core.c 173.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121 122 123
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

124 125 126 127 128 129 130
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

131 132 133 134 135 136
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
137 138 139 140
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
141
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
142
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
144

145 146 147
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
148

P
Peter Zijlstra 已提交
149 150 151 152
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

153
/*
154
 * perf event paranoia level:
155 156
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
157
 *   1 - disallow cpu events for unpriv
158
 *   2 - disallow kernel profiling for unpriv
159
 */
160
int sysctl_perf_event_paranoid __read_mostly = 1;
161

162 163
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
164 165

/*
166
 * max perf event sample rate
167
 */
P
Peter Zijlstra 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
186

187
static atomic64_t perf_event_id;
188

189 190 191 192
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
193 194 195 196 197
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
198

199 200 201
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

202
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
203

204
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
205
{
206
	return "pmu";
T
Thomas Gleixner 已提交
207 208
}

209 210 211 212 213
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
214 215 216 217 218 219
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
236 237
#ifdef CONFIG_CGROUP_PERF

238 239 240 241 242 243 244 245 246 247 248
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
249
	struct perf_cgroup_info	__percpu *info;
250 251
};

252 253 254 255 256
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
286 287
}

288
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
289
{
290
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
339 340
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
341
	/*
342 343
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
344
	 */
345
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
346 347
		return;

348 349 350 351 352 353
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
354 355 356
}

static inline void
357 358
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
359 360 361 362
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

363 364 365 366 367 368
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
369 370 371 372
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
373
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
406 407
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
408 409 410 411 412 413 414 415 416

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
417 418
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
419 420 421 422 423 424 425 426 427 428 429

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
430
				WARN_ON_ONCE(cpuctx->cgrp);
431 432 433 434
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
435 436 437 438
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
439 440
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
441 442 443 444 445 446 447 448
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

449 450
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
451
{
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
474 475
}

476 477
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
478
{
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
497 498 499 500 501 502 503 504
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
505 506
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
507

508
	if (!f.file)
S
Stephane Eranian 已提交
509 510
		return -EBADF;

511
	css = cgroup_css_from_dir(f.file, perf_subsys_id);
512 513 514 515
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
516 517 518 519

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

520
	/* must be done before we fput() the file */
521 522 523 524 525
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
526

S
Stephane Eranian 已提交
527 528 529 530 531 532 533 534 535
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
536
out:
537
	fdput(f);
S
Stephane Eranian 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

611 612
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
613 614 615
{
}

616 617
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
618 619 620 621 622 623 624 625 626 627 628
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
629 630
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
661
void perf_pmu_disable(struct pmu *pmu)
662
{
P
Peter Zijlstra 已提交
663 664 665
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
666 667
}

P
Peter Zijlstra 已提交
668
void perf_pmu_enable(struct pmu *pmu)
669
{
P
Peter Zijlstra 已提交
670 671 672
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
673 674
}

675 676 677 678 679 680 681
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
682
static void perf_pmu_rotate_start(struct pmu *pmu)
683
{
P
Peter Zijlstra 已提交
684
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
685
	struct list_head *head = &__get_cpu_var(rotation_list);
686

687
	WARN_ON(!irqs_disabled());
688

689 690
	if (list_empty(&cpuctx->rotation_list)) {
		int was_empty = list_empty(head);
691
		list_add(&cpuctx->rotation_list, head);
692 693 694
		if (was_empty)
			tick_nohz_full_kick();
	}
695 696
}

697
static void get_ctx(struct perf_event_context *ctx)
698
{
699
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
700 701
}

702
static void put_ctx(struct perf_event_context *ctx)
703
{
704 705 706
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
707 708
		if (ctx->task)
			put_task_struct(ctx->task);
709
		kfree_rcu(ctx, rcu_head);
710
	}
711 712
}

713
static void unclone_ctx(struct perf_event_context *ctx)
714 715 716 717 718 719 720
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

743
/*
744
 * If we inherit events we want to return the parent event id
745 746
 * to userspace.
 */
747
static u64 primary_event_id(struct perf_event *event)
748
{
749
	u64 id = event->id;
750

751 752
	if (event->parent)
		id = event->parent->id;
753 754 755 756

	return id;
}

757
/*
758
 * Get the perf_event_context for a task and lock it.
759 760 761
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
762
static struct perf_event_context *
P
Peter Zijlstra 已提交
763
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
764
{
765
	struct perf_event_context *ctx;
766 767

	rcu_read_lock();
P
Peter Zijlstra 已提交
768
retry:
P
Peter Zijlstra 已提交
769
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
770 771 772 773
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
774
		 * perf_event_task_sched_out, though the
775 776 777 778 779 780
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
781
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
782
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
783
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
784 785
			goto retry;
		}
786 787

		if (!atomic_inc_not_zero(&ctx->refcount)) {
788
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
789 790
			ctx = NULL;
		}
791 792 793 794 795 796 797 798 799 800
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
801 802
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
803
{
804
	struct perf_event_context *ctx;
805 806
	unsigned long flags;

P
Peter Zijlstra 已提交
807
	ctx = perf_lock_task_context(task, ctxn, &flags);
808 809
	if (ctx) {
		++ctx->pin_count;
810
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
811 812 813 814
	}
	return ctx;
}

815
static void perf_unpin_context(struct perf_event_context *ctx)
816 817 818
{
	unsigned long flags;

819
	raw_spin_lock_irqsave(&ctx->lock, flags);
820
	--ctx->pin_count;
821
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
822 823
}

824 825 826 827 828 829 830 831 832 833 834
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

835 836 837
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
838 839 840 841

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

842 843 844
	return ctx ? ctx->time : 0;
}

845 846
/*
 * Update the total_time_enabled and total_time_running fields for a event.
847
 * The caller of this function needs to hold the ctx->lock.
848 849 850 851 852 853 854 855 856
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
857 858 859 860 861 862 863 864 865 866 867
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
868
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
869 870
	else if (ctx->is_active)
		run_end = ctx->time;
871 872 873 874
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
875 876 877 878

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
879
		run_end = perf_event_time(event);
880 881

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
882

883 884
}

885 886 887 888 889 890 891 892 893 894 895 896
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

897 898 899 900 901 902 903 904 905
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

906
/*
907
 * Add a event from the lists for its context.
908 909
 * Must be called with ctx->mutex and ctx->lock held.
 */
910
static void
911
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
912
{
913 914
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
915 916

	/*
917 918 919
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
920
	 */
921
	if (event->group_leader == event) {
922 923
		struct list_head *list;

924 925 926
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

927 928
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
929
	}
P
Peter Zijlstra 已提交
930

931
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
932 933
		ctx->nr_cgroups++;

934 935 936
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

937
	list_add_rcu(&event->event_entry, &ctx->event_list);
938
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
939
		perf_pmu_rotate_start(ctx->pmu);
940 941
	ctx->nr_events++;
	if (event->attr.inherit_stat)
942
		ctx->nr_stat++;
943 944
}

J
Jiri Olsa 已提交
945 946 947 948 949 950 951 952 953
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

993 994 995 996 997 998
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
999 1000 1001
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1002 1003 1004
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1005 1006 1007
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

1008 1009 1010 1011 1012 1013 1014 1015 1016
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1032
	event->id_header_size = size;
1033 1034
}

1035 1036
static void perf_group_attach(struct perf_event *event)
{
1037
	struct perf_event *group_leader = event->group_leader, *pos;
1038

P
Peter Zijlstra 已提交
1039 1040 1041 1042 1043 1044
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1056 1057 1058 1059 1060

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1061 1062
}

1063
/*
1064
 * Remove a event from the lists for its context.
1065
 * Must be called with ctx->mutex and ctx->lock held.
1066
 */
1067
static void
1068
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1069
{
1070
	struct perf_cpu_context *cpuctx;
1071 1072 1073 1074
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1075
		return;
1076 1077 1078

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1079
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1080
		ctx->nr_cgroups--;
1081 1082 1083 1084 1085 1086 1087 1088 1089
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1090

1091 1092 1093
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1094 1095
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1096
		ctx->nr_stat--;
1097

1098
	list_del_rcu(&event->event_entry);
1099

1100 1101
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1102

1103
	update_group_times(event);
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1114 1115
}

1116
static void perf_group_detach(struct perf_event *event)
1117 1118
{
	struct perf_event *sibling, *tmp;
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1135
		goto out;
1136 1137 1138 1139
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1140

1141
	/*
1142 1143
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1144
	 * to whatever list we are on.
1145
	 */
1146
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1147 1148
		if (list)
			list_move_tail(&sibling->group_entry, list);
1149
		sibling->group_leader = sibling;
1150 1151 1152

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1153
	}
1154 1155 1156 1157 1158 1159

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1160 1161
}

1162 1163 1164
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1165 1166
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1167 1168
}

1169 1170
static void
event_sched_out(struct perf_event *event,
1171
		  struct perf_cpu_context *cpuctx,
1172
		  struct perf_event_context *ctx)
1173
{
1174
	u64 tstamp = perf_event_time(event);
1175 1176 1177 1178 1179 1180 1181 1182 1183
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1184
		delta = tstamp - event->tstamp_stopped;
1185
		event->tstamp_running += delta;
1186
		event->tstamp_stopped = tstamp;
1187 1188
	}

1189
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1190
		return;
1191

1192 1193 1194 1195
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1196
	}
1197
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1198
	event->pmu->del(event, 0);
1199
	event->oncpu = -1;
1200

1201
	if (!is_software_event(event))
1202 1203
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1204 1205
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1206
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1207 1208 1209
		cpuctx->exclusive = 0;
}

1210
static void
1211
group_sched_out(struct perf_event *group_event,
1212
		struct perf_cpu_context *cpuctx,
1213
		struct perf_event_context *ctx)
1214
{
1215
	struct perf_event *event;
1216
	int state = group_event->state;
1217

1218
	event_sched_out(group_event, cpuctx, ctx);
1219 1220 1221 1222

	/*
	 * Schedule out siblings (if any):
	 */
1223 1224
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1225

1226
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1227 1228 1229
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1230
/*
1231
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1232
 *
1233
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1234 1235
 * remove it from the context list.
 */
1236
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1237
{
1238 1239
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1240
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1241

1242
	raw_spin_lock(&ctx->lock);
1243 1244
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1245 1246 1247 1248
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1249
	raw_spin_unlock(&ctx->lock);
1250 1251

	return 0;
T
Thomas Gleixner 已提交
1252 1253 1254 1255
}


/*
1256
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1257
 *
1258
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1259
 * call when the task is on a CPU.
1260
 *
1261 1262
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1263 1264
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1265
 * When called from perf_event_exit_task, it's OK because the
1266
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1267
 */
1268
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1269
{
1270
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1271 1272
	struct task_struct *task = ctx->task;

1273 1274
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1275 1276
	if (!task) {
		/*
1277
		 * Per cpu events are removed via an smp call and
1278
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1279
		 */
1280
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1281 1282 1283 1284
		return;
	}

retry:
1285 1286
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1287

1288
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1289
	/*
1290 1291
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1292
	 */
1293
	if (ctx->is_active) {
1294
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1295 1296 1297 1298
		goto retry;
	}

	/*
1299 1300
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1301
	 */
1302
	list_del_event(event, ctx);
1303
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1304 1305
}

1306
/*
1307
 * Cross CPU call to disable a performance event
1308
 */
1309
int __perf_event_disable(void *info)
1310
{
1311 1312
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1313
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1314 1315

	/*
1316 1317
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1318 1319 1320
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1321
	 */
1322
	if (ctx->task && cpuctx->task_ctx != ctx)
1323
		return -EINVAL;
1324

1325
	raw_spin_lock(&ctx->lock);
1326 1327

	/*
1328
	 * If the event is on, turn it off.
1329 1330
	 * If it is in error state, leave it in error state.
	 */
1331
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1332
		update_context_time(ctx);
S
Stephane Eranian 已提交
1333
		update_cgrp_time_from_event(event);
1334 1335 1336
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1337
		else
1338 1339
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1340 1341
	}

1342
	raw_spin_unlock(&ctx->lock);
1343 1344

	return 0;
1345 1346 1347
}

/*
1348
 * Disable a event.
1349
 *
1350 1351
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1352
 * remains valid.  This condition is satisifed when called through
1353 1354 1355 1356
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1357
 * is the current context on this CPU and preemption is disabled,
1358
 * hence we can't get into perf_event_task_sched_out for this context.
1359
 */
1360
void perf_event_disable(struct perf_event *event)
1361
{
1362
	struct perf_event_context *ctx = event->ctx;
1363 1364 1365 1366
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1367
		 * Disable the event on the cpu that it's on
1368
		 */
1369
		cpu_function_call(event->cpu, __perf_event_disable, event);
1370 1371 1372
		return;
	}

P
Peter Zijlstra 已提交
1373
retry:
1374 1375
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1376

1377
	raw_spin_lock_irq(&ctx->lock);
1378
	/*
1379
	 * If the event is still active, we need to retry the cross-call.
1380
	 */
1381
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1382
		raw_spin_unlock_irq(&ctx->lock);
1383 1384 1385 1386 1387
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1388 1389 1390 1391 1392 1393 1394
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1395 1396 1397
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1398
	}
1399
	raw_spin_unlock_irq(&ctx->lock);
1400
}
1401
EXPORT_SYMBOL_GPL(perf_event_disable);
1402

S
Stephane Eranian 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1438 1439 1440 1441
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1442
static int
1443
event_sched_in(struct perf_event *event,
1444
		 struct perf_cpu_context *cpuctx,
1445
		 struct perf_event_context *ctx)
1446
{
1447 1448
	u64 tstamp = perf_event_time(event);

1449
	if (event->state <= PERF_EVENT_STATE_OFF)
1450 1451
		return 0;

1452
	event->state = PERF_EVENT_STATE_ACTIVE;
1453
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1465 1466 1467 1468 1469
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1470
	if (event->pmu->add(event, PERF_EF_START)) {
1471 1472
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1473 1474 1475
		return -EAGAIN;
	}

1476
	event->tstamp_running += tstamp - event->tstamp_stopped;
1477

S
Stephane Eranian 已提交
1478
	perf_set_shadow_time(event, ctx, tstamp);
1479

1480
	if (!is_software_event(event))
1481
		cpuctx->active_oncpu++;
1482
	ctx->nr_active++;
1483 1484
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1485

1486
	if (event->attr.exclusive)
1487 1488
		cpuctx->exclusive = 1;

1489 1490 1491
	return 0;
}

1492
static int
1493
group_sched_in(struct perf_event *group_event,
1494
	       struct perf_cpu_context *cpuctx,
1495
	       struct perf_event_context *ctx)
1496
{
1497
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1498
	struct pmu *pmu = group_event->pmu;
1499 1500
	u64 now = ctx->time;
	bool simulate = false;
1501

1502
	if (group_event->state == PERF_EVENT_STATE_OFF)
1503 1504
		return 0;

P
Peter Zijlstra 已提交
1505
	pmu->start_txn(pmu);
1506

1507
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1508
		pmu->cancel_txn(pmu);
1509
		return -EAGAIN;
1510
	}
1511 1512 1513 1514

	/*
	 * Schedule in siblings as one group (if any):
	 */
1515
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1516
		if (event_sched_in(event, cpuctx, ctx)) {
1517
			partial_group = event;
1518 1519 1520 1521
			goto group_error;
		}
	}

1522
	if (!pmu->commit_txn(pmu))
1523
		return 0;
1524

1525 1526 1527 1528
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1539
	 */
1540 1541
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1542 1543 1544 1545 1546 1547 1548 1549
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1550
	}
1551
	event_sched_out(group_event, cpuctx, ctx);
1552

P
Peter Zijlstra 已提交
1553
	pmu->cancel_txn(pmu);
1554

1555 1556 1557
	return -EAGAIN;
}

1558
/*
1559
 * Work out whether we can put this event group on the CPU now.
1560
 */
1561
static int group_can_go_on(struct perf_event *event,
1562 1563 1564 1565
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1566
	 * Groups consisting entirely of software events can always go on.
1567
	 */
1568
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1569 1570 1571
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1572
	 * events can go on.
1573 1574 1575 1576 1577
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1578
	 * events on the CPU, it can't go on.
1579
	 */
1580
	if (event->attr.exclusive && cpuctx->active_oncpu)
1581 1582 1583 1584 1585 1586 1587 1588
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1589 1590
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1591
{
1592 1593
	u64 tstamp = perf_event_time(event);

1594
	list_add_event(event, ctx);
1595
	perf_group_attach(event);
1596 1597 1598
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1599 1600
}

1601 1602 1603 1604 1605 1606
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1607

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1620
/*
1621
 * Cross CPU call to install and enable a performance event
1622 1623
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1624
 */
1625
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1626
{
1627 1628
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1629
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1630 1631 1632
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1633
	perf_ctx_lock(cpuctx, task_ctx);
1634
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1635 1636

	/*
1637
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1638
	 */
1639
	if (task_ctx)
1640
		task_ctx_sched_out(task_ctx);
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1655 1656
		task = task_ctx->task;
	}
1657

1658
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1659

1660
	update_context_time(ctx);
S
Stephane Eranian 已提交
1661 1662 1663 1664 1665 1666
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1667

1668
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1669

1670
	/*
1671
	 * Schedule everything back in
1672
	 */
1673
	perf_event_sched_in(cpuctx, task_ctx, task);
1674 1675 1676

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1677 1678

	return 0;
T
Thomas Gleixner 已提交
1679 1680 1681
}

/*
1682
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1683
 *
1684 1685
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1686
 *
1687
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1688 1689 1690 1691
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1692 1693
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1694 1695 1696 1697
			int cpu)
{
	struct task_struct *task = ctx->task;

1698 1699
	lockdep_assert_held(&ctx->mutex);

1700
	event->ctx = ctx;
1701 1702
	if (event->cpu != -1)
		event->cpu = cpu;
1703

T
Thomas Gleixner 已提交
1704 1705
	if (!task) {
		/*
1706
		 * Per cpu events are installed via an smp call and
1707
		 * the install is always successful.
T
Thomas Gleixner 已提交
1708
		 */
1709
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1710 1711 1712 1713
		return;
	}

retry:
1714 1715
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1716

1717
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1718
	/*
1719 1720
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1721
	 */
1722
	if (ctx->is_active) {
1723
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1724 1725 1726 1727
		goto retry;
	}

	/*
1728 1729
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1730
	 */
1731
	add_event_to_ctx(event, ctx);
1732
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1733 1734
}

1735
/*
1736
 * Put a event into inactive state and update time fields.
1737 1738 1739 1740 1741 1742
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1743
static void __perf_event_mark_enabled(struct perf_event *event)
1744
{
1745
	struct perf_event *sub;
1746
	u64 tstamp = perf_event_time(event);
1747

1748
	event->state = PERF_EVENT_STATE_INACTIVE;
1749
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1750
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1751 1752
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1753
	}
1754 1755
}

1756
/*
1757
 * Cross CPU call to enable a performance event
1758
 */
1759
static int __perf_event_enable(void *info)
1760
{
1761 1762 1763
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1764
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1765
	int err;
1766

1767 1768
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1769

1770
	raw_spin_lock(&ctx->lock);
1771
	update_context_time(ctx);
1772

1773
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1774
		goto unlock;
S
Stephane Eranian 已提交
1775 1776 1777 1778

	/*
	 * set current task's cgroup time reference point
	 */
1779
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1780

1781
	__perf_event_mark_enabled(event);
1782

S
Stephane Eranian 已提交
1783 1784 1785
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1786
		goto unlock;
S
Stephane Eranian 已提交
1787
	}
1788

1789
	/*
1790
	 * If the event is in a group and isn't the group leader,
1791
	 * then don't put it on unless the group is on.
1792
	 */
1793
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1794
		goto unlock;
1795

1796
	if (!group_can_go_on(event, cpuctx, 1)) {
1797
		err = -EEXIST;
1798
	} else {
1799
		if (event == leader)
1800
			err = group_sched_in(event, cpuctx, ctx);
1801
		else
1802
			err = event_sched_in(event, cpuctx, ctx);
1803
	}
1804 1805 1806

	if (err) {
		/*
1807
		 * If this event can't go on and it's part of a
1808 1809
		 * group, then the whole group has to come off.
		 */
1810
		if (leader != event)
1811
			group_sched_out(leader, cpuctx, ctx);
1812
		if (leader->attr.pinned) {
1813
			update_group_times(leader);
1814
			leader->state = PERF_EVENT_STATE_ERROR;
1815
		}
1816 1817
	}

P
Peter Zijlstra 已提交
1818
unlock:
1819
	raw_spin_unlock(&ctx->lock);
1820 1821

	return 0;
1822 1823 1824
}

/*
1825
 * Enable a event.
1826
 *
1827 1828
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1829
 * remains valid.  This condition is satisfied when called through
1830 1831
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1832
 */
1833
void perf_event_enable(struct perf_event *event)
1834
{
1835
	struct perf_event_context *ctx = event->ctx;
1836 1837 1838 1839
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1840
		 * Enable the event on the cpu that it's on
1841
		 */
1842
		cpu_function_call(event->cpu, __perf_event_enable, event);
1843 1844 1845
		return;
	}

1846
	raw_spin_lock_irq(&ctx->lock);
1847
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1848 1849 1850
		goto out;

	/*
1851 1852
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1853 1854 1855 1856
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1857 1858
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1859

P
Peter Zijlstra 已提交
1860
retry:
1861
	if (!ctx->is_active) {
1862
		__perf_event_mark_enabled(event);
1863 1864 1865
		goto out;
	}

1866
	raw_spin_unlock_irq(&ctx->lock);
1867 1868 1869

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1870

1871
	raw_spin_lock_irq(&ctx->lock);
1872 1873

	/*
1874
	 * If the context is active and the event is still off,
1875 1876
	 * we need to retry the cross-call.
	 */
1877 1878 1879 1880 1881 1882
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1883
		goto retry;
1884
	}
1885

P
Peter Zijlstra 已提交
1886
out:
1887
	raw_spin_unlock_irq(&ctx->lock);
1888
}
1889
EXPORT_SYMBOL_GPL(perf_event_enable);
1890

1891
int perf_event_refresh(struct perf_event *event, int refresh)
1892
{
1893
	/*
1894
	 * not supported on inherited events
1895
	 */
1896
	if (event->attr.inherit || !is_sampling_event(event))
1897 1898
		return -EINVAL;

1899 1900
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1901 1902

	return 0;
1903
}
1904
EXPORT_SYMBOL_GPL(perf_event_refresh);
1905

1906 1907 1908
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1909
{
1910
	struct perf_event *event;
1911
	int is_active = ctx->is_active;
1912

1913
	ctx->is_active &= ~event_type;
1914
	if (likely(!ctx->nr_events))
1915 1916
		return;

1917
	update_context_time(ctx);
S
Stephane Eranian 已提交
1918
	update_cgrp_time_from_cpuctx(cpuctx);
1919
	if (!ctx->nr_active)
1920
		return;
1921

P
Peter Zijlstra 已提交
1922
	perf_pmu_disable(ctx->pmu);
1923
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1924 1925
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1926
	}
1927

1928
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1929
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1930
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1931
	}
P
Peter Zijlstra 已提交
1932
	perf_pmu_enable(ctx->pmu);
1933 1934
}

1935 1936 1937
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1938 1939 1940 1941
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1942
 * in them directly with an fd; we can only enable/disable all
1943
 * events via prctl, or enable/disable all events in a family
1944 1945
 * via ioctl, which will have the same effect on both contexts.
 */
1946 1947
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1948 1949
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1950
		&& ctx1->parent_gen == ctx2->parent_gen
1951
		&& !ctx1->pin_count && !ctx2->pin_count;
1952 1953
}

1954 1955
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1956 1957 1958
{
	u64 value;

1959
	if (!event->attr.inherit_stat)
1960 1961 1962
		return;

	/*
1963
	 * Update the event value, we cannot use perf_event_read()
1964 1965
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1966
	 * we know the event must be on the current CPU, therefore we
1967 1968
	 * don't need to use it.
	 */
1969 1970
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1971 1972
		event->pmu->read(event);
		/* fall-through */
1973

1974 1975
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1976 1977 1978 1979 1980 1981 1982
		break;

	default:
		break;
	}

	/*
1983
	 * In order to keep per-task stats reliable we need to flip the event
1984 1985
	 * values when we flip the contexts.
	 */
1986 1987 1988
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1989

1990 1991
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1992

1993
	/*
1994
	 * Since we swizzled the values, update the user visible data too.
1995
	 */
1996 1997
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1998 1999 2000 2001 2002
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

2003 2004
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2005
{
2006
	struct perf_event *event, *next_event;
2007 2008 2009 2010

	if (!ctx->nr_stat)
		return;

2011 2012
	update_context_time(ctx);

2013 2014
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2015

2016 2017
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2018

2019 2020
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2021

2022
		__perf_event_sync_stat(event, next_event);
2023

2024 2025
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2026 2027 2028
	}
}

2029 2030
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2031
{
P
Peter Zijlstra 已提交
2032
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2033 2034
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
2035
	struct perf_cpu_context *cpuctx;
2036
	int do_switch = 1;
T
Thomas Gleixner 已提交
2037

P
Peter Zijlstra 已提交
2038 2039
	if (likely(!ctx))
		return;
2040

P
Peter Zijlstra 已提交
2041 2042
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2043 2044
		return;

2045 2046
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
2047
	next_ctx = next->perf_event_ctxp[ctxn];
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2059 2060
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2061
		if (context_equiv(ctx, next_ctx)) {
2062 2063
			/*
			 * XXX do we need a memory barrier of sorts
2064
			 * wrt to rcu_dereference() of perf_event_ctxp
2065
			 */
P
Peter Zijlstra 已提交
2066 2067
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2068 2069 2070
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2071

2072
			perf_event_sync_stat(ctx, next_ctx);
2073
		}
2074 2075
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2076
	}
2077
	rcu_read_unlock();
2078

2079
	if (do_switch) {
2080
		raw_spin_lock(&ctx->lock);
2081
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2082
		cpuctx->task_ctx = NULL;
2083
		raw_spin_unlock(&ctx->lock);
2084
	}
T
Thomas Gleixner 已提交
2085 2086
}

P
Peter Zijlstra 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2101 2102
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2103 2104 2105 2106 2107
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2108 2109 2110 2111 2112 2113 2114

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2115
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2116 2117
}

2118
static void task_ctx_sched_out(struct perf_event_context *ctx)
2119
{
P
Peter Zijlstra 已提交
2120
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2121

2122 2123
	if (!cpuctx->task_ctx)
		return;
2124 2125 2126 2127

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2128
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2129 2130 2131
	cpuctx->task_ctx = NULL;
}

2132 2133 2134 2135 2136 2137 2138
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2139 2140
}

2141
static void
2142
ctx_pinned_sched_in(struct perf_event_context *ctx,
2143
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2144
{
2145
	struct perf_event *event;
T
Thomas Gleixner 已提交
2146

2147 2148
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2149
			continue;
2150
		if (!event_filter_match(event))
2151 2152
			continue;

S
Stephane Eranian 已提交
2153 2154 2155 2156
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2157
		if (group_can_go_on(event, cpuctx, 1))
2158
			group_sched_in(event, cpuctx, ctx);
2159 2160 2161 2162 2163

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2164 2165 2166
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2167
		}
2168
	}
2169 2170 2171 2172
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2173
		      struct perf_cpu_context *cpuctx)
2174 2175 2176
{
	struct perf_event *event;
	int can_add_hw = 1;
2177

2178 2179 2180
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2181
			continue;
2182 2183
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2184
		 * of events:
2185
		 */
2186
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2187 2188
			continue;

S
Stephane Eranian 已提交
2189 2190 2191 2192
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2193
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2194
			if (group_sched_in(event, cpuctx, ctx))
2195
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2196
		}
T
Thomas Gleixner 已提交
2197
	}
2198 2199 2200 2201 2202
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2203 2204
	     enum event_type_t event_type,
	     struct task_struct *task)
2205
{
S
Stephane Eranian 已提交
2206
	u64 now;
2207
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2208

2209
	ctx->is_active |= event_type;
2210
	if (likely(!ctx->nr_events))
2211
		return;
2212

S
Stephane Eranian 已提交
2213 2214
	now = perf_clock();
	ctx->timestamp = now;
2215
	perf_cgroup_set_timestamp(task, ctx);
2216 2217 2218 2219
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2220
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2221
		ctx_pinned_sched_in(ctx, cpuctx);
2222 2223

	/* Then walk through the lower prio flexible groups */
2224
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2225
		ctx_flexible_sched_in(ctx, cpuctx);
2226 2227
}

2228
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2229 2230
			     enum event_type_t event_type,
			     struct task_struct *task)
2231 2232 2233
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2234
	ctx_sched_in(ctx, cpuctx, event_type, task);
2235 2236
}

S
Stephane Eranian 已提交
2237 2238
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2239
{
P
Peter Zijlstra 已提交
2240
	struct perf_cpu_context *cpuctx;
2241

P
Peter Zijlstra 已提交
2242
	cpuctx = __get_cpu_context(ctx);
2243 2244 2245
	if (cpuctx->task_ctx == ctx)
		return;

2246
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2247
	perf_pmu_disable(ctx->pmu);
2248 2249 2250 2251 2252 2253 2254
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2255 2256
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2257

2258 2259
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2260 2261 2262
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2263 2264 2265 2266
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2267
	perf_pmu_rotate_start(ctx->pmu);
2268 2269
}

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2341 2342
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2352
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2353
	}
S
Stephane Eranian 已提交
2354 2355 2356 2357 2358 2359
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2360
		perf_cgroup_sched_in(prev, task);
2361 2362 2363 2364

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2365 2366
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2394
#define REDUCE_FLS(a, b)		\
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2434 2435 2436
	if (!divisor)
		return dividend;

2437 2438 2439
	return div64_u64(dividend, divisor);
}

2440 2441 2442
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2443
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2444
{
2445
	struct hw_perf_event *hwc = &event->hw;
2446
	s64 period, sample_period;
2447 2448
	s64 delta;

2449
	period = perf_calculate_period(event, nsec, count);
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2460

2461
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2462 2463 2464
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2465
		local64_set(&hwc->period_left, 0);
2466 2467 2468

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2469
	}
2470 2471
}

2472 2473 2474 2475 2476 2477 2478
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2479
{
2480 2481
	struct perf_event *event;
	struct hw_perf_event *hwc;
2482
	u64 now, period = TICK_NSEC;
2483
	s64 delta;
2484

2485 2486 2487 2488 2489 2490
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2491 2492
		return;

2493
	raw_spin_lock(&ctx->lock);
2494
	perf_pmu_disable(ctx->pmu);
2495

2496
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2497
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2498 2499
			continue;

2500
		if (!event_filter_match(event))
2501 2502
			continue;

2503
		hwc = &event->hw;
2504

2505 2506
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2507
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2508
			event->pmu->start(event, 0);
2509 2510
		}

2511
		if (!event->attr.freq || !event->attr.sample_freq)
2512 2513
			continue;

2514 2515 2516 2517 2518
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2519
		now = local64_read(&event->count);
2520 2521
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2522

2523 2524 2525
		/*
		 * restart the event
		 * reload only if value has changed
2526 2527 2528
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2529
		 */
2530
		if (delta > 0)
2531
			perf_adjust_period(event, period, delta, false);
2532 2533

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2534
	}
2535

2536
	perf_pmu_enable(ctx->pmu);
2537
	raw_spin_unlock(&ctx->lock);
2538 2539
}

2540
/*
2541
 * Round-robin a context's events:
2542
 */
2543
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2544
{
2545 2546 2547 2548 2549 2550
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2551 2552
}

2553
/*
2554 2555 2556
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2557
 */
2558
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2559
{
P
Peter Zijlstra 已提交
2560
	struct perf_event_context *ctx = NULL;
2561
	int rotate = 0, remove = 1;
2562

2563
	if (cpuctx->ctx.nr_events) {
2564
		remove = 0;
2565 2566 2567
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2568

P
Peter Zijlstra 已提交
2569
	ctx = cpuctx->task_ctx;
2570
	if (ctx && ctx->nr_events) {
2571
		remove = 0;
2572 2573 2574
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2575

2576
	if (!rotate)
2577 2578
		goto done;

2579
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2580
	perf_pmu_disable(cpuctx->ctx.pmu);
2581

2582 2583 2584
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2585

2586 2587 2588
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2589

2590
	perf_event_sched_in(cpuctx, ctx, current);
2591

2592 2593
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2594
done:
2595 2596 2597 2598
	if (remove)
		list_del_init(&cpuctx->rotation_list);
}

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
	if (list_empty(&__get_cpu_var(rotation_list)))
		return true;
	else
		return false;
}
#endif

2609 2610 2611 2612
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2613 2614
	struct perf_event_context *ctx;
	int throttled;
2615

2616 2617
	WARN_ON(!irqs_disabled());

2618 2619 2620
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2621
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2622 2623 2624 2625 2626 2627 2628
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);

2629 2630 2631 2632
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2633 2634
}

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2645
	__perf_event_mark_enabled(event);
2646 2647 2648 2649

	return 1;
}

2650
/*
2651
 * Enable all of a task's events that have been marked enable-on-exec.
2652 2653
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2654
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2655
{
2656
	struct perf_event *event;
2657 2658
	unsigned long flags;
	int enabled = 0;
2659
	int ret;
2660 2661

	local_irq_save(flags);
2662
	if (!ctx || !ctx->nr_events)
2663 2664
		goto out;

2665 2666 2667 2668 2669 2670 2671
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2672
	perf_cgroup_sched_out(current, NULL);
2673

2674
	raw_spin_lock(&ctx->lock);
2675
	task_ctx_sched_out(ctx);
2676

2677
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2678 2679 2680
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2681 2682 2683
	}

	/*
2684
	 * Unclone this context if we enabled any event.
2685
	 */
2686 2687
	if (enabled)
		unclone_ctx(ctx);
2688

2689
	raw_spin_unlock(&ctx->lock);
2690

2691 2692 2693
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2694
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2695
out:
2696 2697 2698
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2699
/*
2700
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2701
 */
2702
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2703
{
2704 2705
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2706
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2707

2708 2709 2710 2711
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2712 2713
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2714 2715 2716 2717
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2718
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2719
	if (ctx->is_active) {
2720
		update_context_time(ctx);
S
Stephane Eranian 已提交
2721 2722
		update_cgrp_time_from_event(event);
	}
2723
	update_event_times(event);
2724 2725
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2726
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2727 2728
}

P
Peter Zijlstra 已提交
2729 2730
static inline u64 perf_event_count(struct perf_event *event)
{
2731
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2732 2733
}

2734
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2735 2736
{
	/*
2737 2738
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2739
	 */
2740 2741 2742 2743
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2744 2745 2746
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2747
		raw_spin_lock_irqsave(&ctx->lock, flags);
2748 2749 2750 2751 2752
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2753
		if (ctx->is_active) {
2754
			update_context_time(ctx);
S
Stephane Eranian 已提交
2755 2756
			update_cgrp_time_from_event(event);
		}
2757
		update_event_times(event);
2758
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2759 2760
	}

P
Peter Zijlstra 已提交
2761
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2762 2763
}

2764
/*
2765
 * Initialize the perf_event context in a task_struct:
2766
 */
2767
static void __perf_event_init_context(struct perf_event_context *ctx)
2768
{
2769
	raw_spin_lock_init(&ctx->lock);
2770
	mutex_init(&ctx->mutex);
2771 2772
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2773 2774
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2790
	}
2791 2792 2793
	ctx->pmu = pmu;

	return ctx;
2794 2795
}

2796 2797 2798 2799 2800
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2801 2802

	rcu_read_lock();
2803
	if (!vpid)
T
Thomas Gleixner 已提交
2804 2805
		task = current;
	else
2806
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2807 2808 2809 2810 2811 2812 2813 2814
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2815 2816 2817 2818
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2819 2820 2821 2822 2823 2824 2825
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2826 2827 2828
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2829
static struct perf_event_context *
M
Matt Helsley 已提交
2830
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2831
{
2832
	struct perf_event_context *ctx;
2833
	struct perf_cpu_context *cpuctx;
2834
	unsigned long flags;
P
Peter Zijlstra 已提交
2835
	int ctxn, err;
T
Thomas Gleixner 已提交
2836

2837
	if (!task) {
2838
		/* Must be root to operate on a CPU event: */
2839
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2840 2841 2842
			return ERR_PTR(-EACCES);

		/*
2843
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2844 2845 2846
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2847
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2848 2849
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2850
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2851
		ctx = &cpuctx->ctx;
2852
		get_ctx(ctx);
2853
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2854 2855 2856 2857

		return ctx;
	}

P
Peter Zijlstra 已提交
2858 2859 2860 2861 2862
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2863
retry:
P
Peter Zijlstra 已提交
2864
	ctx = perf_lock_task_context(task, ctxn, &flags);
2865
	if (ctx) {
2866
		unclone_ctx(ctx);
2867
		++ctx->pin_count;
2868
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2869
	} else {
2870
		ctx = alloc_perf_context(pmu, task);
2871 2872 2873
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2874

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2885
		else {
2886
			get_ctx(ctx);
2887
			++ctx->pin_count;
2888
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2889
		}
2890 2891 2892
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2893
			put_ctx(ctx);
2894 2895 2896 2897

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2898 2899 2900
		}
	}

T
Thomas Gleixner 已提交
2901
	return ctx;
2902

P
Peter Zijlstra 已提交
2903
errout:
2904
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2905 2906
}

L
Li Zefan 已提交
2907 2908
static void perf_event_free_filter(struct perf_event *event);

2909
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2910
{
2911
	struct perf_event *event;
P
Peter Zijlstra 已提交
2912

2913 2914 2915
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2916
	perf_event_free_filter(event);
2917
	kfree(event);
P
Peter Zijlstra 已提交
2918 2919
}

P
Peter Zijlstra 已提交
2920
static bool ring_buffer_put(struct ring_buffer *rb);
2921

2922
static void free_event(struct perf_event *event)
2923
{
2924
	irq_work_sync(&event->pending);
2925

2926
	if (!event->parent) {
2927
		if (event->attach_state & PERF_ATTACH_TASK)
2928
			static_key_slow_dec_deferred(&perf_sched_events);
2929
		if (event->attr.mmap || event->attr.mmap_data)
2930 2931 2932 2933 2934
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2935 2936
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2937 2938
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2939
			static_key_slow_dec_deferred(&perf_sched_events);
2940
		}
2941 2942 2943 2944 2945 2946 2947 2948

		if (has_branch_stack(event)) {
			static_key_slow_dec_deferred(&perf_sched_events);
			/* is system-wide event */
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_dec(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
2949
	}
2950

2951 2952 2953
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2954 2955
	}

S
Stephane Eranian 已提交
2956 2957 2958
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2959 2960
	if (event->destroy)
		event->destroy(event);
2961

P
Peter Zijlstra 已提交
2962 2963 2964
	if (event->ctx)
		put_ctx(event->ctx);

2965
	call_rcu(&event->rcu_head, free_event_rcu);
2966 2967
}

2968
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2969
{
2970
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2971

2972
	WARN_ON_ONCE(ctx->parent_ctx);
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2986
	raw_spin_lock_irq(&ctx->lock);
2987
	perf_group_detach(event);
2988
	raw_spin_unlock_irq(&ctx->lock);
2989
	perf_remove_from_context(event);
2990
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2991

2992
	free_event(event);
T
Thomas Gleixner 已提交
2993 2994 2995

	return 0;
}
2996
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2997

2998 2999 3000
/*
 * Called when the last reference to the file is gone.
 */
3001
static void put_event(struct perf_event *event)
3002
{
P
Peter Zijlstra 已提交
3003
	struct task_struct *owner;
3004

3005 3006
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3007

P
Peter Zijlstra 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3041 3042 3043 3044 3045 3046 3047
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3048 3049
}

3050
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3051
{
3052
	struct perf_event *child;
3053 3054
	u64 total = 0;

3055 3056 3057
	*enabled = 0;
	*running = 0;

3058
	mutex_lock(&event->child_mutex);
3059
	total += perf_event_read(event);
3060 3061 3062 3063 3064 3065
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3066
		total += perf_event_read(child);
3067 3068 3069
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3070
	mutex_unlock(&event->child_mutex);
3071 3072 3073

	return total;
}
3074
EXPORT_SYMBOL_GPL(perf_event_read_value);
3075

3076
static int perf_event_read_group(struct perf_event *event,
3077 3078
				   u64 read_format, char __user *buf)
{
3079
	struct perf_event *leader = event->group_leader, *sub;
3080 3081
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3082
	u64 values[5];
3083
	u64 count, enabled, running;
3084

3085
	mutex_lock(&ctx->mutex);
3086
	count = perf_event_read_value(leader, &enabled, &running);
3087 3088

	values[n++] = 1 + leader->nr_siblings;
3089 3090 3091 3092
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3093 3094 3095
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3096 3097 3098 3099

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3100
		goto unlock;
3101

3102
	ret = size;
3103

3104
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3105
		n = 0;
3106

3107
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3108 3109 3110 3111 3112
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3113
		if (copy_to_user(buf + ret, values, size)) {
3114 3115 3116
			ret = -EFAULT;
			goto unlock;
		}
3117 3118

		ret += size;
3119
	}
3120 3121
unlock:
	mutex_unlock(&ctx->mutex);
3122

3123
	return ret;
3124 3125
}

3126
static int perf_event_read_one(struct perf_event *event,
3127 3128
				 u64 read_format, char __user *buf)
{
3129
	u64 enabled, running;
3130 3131 3132
	u64 values[4];
	int n = 0;

3133 3134 3135 3136 3137
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3138
	if (read_format & PERF_FORMAT_ID)
3139
		values[n++] = primary_event_id(event);
3140 3141 3142 3143 3144 3145 3146

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3147
/*
3148
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3149 3150
 */
static ssize_t
3151
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3152
{
3153
	u64 read_format = event->attr.read_format;
3154
	int ret;
T
Thomas Gleixner 已提交
3155

3156
	/*
3157
	 * Return end-of-file for a read on a event that is in
3158 3159 3160
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3161
	if (event->state == PERF_EVENT_STATE_ERROR)
3162 3163
		return 0;

3164
	if (count < event->read_size)
3165 3166
		return -ENOSPC;

3167
	WARN_ON_ONCE(event->ctx->parent_ctx);
3168
	if (read_format & PERF_FORMAT_GROUP)
3169
		ret = perf_event_read_group(event, read_format, buf);
3170
	else
3171
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3172

3173
	return ret;
T
Thomas Gleixner 已提交
3174 3175 3176 3177 3178
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3179
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3180

3181
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3182 3183 3184 3185
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3186
	struct perf_event *event = file->private_data;
3187
	struct ring_buffer *rb;
3188
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3189

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3207
	rcu_read_lock();
3208
	rb = rcu_dereference(event->rb);
3209 3210
	if (rb) {
		ring_buffer_attach(event, rb);
3211
		events = atomic_xchg(&rb->poll, 0);
3212
	}
P
Peter Zijlstra 已提交
3213
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3214

3215 3216
	mutex_unlock(&event->mmap_mutex);

3217
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3218 3219 3220 3221

	return events;
}

3222
static void perf_event_reset(struct perf_event *event)
3223
{
3224
	(void)perf_event_read(event);
3225
	local64_set(&event->count, 0);
3226
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3227 3228
}

3229
/*
3230 3231 3232 3233
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3234
 */
3235 3236
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3237
{
3238
	struct perf_event *child;
P
Peter Zijlstra 已提交
3239

3240 3241 3242 3243
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3244
		func(child);
3245
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3246 3247
}

3248 3249
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3250
{
3251 3252
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3253

3254 3255
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3256
	event = event->group_leader;
3257

3258 3259
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3260
		perf_event_for_each_child(sibling, func);
3261
	mutex_unlock(&ctx->mutex);
3262 3263
}

3264
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3265
{
3266
	struct perf_event_context *ctx = event->ctx;
3267 3268 3269
	int ret = 0;
	u64 value;

3270
	if (!is_sampling_event(event))
3271 3272
		return -EINVAL;

3273
	if (copy_from_user(&value, arg, sizeof(value)))
3274 3275 3276 3277 3278
		return -EFAULT;

	if (!value)
		return -EINVAL;

3279
	raw_spin_lock_irq(&ctx->lock);
3280 3281
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3282 3283 3284 3285
			ret = -EINVAL;
			goto unlock;
		}

3286
		event->attr.sample_freq = value;
3287
	} else {
3288 3289
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3290 3291
	}
unlock:
3292
	raw_spin_unlock_irq(&ctx->lock);
3293 3294 3295 3296

	return ret;
}

3297 3298
static const struct file_operations perf_fops;

3299
static inline int perf_fget_light(int fd, struct fd *p)
3300
{
3301 3302 3303
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3304

3305 3306 3307
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3308
	}
3309 3310
	*p = f;
	return 0;
3311 3312 3313 3314
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3315
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3316

3317 3318
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3319 3320
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3321
	u32 flags = arg;
3322 3323

	switch (cmd) {
3324 3325
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3326
		break;
3327 3328
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3329
		break;
3330 3331
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3332
		break;
P
Peter Zijlstra 已提交
3333

3334 3335
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3336

3337 3338
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3339

3340
	case PERF_EVENT_IOC_SET_OUTPUT:
3341 3342 3343
	{
		int ret;
		if (arg != -1) {
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3354 3355 3356
		}
		return ret;
	}
3357

L
Li Zefan 已提交
3358 3359 3360
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3361
	default:
P
Peter Zijlstra 已提交
3362
		return -ENOTTY;
3363
	}
P
Peter Zijlstra 已提交
3364 3365

	if (flags & PERF_IOC_FLAG_GROUP)
3366
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3367
	else
3368
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3369 3370

	return 0;
3371 3372
}

3373
int perf_event_task_enable(void)
3374
{
3375
	struct perf_event *event;
3376

3377 3378 3379 3380
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3381 3382 3383 3384

	return 0;
}

3385
int perf_event_task_disable(void)
3386
{
3387
	struct perf_event *event;
3388

3389 3390 3391 3392
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3393 3394 3395 3396

	return 0;
}

3397
static int perf_event_index(struct perf_event *event)
3398
{
P
Peter Zijlstra 已提交
3399 3400 3401
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3402
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3403 3404
		return 0;

3405
	return event->pmu->event_idx(event);
3406 3407
}

3408
static void calc_timer_values(struct perf_event *event,
3409
				u64 *now,
3410 3411
				u64 *enabled,
				u64 *running)
3412
{
3413
	u64 ctx_time;
3414

3415 3416
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3417 3418 3419 3420
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3421
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3422 3423 3424
{
}

3425 3426 3427 3428 3429
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3430
void perf_event_update_userpage(struct perf_event *event)
3431
{
3432
	struct perf_event_mmap_page *userpg;
3433
	struct ring_buffer *rb;
3434
	u64 enabled, running, now;
3435 3436

	rcu_read_lock();
3437 3438 3439 3440 3441 3442 3443 3444 3445
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3446
	calc_timer_values(event, &now, &enabled, &running);
3447 3448
	rb = rcu_dereference(event->rb);
	if (!rb)
3449 3450
		goto unlock;

3451
	userpg = rb->user_page;
3452

3453 3454 3455 3456 3457
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3458
	++userpg->lock;
3459
	barrier();
3460
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3461
	userpg->offset = perf_event_count(event);
3462
	if (userpg->index)
3463
		userpg->offset -= local64_read(&event->hw.prev_count);
3464

3465
	userpg->time_enabled = enabled +
3466
			atomic64_read(&event->child_total_time_enabled);
3467

3468
	userpg->time_running = running +
3469
			atomic64_read(&event->child_total_time_running);
3470

3471
	arch_perf_update_userpage(userpg, now);
3472

3473
	barrier();
3474
	++userpg->lock;
3475
	preempt_enable();
3476
unlock:
3477
	rcu_read_unlock();
3478 3479
}

3480 3481 3482
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3483
	struct ring_buffer *rb;
3484 3485 3486 3487 3488 3489 3490 3491 3492
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3493 3494
	rb = rcu_dereference(event->rb);
	if (!rb)
3495 3496 3497 3498 3499
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3500
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3552 3553 3554 3555
	if (!rb)
		goto unlock;

	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3556
		wake_up_all(&event->waitq);
3557 3558

unlock:
3559 3560 3561
	rcu_read_unlock();
}

3562
static void rb_free_rcu(struct rcu_head *rcu_head)
3563
{
3564
	struct ring_buffer *rb;
3565

3566 3567
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3568 3569
}

3570
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3571
{
3572
	struct ring_buffer *rb;
3573

3574
	rcu_read_lock();
3575 3576 3577 3578
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3579 3580 3581
	}
	rcu_read_unlock();

3582
	return rb;
3583 3584
}

P
Peter Zijlstra 已提交
3585
static bool ring_buffer_put(struct ring_buffer *rb)
3586
{
3587 3588 3589
	struct perf_event *event, *n;
	unsigned long flags;

3590
	if (!atomic_dec_and_test(&rb->refcount))
P
Peter Zijlstra 已提交
3591
		return false;
3592

3593 3594 3595 3596 3597 3598 3599
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3600
	call_rcu(&rb->rcu_head, rb_free_rcu);
P
Peter Zijlstra 已提交
3601
	return true;
3602 3603 3604 3605
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3606
	struct perf_event *event = vma->vm_file->private_data;
3607

3608
	atomic_inc(&event->mmap_count);
3609 3610 3611 3612
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3613
	struct perf_event *event = vma->vm_file->private_data;
3614

3615
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3616
		struct ring_buffer *rb = event->rb;
P
Peter Zijlstra 已提交
3617 3618 3619
		struct user_struct *mmap_user = rb->mmap_user;
		int mmap_locked = rb->mmap_locked;
		unsigned long size = perf_data_size(rb);
3620

3621
		rcu_assign_pointer(event->rb, NULL);
3622
		ring_buffer_detach(event, rb);
3623
		mutex_unlock(&event->mmap_mutex);
3624

P
Peter Zijlstra 已提交
3625 3626 3627 3628 3629
		if (ring_buffer_put(rb)) {
			atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
			vma->vm_mm->pinned_vm -= mmap_locked;
			free_uid(mmap_user);
		}
3630
	}
3631 3632
}

3633
static const struct vm_operations_struct perf_mmap_vmops = {
3634 3635 3636 3637
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3638 3639 3640 3641
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3642
	struct perf_event *event = file->private_data;
3643
	unsigned long user_locked, user_lock_limit;
3644
	struct user_struct *user = current_user();
3645
	unsigned long locked, lock_limit;
3646
	struct ring_buffer *rb;
3647 3648
	unsigned long vma_size;
	unsigned long nr_pages;
3649
	long user_extra, extra;
3650
	int ret = 0, flags = 0;
3651

3652 3653 3654
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3655
	 * same rb.
3656 3657 3658 3659
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3660
	if (!(vma->vm_flags & VM_SHARED))
3661
		return -EINVAL;
3662 3663 3664 3665

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3666
	/*
3667
	 * If we have rb pages ensure they're a power-of-two number, so we
3668 3669 3670
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3671 3672
		return -EINVAL;

3673
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3674 3675
		return -EINVAL;

3676 3677
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3678

3679 3680
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3681
	if (event->rb) {
P
Peter Zijlstra 已提交
3682
		if (event->rb->nr_pages != nr_pages)
3683 3684 3685 3686
			ret = -EINVAL;
		goto unlock;
	}

3687
	user_extra = nr_pages + 1;
3688
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3689 3690 3691 3692 3693 3694

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3695
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3696

3697 3698 3699
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3700

3701
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3702
	lock_limit >>= PAGE_SHIFT;
3703
	locked = vma->vm_mm->pinned_vm + extra;
3704

3705 3706
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3707 3708 3709
		ret = -EPERM;
		goto unlock;
	}
3710

3711
	WARN_ON(event->rb);
3712

3713
	if (vma->vm_flags & VM_WRITE)
3714
		flags |= RING_BUFFER_WRITABLE;
3715

3716 3717 3718 3719
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3720
	if (!rb) {
3721
		ret = -ENOMEM;
3722
		goto unlock;
3723
	}
P
Peter Zijlstra 已提交
3724 3725 3726

	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
3727

3728
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
3729 3730 3731
	vma->vm_mm->pinned_vm += extra;

	rcu_assign_pointer(event->rb, rb);
3732

3733 3734
	perf_event_update_userpage(event);

3735
unlock:
3736 3737
	if (!ret)
		atomic_inc(&event->mmap_count);
3738
	mutex_unlock(&event->mmap_mutex);
3739

P
Peter Zijlstra 已提交
3740
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
3741
	vma->vm_ops = &perf_mmap_vmops;
3742 3743

	return ret;
3744 3745
}

P
Peter Zijlstra 已提交
3746 3747
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
3748
	struct inode *inode = file_inode(filp);
3749
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3750 3751 3752
	int retval;

	mutex_lock(&inode->i_mutex);
3753
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3754 3755 3756 3757 3758 3759 3760 3761
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3762
static const struct file_operations perf_fops = {
3763
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3764 3765 3766
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3767 3768
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3769
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3770
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3771 3772
};

3773
/*
3774
 * Perf event wakeup
3775 3776 3777 3778 3779
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3780
void perf_event_wakeup(struct perf_event *event)
3781
{
3782
	ring_buffer_wakeup(event);
3783

3784 3785 3786
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3787
	}
3788 3789
}

3790
static void perf_pending_event(struct irq_work *entry)
3791
{
3792 3793
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3794

3795 3796 3797
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3798 3799
	}

3800 3801 3802
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3803 3804 3805
	}
}

3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

3953 3954 3955
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3983 3984 3985
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

4012 4013 4014
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4015 4016 4017 4018 4019
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4020
static void perf_output_read_one(struct perf_output_handle *handle,
4021 4022
				 struct perf_event *event,
				 u64 enabled, u64 running)
4023
{
4024
	u64 read_format = event->attr.read_format;
4025 4026 4027
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4028
	values[n++] = perf_event_count(event);
4029
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4030
		values[n++] = enabled +
4031
			atomic64_read(&event->child_total_time_enabled);
4032 4033
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4034
		values[n++] = running +
4035
			atomic64_read(&event->child_total_time_running);
4036 4037
	}
	if (read_format & PERF_FORMAT_ID)
4038
		values[n++] = primary_event_id(event);
4039

4040
	__output_copy(handle, values, n * sizeof(u64));
4041 4042 4043
}

/*
4044
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4045 4046
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4047 4048
			    struct perf_event *event,
			    u64 enabled, u64 running)
4049
{
4050 4051
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4052 4053 4054 4055 4056 4057
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4058
		values[n++] = enabled;
4059 4060

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4061
		values[n++] = running;
4062

4063
	if (leader != event)
4064 4065
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4066
	values[n++] = perf_event_count(leader);
4067
	if (read_format & PERF_FORMAT_ID)
4068
		values[n++] = primary_event_id(leader);
4069

4070
	__output_copy(handle, values, n * sizeof(u64));
4071

4072
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4073 4074
		n = 0;

4075
		if (sub != event)
4076 4077
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4078
		values[n++] = perf_event_count(sub);
4079
		if (read_format & PERF_FORMAT_ID)
4080
			values[n++] = primary_event_id(sub);
4081

4082
		__output_copy(handle, values, n * sizeof(u64));
4083 4084 4085
	}
}

4086 4087 4088
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4089
static void perf_output_read(struct perf_output_handle *handle,
4090
			     struct perf_event *event)
4091
{
4092
	u64 enabled = 0, running = 0, now;
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4104
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4105
		calc_timer_values(event, &now, &enabled, &running);
4106

4107
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4108
		perf_output_read_group(handle, event, enabled, running);
4109
	else
4110
		perf_output_read_one(handle, event, enabled, running);
4111 4112
}

4113 4114 4115
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4116
			struct perf_event *event)
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4147
		perf_output_read(handle, event);
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4158
			__output_copy(handle, data->callchain, size);
4159 4160 4161 4162 4163 4164 4165 4166 4167
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4168 4169
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4230 4231 4232 4233 4234

	if (sample_type & PERF_SAMPLE_STACK_USER)
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
A
Andi Kleen 已提交
4235 4236 4237

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4238 4239 4240

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4241 4242 4243 4244
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4245
			 struct perf_event *event,
4246
			 struct pt_regs *regs)
4247
{
4248
	u64 sample_type = event->attr.sample_type;
4249

4250
	header->type = PERF_RECORD_SAMPLE;
4251
	header->size = sizeof(*header) + event->header_size;
4252 4253 4254

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4255

4256
	__perf_event_header__init_id(header, data, event);
4257

4258
	if (sample_type & PERF_SAMPLE_IP)
4259 4260
		data->ip = perf_instruction_pointer(regs);

4261
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4262
		int size = 1;
4263

4264
		data->callchain = perf_callchain(event, regs);
4265 4266 4267 4268 4269

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4270 4271
	}

4272
	if (sample_type & PERF_SAMPLE_RAW) {
4273 4274 4275 4276 4277 4278 4279 4280
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4281
		header->size += size;
4282
	}
4283 4284 4285 4286 4287 4288 4289 4290 4291

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4335
}
4336

4337
static void perf_event_output(struct perf_event *event,
4338 4339 4340 4341 4342
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4343

4344 4345 4346
	/* protect the callchain buffers */
	rcu_read_lock();

4347
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4348

4349
	if (perf_output_begin(&handle, event, header.size))
4350
		goto exit;
4351

4352
	perf_output_sample(&handle, &header, data, event);
4353

4354
	perf_output_end(&handle);
4355 4356 4357

exit:
	rcu_read_unlock();
4358 4359
}

4360
/*
4361
 * read event_id
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4372
perf_event_read_event(struct perf_event *event,
4373 4374 4375
			struct task_struct *task)
{
	struct perf_output_handle handle;
4376
	struct perf_sample_data sample;
4377
	struct perf_read_event read_event = {
4378
		.header = {
4379
			.type = PERF_RECORD_READ,
4380
			.misc = 0,
4381
			.size = sizeof(read_event) + event->read_size,
4382
		},
4383 4384
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4385
	};
4386
	int ret;
4387

4388
	perf_event_header__init_id(&read_event.header, &sample, event);
4389
	ret = perf_output_begin(&handle, event, read_event.header.size);
4390 4391 4392
	if (ret)
		return;

4393
	perf_output_put(&handle, read_event);
4394
	perf_output_read(&handle, event);
4395
	perf_event__output_id_sample(event, &handle, &sample);
4396

4397 4398 4399
	perf_output_end(&handle);
}

4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
typedef int  (perf_event_aux_match_cb)(struct perf_event *event, void *data);
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_match_cb match,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		if (match(event, data))
			output(event, data);
	}
}

static void
perf_event_aux(perf_event_aux_match_cb match,
	       perf_event_aux_output_cb output,
	       void *data,
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
		perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_aux_ctx(ctx, match, output, data);
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
		perf_event_aux_ctx(task_ctx, match, output, data);
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4458
/*
P
Peter Zijlstra 已提交
4459 4460
 * task tracking -- fork/exit
 *
4461
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4462 4463
 */

P
Peter Zijlstra 已提交
4464
struct perf_task_event {
4465
	struct task_struct		*task;
4466
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4467 4468 4469 4470 4471 4472

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4473 4474
		u32				tid;
		u32				ptid;
4475
		u64				time;
4476
	} event_id;
P
Peter Zijlstra 已提交
4477 4478
};

4479
static void perf_event_task_output(struct perf_event *event,
4480
				   void *data)
P
Peter Zijlstra 已提交
4481
{
4482
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4483
	struct perf_output_handle handle;
4484
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4485
	struct task_struct *task = task_event->task;
4486
	int ret, size = task_event->event_id.header.size;
4487

4488
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4489

4490
	ret = perf_output_begin(&handle, event,
4491
				task_event->event_id.header.size);
4492
	if (ret)
4493
		goto out;
P
Peter Zijlstra 已提交
4494

4495 4496
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4497

4498 4499
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4500

4501
	perf_output_put(&handle, task_event->event_id);
4502

4503 4504
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4505
	perf_output_end(&handle);
4506 4507
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4508 4509
}

4510 4511
static int perf_event_task_match(struct perf_event *event,
				 void *data __maybe_unused)
P
Peter Zijlstra 已提交
4512
{
4513 4514
	return event->attr.comm || event->attr.mmap ||
	       event->attr.mmap_data || event->attr.task;
P
Peter Zijlstra 已提交
4515 4516
}

4517 4518
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4519
			      int new)
P
Peter Zijlstra 已提交
4520
{
P
Peter Zijlstra 已提交
4521
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4522

4523 4524 4525
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4526 4527
		return;

P
Peter Zijlstra 已提交
4528
	task_event = (struct perf_task_event){
4529 4530
		.task	  = task,
		.task_ctx = task_ctx,
4531
		.event_id    = {
P
Peter Zijlstra 已提交
4532
			.header = {
4533
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4534
				.misc = 0,
4535
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4536
			},
4537 4538
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4539 4540
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4541
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4542 4543 4544
		},
	};

4545 4546 4547 4548
	perf_event_aux(perf_event_task_match,
		       perf_event_task_output,
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4549 4550
}

4551
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4552
{
4553
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4554 4555
}

4556 4557 4558 4559 4560
/*
 * comm tracking
 */

struct perf_comm_event {
4561 4562
	struct task_struct	*task;
	char			*comm;
4563 4564 4565 4566 4567 4568 4569
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4570
	} event_id;
4571 4572
};

4573
static void perf_event_comm_output(struct perf_event *event,
4574
				   void *data)
4575
{
4576
	struct perf_comm_event *comm_event = data;
4577
	struct perf_output_handle handle;
4578
	struct perf_sample_data sample;
4579
	int size = comm_event->event_id.header.size;
4580 4581 4582 4583
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4584
				comm_event->event_id.header.size);
4585 4586

	if (ret)
4587
		goto out;
4588

4589 4590
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4591

4592
	perf_output_put(&handle, comm_event->event_id);
4593
	__output_copy(&handle, comm_event->comm,
4594
				   comm_event->comm_size);
4595 4596 4597

	perf_event__output_id_sample(event, &handle, &sample);

4598
	perf_output_end(&handle);
4599 4600
out:
	comm_event->event_id.header.size = size;
4601 4602
}

4603 4604
static int perf_event_comm_match(struct perf_event *event,
				 void *data __maybe_unused)
4605
{
4606
	return event->attr.comm;
4607 4608
}

4609
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4610
{
4611
	char comm[TASK_COMM_LEN];
4612 4613
	unsigned int size;

4614
	memset(comm, 0, sizeof(comm));
4615
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4616
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4617 4618 4619 4620

	comm_event->comm = comm;
	comm_event->comm_size = size;

4621
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
4622

4623 4624 4625 4626
	perf_event_aux(perf_event_comm_match,
		       perf_event_comm_output,
		       comm_event,
		       NULL);
4627 4628
}

4629
void perf_event_comm(struct task_struct *task)
4630
{
4631
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4632 4633
	struct perf_event_context *ctx;
	int ctxn;
4634

4635
	rcu_read_lock();
P
Peter Zijlstra 已提交
4636 4637 4638 4639
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4640

P
Peter Zijlstra 已提交
4641 4642
		perf_event_enable_on_exec(ctx);
	}
4643
	rcu_read_unlock();
4644

4645
	if (!atomic_read(&nr_comm_events))
4646
		return;
4647

4648
	comm_event = (struct perf_comm_event){
4649
		.task	= task,
4650 4651
		/* .comm      */
		/* .comm_size */
4652
		.event_id  = {
4653
			.header = {
4654
				.type = PERF_RECORD_COMM,
4655 4656 4657 4658 4659
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4660 4661 4662
		},
	};

4663
	perf_event_comm_event(&comm_event);
4664 4665
}

4666 4667 4668 4669 4670
/*
 * mmap tracking
 */

struct perf_mmap_event {
4671 4672 4673 4674
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4675 4676 4677 4678 4679 4680 4681 4682 4683

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4684
	} event_id;
4685 4686
};

4687
static void perf_event_mmap_output(struct perf_event *event,
4688
				   void *data)
4689
{
4690
	struct perf_mmap_event *mmap_event = data;
4691
	struct perf_output_handle handle;
4692
	struct perf_sample_data sample;
4693
	int size = mmap_event->event_id.header.size;
4694
	int ret;
4695

4696 4697
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4698
				mmap_event->event_id.header.size);
4699
	if (ret)
4700
		goto out;
4701

4702 4703
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4704

4705
	perf_output_put(&handle, mmap_event->event_id);
4706
	__output_copy(&handle, mmap_event->file_name,
4707
				   mmap_event->file_size);
4708 4709 4710

	perf_event__output_id_sample(event, &handle, &sample);

4711
	perf_output_end(&handle);
4712 4713
out:
	mmap_event->event_id.header.size = size;
4714 4715
}

4716
static int perf_event_mmap_match(struct perf_event *event,
4717
				 void *data)
4718
{
4719 4720 4721
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;
4722

4723 4724
	return (!executable && event->attr.mmap_data) ||
	       (executable && event->attr.mmap);
4725 4726
}

4727
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4728
{
4729 4730
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4731 4732 4733
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4734
	const char *name;
4735

4736 4737
	memset(tmp, 0, sizeof(tmp));

4738
	if (file) {
4739
		/*
4740
		 * d_path works from the end of the rb backwards, so we
4741 4742 4743 4744
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4745 4746 4747 4748
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4749
		name = d_path(&file->f_path, buf, PATH_MAX);
4750 4751 4752 4753 4754
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4755 4756
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4757 4758
				       sizeof(tmp) - 1);
			tmp[sizeof(tmp) - 1] = '\0';
4759
			goto got_name;
4760
		}
4761 4762 4763 4764

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4765 4766 4767 4768 4769 4770 4771 4772
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4773 4774
		}

4775 4776 4777 4778 4779
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4780
	size = ALIGN(strlen(name)+1, sizeof(u64));
4781 4782 4783 4784

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4785 4786 4787
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

4788
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4789

4790 4791 4792 4793
	perf_event_aux(perf_event_mmap_match,
		       perf_event_mmap_output,
		       mmap_event,
		       NULL);
4794

4795 4796 4797
	kfree(buf);
}

4798
void perf_event_mmap(struct vm_area_struct *vma)
4799
{
4800 4801
	struct perf_mmap_event mmap_event;

4802
	if (!atomic_read(&nr_mmap_events))
4803 4804 4805
		return;

	mmap_event = (struct perf_mmap_event){
4806
		.vma	= vma,
4807 4808
		/* .file_name */
		/* .file_size */
4809
		.event_id  = {
4810
			.header = {
4811
				.type = PERF_RECORD_MMAP,
4812
				.misc = PERF_RECORD_MISC_USER,
4813 4814 4815 4816
				/* .size */
			},
			/* .pid */
			/* .tid */
4817 4818
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4819
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4820 4821 4822
		},
	};

4823
	perf_event_mmap_event(&mmap_event);
4824 4825
}

4826 4827 4828 4829
/*
 * IRQ throttle logging
 */

4830
static void perf_log_throttle(struct perf_event *event, int enable)
4831 4832
{
	struct perf_output_handle handle;
4833
	struct perf_sample_data sample;
4834 4835 4836 4837 4838
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4839
		u64				id;
4840
		u64				stream_id;
4841 4842
	} throttle_event = {
		.header = {
4843
			.type = PERF_RECORD_THROTTLE,
4844 4845 4846
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4847
		.time		= perf_clock(),
4848 4849
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4850 4851
	};

4852
	if (enable)
4853
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4854

4855 4856 4857
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4858
				throttle_event.header.size);
4859 4860 4861 4862
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4863
	perf_event__output_id_sample(event, &handle, &sample);
4864 4865 4866
	perf_output_end(&handle);
}

4867
/*
4868
 * Generic event overflow handling, sampling.
4869 4870
 */

4871
static int __perf_event_overflow(struct perf_event *event,
4872 4873
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4874
{
4875 4876
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4877
	u64 seq;
4878 4879
	int ret = 0;

4880 4881 4882 4883 4884 4885 4886
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4887 4888 4889 4890 4891 4892 4893 4894 4895
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
4896 4897
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4898 4899
			ret = 1;
		}
4900
	}
4901

4902
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4903
		u64 now = perf_clock();
4904
		s64 delta = now - hwc->freq_time_stamp;
4905

4906
		hwc->freq_time_stamp = now;
4907

4908
		if (delta > 0 && delta < 2*TICK_NSEC)
4909
			perf_adjust_period(event, delta, hwc->last_period, true);
4910 4911
	}

4912 4913
	/*
	 * XXX event_limit might not quite work as expected on inherited
4914
	 * events
4915 4916
	 */

4917 4918
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4919
		ret = 1;
4920
		event->pending_kill = POLL_HUP;
4921 4922
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4923 4924
	}

4925
	if (event->overflow_handler)
4926
		event->overflow_handler(event, data, regs);
4927
	else
4928
		perf_event_output(event, data, regs);
4929

P
Peter Zijlstra 已提交
4930
	if (event->fasync && event->pending_kill) {
4931 4932
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4933 4934
	}

4935
	return ret;
4936 4937
}

4938
int perf_event_overflow(struct perf_event *event,
4939 4940
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4941
{
4942
	return __perf_event_overflow(event, 1, data, regs);
4943 4944
}

4945
/*
4946
 * Generic software event infrastructure
4947 4948
 */

4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4960
/*
4961 4962
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4963 4964 4965 4966
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4967
static u64 perf_swevent_set_period(struct perf_event *event)
4968
{
4969
	struct hw_perf_event *hwc = &event->hw;
4970 4971 4972 4973 4974
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4975 4976

again:
4977
	old = val = local64_read(&hwc->period_left);
4978 4979
	if (val < 0)
		return 0;
4980

4981 4982 4983
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4984
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4985
		goto again;
4986

4987
	return nr;
4988 4989
}

4990
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4991
				    struct perf_sample_data *data,
4992
				    struct pt_regs *regs)
4993
{
4994
	struct hw_perf_event *hwc = &event->hw;
4995
	int throttle = 0;
4996

4997 4998
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4999

5000 5001
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5002

5003
	for (; overflow; overflow--) {
5004
		if (__perf_event_overflow(event, throttle,
5005
					    data, regs)) {
5006 5007 5008 5009 5010 5011
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5012
		throttle = 1;
5013
	}
5014 5015
}

P
Peter Zijlstra 已提交
5016
static void perf_swevent_event(struct perf_event *event, u64 nr,
5017
			       struct perf_sample_data *data,
5018
			       struct pt_regs *regs)
5019
{
5020
	struct hw_perf_event *hwc = &event->hw;
5021

5022
	local64_add(nr, &event->count);
5023

5024 5025 5026
	if (!regs)
		return;

5027
	if (!is_sampling_event(event))
5028
		return;
5029

5030 5031 5032 5033 5034 5035
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5036
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5037
		return perf_swevent_overflow(event, 1, data, regs);
5038

5039
	if (local64_add_negative(nr, &hwc->period_left))
5040
		return;
5041

5042
	perf_swevent_overflow(event, 0, data, regs);
5043 5044
}

5045 5046 5047
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5048
	if (event->hw.state & PERF_HES_STOPPED)
5049
		return 1;
P
Peter Zijlstra 已提交
5050

5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5062
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5063
				enum perf_type_id type,
L
Li Zefan 已提交
5064 5065 5066
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5067
{
5068
	if (event->attr.type != type)
5069
		return 0;
5070

5071
	if (event->attr.config != event_id)
5072 5073
		return 0;

5074 5075
	if (perf_exclude_event(event, regs))
		return 0;
5076 5077 5078 5079

	return 1;
}

5080 5081 5082 5083 5084 5085 5086
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5087 5088
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5089
{
5090 5091 5092 5093
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5094

5095 5096
/* For the read side: events when they trigger */
static inline struct hlist_head *
5097
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5098 5099
{
	struct swevent_hlist *hlist;
5100

5101
	hlist = rcu_dereference(swhash->swevent_hlist);
5102 5103 5104
	if (!hlist)
		return NULL;

5105 5106 5107 5108 5109
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5110
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5121
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5122 5123 5124 5125 5126
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5127 5128 5129
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5130
				    u64 nr,
5131 5132
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5133
{
5134
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5135
	struct perf_event *event;
5136
	struct hlist_head *head;
5137

5138
	rcu_read_lock();
5139
	head = find_swevent_head_rcu(swhash, type, event_id);
5140 5141 5142
	if (!head)
		goto end;

5143
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5144
		if (perf_swevent_match(event, type, event_id, data, regs))
5145
			perf_swevent_event(event, nr, data, regs);
5146
	}
5147 5148
end:
	rcu_read_unlock();
5149 5150
}

5151
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5152
{
5153
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5154

5155
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5156
}
I
Ingo Molnar 已提交
5157
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5158

5159
inline void perf_swevent_put_recursion_context(int rctx)
5160
{
5161
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5162

5163
	put_recursion_context(swhash->recursion, rctx);
5164
}
5165

5166
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5167
{
5168
	struct perf_sample_data data;
5169 5170
	int rctx;

5171
	preempt_disable_notrace();
5172 5173 5174
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5175

5176
	perf_sample_data_init(&data, addr, 0);
5177

5178
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5179 5180

	perf_swevent_put_recursion_context(rctx);
5181
	preempt_enable_notrace();
5182 5183
}

5184
static void perf_swevent_read(struct perf_event *event)
5185 5186 5187
{
}

P
Peter Zijlstra 已提交
5188
static int perf_swevent_add(struct perf_event *event, int flags)
5189
{
5190
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5191
	struct hw_perf_event *hwc = &event->hw;
5192 5193
	struct hlist_head *head;

5194
	if (is_sampling_event(event)) {
5195
		hwc->last_period = hwc->sample_period;
5196
		perf_swevent_set_period(event);
5197
	}
5198

P
Peter Zijlstra 已提交
5199 5200
	hwc->state = !(flags & PERF_EF_START);

5201
	head = find_swevent_head(swhash, event);
5202 5203 5204 5205 5206
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5207 5208 5209
	return 0;
}

P
Peter Zijlstra 已提交
5210
static void perf_swevent_del(struct perf_event *event, int flags)
5211
{
5212
	hlist_del_rcu(&event->hlist_entry);
5213 5214
}

P
Peter Zijlstra 已提交
5215
static void perf_swevent_start(struct perf_event *event, int flags)
5216
{
P
Peter Zijlstra 已提交
5217
	event->hw.state = 0;
5218
}
I
Ingo Molnar 已提交
5219

P
Peter Zijlstra 已提交
5220
static void perf_swevent_stop(struct perf_event *event, int flags)
5221
{
P
Peter Zijlstra 已提交
5222
	event->hw.state = PERF_HES_STOPPED;
5223 5224
}

5225 5226
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5227
swevent_hlist_deref(struct swevent_htable *swhash)
5228
{
5229 5230
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5231 5232
}

5233
static void swevent_hlist_release(struct swevent_htable *swhash)
5234
{
5235
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5236

5237
	if (!hlist)
5238 5239
		return;

5240
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5241
	kfree_rcu(hlist, rcu_head);
5242 5243 5244 5245
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5246
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5247

5248
	mutex_lock(&swhash->hlist_mutex);
5249

5250 5251
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5252

5253
	mutex_unlock(&swhash->hlist_mutex);
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5271
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5272 5273
	int err = 0;

5274
	mutex_lock(&swhash->hlist_mutex);
5275

5276
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5277 5278 5279 5280 5281 5282 5283
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5284
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5285
	}
5286
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5287
exit:
5288
	mutex_unlock(&swhash->hlist_mutex);
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5312
fail:
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5323
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5324

5325 5326 5327
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5328

5329 5330
	WARN_ON(event->parent);

5331
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5332 5333 5334 5335 5336
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5337
	u64 event_id = event->attr.config;
5338 5339 5340 5341

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5342 5343 5344 5345 5346 5347
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5348 5349 5350 5351 5352 5353 5354 5355 5356
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5357
	if (event_id >= PERF_COUNT_SW_MAX)
5358 5359 5360 5361 5362 5363 5364 5365 5366
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5367
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5368 5369 5370 5371 5372 5373
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5374 5375 5376 5377 5378
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5379
static struct pmu perf_swevent = {
5380
	.task_ctx_nr	= perf_sw_context,
5381

5382
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5383 5384 5385 5386
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5387
	.read		= perf_swevent_read,
5388 5389

	.event_idx	= perf_swevent_event_idx,
5390 5391
};

5392 5393
#ifdef CONFIG_EVENT_TRACING

5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5408 5409
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5410 5411 5412 5413
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5414 5415 5416 5417 5418 5419 5420 5421 5422
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5423 5424
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5425 5426
{
	struct perf_sample_data data;
5427 5428
	struct perf_event *event;

5429 5430 5431 5432 5433
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5434
	perf_sample_data_init(&data, addr, 0);
5435 5436
	data.raw = &raw;

5437
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5438
		if (perf_tp_event_match(event, &data, regs))
5439
			perf_swevent_event(event, count, &data, regs);
5440
	}
5441

5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5467
	perf_swevent_put_recursion_context(rctx);
5468 5469 5470
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5471
static void tp_perf_event_destroy(struct perf_event *event)
5472
{
5473
	perf_trace_destroy(event);
5474 5475
}

5476
static int perf_tp_event_init(struct perf_event *event)
5477
{
5478 5479
	int err;

5480 5481 5482
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5483 5484 5485 5486 5487 5488
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5489 5490
	err = perf_trace_init(event);
	if (err)
5491
		return err;
5492

5493
	event->destroy = tp_perf_event_destroy;
5494

5495 5496 5497 5498
	return 0;
}

static struct pmu perf_tracepoint = {
5499 5500
	.task_ctx_nr	= perf_sw_context,

5501
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5502 5503 5504 5505
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5506
	.read		= perf_swevent_read,
5507 5508

	.event_idx	= perf_swevent_event_idx,
5509 5510 5511 5512
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5513
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5514
}
L
Li Zefan 已提交
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5539
#else
L
Li Zefan 已提交
5540

5541
static inline void perf_tp_register(void)
5542 5543
{
}
L
Li Zefan 已提交
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5554
#endif /* CONFIG_EVENT_TRACING */
5555

5556
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5557
void perf_bp_event(struct perf_event *bp, void *data)
5558
{
5559 5560 5561
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5562
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5563

P
Peter Zijlstra 已提交
5564
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5565
		perf_swevent_event(bp, 1, &sample, regs);
5566 5567 5568
}
#endif

5569 5570 5571
/*
 * hrtimer based swevent callback
 */
5572

5573
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5574
{
5575 5576 5577 5578 5579
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5580

5581
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5582 5583 5584 5585

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5586
	event->pmu->read(event);
5587

5588
	perf_sample_data_init(&data, 0, event->hw.last_period);
5589 5590 5591
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5592
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5593
			if (__perf_event_overflow(event, 1, &data, regs))
5594 5595
				ret = HRTIMER_NORESTART;
	}
5596

5597 5598
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5599

5600
	return ret;
5601 5602
}

5603
static void perf_swevent_start_hrtimer(struct perf_event *event)
5604
{
5605
	struct hw_perf_event *hwc = &event->hw;
5606 5607 5608 5609
	s64 period;

	if (!is_sampling_event(event))
		return;
5610

5611 5612 5613 5614
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5615

5616 5617 5618 5619 5620
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5621
				ns_to_ktime(period), 0,
5622
				HRTIMER_MODE_REL_PINNED, 0);
5623
}
5624 5625

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5626
{
5627 5628
	struct hw_perf_event *hwc = &event->hw;

5629
	if (is_sampling_event(event)) {
5630
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5631
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5632 5633 5634

		hrtimer_cancel(&hwc->hrtimer);
	}
5635 5636
}

P
Peter Zijlstra 已提交
5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
5657
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
5658 5659 5660 5661
		event->attr.freq = 0;
	}
}

5662 5663 5664 5665 5666
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5667
{
5668 5669 5670
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5671
	now = local_clock();
5672 5673
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5674 5675
}

P
Peter Zijlstra 已提交
5676
static void cpu_clock_event_start(struct perf_event *event, int flags)
5677
{
P
Peter Zijlstra 已提交
5678
	local64_set(&event->hw.prev_count, local_clock());
5679 5680 5681
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5682
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5683
{
5684 5685 5686
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5687

P
Peter Zijlstra 已提交
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5701 5702 5703 5704
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5705

5706 5707 5708 5709 5710 5711 5712 5713
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

5714 5715 5716 5717 5718 5719
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5720 5721
	perf_swevent_init_hrtimer(event);

5722
	return 0;
5723 5724
}

5725
static struct pmu perf_cpu_clock = {
5726 5727
	.task_ctx_nr	= perf_sw_context,

5728
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5729 5730 5731 5732
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5733
	.read		= cpu_clock_event_read,
5734 5735

	.event_idx	= perf_swevent_event_idx,
5736 5737 5738 5739 5740 5741 5742
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5743
{
5744 5745
	u64 prev;
	s64 delta;
5746

5747 5748 5749 5750
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5751

P
Peter Zijlstra 已提交
5752
static void task_clock_event_start(struct perf_event *event, int flags)
5753
{
P
Peter Zijlstra 已提交
5754
	local64_set(&event->hw.prev_count, event->ctx->time);
5755 5756 5757
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5758
static void task_clock_event_stop(struct perf_event *event, int flags)
5759 5760 5761
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5762 5763 5764 5765 5766 5767
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5768

P
Peter Zijlstra 已提交
5769 5770 5771 5772 5773 5774
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5775 5776 5777 5778
}

static void task_clock_event_read(struct perf_event *event)
{
5779 5780 5781
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5782 5783 5784 5785 5786

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5787
{
5788 5789 5790 5791 5792 5793
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

5794 5795 5796 5797 5798 5799
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5800 5801
	perf_swevent_init_hrtimer(event);

5802
	return 0;
L
Li Zefan 已提交
5803 5804
}

5805
static struct pmu perf_task_clock = {
5806 5807
	.task_ctx_nr	= perf_sw_context,

5808
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5809 5810 5811 5812
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5813
	.read		= task_clock_event_read,
5814 5815

	.event_idx	= perf_swevent_event_idx,
5816
};
L
Li Zefan 已提交
5817

P
Peter Zijlstra 已提交
5818
static void perf_pmu_nop_void(struct pmu *pmu)
5819 5820
{
}
L
Li Zefan 已提交
5821

P
Peter Zijlstra 已提交
5822
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5823
{
P
Peter Zijlstra 已提交
5824
	return 0;
L
Li Zefan 已提交
5825 5826
}

P
Peter Zijlstra 已提交
5827
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5828
{
P
Peter Zijlstra 已提交
5829
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5830 5831
}

P
Peter Zijlstra 已提交
5832 5833 5834 5835 5836
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5837

P
Peter Zijlstra 已提交
5838
static void perf_pmu_cancel_txn(struct pmu *pmu)
5839
{
P
Peter Zijlstra 已提交
5840
	perf_pmu_enable(pmu);
5841 5842
}

5843 5844 5845 5846 5847
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
5848 5849 5850 5851 5852
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5853
{
P
Peter Zijlstra 已提交
5854
	struct pmu *pmu;
5855

P
Peter Zijlstra 已提交
5856 5857
	if (ctxn < 0)
		return NULL;
5858

P
Peter Zijlstra 已提交
5859 5860 5861 5862
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5863

P
Peter Zijlstra 已提交
5864
	return NULL;
5865 5866
}

5867
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5868
{
5869 5870 5871 5872 5873 5874 5875
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

5876 5877
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
5878 5879 5880 5881 5882 5883
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5884

P
Peter Zijlstra 已提交
5885
	mutex_lock(&pmus_lock);
5886
	/*
P
Peter Zijlstra 已提交
5887
	 * Like a real lame refcount.
5888
	 */
5889 5890 5891
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5892
			goto out;
5893
		}
P
Peter Zijlstra 已提交
5894
	}
5895

5896
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5897 5898
out:
	mutex_unlock(&pmus_lock);
5899
}
P
Peter Zijlstra 已提交
5900
static struct idr pmu_idr;
5901

P
Peter Zijlstra 已提交
5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

5934
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5955
static struct lock_class_key cpuctx_mutex;
5956
static struct lock_class_key cpuctx_lock;
5957

P
Peter Zijlstra 已提交
5958
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5959
{
P
Peter Zijlstra 已提交
5960
	int cpu, ret;
5961

5962
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5963 5964 5965 5966
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5967

P
Peter Zijlstra 已提交
5968 5969 5970 5971 5972 5973
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
5974 5975 5976
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
5977 5978 5979 5980 5981
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5982 5983 5984 5985 5986 5987
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5988
skip_type:
P
Peter Zijlstra 已提交
5989 5990 5991
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5992

W
Wei Yongjun 已提交
5993
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
5994 5995
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5996
		goto free_dev;
5997

P
Peter Zijlstra 已提交
5998 5999 6000 6001
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6002
		__perf_event_init_context(&cpuctx->ctx);
6003
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6004
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6005
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6006
		cpuctx->ctx.pmu = pmu;
6007 6008
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6009
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6010
	}
6011

P
Peter Zijlstra 已提交
6012
got_cpu_context:
P
Peter Zijlstra 已提交
6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6027
		}
6028
	}
6029

P
Peter Zijlstra 已提交
6030 6031 6032 6033 6034
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6035 6036 6037
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6038
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6039 6040
	ret = 0;
unlock:
6041 6042
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6043
	return ret;
P
Peter Zijlstra 已提交
6044

P
Peter Zijlstra 已提交
6045 6046 6047 6048
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6049 6050 6051 6052
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6053 6054 6055
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6056 6057
}

6058
void perf_pmu_unregister(struct pmu *pmu)
6059
{
6060 6061 6062
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6063

6064
	/*
P
Peter Zijlstra 已提交
6065 6066
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6067
	 */
6068
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6069
	synchronize_rcu();
6070

P
Peter Zijlstra 已提交
6071
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6072 6073
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6074 6075
	device_del(pmu->dev);
	put_device(pmu->dev);
6076
	free_pmu_context(pmu);
6077
}
6078

6079 6080 6081 6082
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6083
	int ret;
6084 6085

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6086 6087 6088 6089

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6090
	if (pmu) {
6091
		event->pmu = pmu;
6092 6093 6094
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6095
		goto unlock;
6096
	}
P
Peter Zijlstra 已提交
6097

6098
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6099
		event->pmu = pmu;
6100
		ret = pmu->event_init(event);
6101
		if (!ret)
P
Peter Zijlstra 已提交
6102
			goto unlock;
6103

6104 6105
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6106
			goto unlock;
6107
		}
6108
	}
P
Peter Zijlstra 已提交
6109 6110
	pmu = ERR_PTR(-ENOENT);
unlock:
6111
	srcu_read_unlock(&pmus_srcu, idx);
6112

6113
	return pmu;
6114 6115
}

T
Thomas Gleixner 已提交
6116
/*
6117
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6118
 */
6119
static struct perf_event *
6120
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6121 6122 6123
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6124 6125
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6126
{
P
Peter Zijlstra 已提交
6127
	struct pmu *pmu;
6128 6129
	struct perf_event *event;
	struct hw_perf_event *hwc;
6130
	long err;
T
Thomas Gleixner 已提交
6131

6132 6133 6134 6135 6136
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6137
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6138
	if (!event)
6139
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6140

6141
	/*
6142
	 * Single events are their own group leaders, with an
6143 6144 6145
	 * empty sibling list:
	 */
	if (!group_leader)
6146
		group_leader = event;
6147

6148 6149
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6150

6151 6152 6153
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6154 6155
	INIT_LIST_HEAD(&event->rb_entry);

6156
	init_waitqueue_head(&event->waitq);
6157
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6158

6159
	mutex_init(&event->mmap_mutex);
6160

6161
	atomic_long_set(&event->refcount, 1);
6162 6163 6164 6165 6166
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6167

6168
	event->parent		= parent_event;
6169

6170
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6171
	event->id		= atomic64_inc_return(&perf_event_id);
6172

6173
	event->state		= PERF_EVENT_STATE_INACTIVE;
6174

6175 6176
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6177 6178 6179

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6180 6181 6182 6183
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6184
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6185 6186 6187 6188
			event->hw.bp_target = task;
#endif
	}

6189
	if (!overflow_handler && parent_event) {
6190
		overflow_handler = parent_event->overflow_handler;
6191 6192
		context = parent_event->overflow_handler_context;
	}
6193

6194
	event->overflow_handler	= overflow_handler;
6195
	event->overflow_handler_context = context;
6196

J
Jiri Olsa 已提交
6197
	perf_event__state_init(event);
6198

6199
	pmu = NULL;
6200

6201
	hwc = &event->hw;
6202
	hwc->sample_period = attr->sample_period;
6203
	if (attr->freq && attr->sample_freq)
6204
		hwc->sample_period = 1;
6205
	hwc->last_period = hwc->sample_period;
6206

6207
	local64_set(&hwc->period_left, hwc->sample_period);
6208

6209
	/*
6210
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6211
	 */
6212
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6213 6214
		goto done;

6215
	pmu = perf_init_event(event);
6216

6217 6218
done:
	err = 0;
6219
	if (!pmu)
6220
		err = -EINVAL;
6221 6222
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6223

6224
	if (err) {
6225 6226 6227
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6228
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6229
	}
6230

6231
	if (!event->parent) {
6232
		if (event->attach_state & PERF_ATTACH_TASK)
6233
			static_key_slow_inc(&perf_sched_events.key);
6234
		if (event->attr.mmap || event->attr.mmap_data)
6235 6236 6237 6238 6239
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6240 6241 6242 6243 6244 6245 6246
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6247 6248 6249 6250 6251 6252
		if (has_branch_stack(event)) {
			static_key_slow_inc(&perf_sched_events.key);
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_inc(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
6253
	}
6254

6255
	return event;
T
Thomas Gleixner 已提交
6256 6257
}

6258 6259
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6260 6261
{
	u32 size;
6262
	int ret;
6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6287 6288 6289
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6290 6291
	 */
	if (size > sizeof(*attr)) {
6292 6293 6294
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6295

6296 6297
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6298

6299
		for (; addr < end; addr++) {
6300 6301 6302 6303 6304 6305
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6306
		size = sizeof(*attr);
6307 6308 6309 6310 6311 6312
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6313
	if (attr->__reserved_1)
6314 6315 6316 6317 6318 6319 6320 6321
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* kernel level capture: check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
	}
6356

6357
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6358
		ret = perf_reg_validate(attr->sample_regs_user);
6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6377

6378 6379 6380 6381 6382 6383 6384 6385 6386
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6387 6388
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6389
{
6390
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6391 6392
	int ret = -EINVAL;

6393
	if (!output_event)
6394 6395
		goto set;

6396 6397
	/* don't allow circular references */
	if (event == output_event)
6398 6399
		goto out;

6400 6401 6402 6403 6404 6405 6406
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6407
	 * If its not a per-cpu rb, it must be the same task.
6408 6409 6410 6411
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6412
set:
6413
	mutex_lock(&event->mmap_mutex);
6414 6415 6416
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6417

6418
	if (output_event) {
6419 6420 6421
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6422
			goto unlock;
6423 6424
	}

6425 6426
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
6427 6428
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6429
	ret = 0;
6430 6431 6432
unlock:
	mutex_unlock(&event->mmap_mutex);

6433 6434
	if (old_rb)
		ring_buffer_put(old_rb);
6435 6436 6437 6438
out:
	return ret;
}

T
Thomas Gleixner 已提交
6439
/**
6440
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6441
 *
6442
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6443
 * @pid:		target pid
I
Ingo Molnar 已提交
6444
 * @cpu:		target cpu
6445
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6446
 */
6447 6448
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6449
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6450
{
6451 6452
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6453 6454 6455
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6456
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6457
	struct task_struct *task = NULL;
6458
	struct pmu *pmu;
6459
	int event_fd;
6460
	int move_group = 0;
6461
	int err;
T
Thomas Gleixner 已提交
6462

6463
	/* for future expandability... */
S
Stephane Eranian 已提交
6464
	if (flags & ~PERF_FLAG_ALL)
6465 6466
		return -EINVAL;

6467 6468 6469
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6470

6471 6472 6473 6474 6475
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6476
	if (attr.freq) {
6477
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6478 6479 6480
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6481 6482 6483 6484 6485 6486 6487 6488 6489
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6490
	event_fd = get_unused_fd();
6491 6492 6493
	if (event_fd < 0)
		return event_fd;

6494
	if (group_fd != -1) {
6495 6496
		err = perf_fget_light(group_fd, &group);
		if (err)
6497
			goto err_fd;
6498
		group_leader = group.file->private_data;
6499 6500 6501 6502 6503 6504
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6505
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6506 6507 6508 6509 6510 6511 6512
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6513 6514
	get_online_cpus();

6515 6516
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6517 6518
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6519
		goto err_task;
6520 6521
	}

S
Stephane Eranian 已提交
6522 6523 6524 6525
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6526 6527 6528 6529 6530 6531
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6532
		static_key_slow_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6533 6534
	}

6535 6536 6537 6538 6539
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6563 6564 6565 6566

	/*
	 * Get the target context (task or percpu):
	 */
6567
	ctx = find_get_context(pmu, task, event->cpu);
6568 6569
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6570
		goto err_alloc;
6571 6572
	}

6573 6574 6575 6576 6577
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6578
	/*
6579
	 * Look up the group leader (we will attach this event to it):
6580
	 */
6581
	if (group_leader) {
6582
		err = -EINVAL;
6583 6584

		/*
I
Ingo Molnar 已提交
6585 6586 6587 6588
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6589
			goto err_context;
I
Ingo Molnar 已提交
6590 6591 6592
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6593
		 */
6594 6595 6596 6597 6598 6599 6600 6601
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6602 6603 6604
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6605
		if (attr.exclusive || attr.pinned)
6606
			goto err_context;
6607 6608 6609 6610 6611
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6612
			goto err_context;
6613
	}
T
Thomas Gleixner 已提交
6614

6615 6616 6617
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6618
		goto err_context;
6619
	}
6620

6621 6622 6623 6624
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6625
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
6626 6627 6628 6629 6630 6631 6632

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
6633 6634
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6635
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
6636
			perf_event__state_init(sibling);
6637 6638 6639 6640
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6641
	}
6642

6643
	WARN_ON_ONCE(ctx->parent_ctx);
6644
	mutex_lock(&ctx->mutex);
6645 6646

	if (move_group) {
6647
		synchronize_rcu();
6648
		perf_install_in_context(ctx, group_leader, event->cpu);
6649 6650 6651
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6652
			perf_install_in_context(ctx, sibling, event->cpu);
6653 6654 6655 6656
			get_ctx(ctx);
		}
	}

6657
	perf_install_in_context(ctx, event, event->cpu);
6658
	++ctx->generation;
6659
	perf_unpin_context(ctx);
6660
	mutex_unlock(&ctx->mutex);
6661

6662 6663
	put_online_cpus();

6664
	event->owner = current;
P
Peter Zijlstra 已提交
6665

6666 6667 6668
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6669

6670 6671 6672 6673
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6674
	perf_event__id_header_size(event);
6675

6676 6677 6678 6679 6680 6681
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6682
	fdput(group);
6683 6684
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6685

6686
err_context:
6687
	perf_unpin_context(ctx);
6688
	put_ctx(ctx);
6689
err_alloc:
6690
	free_event(event);
P
Peter Zijlstra 已提交
6691
err_task:
6692
	put_online_cpus();
P
Peter Zijlstra 已提交
6693 6694
	if (task)
		put_task_struct(task);
6695
err_group_fd:
6696
	fdput(group);
6697 6698
err_fd:
	put_unused_fd(event_fd);
6699
	return err;
T
Thomas Gleixner 已提交
6700 6701
}

6702 6703 6704 6705 6706
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6707
 * @task: task to profile (NULL for percpu)
6708 6709 6710
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6711
				 struct task_struct *task,
6712 6713
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6714 6715
{
	struct perf_event_context *ctx;
6716
	struct perf_event *event;
6717
	int err;
6718

6719 6720 6721
	/*
	 * Get the target context (task or percpu):
	 */
6722

6723 6724
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6725 6726 6727 6728
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6729

M
Matt Helsley 已提交
6730
	ctx = find_get_context(event->pmu, task, cpu);
6731 6732
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6733
		goto err_free;
6734
	}
6735 6736 6737 6738 6739

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6740
	perf_unpin_context(ctx);
6741 6742 6743 6744
	mutex_unlock(&ctx->mutex);

	return event;

6745 6746 6747
err_free:
	free_event(event);
err:
6748
	return ERR_PTR(err);
6749
}
6750
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6751

6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

6785
static void sync_child_event(struct perf_event *child_event,
6786
			       struct task_struct *child)
6787
{
6788
	struct perf_event *parent_event = child_event->parent;
6789
	u64 child_val;
6790

6791 6792
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6793

P
Peter Zijlstra 已提交
6794
	child_val = perf_event_count(child_event);
6795 6796 6797 6798

	/*
	 * Add back the child's count to the parent's count:
	 */
6799
	atomic64_add(child_val, &parent_event->child_count);
6800 6801 6802 6803
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6804 6805

	/*
6806
	 * Remove this event from the parent's list
6807
	 */
6808 6809 6810 6811
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6812 6813

	/*
6814
	 * Release the parent event, if this was the last
6815 6816
	 * reference to it.
	 */
6817
	put_event(parent_event);
6818 6819
}

6820
static void
6821 6822
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6823
			 struct task_struct *child)
6824
{
6825 6826 6827 6828 6829
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6830

6831
	perf_remove_from_context(child_event);
6832

6833
	/*
6834
	 * It can happen that the parent exits first, and has events
6835
	 * that are still around due to the child reference. These
6836
	 * events need to be zapped.
6837
	 */
6838
	if (child_event->parent) {
6839 6840
		sync_child_event(child_event, child);
		free_event(child_event);
6841
	}
6842 6843
}

P
Peter Zijlstra 已提交
6844
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6845
{
6846 6847
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6848
	unsigned long flags;
6849

P
Peter Zijlstra 已提交
6850
	if (likely(!child->perf_event_ctxp[ctxn])) {
6851
		perf_event_task(child, NULL, 0);
6852
		return;
P
Peter Zijlstra 已提交
6853
	}
6854

6855
	local_irq_save(flags);
6856 6857 6858 6859 6860 6861
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6862
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6863 6864 6865

	/*
	 * Take the context lock here so that if find_get_context is
6866
	 * reading child->perf_event_ctxp, we wait until it has
6867 6868
	 * incremented the context's refcount before we do put_ctx below.
	 */
6869
	raw_spin_lock(&child_ctx->lock);
6870
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6871
	child->perf_event_ctxp[ctxn] = NULL;
6872 6873 6874
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6875
	 * the events from it.
6876 6877
	 */
	unclone_ctx(child_ctx);
6878
	update_context_time(child_ctx);
6879
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6880 6881

	/*
6882 6883 6884
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6885
	 */
6886
	perf_event_task(child, child_ctx, 0);
6887

6888 6889 6890
	/*
	 * We can recurse on the same lock type through:
	 *
6891 6892
	 *   __perf_event_exit_task()
	 *     sync_child_event()
6893 6894
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
6895 6896 6897
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6898
	mutex_lock(&child_ctx->mutex);
6899

6900
again:
6901 6902 6903 6904 6905
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6906
				 group_entry)
6907
		__perf_event_exit_task(child_event, child_ctx, child);
6908 6909

	/*
6910
	 * If the last event was a group event, it will have appended all
6911 6912 6913
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6914 6915
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6916
		goto again;
6917 6918 6919 6920

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6921 6922
}

P
Peter Zijlstra 已提交
6923 6924 6925 6926 6927
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6928
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6929 6930
	int ctxn;

P
Peter Zijlstra 已提交
6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6946 6947 6948 6949
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

6962
	put_event(parent);
6963

6964
	perf_group_detach(event);
6965 6966 6967 6968
	list_del_event(event, ctx);
	free_event(event);
}

6969 6970
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6971
 * perf_event_init_task below, used by fork() in case of fail.
6972
 */
6973
void perf_event_free_task(struct task_struct *task)
6974
{
P
Peter Zijlstra 已提交
6975
	struct perf_event_context *ctx;
6976
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6977
	int ctxn;
6978

P
Peter Zijlstra 已提交
6979 6980 6981 6982
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6983

P
Peter Zijlstra 已提交
6984
		mutex_lock(&ctx->mutex);
6985
again:
P
Peter Zijlstra 已提交
6986 6987 6988
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6989

P
Peter Zijlstra 已提交
6990 6991 6992
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6993

P
Peter Zijlstra 已提交
6994 6995 6996
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6997

P
Peter Zijlstra 已提交
6998
		mutex_unlock(&ctx->mutex);
6999

P
Peter Zijlstra 已提交
7000 7001
		put_ctx(ctx);
	}
7002 7003
}

7004 7005 7006 7007 7008 7009 7010 7011
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7024
	unsigned long flags;
P
Peter Zijlstra 已提交
7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7037
					   child,
P
Peter Zijlstra 已提交
7038
					   group_leader, parent_event,
7039
				           NULL, NULL);
P
Peter Zijlstra 已提交
7040 7041
	if (IS_ERR(child_event))
		return child_event;
7042 7043 7044 7045 7046 7047

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7072 7073
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7074

7075 7076 7077 7078
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7079
	perf_event__id_header_size(child_event);
7080

P
Peter Zijlstra 已提交
7081 7082 7083
	/*
	 * Link it up in the child's context:
	 */
7084
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7085
	add_event_to_ctx(child_event, child_ctx);
7086
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7120 7121 7122 7123 7124
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7125
		   struct task_struct *child, int ctxn,
7126 7127 7128
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7129
	struct perf_event_context *child_ctx;
7130 7131 7132 7133

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7134 7135
	}

7136
	child_ctx = child->perf_event_ctxp[ctxn];
7137 7138 7139 7140 7141 7142 7143
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7144

7145
		child_ctx = alloc_perf_context(event->pmu, child);
7146 7147
		if (!child_ctx)
			return -ENOMEM;
7148

P
Peter Zijlstra 已提交
7149
		child->perf_event_ctxp[ctxn] = child_ctx;
7150 7151 7152 7153 7154 7155 7156 7157 7158
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7159 7160
}

7161
/*
7162
 * Initialize the perf_event context in task_struct
7163
 */
P
Peter Zijlstra 已提交
7164
int perf_event_init_context(struct task_struct *child, int ctxn)
7165
{
7166
	struct perf_event_context *child_ctx, *parent_ctx;
7167 7168
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7169
	struct task_struct *parent = current;
7170
	int inherited_all = 1;
7171
	unsigned long flags;
7172
	int ret = 0;
7173

P
Peter Zijlstra 已提交
7174
	if (likely(!parent->perf_event_ctxp[ctxn]))
7175 7176
		return 0;

7177
	/*
7178 7179
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7180
	 */
P
Peter Zijlstra 已提交
7181
	parent_ctx = perf_pin_task_context(parent, ctxn);
7182

7183 7184 7185 7186 7187 7188 7189
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7190 7191 7192 7193
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7194
	mutex_lock(&parent_ctx->mutex);
7195 7196 7197 7198 7199

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7200
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7201 7202
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7203 7204 7205
		if (ret)
			break;
	}
7206

7207 7208 7209 7210 7211 7212 7213 7214 7215
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7216
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7217 7218
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7219
		if (ret)
7220
			break;
7221 7222
	}

7223 7224 7225
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7226
	child_ctx = child->perf_event_ctxp[ctxn];
7227

7228
	if (child_ctx && inherited_all) {
7229 7230 7231
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7232 7233 7234
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7235
		 */
P
Peter Zijlstra 已提交
7236
		cloned_ctx = parent_ctx->parent_ctx;
7237 7238
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7239
			child_ctx->parent_gen = parent_ctx->parent_gen;
7240 7241 7242 7243 7244
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7245 7246
	}

P
Peter Zijlstra 已提交
7247
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7248
	mutex_unlock(&parent_ctx->mutex);
7249

7250
	perf_unpin_context(parent_ctx);
7251
	put_ctx(parent_ctx);
7252

7253
	return ret;
7254 7255
}

P
Peter Zijlstra 已提交
7256 7257 7258 7259 7260 7261 7262
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7263 7264 7265 7266
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7267 7268 7269 7270 7271 7272 7273 7274 7275
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7276 7277
static void __init perf_event_init_all_cpus(void)
{
7278
	struct swevent_htable *swhash;
7279 7280 7281
	int cpu;

	for_each_possible_cpu(cpu) {
7282 7283
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7284
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7285 7286 7287
	}
}

7288
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7289
{
P
Peter Zijlstra 已提交
7290
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7291

7292
	mutex_lock(&swhash->hlist_mutex);
7293
	if (swhash->hlist_refcount > 0) {
7294 7295
		struct swevent_hlist *hlist;

7296 7297 7298
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7299
	}
7300
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7301 7302
}

P
Peter Zijlstra 已提交
7303
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7304
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7305
{
7306 7307 7308 7309 7310 7311 7312
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7313
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7314
{
P
Peter Zijlstra 已提交
7315
	struct perf_event_context *ctx = __info;
7316
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7317

P
Peter Zijlstra 已提交
7318
	perf_pmu_rotate_stop(ctx->pmu);
7319

7320
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7321
		__perf_remove_from_context(event);
7322
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7323
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7324
}
P
Peter Zijlstra 已提交
7325 7326 7327 7328 7329 7330 7331 7332 7333

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7334
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7335 7336 7337 7338 7339 7340 7341 7342

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7343
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7344
{
7345
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7346

7347 7348 7349
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7350

P
Peter Zijlstra 已提交
7351
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7352 7353
}
#else
7354
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7355 7356
#endif

P
Peter Zijlstra 已提交
7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7377 7378 7379 7380 7381
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7382
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7383 7384

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7385
	case CPU_DOWN_FAILED:
7386
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7387 7388
		break;

P
Peter Zijlstra 已提交
7389
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7390
	case CPU_DOWN_PREPARE:
7391
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7392 7393 7394 7395 7396 7397 7398 7399 7400
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7401
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7402
{
7403 7404
	int ret;

P
Peter Zijlstra 已提交
7405 7406
	idr_init(&pmu_idr);

7407
	perf_event_init_all_cpus();
7408
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7409 7410 7411
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7412 7413
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7414
	register_reboot_notifier(&perf_reboot_notifier);
7415 7416 7417

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7418 7419 7420

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7421 7422 7423 7424 7425 7426 7427

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7428
}
P
Peter Zijlstra 已提交
7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7457 7458

#ifdef CONFIG_CGROUP_PERF
7459
static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
S
Stephane Eranian 已提交
7460 7461 7462
{
	struct perf_cgroup *jc;

7463
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7476
static void perf_cgroup_css_free(struct cgroup *cont)
S
Stephane Eranian 已提交
7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7492
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7493
{
7494 7495 7496 7497
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7498 7499
}

7500 7501
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7502 7503 7504 7505 7506 7507 7508 7509 7510
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7511
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7512 7513 7514
}

struct cgroup_subsys perf_subsys = {
7515 7516
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7517 7518
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7519
	.exit		= perf_cgroup_exit,
7520
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7521 7522
};
#endif /* CONFIG_CGROUP_PERF */