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7292
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7293 7294 7295 7296
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7297 7298 7299 7300 7301 7302 7303 7304
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7305
{
7306 7307
	u64 prev;
	s64 delta;
7308

7309 7310 7311 7312
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7313

P
Peter Zijlstra 已提交
7314
static void task_clock_event_start(struct perf_event *event, int flags)
7315
{
P
Peter Zijlstra 已提交
7316
	local64_set(&event->hw.prev_count, event->ctx->time);
7317 7318 7319
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7320
static void task_clock_event_stop(struct perf_event *event, int flags)
7321 7322 7323
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7324 7325 7326 7327 7328 7329
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7330
	perf_event_update_userpage(event);
7331

P
Peter Zijlstra 已提交
7332 7333 7334 7335 7336 7337
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7338 7339 7340 7341
}

static void task_clock_event_read(struct perf_event *event)
{
7342 7343 7344
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7345 7346 7347 7348 7349

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7350
{
7351 7352 7353 7354 7355 7356
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7357 7358 7359 7360 7361 7362
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7363 7364
	perf_swevent_init_hrtimer(event);

7365
	return 0;
L
Li Zefan 已提交
7366 7367
}

7368
static struct pmu perf_task_clock = {
7369 7370
	.task_ctx_nr	= perf_sw_context,

7371 7372
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7373
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7374 7375 7376 7377
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7378 7379
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7380

P
Peter Zijlstra 已提交
7381
static void perf_pmu_nop_void(struct pmu *pmu)
7382 7383
{
}
L
Li Zefan 已提交
7384

7385 7386 7387 7388
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7389
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7390
{
P
Peter Zijlstra 已提交
7391
	return 0;
L
Li Zefan 已提交
7392 7393
}

7394
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7395 7396

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7397
{
7398 7399 7400 7401 7402
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7403
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7404 7405
}

P
Peter Zijlstra 已提交
7406 7407
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7408 7409 7410 7411 7412 7413 7414
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7415 7416 7417
	perf_pmu_enable(pmu);
	return 0;
}
7418

P
Peter Zijlstra 已提交
7419
static void perf_pmu_cancel_txn(struct pmu *pmu)
7420
{
7421 7422 7423 7424 7425 7426 7427
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7428
	perf_pmu_enable(pmu);
7429 7430
}

7431 7432
static int perf_event_idx_default(struct perf_event *event)
{
7433
	return 0;
7434 7435
}

P
Peter Zijlstra 已提交
7436 7437 7438 7439
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7440
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7441
{
P
Peter Zijlstra 已提交
7442
	struct pmu *pmu;
7443

P
Peter Zijlstra 已提交
7444 7445
	if (ctxn < 0)
		return NULL;
7446

P
Peter Zijlstra 已提交
7447 7448 7449 7450
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7451

P
Peter Zijlstra 已提交
7452
	return NULL;
7453 7454
}

7455
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7456
{
7457 7458 7459 7460 7461 7462 7463
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7464 7465
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7466 7467 7468 7469 7470 7471
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7472

P
Peter Zijlstra 已提交
7473
	mutex_lock(&pmus_lock);
7474
	/*
P
Peter Zijlstra 已提交
7475
	 * Like a real lame refcount.
7476
	 */
7477 7478 7479
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7480
			goto out;
7481
		}
P
Peter Zijlstra 已提交
7482
	}
7483

7484
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7485 7486
out:
	mutex_unlock(&pmus_lock);
7487
}
P
Peter Zijlstra 已提交
7488
static struct idr pmu_idr;
7489

P
Peter Zijlstra 已提交
7490 7491 7492 7493 7494 7495 7496
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7497
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7498

7499 7500 7501 7502 7503 7504 7505 7506 7507 7508
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7509 7510
static DEFINE_MUTEX(mux_interval_mutex);

7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7530
	mutex_lock(&mux_interval_mutex);
7531 7532 7533
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7534 7535
	get_online_cpus();
	for_each_online_cpu(cpu) {
7536 7537 7538 7539
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7540 7541
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7542
	}
7543 7544
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7545 7546 7547

	return count;
}
7548
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7549

7550 7551 7552 7553
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7554
};
7555
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7556 7557 7558 7559

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7560
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7576
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7597
static struct lock_class_key cpuctx_mutex;
7598
static struct lock_class_key cpuctx_lock;
7599

7600
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7601
{
P
Peter Zijlstra 已提交
7602
	int cpu, ret;
7603

7604
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7605 7606 7607 7608
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7609

P
Peter Zijlstra 已提交
7610 7611 7612 7613 7614 7615
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7616 7617 7618
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7619 7620 7621 7622 7623
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7624 7625 7626 7627 7628 7629
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7630
skip_type:
P
Peter Zijlstra 已提交
7631 7632 7633
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7634

W
Wei Yongjun 已提交
7635
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7636 7637
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7638
		goto free_dev;
7639

P
Peter Zijlstra 已提交
7640 7641 7642 7643
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7644
		__perf_event_init_context(&cpuctx->ctx);
7645
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7646
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7647
		cpuctx->ctx.pmu = pmu;
7648

7649
		__perf_mux_hrtimer_init(cpuctx, cpu);
7650

7651
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7652
	}
7653

P
Peter Zijlstra 已提交
7654
got_cpu_context:
P
Peter Zijlstra 已提交
7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7666
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7667 7668
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7669
		}
7670
	}
7671

P
Peter Zijlstra 已提交
7672 7673 7674 7675 7676
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7677 7678 7679
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7680
	list_add_rcu(&pmu->entry, &pmus);
7681
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7682 7683
	ret = 0;
unlock:
7684 7685
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7686
	return ret;
P
Peter Zijlstra 已提交
7687

P
Peter Zijlstra 已提交
7688 7689 7690 7691
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7692 7693 7694 7695
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7696 7697 7698
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7699
}
7700
EXPORT_SYMBOL_GPL(perf_pmu_register);
7701

7702
void perf_pmu_unregister(struct pmu *pmu)
7703
{
7704 7705 7706
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7707

7708
	/*
P
Peter Zijlstra 已提交
7709 7710
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7711
	 */
7712
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7713
	synchronize_rcu();
7714

P
Peter Zijlstra 已提交
7715
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7716 7717
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7718 7719
	device_del(pmu->dev);
	put_device(pmu->dev);
7720
	free_pmu_context(pmu);
7721
}
7722
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7723

7724 7725
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7726
	struct perf_event_context *ctx = NULL;
7727 7728 7729 7730
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7731 7732

	if (event->group_leader != event) {
7733 7734 7735 7736 7737 7738
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7739 7740 7741
		BUG_ON(!ctx);
	}

7742 7743
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7744 7745 7746 7747

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7748 7749 7750 7751 7752 7753
	if (ret)
		module_put(pmu->module);

	return ret;
}

7754
static struct pmu *perf_init_event(struct perf_event *event)
7755 7756 7757
{
	struct pmu *pmu = NULL;
	int idx;
7758
	int ret;
7759 7760

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7761 7762 7763 7764

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7765
	if (pmu) {
7766
		ret = perf_try_init_event(pmu, event);
7767 7768
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7769
		goto unlock;
7770
	}
P
Peter Zijlstra 已提交
7771

7772
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7773
		ret = perf_try_init_event(pmu, event);
7774
		if (!ret)
P
Peter Zijlstra 已提交
7775
			goto unlock;
7776

7777 7778
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7779
			goto unlock;
7780
		}
7781
	}
P
Peter Zijlstra 已提交
7782 7783
	pmu = ERR_PTR(-ENOENT);
unlock:
7784
	srcu_read_unlock(&pmus_srcu, idx);
7785

7786
	return pmu;
7787 7788
}

7789 7790 7791 7792 7793 7794 7795 7796 7797
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7798 7799
static void account_event(struct perf_event *event)
{
7800 7801 7802
	if (event->parent)
		return;

7803 7804 7805 7806 7807 7808 7809 7810
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7811 7812 7813 7814
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7815 7816 7817 7818
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
		static_key_slow_inc(&perf_sched_events.key);
	}
7819
	if (has_branch_stack(event))
7820
		static_key_slow_inc(&perf_sched_events.key);
7821
	if (is_cgroup_event(event))
7822
		static_key_slow_inc(&perf_sched_events.key);
7823 7824

	account_event_cpu(event, event->cpu);
7825 7826
}

T
Thomas Gleixner 已提交
7827
/*
7828
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7829
 */
7830
static struct perf_event *
7831
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7832 7833 7834
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7835
		 perf_overflow_handler_t overflow_handler,
7836
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7837
{
P
Peter Zijlstra 已提交
7838
	struct pmu *pmu;
7839 7840
	struct perf_event *event;
	struct hw_perf_event *hwc;
7841
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7842

7843 7844 7845 7846 7847
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7848
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7849
	if (!event)
7850
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7851

7852
	/*
7853
	 * Single events are their own group leaders, with an
7854 7855 7856
	 * empty sibling list:
	 */
	if (!group_leader)
7857
		group_leader = event;
7858

7859 7860
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7861

7862 7863 7864
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7865
	INIT_LIST_HEAD(&event->rb_entry);
7866
	INIT_LIST_HEAD(&event->active_entry);
7867 7868
	INIT_HLIST_NODE(&event->hlist_entry);

7869

7870
	init_waitqueue_head(&event->waitq);
7871
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7872

7873
	mutex_init(&event->mmap_mutex);
7874

7875
	atomic_long_set(&event->refcount, 1);
7876 7877 7878 7879 7880
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7881

7882
	event->parent		= parent_event;
7883

7884
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7885
	event->id		= atomic64_inc_return(&perf_event_id);
7886

7887
	event->state		= PERF_EVENT_STATE_INACTIVE;
7888

7889 7890 7891
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7892 7893 7894
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7895
		 */
7896
		event->hw.target = task;
7897 7898
	}

7899 7900 7901 7902
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7903
	if (!overflow_handler && parent_event) {
7904
		overflow_handler = parent_event->overflow_handler;
7905 7906
		context = parent_event->overflow_handler_context;
	}
7907

7908
	event->overflow_handler	= overflow_handler;
7909
	event->overflow_handler_context = context;
7910

J
Jiri Olsa 已提交
7911
	perf_event__state_init(event);
7912

7913
	pmu = NULL;
7914

7915
	hwc = &event->hw;
7916
	hwc->sample_period = attr->sample_period;
7917
	if (attr->freq && attr->sample_freq)
7918
		hwc->sample_period = 1;
7919
	hwc->last_period = hwc->sample_period;
7920

7921
	local64_set(&hwc->period_left, hwc->sample_period);
7922

7923
	/*
7924
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7925
	 */
7926
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7927
		goto err_ns;
7928 7929 7930

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7931

7932 7933 7934 7935 7936 7937
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7938
	pmu = perf_init_event(event);
7939
	if (!pmu)
7940 7941
		goto err_ns;
	else if (IS_ERR(pmu)) {
7942
		err = PTR_ERR(pmu);
7943
		goto err_ns;
I
Ingo Molnar 已提交
7944
	}
7945

7946 7947 7948 7949
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7950
	if (!event->parent) {
7951 7952
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7953
			if (err)
7954
				goto err_per_task;
7955
		}
7956
	}
7957

7958
	return event;
7959

7960 7961 7962
err_per_task:
	exclusive_event_destroy(event);

7963 7964 7965
err_pmu:
	if (event->destroy)
		event->destroy(event);
7966
	module_put(pmu->module);
7967
err_ns:
7968 7969
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7970 7971 7972 7973 7974
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7975 7976
}

7977 7978
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7979 7980
{
	u32 size;
7981
	int ret;
7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
8006 8007 8008
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
8009 8010
	 */
	if (size > sizeof(*attr)) {
8011 8012 8013
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
8014

8015 8016
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
8017

8018
		for (; addr < end; addr++) {
8019 8020 8021 8022 8023 8024
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
8025
		size = sizeof(*attr);
8026 8027 8028 8029 8030 8031
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

8032
	if (attr->__reserved_1)
8033 8034 8035 8036 8037 8038 8039 8040
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8069 8070
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8071 8072
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8073
	}
8074

8075
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8076
		ret = perf_reg_validate(attr->sample_regs_user);
8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8095

8096 8097
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8098 8099 8100 8101 8102 8103 8104 8105 8106
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8107 8108
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8109
{
8110
	struct ring_buffer *rb = NULL;
8111 8112
	int ret = -EINVAL;

8113
	if (!output_event)
8114 8115
		goto set;

8116 8117
	/* don't allow circular references */
	if (event == output_event)
8118 8119
		goto out;

8120 8121 8122 8123 8124 8125 8126
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8127
	 * If its not a per-cpu rb, it must be the same task.
8128 8129 8130 8131
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8132 8133 8134 8135 8136 8137
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8138 8139 8140 8141 8142 8143 8144
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8145
set:
8146
	mutex_lock(&event->mmap_mutex);
8147 8148 8149
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8150

8151
	if (output_event) {
8152 8153 8154
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8155
			goto unlock;
8156 8157
	}

8158
	ring_buffer_attach(event, rb);
8159

8160
	ret = 0;
8161 8162 8163
unlock:
	mutex_unlock(&event->mmap_mutex);

8164 8165 8166 8167
out:
	return ret;
}

P
Peter Zijlstra 已提交
8168 8169 8170 8171 8172 8173 8174 8175 8176
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8214
/**
8215
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8216
 *
8217
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8218
 * @pid:		target pid
I
Ingo Molnar 已提交
8219
 * @cpu:		target cpu
8220
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8221
 */
8222 8223
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8224
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8225
{
8226 8227
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8228
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8229
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8230
	struct file *event_file = NULL;
8231
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8232
	struct task_struct *task = NULL;
8233
	struct pmu *pmu;
8234
	int event_fd;
8235
	int move_group = 0;
8236
	int err;
8237
	int f_flags = O_RDWR;
8238
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8239

8240
	/* for future expandability... */
S
Stephane Eranian 已提交
8241
	if (flags & ~PERF_FLAG_ALL)
8242 8243
		return -EINVAL;

8244 8245 8246
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8247

8248 8249 8250 8251 8252
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8253
	if (attr.freq) {
8254
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8255
			return -EINVAL;
8256 8257 8258
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8259 8260
	}

S
Stephane Eranian 已提交
8261 8262 8263 8264 8265 8266 8267 8268 8269
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8270 8271 8272 8273
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8274 8275 8276
	if (event_fd < 0)
		return event_fd;

8277
	if (group_fd != -1) {
8278 8279
		err = perf_fget_light(group_fd, &group);
		if (err)
8280
			goto err_fd;
8281
		group_leader = group.file->private_data;
8282 8283 8284 8285 8286 8287
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8288
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8289 8290 8291 8292 8293 8294 8295
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8296 8297 8298 8299 8300 8301
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8302 8303
	get_online_cpus();

8304 8305 8306
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8307
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8308
				 NULL, NULL, cgroup_fd);
8309 8310
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8311
		goto err_cpus;
8312 8313
	}

8314 8315 8316 8317 8318 8319 8320
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8321 8322
	account_event(event);

8323 8324 8325 8326 8327
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8328

8329 8330 8331 8332 8333 8334
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8357 8358 8359 8360

	/*
	 * Get the target context (task or percpu):
	 */
8361
	ctx = find_get_context(pmu, task, event);
8362 8363
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8364
		goto err_alloc;
8365 8366
	}

8367 8368 8369 8370 8371
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8372 8373 8374 8375 8376
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8377
	/*
8378
	 * Look up the group leader (we will attach this event to it):
8379
	 */
8380
	if (group_leader) {
8381
		err = -EINVAL;
8382 8383

		/*
I
Ingo Molnar 已提交
8384 8385 8386 8387
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8388
			goto err_context;
8389 8390 8391 8392 8393

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8394 8395 8396
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8397
		 */
8398
		if (move_group) {
8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8412 8413 8414 8415 8416 8417
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8418 8419 8420
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8421
		if (attr.exclusive || attr.pinned)
8422
			goto err_context;
8423 8424 8425 8426 8427
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8428
			goto err_context;
8429
	}
T
Thomas Gleixner 已提交
8430

8431 8432
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8433 8434
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8435
		goto err_context;
8436
	}
8437

8438
	if (move_group) {
P
Peter Zijlstra 已提交
8439
		gctx = group_leader->ctx;
8440 8441 8442 8443 8444
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8445 8446 8447 8448 8449
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8450 8451 8452 8453 8454 8455 8456
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8457

8458 8459 8460
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8461

8462 8463 8464
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8465 8466 8467 8468
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8469
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8470

8471 8472
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8473
			perf_remove_from_context(sibling, false);
8474 8475 8476
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8477 8478 8479 8480
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8481
		synchronize_rcu();
P
Peter Zijlstra 已提交
8482

8483 8484 8485 8486 8487 8488 8489 8490 8491 8492
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8493 8494
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8495
			perf_event__state_init(sibling);
8496
			perf_install_in_context(ctx, sibling, sibling->cpu);
8497 8498
			get_ctx(ctx);
		}
8499 8500 8501 8502 8503 8504 8505 8506 8507

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8508

8509 8510 8511 8512 8513 8514
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8515 8516
	}

8517 8518 8519 8520 8521 8522 8523 8524 8525
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

8526
	perf_install_in_context(ctx, event, event->cpu);
8527
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8528

8529
	if (move_group)
P
Peter Zijlstra 已提交
8530
		mutex_unlock(&gctx->mutex);
8531
	mutex_unlock(&ctx->mutex);
8532

8533 8534
	put_online_cpus();

8535
	event->owner = current;
P
Peter Zijlstra 已提交
8536

8537 8538 8539
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8540

8541 8542 8543 8544 8545 8546
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8547
	fdput(group);
8548 8549
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8550

8551 8552 8553 8554 8555 8556
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8557
err_context:
8558
	perf_unpin_context(ctx);
8559
	put_ctx(ctx);
8560
err_alloc:
8561
	free_event(event);
8562
err_cpus:
8563
	put_online_cpus();
8564
err_task:
P
Peter Zijlstra 已提交
8565 8566
	if (task)
		put_task_struct(task);
8567
err_group_fd:
8568
	fdput(group);
8569 8570
err_fd:
	put_unused_fd(event_fd);
8571
	return err;
T
Thomas Gleixner 已提交
8572 8573
}

8574 8575 8576 8577 8578
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8579
 * @task: task to profile (NULL for percpu)
8580 8581 8582
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8583
				 struct task_struct *task,
8584 8585
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8586 8587
{
	struct perf_event_context *ctx;
8588
	struct perf_event *event;
8589
	int err;
8590

8591 8592 8593
	/*
	 * Get the target context (task or percpu):
	 */
8594

8595
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8596
				 overflow_handler, context, -1);
8597 8598 8599 8600
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8601

8602 8603 8604
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8605 8606
	account_event(event);

8607
	ctx = find_get_context(event->pmu, task, event);
8608 8609
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8610
		goto err_free;
8611
	}
8612 8613 8614

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8615 8616 8617 8618 8619 8620 8621 8622
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8623
	perf_install_in_context(ctx, event, cpu);
8624
	perf_unpin_context(ctx);
8625 8626 8627 8628
	mutex_unlock(&ctx->mutex);

	return event;

8629 8630 8631
err_free:
	free_event(event);
err:
8632
	return ERR_PTR(err);
8633
}
8634
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8635

8636 8637 8638 8639 8640 8641 8642 8643 8644 8645
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8646 8647 8648 8649 8650
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8651 8652
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8653
		perf_remove_from_context(event, false);
8654
		unaccount_event_cpu(event, src_cpu);
8655
		put_ctx(src_ctx);
8656
		list_add(&event->migrate_entry, &events);
8657 8658
	}

8659 8660 8661
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8662 8663
	synchronize_rcu();

8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8688 8689
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8690 8691
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8692
		account_event_cpu(event, dst_cpu);
8693 8694 8695 8696
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8697
	mutex_unlock(&src_ctx->mutex);
8698 8699 8700
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8701
static void sync_child_event(struct perf_event *child_event,
8702
			       struct task_struct *child)
8703
{
8704
	struct perf_event *parent_event = child_event->parent;
8705
	u64 child_val;
8706

8707 8708
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8709

P
Peter Zijlstra 已提交
8710
	child_val = perf_event_count(child_event);
8711 8712 8713 8714

	/*
	 * Add back the child's count to the parent's count:
	 */
8715
	atomic64_add(child_val, &parent_event->child_count);
8716 8717 8718 8719
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8720 8721

	/*
8722
	 * Remove this event from the parent's list
8723
	 */
8724 8725 8726 8727
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8728

8729 8730 8731 8732 8733 8734
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8735
	/*
8736
	 * Release the parent event, if this was the last
8737 8738
	 * reference to it.
	 */
8739
	put_event(parent_event);
8740 8741
}

8742
static void
8743 8744
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8745
			 struct task_struct *child)
8746
{
8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8760

8761
	/*
8762
	 * It can happen that the parent exits first, and has events
8763
	 * that are still around due to the child reference. These
8764
	 * events need to be zapped.
8765
	 */
8766
	if (child_event->parent) {
8767 8768
		sync_child_event(child_event, child);
		free_event(child_event);
8769 8770 8771
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8772
	}
8773 8774
}

P
Peter Zijlstra 已提交
8775
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8776
{
8777
	struct perf_event *child_event, *next;
8778
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8779
	unsigned long flags;
8780

P
Peter Zijlstra 已提交
8781
	if (likely(!child->perf_event_ctxp[ctxn])) {
8782
		perf_event_task(child, NULL, 0);
8783
		return;
P
Peter Zijlstra 已提交
8784
	}
8785

8786
	local_irq_save(flags);
8787 8788 8789 8790 8791 8792
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8793
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8794 8795 8796

	/*
	 * Take the context lock here so that if find_get_context is
8797
	 * reading child->perf_event_ctxp, we wait until it has
8798 8799
	 * incremented the context's refcount before we do put_ctx below.
	 */
8800
	raw_spin_lock(&child_ctx->lock);
8801
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
8802
	child->perf_event_ctxp[ctxn] = NULL;
8803

8804 8805 8806
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8807
	 * the events from it.
8808
	 */
8809
	clone_ctx = unclone_ctx(child_ctx);
8810
	update_context_time(child_ctx);
8811
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8812

8813 8814
	if (clone_ctx)
		put_ctx(clone_ctx);
8815

P
Peter Zijlstra 已提交
8816
	/*
8817 8818 8819
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8820
	 */
8821
	perf_event_task(child, child_ctx, 0);
8822

8823 8824 8825
	/*
	 * We can recurse on the same lock type through:
	 *
8826 8827
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8828 8829
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8830 8831 8832
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8833
	mutex_lock(&child_ctx->mutex);
8834

8835
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8836
		__perf_event_exit_task(child_event, child_ctx, child);
8837

8838 8839 8840
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8841 8842
}

P
Peter Zijlstra 已提交
8843 8844 8845 8846 8847
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8848
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8849 8850
	int ctxn;

P
Peter Zijlstra 已提交
8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8866 8867 8868 8869
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8882
	put_event(parent);
8883

P
Peter Zijlstra 已提交
8884
	raw_spin_lock_irq(&ctx->lock);
8885
	perf_group_detach(event);
8886
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8887
	raw_spin_unlock_irq(&ctx->lock);
8888 8889 8890
	free_event(event);
}

8891
/*
P
Peter Zijlstra 已提交
8892
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8893
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8894 8895 8896
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8897
 */
8898
void perf_event_free_task(struct task_struct *task)
8899
{
P
Peter Zijlstra 已提交
8900
	struct perf_event_context *ctx;
8901
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8902
	int ctxn;
8903

P
Peter Zijlstra 已提交
8904 8905 8906 8907
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8908

P
Peter Zijlstra 已提交
8909
		mutex_lock(&ctx->mutex);
8910
again:
P
Peter Zijlstra 已提交
8911 8912 8913
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8914

P
Peter Zijlstra 已提交
8915 8916 8917
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8918

P
Peter Zijlstra 已提交
8919 8920 8921
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8922

P
Peter Zijlstra 已提交
8923
		mutex_unlock(&ctx->mutex);
8924

P
Peter Zijlstra 已提交
8925 8926
		put_ctx(ctx);
	}
8927 8928
}

8929 8930 8931 8932 8933 8934 8935 8936
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961
struct perf_event *perf_event_get(unsigned int fd)
{
	int err;
	struct fd f;
	struct perf_event *event;

	err = perf_fget_light(fd, &f);
	if (err)
		return ERR_PTR(err);

	event = f.file->private_data;
	atomic_long_inc(&event->refcount);
	fdput(f);

	return event;
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8973
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8974
	struct perf_event *child_event;
8975
	unsigned long flags;
P
Peter Zijlstra 已提交
8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8988
					   child,
P
Peter Zijlstra 已提交
8989
					   group_leader, parent_event,
8990
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8991 8992
	if (IS_ERR(child_event))
		return child_event;
8993

8994 8995
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8996 8997 8998 8999
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
9000 9001 9002 9003 9004 9005 9006
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
9007
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9024 9025
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9026

9027 9028 9029 9030
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9031
	perf_event__id_header_size(child_event);
9032

P
Peter Zijlstra 已提交
9033 9034 9035
	/*
	 * Link it up in the child's context:
	 */
9036
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9037
	add_event_to_ctx(child_event, child_ctx);
9038
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9072 9073 9074 9075 9076
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9077
		   struct task_struct *child, int ctxn,
9078 9079 9080
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9081
	struct perf_event_context *child_ctx;
9082 9083 9084 9085

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9086 9087
	}

9088
	child_ctx = child->perf_event_ctxp[ctxn];
9089 9090 9091 9092 9093 9094 9095
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9096

9097
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9098 9099
		if (!child_ctx)
			return -ENOMEM;
9100

P
Peter Zijlstra 已提交
9101
		child->perf_event_ctxp[ctxn] = child_ctx;
9102 9103 9104 9105 9106 9107 9108 9109 9110
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9111 9112
}

9113
/*
9114
 * Initialize the perf_event context in task_struct
9115
 */
9116
static int perf_event_init_context(struct task_struct *child, int ctxn)
9117
{
9118
	struct perf_event_context *child_ctx, *parent_ctx;
9119 9120
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9121
	struct task_struct *parent = current;
9122
	int inherited_all = 1;
9123
	unsigned long flags;
9124
	int ret = 0;
9125

P
Peter Zijlstra 已提交
9126
	if (likely(!parent->perf_event_ctxp[ctxn]))
9127 9128
		return 0;

9129
	/*
9130 9131
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9132
	 */
P
Peter Zijlstra 已提交
9133
	parent_ctx = perf_pin_task_context(parent, ctxn);
9134 9135
	if (!parent_ctx)
		return 0;
9136

9137 9138 9139 9140 9141 9142 9143
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9144 9145 9146 9147
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9148
	mutex_lock(&parent_ctx->mutex);
9149 9150 9151 9152 9153

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9154
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9155 9156
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9157 9158 9159
		if (ret)
			break;
	}
9160

9161 9162 9163 9164 9165 9166 9167 9168 9169
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9170
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9171 9172
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9173
		if (ret)
9174
			break;
9175 9176
	}

9177 9178 9179
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9180
	child_ctx = child->perf_event_ctxp[ctxn];
9181

9182
	if (child_ctx && inherited_all) {
9183 9184 9185
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9186 9187 9188
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9189
		 */
P
Peter Zijlstra 已提交
9190
		cloned_ctx = parent_ctx->parent_ctx;
9191 9192
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9193
			child_ctx->parent_gen = parent_ctx->parent_gen;
9194 9195 9196 9197 9198
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9199 9200
	}

P
Peter Zijlstra 已提交
9201
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9202
	mutex_unlock(&parent_ctx->mutex);
9203

9204
	perf_unpin_context(parent_ctx);
9205
	put_ctx(parent_ctx);
9206

9207
	return ret;
9208 9209
}

P
Peter Zijlstra 已提交
9210 9211 9212 9213 9214 9215 9216
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9217 9218 9219 9220
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9221 9222
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9223 9224
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9225
			return ret;
P
Peter Zijlstra 已提交
9226
		}
P
Peter Zijlstra 已提交
9227 9228 9229 9230 9231
	}

	return 0;
}

9232 9233
static void __init perf_event_init_all_cpus(void)
{
9234
	struct swevent_htable *swhash;
9235 9236 9237
	int cpu;

	for_each_possible_cpu(cpu) {
9238 9239
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9240
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9241 9242 9243
	}
}

9244
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9245
{
P
Peter Zijlstra 已提交
9246
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9247

9248
	mutex_lock(&swhash->hlist_mutex);
9249
	swhash->online = true;
9250
	if (swhash->hlist_refcount > 0) {
9251 9252
		struct swevent_hlist *hlist;

9253 9254 9255
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9256
	}
9257
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9258 9259
}

9260
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9261
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9262
{
9263
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
9264
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
9265

P
Peter Zijlstra 已提交
9266
	rcu_read_lock();
9267 9268
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
9269
	rcu_read_unlock();
T
Thomas Gleixner 已提交
9270
}
P
Peter Zijlstra 已提交
9271 9272 9273 9274 9275 9276 9277 9278 9279

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9280
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9281 9282 9283 9284 9285 9286 9287 9288

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9289
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9290
{
9291
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9292

P
Peter Zijlstra 已提交
9293 9294
	perf_event_exit_cpu_context(cpu);

9295
	mutex_lock(&swhash->hlist_mutex);
9296
	swhash->online = false;
9297 9298
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9299 9300
}
#else
9301
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9302 9303
#endif

P
Peter Zijlstra 已提交
9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9324
static int
T
Thomas Gleixner 已提交
9325 9326 9327 9328
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9329
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9330 9331

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9332
	case CPU_DOWN_FAILED:
9333
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9334 9335
		break;

P
Peter Zijlstra 已提交
9336
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9337
	case CPU_DOWN_PREPARE:
9338
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9339 9340 9341 9342 9343 9344 9345 9346
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9347
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9348
{
9349 9350
	int ret;

P
Peter Zijlstra 已提交
9351 9352
	idr_init(&pmu_idr);

9353
	perf_event_init_all_cpus();
9354
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9355 9356 9357
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9358 9359
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9360
	register_reboot_notifier(&perf_reboot_notifier);
9361 9362 9363

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9364 9365 9366

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9367 9368 9369 9370 9371 9372 9373

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9374
}
P
Peter Zijlstra 已提交
9375

9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9415 9416

#ifdef CONFIG_CGROUP_PERF
9417 9418
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9419 9420 9421
{
	struct perf_cgroup *jc;

9422
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9435
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9436
{
9437 9438
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

9450 9451
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9452
{
9453 9454
	struct task_struct *task;

9455
	cgroup_taskset_for_each(task, tset)
9456
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9457 9458
}

9459 9460
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
9461
			     struct task_struct *task)
S
Stephane Eranian 已提交
9462
{
9463
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9464 9465
}

9466
struct cgroup_subsys perf_event_cgrp_subsys = {
9467 9468
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9469
	.exit		= perf_cgroup_exit,
9470
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9471 9472
};
#endif /* CONFIG_CGROUP_PERF */