core.c 158.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

36 37
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
38 39
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
40
static LIST_HEAD(regulator_ena_gpio_list);
41
static LIST_HEAD(regulator_supply_alias_list);
42
static LIST_HEAD(regulator_coupler_list);
43
static bool has_full_constraints;
44

45 46
static struct dentry *debugfs_root;

47
/*
48 49 50 51 52 53
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
54
	const char *dev_name;   /* The dev_name() for the consumer */
55
	const char *supply;
56
	struct regulator_dev *regulator;
57 58
};

59 60 61 62 63 64 65
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
66
	struct gpio_desc *gpiod;
67 68 69 70
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

71 72 73 74 75 76 77 78 79 80 81 82 83
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

84
static int _regulator_is_enabled(struct regulator_dev *rdev);
85
static int _regulator_disable(struct regulator *regulator);
86
static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87 88
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89
static int _notifier_call_chain(struct regulator_dev *rdev,
90
				  unsigned long event, void *data);
91 92
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
93 94
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
95 96 97
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
98
static void destroy_regulator(struct regulator *regulator);
99
static void _regulator_put(struct regulator *regulator);
100

101
const char *rdev_get_name(struct regulator_dev *rdev)
102 103 104 105 106 107 108 109
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}
110
EXPORT_SYMBOL_GPL(rdev_get_name);
111

112 113
static bool have_full_constraints(void)
{
114
	return has_full_constraints || of_have_populated_dt();
115 116
}

117 118 119 120 121 122 123 124 125 126 127 128 129
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

130 131 132
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
133
 * @ww_ctx:		w/w mutex acquire context
134 135 136 137 138 139 140
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
141 142
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
143
{
144 145 146 147 148
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

149
	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150
		if (rdev->mutex_owner == current)
151
			rdev->ref_cnt++;
152 153 154 155 156 157 158
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
159
		}
160 161
	} else {
		lock = true;
162 163
	}

164 165 166 167 168 169 170 171
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
172 173
}

174 175 176 177 178 179 180 181 182 183
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
184
static void regulator_lock(struct regulator_dev *rdev)
185
{
186
	regulator_lock_nested(rdev, NULL);
187 188 189 190 191 192 193 194 195
}

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
196
static void regulator_unlock(struct regulator_dev *rdev)
197
{
198
	mutex_lock(&regulator_nesting_mutex);
199

200 201 202
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
203
	}
204 205 206 207

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
208 209
}

210
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
211
{
212 213 214 215 216
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
217

218 219 220 221 222 223 224
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

225 226
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
227
{
228 229
	struct regulator_dev *c_rdev, *supply_rdev;
	int i, supply_n_coupled;
230

231 232
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
233 234 235 236

		if (!c_rdev)
			continue;

237 238 239 240 241 242 243
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
			supply_rdev = c_rdev->supply->rdev;
			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;

			regulator_unlock_recursive(supply_rdev,
						   supply_n_coupled);
		}
244

245 246
		regulator_unlock(c_rdev);
	}
247 248
}

249 250 251 252
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
253
{
254
	struct regulator_dev *c_rdev;
255
	int i, err;
256

257 258
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
259

260 261
		if (!c_rdev)
			continue;
262

263 264 265 266 267 268 269
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
270

271 272 273 274 275 276 277
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

278
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
279 280 281 282 283 284 285 286
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
287 288
		}
	}
289 290 291 292 293 294 295

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
296 297
}

298
/**
299 300 301 302 303
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
304
 * Unlock all regulators related with rdev by coupling or supplying.
305
 */
306 307
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
308
{
309 310
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
311 312 313
}

/**
314 315
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
316
 * @ww_ctx:			w/w mutex acquire context
317 318
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
319
 * all regulators related with rdev by coupling or supplying.
320
 */
321 322
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
323
{
324 325 326
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
327

328
	mutex_lock(&regulator_list_mutex);
329

330
	ww_acquire_init(ww_ctx, &regulator_ww_class);
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
352 353
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
376 377
			if (regnode)
				goto err_node_put;
378
		} else {
379
			goto err_node_put;
380 381 382
		}
	}
	return NULL;
383 384 385 386

err_node_put:
	of_node_put(child);
	return regnode;
387 388
}

389 390 391 392 393 394
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
395
 * returns the device node corresponding to the regulator if found, else
396 397 398 399 400
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
401
	char prop_name[64]; /* 64 is max size of property name */
402 403 404

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

405
	snprintf(prop_name, 64, "%s-supply", supply);
406 407 408
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
409 410 411 412
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

413 414
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
415 416 417 418 419
		return NULL;
	}
	return regnode;
}

420
/* Platform voltage constraint check */
421 422
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
423 424 425
{
	BUG_ON(*min_uV > *max_uV);

426
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
427
		rdev_err(rdev, "voltage operation not allowed\n");
428 429 430 431 432 433 434 435
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

436 437
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
438
			 *min_uV, *max_uV);
439
		return -EINVAL;
440
	}
441 442 443 444

	return 0;
}

445 446 447 448 449 450
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

451 452 453
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
454 455 456
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
457 458
{
	struct regulator *regulator;
459
	struct regulator_voltage *voltage;
460 461

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
462
		voltage = &regulator->voltage[state];
463 464 465 466
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
467
		if (!voltage->min_uV && !voltage->max_uV)
468 469
			continue;

470 471 472 473
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
474 475
	}

476
	if (*min_uV > *max_uV) {
477 478
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
479
		return -EINVAL;
480
	}
481 482 483 484

	return 0;
}

485 486 487 488 489 490
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

491
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
492
		rdev_err(rdev, "current operation not allowed\n");
493 494 495 496 497 498 499 500
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

501 502
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
503
			 *min_uA, *max_uA);
504
		return -EINVAL;
505
	}
506 507 508 509 510

	return 0;
}

/* operating mode constraint check */
511 512
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
513
{
514
	switch (*mode) {
515 516 517 518 519 520
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
521
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
522 523 524
		return -EINVAL;
	}

525
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
526
		rdev_err(rdev, "mode operation not allowed\n");
527 528
		return -EPERM;
	}
529 530 531

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
532 533
	 * try higher modes.
	 */
534 535 536 537
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
538
	}
539 540

	return -EINVAL;
541 542
}

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return NULL;

	/* If we have no suspend mode configuration don't set anything;
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
	 */
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
			rdev_warn(rdev, "No configuration\n");
		return NULL;
	}

	return rstate;
}

585 586
static ssize_t microvolts_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
587
{
588
	struct regulator_dev *rdev = dev_get_drvdata(dev);
589
	int uV;
590

591
	regulator_lock(rdev);
592
	uV = regulator_get_voltage_rdev(rdev);
593
	regulator_unlock(rdev);
594

595 596 597
	if (uV < 0)
		return uV;
	return sprintf(buf, "%d\n", uV);
598
}
599
static DEVICE_ATTR_RO(microvolts);
600

601 602
static ssize_t microamps_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
603
{
604
	struct regulator_dev *rdev = dev_get_drvdata(dev);
605 606 607

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
608
static DEVICE_ATTR_RO(microamps);
609

610 611
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
612 613 614
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

615
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
616
}
617
static DEVICE_ATTR_RO(name);
618

619
static const char *regulator_opmode_to_str(int mode)
620 621 622
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
623
		return "fast";
624
	case REGULATOR_MODE_NORMAL:
625
		return "normal";
626
	case REGULATOR_MODE_IDLE:
627
		return "idle";
628
	case REGULATOR_MODE_STANDBY:
629
		return "standby";
630
	}
631 632 633 634 635 636
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
637 638
}

639 640
static ssize_t opmode_show(struct device *dev,
			   struct device_attribute *attr, char *buf)
641
{
642
	struct regulator_dev *rdev = dev_get_drvdata(dev);
643

D
David Brownell 已提交
644 645
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
646
static DEVICE_ATTR_RO(opmode);
D
David Brownell 已提交
647 648 649

static ssize_t regulator_print_state(char *buf, int state)
{
650 651 652 653 654 655 656 657
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

658 659
static ssize_t state_show(struct device *dev,
			  struct device_attribute *attr, char *buf)
D
David Brownell 已提交
660 661
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
662 663
	ssize_t ret;

664
	regulator_lock(rdev);
665
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
666
	regulator_unlock(rdev);
D
David Brownell 已提交
667

668
	return ret;
D
David Brownell 已提交
669
}
670
static DEVICE_ATTR_RO(state);
D
David Brownell 已提交
671

672 673
static ssize_t status_show(struct device *dev,
			   struct device_attribute *attr, char *buf)
D
David Brownell 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
705 706 707
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
708 709 710
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
711 712 713 714 715 716
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
717
static DEVICE_ATTR_RO(status);
D
David Brownell 已提交
718

719 720
static ssize_t min_microamps_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
721
{
722
	struct regulator_dev *rdev = dev_get_drvdata(dev);
723 724 725 726 727 728

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
729
static DEVICE_ATTR_RO(min_microamps);
730

731 732
static ssize_t max_microamps_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
733
{
734
	struct regulator_dev *rdev = dev_get_drvdata(dev);
735 736 737 738 739 740

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
741
static DEVICE_ATTR_RO(max_microamps);
742

743 744
static ssize_t min_microvolts_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
745
{
746
	struct regulator_dev *rdev = dev_get_drvdata(dev);
747 748 749 750 751 752

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
753
static DEVICE_ATTR_RO(min_microvolts);
754

755 756
static ssize_t max_microvolts_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
757
{
758
	struct regulator_dev *rdev = dev_get_drvdata(dev);
759 760 761 762 763 764

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
765
static DEVICE_ATTR_RO(max_microvolts);
766

767 768
static ssize_t requested_microamps_show(struct device *dev,
					struct device_attribute *attr, char *buf)
769
{
770
	struct regulator_dev *rdev = dev_get_drvdata(dev);
771 772 773
	struct regulator *regulator;
	int uA = 0;

774
	regulator_lock(rdev);
775 776 777 778
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
779
	regulator_unlock(rdev);
780 781
	return sprintf(buf, "%d\n", uA);
}
782
static DEVICE_ATTR_RO(requested_microamps);
783

784 785
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
786
{
787
	struct regulator_dev *rdev = dev_get_drvdata(dev);
788 789
	return sprintf(buf, "%d\n", rdev->use_count);
}
790
static DEVICE_ATTR_RO(num_users);
791

792 793
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
794
{
795
	struct regulator_dev *rdev = dev_get_drvdata(dev);
796 797 798 799 800 801 802 803 804

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
805
static DEVICE_ATTR_RO(type);
806

807 808
static ssize_t suspend_mem_microvolts_show(struct device *dev,
					   struct device_attribute *attr, char *buf)
809
{
810
	struct regulator_dev *rdev = dev_get_drvdata(dev);
811 812 813

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
814
static DEVICE_ATTR_RO(suspend_mem_microvolts);
815

816 817
static ssize_t suspend_disk_microvolts_show(struct device *dev,
					    struct device_attribute *attr, char *buf)
818
{
819
	struct regulator_dev *rdev = dev_get_drvdata(dev);
820 821 822

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
823
static DEVICE_ATTR_RO(suspend_disk_microvolts);
824

825 826
static ssize_t suspend_standby_microvolts_show(struct device *dev,
					       struct device_attribute *attr, char *buf)
827
{
828
	struct regulator_dev *rdev = dev_get_drvdata(dev);
829 830 831

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
832
static DEVICE_ATTR_RO(suspend_standby_microvolts);
833

834 835
static ssize_t suspend_mem_mode_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
836
{
837
	struct regulator_dev *rdev = dev_get_drvdata(dev);
838

D
David Brownell 已提交
839 840
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
841
}
842
static DEVICE_ATTR_RO(suspend_mem_mode);
843

844 845
static ssize_t suspend_disk_mode_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
846
{
847
	struct regulator_dev *rdev = dev_get_drvdata(dev);
848

D
David Brownell 已提交
849 850
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
851
}
852
static DEVICE_ATTR_RO(suspend_disk_mode);
853

854 855
static ssize_t suspend_standby_mode_show(struct device *dev,
					 struct device_attribute *attr, char *buf)
856
{
857
	struct regulator_dev *rdev = dev_get_drvdata(dev);
858

D
David Brownell 已提交
859 860
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
861
}
862
static DEVICE_ATTR_RO(suspend_standby_mode);
863

864 865
static ssize_t suspend_mem_state_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
866
{
867
	struct regulator_dev *rdev = dev_get_drvdata(dev);
868

D
David Brownell 已提交
869 870
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
871
}
872
static DEVICE_ATTR_RO(suspend_mem_state);
873

874 875
static ssize_t suspend_disk_state_show(struct device *dev,
				       struct device_attribute *attr, char *buf)
876
{
877
	struct regulator_dev *rdev = dev_get_drvdata(dev);
878

D
David Brownell 已提交
879 880
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
881
}
882
static DEVICE_ATTR_RO(suspend_disk_state);
883

884 885
static ssize_t suspend_standby_state_show(struct device *dev,
					  struct device_attribute *attr, char *buf)
886
{
887
	struct regulator_dev *rdev = dev_get_drvdata(dev);
888

D
David Brownell 已提交
889 890
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
891
}
892
static DEVICE_ATTR_RO(suspend_standby_state);
893

894 895
static ssize_t bypass_show(struct device *dev,
			   struct device_attribute *attr, char *buf)
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
913
static DEVICE_ATTR_RO(bypass);
914

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
#define REGULATOR_ERROR_ATTR(name, bit)							\
	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
				   char *buf)						\
	{										\
		int ret;								\
		unsigned int flags;							\
		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
		ret = _regulator_get_error_flags(rdev, &flags);				\
		if (ret)								\
			return ret;							\
		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
	}										\
	static DEVICE_ATTR_RO(name)

REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);

939
/* Calculate the new optimum regulator operating mode based on the new total
940 941
 * consumer load. All locks held by caller
 */
942
static int drms_uA_update(struct regulator_dev *rdev)
943 944 945 946 947
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

948 949 950 951
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
952 953
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
954
		return 0;
955
	}
956

957 958
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
959 960
		return 0;

961 962
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
963
		return -EINVAL;
964 965

	/* calc total requested load */
966 967 968 969
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
970

971 972
	current_uA += rdev->constraints->system_load;

973 974 975 976
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
977 978
			rdev_err(rdev, "failed to set load %d: %pe\n",
				 current_uA, ERR_PTR(err));
979
	} else {
980 981 982 983 984 985 986 987 988 989 990 991
		/*
		 * Unfortunately in some cases the constraints->valid_ops has
		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
		 * That's not really legit but we won't consider it a fatal
		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
		 * wasn't set.
		 */
		if (!rdev->constraints->valid_modes_mask) {
			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
			return 0;
		}

992
		/* get output voltage */
993
		output_uV = regulator_get_voltage_rdev(rdev);
994 995 996 997 998 999 1000

		/*
		 * Don't return an error; if regulator driver cares about
		 * output_uV then it's up to the driver to validate.
		 */
		if (output_uV <= 0)
			rdev_dbg(rdev, "invalid output voltage found\n");
1001 1002 1003 1004 1005 1006 1007

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
1008 1009 1010 1011 1012 1013 1014

		/*
		 * Don't return an error; if regulator driver cares about
		 * input_uV then it's up to the driver to validate.
		 */
		if (input_uV <= 0)
			rdev_dbg(rdev, "invalid input voltage found\n");
1015

1016 1017 1018 1019 1020 1021 1022
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
1023 1024
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
				 current_uA, input_uV, output_uV, ERR_PTR(err));
1025 1026
			return err;
		}
1027

1028 1029
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
1030 1031
			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
				 mode, ERR_PTR(err));
1032 1033 1034
	}

	return err;
1035 1036
}

1037 1038
static int __suspend_set_state(struct regulator_dev *rdev,
			       const struct regulator_state *rstate)
1039 1040
{
	int ret = 0;
1041

1042 1043
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1044
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1045 1046
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1047
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1048 1049 1050
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1051
	if (ret < 0) {
1052
		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1053 1054 1055 1056 1057 1058
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1059
			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1060 1061 1062 1063 1064 1065 1066
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1067
			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1068 1069 1070 1071
			return ret;
		}
	}

1072
	return ret;
1073 1074
}

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
static int suspend_set_initial_state(struct regulator_dev *rdev)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev,
			rdev->constraints->initial_state);
	if (!rstate)
		return 0;

	return __suspend_set_state(rdev, rstate);
}

1087 1088
#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
static void print_constraints_debug(struct regulator_dev *rdev)
1089 1090
{
	struct regulation_constraints *constraints = rdev->constraints;
1091
	char buf[160] = "";
1092
	size_t len = sizeof(buf) - 1;
1093 1094
	int count = 0;
	int ret;
1095

1096
	if (constraints->min_uV && constraints->max_uV) {
1097
		if (constraints->min_uV == constraints->max_uV)
1098 1099
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1100
		else
1101 1102 1103 1104
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1105 1106 1107 1108
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1109
		ret = regulator_get_voltage_rdev(rdev);
1110
		if (ret > 0)
1111 1112
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1113 1114
	}

1115
	if (constraints->uV_offset)
1116 1117
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1118

1119
	if (constraints->min_uA && constraints->max_uA) {
1120
		if (constraints->min_uA == constraints->max_uA)
1121 1122
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1123
		else
1124 1125 1126 1127
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1128 1129 1130 1131 1132 1133
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1134 1135
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1136
	}
1137

1138
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1139
		count += scnprintf(buf + count, len - count, "fast ");
1140
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1141
		count += scnprintf(buf + count, len - count, "normal ");
1142
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1143
		count += scnprintf(buf + count, len - count, "idle ");
1144
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1145
		count += scnprintf(buf + count, len - count, "standby ");
1146

1147
	if (!count)
1148 1149 1150 1151 1152 1153
		count = scnprintf(buf, len, "no parameters");
	else
		--count;

	count += scnprintf(buf + count, len - count, ", %s",
		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1154

1155
	rdev_dbg(rdev, "%s\n", buf);
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
}
#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
static inline void print_constraints_debug(struct regulator_dev *rdev) {}
#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;

	print_constraints_debug(rdev);
1166 1167

	if ((constraints->min_uV != constraints->max_uV) &&
1168
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1169 1170
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1171 1172
}

1173
static int machine_constraints_voltage(struct regulator_dev *rdev,
1174
	struct regulation_constraints *constraints)
1175
{
1176
	const struct regulator_ops *ops = rdev->desc->ops;
1177 1178 1179 1180
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1181 1182
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1183
		int current_uV = regulator_get_voltage_rdev(rdev);
1184 1185

		if (current_uV == -ENOTRECOVERABLE) {
1186
			/* This regulator can't be read and must be initialized */
1187 1188 1189 1190 1191 1192
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1193
			current_uV = regulator_get_voltage_rdev(rdev);
1194 1195
		}

1196
		if (current_uV < 0) {
1197 1198 1199 1200
			if (current_uV != -EPROBE_DEFER)
				rdev_err(rdev,
					 "failed to get the current voltage: %pe\n",
					 ERR_PTR(current_uV));
1201 1202
			return current_uV;
		}
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1223 1224
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1225
			ret = _regulator_do_set_voltage(
1226
				rdev, target_min, target_max);
1227 1228
			if (ret < 0) {
				rdev_err(rdev,
1229 1230
					"failed to apply %d-%duV constraint: %pe\n",
					target_min, target_max, ERR_PTR(ret));
1231 1232
				return ret;
			}
1233
		}
1234
	}
1235

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1247
		/* it's safe to autoconfigure fixed-voltage supplies
1248 1249
		 * and the constraints are used by list_voltage.
		 */
1250
		if (count == 1 && !cmin) {
1251
			cmin = 1;
1252
			cmax = INT_MAX;
1253 1254
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1255 1256
		}

1257 1258
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1259
			return 0;
1260

1261
		/* else require explicit machine-level constraints */
1262
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1263
			rdev_err(rdev, "invalid voltage constraints\n");
1264
			return -EINVAL;
1265 1266
		}

1267 1268 1269 1270
		/* no need to loop voltages if range is continuous */
		if (rdev->desc->continuous_voltage_range)
			return 0;

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1288 1289 1290
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1291
			return -EINVAL;
1292 1293 1294 1295
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1296 1297
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1298 1299 1300
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1301 1302
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1303 1304 1305 1306
			constraints->max_uV = max_uV;
		}
	}

1307 1308 1309
	return 0;
}

1310 1311 1312
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1313
	const struct regulator_ops *ops = rdev->desc->ops;
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1340 1341
static int _regulator_do_enable(struct regulator_dev *rdev);

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
static int notif_set_limit(struct regulator_dev *rdev,
			   int (*set)(struct regulator_dev *, int, int, bool),
			   int limit, int severity)
{
	bool enable;

	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
		enable = false;
		limit = 0;
	} else {
		enable = true;
	}

	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
		limit = 0;

	return set(rdev, limit, severity, enable);
}

static int handle_notify_limits(struct regulator_dev *rdev,
			int (*set)(struct regulator_dev *, int, int, bool),
			struct notification_limit *limits)
{
	int ret = 0;

	if (!set)
		return -EOPNOTSUPP;

	if (limits->prot)
		ret = notif_set_limit(rdev, set, limits->prot,
				      REGULATOR_SEVERITY_PROT);
	if (ret)
		return ret;

	if (limits->err)
		ret = notif_set_limit(rdev, set, limits->err,
				      REGULATOR_SEVERITY_ERR);
	if (ret)
		return ret;

	if (limits->warn)
		ret = notif_set_limit(rdev, set, limits->warn,
				      REGULATOR_SEVERITY_WARN);

	return ret;
}
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
1398
static int set_machine_constraints(struct regulator_dev *rdev)
1399 1400
{
	int ret = 0;
1401
	const struct regulator_ops *ops = rdev->desc->ops;
1402

1403
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1404
	if (ret != 0)
1405
		return ret;
1406

1407
	ret = machine_constraints_current(rdev, rdev->constraints);
1408
	if (ret != 0)
1409
		return ret;
1410

1411 1412 1413 1414
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
1415
			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416
			return ret;
1417 1418 1419
		}
	}

1420
	/* do we need to setup our suspend state */
1421
	if (rdev->constraints->initial_state) {
1422
		ret = suspend_set_initial_state(rdev);
1423
		if (ret < 0) {
1424
			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425
			return ret;
1426 1427
		}
	}
1428

1429
	if (rdev->constraints->initial_mode) {
1430
		if (!ops->set_mode) {
1431
			rdev_err(rdev, "no set_mode operation\n");
1432
			return -EINVAL;
1433 1434
		}

1435
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436
		if (ret < 0) {
1437
			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438
			return ret;
1439
		}
1440 1441 1442 1443 1444 1445
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1446 1447
	}

1448 1449
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1450 1451
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
1452
			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453
			return ret;
1454 1455 1456
		}
	}

S
Stephen Boyd 已提交
1457 1458 1459
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
1460
			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461
			return ret;
S
Stephen Boyd 已提交
1462 1463 1464
		}
	}

S
Stephen Boyd 已提交
1465 1466 1467
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
1468
			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469
			return ret;
S
Stephen Boyd 已提交
1470 1471 1472
		}
	}

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	/*
	 * Existing logic does not warn if over_current_protection is given as
	 * a constraint but driver does not support that. I think we should
	 * warn about this type of issues as it is possible someone changes
	 * PMIC on board to another type - and the another PMIC's driver does
	 * not support setting protection. Board composer may happily believe
	 * the DT limits are respected - especially if the new PMIC HW also
	 * supports protection but the driver does not. I won't change the logic
	 * without hearing more experienced opinion on this though.
	 *
	 * If warning is seen as a good idea then we can merge handling the
	 * over-curret protection and detection and get rid of this special
	 * handling.
	 */
1487 1488
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
1489 1490 1491 1492 1493
		int lim = rdev->constraints->over_curr_limits.prot;

		ret = ops->set_over_current_protection(rdev, lim,
						       REGULATOR_SEVERITY_PROT,
						       true);
1494
		if (ret < 0) {
1495 1496
			rdev_err(rdev, "failed to set over current protection: %pe\n",
				 ERR_PTR(ret));
1497
			return ret;
1498 1499 1500
		}
	}

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	if (rdev->constraints->over_current_detection)
		ret = handle_notify_limits(rdev,
					   ops->set_over_current_protection,
					   &rdev->constraints->over_curr_limits);
	if (ret) {
		if (ret != -EOPNOTSUPP) {
			rdev_err(rdev, "failed to set over current limits: %pe\n",
				 ERR_PTR(ret));
			return ret;
		}
		rdev_warn(rdev,
			  "IC does not support requested over-current limits\n");
	}

	if (rdev->constraints->over_voltage_detection)
		ret = handle_notify_limits(rdev,
					   ops->set_over_voltage_protection,
					   &rdev->constraints->over_voltage_limits);
	if (ret) {
		if (ret != -EOPNOTSUPP) {
			rdev_err(rdev, "failed to set over voltage limits %pe\n",
				 ERR_PTR(ret));
			return ret;
		}
		rdev_warn(rdev,
			  "IC does not support requested over voltage limits\n");
	}

	if (rdev->constraints->under_voltage_detection)
		ret = handle_notify_limits(rdev,
					   ops->set_under_voltage_protection,
					   &rdev->constraints->under_voltage_limits);
	if (ret) {
		if (ret != -EOPNOTSUPP) {
			rdev_err(rdev, "failed to set under voltage limits %pe\n",
				 ERR_PTR(ret));
			return ret;
		}
		rdev_warn(rdev,
			  "IC does not support requested under voltage limits\n");
	}

	if (rdev->constraints->over_temp_detection)
		ret = handle_notify_limits(rdev,
					   ops->set_thermal_protection,
					   &rdev->constraints->temp_limits);
	if (ret) {
		if (ret != -EOPNOTSUPP) {
			rdev_err(rdev, "failed to set temperature limits %pe\n",
				 ERR_PTR(ret));
			return ret;
		}
		rdev_warn(rdev,
			  "IC does not support requested temperature limits\n");
	}

1557 1558 1559 1560 1561 1562
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
1563
			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1564 1565 1566 1567
			return ret;
		}
	}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	/*
	 * If there is no mechanism for controlling the regulator then
	 * flag it as always_on so we don't end up duplicating checks
	 * for this so much.  Note that we could control the state of
	 * a supply to control the output on a regulator that has no
	 * direct control.
	 */
	if (!rdev->ena_pin && !ops->enable) {
		if (rdev->supply_name && !rdev->supply)
			return -EPROBE_DEFER;

		if (rdev->supply)
			rdev->constraints->always_on =
				rdev->supply->rdev->constraints->always_on;
		else
			rdev->constraints->always_on = true;
	}

1586 1587 1588
	if (rdev->desc->off_on_delay)
		rdev->last_off = ktime_get();

1589 1590 1591 1592
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1593 1594 1595 1596 1597 1598
		/* If we want to enable this regulator, make sure that we know
		 * the supplying regulator.
		 */
		if (rdev->supply_name && !rdev->supply)
			return -EPROBE_DEFER;

1599 1600 1601 1602 1603 1604 1605
		/* If supplying regulator has already been enabled,
		 * it's not intended to have use_count increment
		 * when rdev is only boot-on.
		 */
		if (rdev->supply &&
		    (rdev->constraints->always_on ||
		     !regulator_is_enabled(rdev->supply))) {
1606 1607 1608 1609 1610 1611 1612 1613
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1614 1615
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1616
			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1617 1618
			return ret;
		}
1619 1620 1621

		if (rdev->constraints->always_on)
			rdev->use_count++;
1622 1623
	}

1624
	print_constraints(rdev);
1625
	return 0;
1626 1627 1628 1629
}

/**
 * set_supply - set regulator supply regulator
1630 1631
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1632 1633 1634 1635 1636 1637
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1638
		      struct regulator_dev *supply_rdev)
1639 1640 1641
{
	int err;

1642
	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1643

1644 1645 1646
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1647
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1648
	if (rdev->supply == NULL) {
1649
		module_put(supply_rdev->owner);
1650
		err = -ENOMEM;
1651
		return err;
1652
	}
1653
	supply_rdev->open_count++;
1654 1655

	return 0;
1656 1657 1658
}

/**
1659
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1660
 * @rdev:         regulator source
1661
 * @consumer_dev_name: dev_name() string for device supply applies to
1662
 * @supply:       symbolic name for supply
1663 1664 1665 1666 1667 1668 1669
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1670 1671
				      const char *consumer_dev_name,
				      const char *supply)
1672
{
1673
	struct regulator_map *node, *new_node;
1674
	int has_dev;
1675 1676 1677 1678

	if (supply == NULL)
		return -EINVAL;

1679 1680 1681 1682 1683
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
	if (new_node == NULL)
		return -ENOMEM;

	new_node->regulator = rdev;
	new_node->supply = supply;

	if (has_dev) {
		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (new_node->dev_name == NULL) {
			kfree(new_node);
			return -ENOMEM;
		}
	}

	mutex_lock(&regulator_list_mutex);
1700
	list_for_each_entry(node, &regulator_map_list, list) {
1701 1702 1703 1704
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1705
			continue;
1706 1707
		}

1708 1709 1710
		if (strcmp(node->supply, supply) != 0)
			continue;

1711 1712 1713 1714 1715 1716
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1717
		goto fail;
1718 1719
	}

1720 1721
	list_add(&new_node->list, &regulator_map_list);
	mutex_unlock(&regulator_list_mutex);
1722

1723
	return 0;
1724 1725 1726 1727 1728 1729

fail:
	mutex_unlock(&regulator_list_mutex);
	kfree(new_node->dev_name);
	kfree(new_node);
	return -EBUSY;
1730 1731
}

1732 1733 1734 1735 1736 1737 1738
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1739
			kfree(node->dev_name);
1740 1741 1742 1743 1744
			kfree(node);
		}
	}
}

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1794
#define REG_STR_SIZE	64
1795 1796 1797 1798 1799 1800

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
1801
	int err = 0;
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

	if (dev) {
		char buf[REG_STR_SIZE];
		int size;

		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			return NULL;

		supply_name = kstrdup(buf, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	} else {
		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	}
1820 1821

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1822
	if (regulator == NULL) {
1823
		kfree_const(supply_name);
1824
		return NULL;
1825
	}
1826 1827

	regulator->rdev = rdev;
1828 1829 1830
	regulator->supply_name = supply_name;

	regulator_lock(rdev);
1831
	list_add(&regulator->list, &rdev->consumer_list);
1832
	regulator_unlock(rdev);
1833 1834

	if (dev) {
1835 1836
		regulator->dev = dev;

1837
		/* Add a link to the device sysfs entry */
1838
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1839
					       supply_name);
1840
		if (err) {
1841 1842
			rdev_dbg(rdev, "could not add device link %s: %pe\n",
				  dev->kobj.name, ERR_PTR(err));
1843
			/* non-fatal */
1844
		}
1845 1846
	}

1847 1848
	if (err != -EEXIST)
		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1849
	if (!regulator->debugfs) {
1850
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1851 1852 1853 1854
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1855
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1856
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1857
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1858 1859 1860
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1861
	}
1862

1863 1864 1865 1866 1867
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1868
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1869 1870 1871
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1872 1873 1874
	return regulator;
}

1875 1876
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1877 1878
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1879 1880 1881
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1882 1883
}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1932 1933 1934 1935 1936
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1937
 */
1938
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1939
						  const char *supply)
1940
{
1941
	struct regulator_dev *r = NULL;
1942
	struct device_node *node;
1943 1944
	struct regulator_map *map;
	const char *devname = NULL;
1945

1946 1947
	regulator_supply_alias(&dev, &supply);

1948 1949 1950
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1951
		if (node) {
1952
			r = of_find_regulator_by_node(node);
1953
			of_node_put(node);
1954 1955
			if (r)
				return r;
1956

1957
			/*
1958 1959
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1960
			 */
1961
			return ERR_PTR(-EPROBE_DEFER);
1962
		}
1963 1964 1965
	}

	/* if not found, try doing it non-dt way */
1966 1967 1968
	if (dev)
		devname = dev_name(dev);

1969
	mutex_lock(&regulator_list_mutex);
1970 1971 1972 1973 1974 1975
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1976 1977
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1978 1979
			r = map->regulator;
			break;
1980
		}
1981
	}
1982
	mutex_unlock(&regulator_list_mutex);
1983

1984 1985 1986 1987
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1988 1989 1990 1991
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1992 1993
}

1994 1995 1996 1997
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
1998
	int ret = 0;
1999

2000
	/* No supply to resolve? */
2001 2002 2003
	if (!rdev->supply_name)
		return 0;

2004
	/* Supply already resolved? (fast-path without locking contention) */
2005 2006 2007
	if (rdev->supply)
		return 0;

2008 2009 2010 2011
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

2012 2013
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
2014
			goto out;
2015

2016 2017
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
2018
			get_device(&r->dev);
2019 2020 2021
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
2022 2023
			ret = -EPROBE_DEFER;
			goto out;
2024
		}
2025 2026
	}

2027 2028 2029
	if (r == rdev) {
		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
			rdev->desc->name, rdev->supply_name);
2030 2031 2032 2033
		if (!have_full_constraints()) {
			ret = -EINVAL;
			goto out;
		}
2034 2035
		r = dummy_regulator_rdev;
		get_device(&r->dev);
2036 2037
	}

2038 2039 2040 2041 2042 2043 2044 2045 2046
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
2047 2048
			ret = -EPROBE_DEFER;
			goto out;
2049 2050 2051
		}
	}

2052 2053
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
2054 2055
	if (ret < 0) {
		put_device(&r->dev);
2056
		goto out;
2057
	}
2058

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
	/*
	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
	 * between rdev->supply null check and setting rdev->supply in
	 * set_supply() from concurrent tasks.
	 */
	regulator_lock(rdev);

	/* Supply just resolved by a concurrent task? */
	if (rdev->supply) {
		regulator_unlock(rdev);
		put_device(&r->dev);
		goto out;
	}

2073
	ret = set_supply(rdev, r);
2074
	if (ret < 0) {
2075
		regulator_unlock(rdev);
2076
		put_device(&r->dev);
2077
		goto out;
2078
	}
2079

2080 2081
	regulator_unlock(rdev);

2082 2083 2084 2085 2086 2087
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
2088
		ret = regulator_enable(rdev->supply);
2089
		if (ret < 0) {
2090
			_regulator_put(rdev->supply);
2091
			rdev->supply = NULL;
2092
			goto out;
2093
		}
2094 2095
	}

2096 2097
out:
	return ret;
2098 2099
}

2100
/* Internal regulator request function */
2101 2102
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
2103 2104
{
	struct regulator_dev *rdev;
2105
	struct regulator *regulator;
2106
	struct device_link *link;
2107
	int ret;
2108

2109 2110 2111 2112 2113
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

2114
	if (id == NULL) {
2115
		pr_err("get() with no identifier\n");
2116
		return ERR_PTR(-EINVAL);
2117 2118
	}

2119
	rdev = regulator_dev_lookup(dev, id);
2120 2121
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
2122

2123 2124 2125 2126 2127 2128
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
2129

2130 2131 2132 2133 2134
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
2135

2136 2137 2138 2139 2140 2141 2142
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
2143
			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2144 2145 2146
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
2147

2148 2149 2150
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
2151
			fallthrough;
2152

2153 2154 2155
		default:
			return ERR_PTR(-ENODEV);
		}
2156 2157
	}

2158 2159
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
2160 2161
		put_device(&rdev->dev);
		return regulator;
2162 2163
	}

2164
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2165
		regulator = ERR_PTR(-EBUSY);
2166 2167
		put_device(&rdev->dev);
		return regulator;
2168 2169
	}

2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

2180 2181 2182
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
2183 2184
		put_device(&rdev->dev);
		return regulator;
2185 2186
	}

2187
	if (!try_module_get(rdev->owner)) {
2188
		regulator = ERR_PTR(-EPROBE_DEFER);
2189 2190 2191
		put_device(&rdev->dev);
		return regulator;
	}
2192

2193 2194 2195 2196
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
W
Wen Yang 已提交
2197
		put_device(&rdev->dev);
2198
		return regulator;
2199 2200
	}

2201
	rdev->open_count++;
2202
	if (get_type == EXCLUSIVE_GET) {
2203 2204 2205
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
2206
		if (ret > 0) {
2207
			rdev->use_count = 1;
2208 2209
			regulator->enable_count = 1;
		} else {
2210
			rdev->use_count = 0;
2211 2212
			regulator->enable_count = 0;
		}
2213 2214
	}

2215 2216 2217
	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
	if (!IS_ERR_OR_NULL(link))
		regulator->device_link = true;
2218

2219 2220
	return regulator;
}
2221 2222 2223 2224 2225 2226 2227 2228 2229

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
2230
 * Use of supply names configured via set_consumer_device_supply() is
2231 2232 2233 2234 2235 2236
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
2237
	return _regulator_get(dev, id, NORMAL_GET);
2238
}
2239 2240
EXPORT_SYMBOL_GPL(regulator_get);

2241 2242 2243 2244 2245 2246 2247
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
2248 2249 2250
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
2251 2252 2253 2254 2255 2256
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
2257
 * Use of supply names configured via set_consumer_device_supply() is
2258 2259 2260 2261 2262 2263
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2264
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2265 2266 2267
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2268 2269 2270 2271 2272 2273
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2274
 * or IS_ERR() condition containing errno.
2275 2276 2277 2278 2279 2280 2281 2282
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
2283
 * Use of supply names configured via set_consumer_device_supply() is
2284 2285 2286 2287 2288 2289
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2290
	return _regulator_get(dev, id, OPTIONAL_GET);
2291 2292 2293
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2294
static void destroy_regulator(struct regulator *regulator)
2295
{
2296
	struct regulator_dev *rdev = regulator->rdev;
2297

2298 2299
	debugfs_remove_recursive(regulator->debugfs);

2300
	if (regulator->dev) {
2301 2302
		if (regulator->device_link)
			device_link_remove(regulator->dev, &rdev->dev);
2303 2304

		/* remove any sysfs entries */
2305
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2306 2307
	}

2308
	regulator_lock(rdev);
2309 2310
	list_del(&regulator->list);

2311 2312
	rdev->open_count--;
	rdev->exclusive = 0;
2313
	regulator_unlock(rdev);
2314

2315
	kfree_const(regulator->supply_name);
2316
	kfree(regulator);
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
}

/* regulator_list_mutex lock held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (IS_ERR_OR_NULL(regulator))
		return;

	lockdep_assert_held_once(&regulator_list_mutex);

	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

	rdev = regulator->rdev;

	destroy_regulator(regulator);
2335

2336
	module_put(rdev->owner);
W
Wen Yang 已提交
2337
	put_device(&rdev->dev);
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2352 2353 2354 2355
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2433 2434
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2435
					 struct device *alias_dev,
2436
					 const char *const *alias_id,
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2474
					    const char *const *id,
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2485 2486 2487 2488
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
2489
	struct regulator_enable_gpio *pin, *new_pin;
2490
	struct gpio_desc *gpiod;
2491

2492
	gpiod = config->ena_gpiod;
2493 2494 2495
	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);

	mutex_lock(&regulator_list_mutex);
2496

2497
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2498
		if (pin->gpiod == gpiod) {
2499
			rdev_dbg(rdev, "GPIO is already used\n");
2500 2501 2502 2503
			goto update_ena_gpio_to_rdev;
		}
	}

2504 2505
	if (new_pin == NULL) {
		mutex_unlock(&regulator_list_mutex);
2506
		return -ENOMEM;
2507 2508 2509 2510
	}

	pin = new_pin;
	new_pin = NULL;
2511

2512
	pin->gpiod = gpiod;
2513 2514 2515 2516 2517
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
2518 2519 2520 2521

	mutex_unlock(&regulator_list_mutex);
	kfree(new_pin);

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
		if (pin != rdev->ena_pin)
			continue;

		if (--pin->request_count)
			break;

		gpiod_put(pin->gpiod);
		list_del(&pin->list);
		kfree(pin);
		break;
2544
	}
2545 2546

	rdev->ena_pin = NULL;
2547 2548
}

2549
/**
2550 2551 2552 2553
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2567
			gpiod_set_value_cansleep(pin->gpiod, 1);
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2578
			gpiod_set_value_cansleep(pin->gpiod, 0);
2579 2580 2581 2582 2583 2584 2585
			pin->enable_count = 0;
		}
	}

	return 0;
}

2586
/**
2587
 * _regulator_delay_helper - a delay helper function
2588 2589 2590 2591
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2592
 *     Documentation/timers/timers-howto.rst
2593
 *
2594
 * The assumption here is that these regulator operations will never used in
2595 2596
 * atomic context and therefore sleeping functions can be used.
 */
2597
static void _regulator_delay_helper(unsigned int delay)
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
/**
 * _regulator_check_status_enabled
 *
 * A helper function to check if the regulator status can be interpreted
 * as 'regulator is enabled'.
 * @rdev: the regulator device to check
 *
 * Return:
 * * 1			- if status shows regulator is in enabled state
 * * 0			- if not enabled state
 * * Error Value	- as received from ops->get_status()
 */
static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
{
	int ret = rdev->desc->ops->get_status(rdev);

	if (ret < 0) {
		rdev_info(rdev, "get_status returned error: %d\n", ret);
		return ret;
	}

	switch (ret) {
	case REGULATOR_STATUS_OFF:
	case REGULATOR_STATUS_ERROR:
	case REGULATOR_STATUS_UNDEFINED:
		return 0;
	default:
		return 1;
	}
}

2656 2657 2658 2659 2660 2661 2662 2663 2664
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
2665
		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2666 2667 2668 2669 2670
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2671
	if (rdev->desc->off_on_delay && rdev->last_off) {
2672 2673 2674
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
2675 2676 2677 2678
		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
		s64 remaining = ktime_us_delta(end, ktime_get());

		if (remaining > 0)
2679
			_regulator_delay_helper(remaining);
2680 2681
	}

2682
	if (rdev->ena_pin) {
2683 2684 2685 2686 2687 2688
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2689
	} else if (rdev->desc->ops->enable) {
2690 2691 2692 2693 2694 2695 2696 2697 2698
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
2699 2700
	 * together.
	 */
2701 2702
	trace_regulator_enable_delay(rdev_get_name(rdev));

2703 2704 2705
	/* If poll_enabled_time is set, poll upto the delay calculated
	 * above, delaying poll_enabled_time uS to check if the regulator
	 * actually got enabled.
2706 2707
	 * If the regulator isn't enabled after our delay helper has expired,
	 * return -ETIMEDOUT.
2708 2709
	 */
	if (rdev->desc->poll_enabled_time) {
2710
		int time_remaining = delay;
2711 2712

		while (time_remaining > 0) {
2713
			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731

			if (rdev->desc->ops->get_status) {
				ret = _regulator_check_status_enabled(rdev);
				if (ret < 0)
					return ret;
				else if (ret)
					break;
			} else if (rdev->desc->ops->is_enabled(rdev))
				break;

			time_remaining -= rdev->desc->poll_enabled_time;
		}

		if (time_remaining <= 0) {
			rdev_err(rdev, "Enabled check timed out\n");
			return -ETIMEDOUT;
		}
	} else {
2732
		_regulator_delay_helper(delay);
2733
	}
2734 2735 2736 2737 2738 2739

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
2762
	int ret;
2763 2764 2765 2766 2767
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
2768 2769 2770 2771 2772 2773
	if (regulator->uA_load && regulator->enable_count == 1) {
		ret = drms_uA_update(rdev);
		if (ret)
			regulator->enable_count--;
		return ret;
	}
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2804
/* locks held by regulator_enable() */
2805
static int _regulator_enable(struct regulator *regulator)
2806
{
2807
	struct regulator_dev *rdev = regulator->rdev;
2808
	int ret;
2809

2810 2811
	lockdep_assert_held_once(&rdev->mutex.base);

2812
	if (rdev->use_count == 0 && rdev->supply) {
2813
		ret = _regulator_enable(rdev->supply);
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2824

2825 2826 2827
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2828

2829
	if (rdev->use_count == 0) {
2830 2831 2832 2833
		/*
		 * The regulator may already be enabled if it's not switchable
		 * or was left on
		 */
2834 2835
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2836
			if (!regulator_ops_is_valid(rdev,
2837 2838
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2839
				goto err_consumer_disable;
2840
			}
2841

2842
			ret = _regulator_do_enable(rdev);
2843
			if (ret < 0)
2844
				goto err_consumer_disable;
2845

2846 2847
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2848
		} else if (ret < 0) {
2849
			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2850
			goto err_consumer_disable;
2851
		}
2852
		/* Fallthrough on positive return values - already enabled */
2853 2854
	}

2855 2856 2857
	rdev->use_count++;

	return 0;
2858

2859 2860 2861
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2862
err_disable_supply:
2863
	if (rdev->use_count == 0 && rdev->supply)
2864
		_regulator_disable(rdev->supply);
2865 2866

	return ret;
2867 2868 2869 2870 2871 2872
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2873 2874 2875 2876
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2877
 * NOTE: the output value can be set by other drivers, boot loader or may be
2878
 * hardwired in the regulator.
2879 2880 2881
 */
int regulator_enable(struct regulator *regulator)
{
2882
	struct regulator_dev *rdev = regulator->rdev;
2883
	struct ww_acquire_ctx ww_ctx;
2884
	int ret;
2885

2886
	regulator_lock_dependent(rdev, &ww_ctx);
2887
	ret = _regulator_enable(regulator);
2888
	regulator_unlock_dependent(rdev, &ww_ctx);
2889

2890 2891 2892 2893
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2894 2895 2896 2897 2898 2899
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2900
	if (rdev->ena_pin) {
2901 2902 2903 2904 2905 2906
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2907 2908 2909 2910 2911 2912 2913

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2914
	if (rdev->desc->off_on_delay)
2915
		rdev->last_off = ktime_get();
2916

2917 2918 2919 2920 2921
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2922
/* locks held by regulator_disable() */
2923
static int _regulator_disable(struct regulator *regulator)
2924
{
2925
	struct regulator_dev *rdev = regulator->rdev;
2926 2927
	int ret = 0;

2928
	lockdep_assert_held_once(&rdev->mutex.base);
2929

D
David Brownell 已提交
2930
	if (WARN(rdev->use_count <= 0,
2931
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2932 2933
		return -EIO;

2934
	/* are we the last user and permitted to disable ? */
2935 2936
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2937 2938

		/* we are last user */
2939
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2940 2941 2942 2943 2944 2945
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2946
			ret = _regulator_do_disable(rdev);
2947
			if (ret < 0) {
2948
				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2949 2950 2951
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2952 2953
				return ret;
			}
2954 2955
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2956 2957 2958 2959 2960 2961
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2962

2963 2964 2965
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2966 2967 2968
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2969
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2970
		ret = _regulator_disable(rdev->supply);
2971

2972 2973 2974 2975 2976 2977 2978
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2979 2980 2981
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2982
 *
2983
 * NOTE: this will only disable the regulator output if no other consumer
2984 2985
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2986 2987 2988
 */
int regulator_disable(struct regulator *regulator)
{
2989
	struct regulator_dev *rdev = regulator->rdev;
2990
	struct ww_acquire_ctx ww_ctx;
2991
	int ret;
2992

2993
	regulator_lock_dependent(rdev, &ww_ctx);
2994
	ret = _regulator_disable(regulator);
2995
	regulator_unlock_dependent(rdev, &ww_ctx);
2996

2997 2998 2999 3000 3001
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
3002
static int _regulator_force_disable(struct regulator_dev *rdev)
3003 3004 3005
{
	int ret = 0;

3006
	lockdep_assert_held_once(&rdev->mutex.base);
3007

3008 3009 3010 3011 3012
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

3013 3014
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
3015
		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3016 3017
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3018
		return ret;
3019 3020
	}

3021 3022 3023 3024
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
3038
	struct regulator_dev *rdev = regulator->rdev;
3039
	struct ww_acquire_ctx ww_ctx;
3040 3041
	int ret;

3042
	regulator_lock_dependent(rdev, &ww_ctx);
3043

3044
	ret = _regulator_force_disable(regulator->rdev);
3045

3046 3047
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3048 3049 3050 3051 3052 3053

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

3054 3055
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
3056

3057
	regulator_unlock_dependent(rdev, &ww_ctx);
3058

3059 3060 3061 3062
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

3063 3064 3065 3066
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
3067
	struct ww_acquire_ctx ww_ctx;
3068
	int count, i, ret;
3069 3070
	struct regulator *regulator;
	int total_count = 0;
3071

3072
	regulator_lock_dependent(rdev, &ww_ctx);
3073

3074 3075 3076 3077 3078 3079 3080 3081
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
3094 3095
				rdev_err(rdev, "Deferred disable failed: %pe\n",
					 ERR_PTR(ret));
3096
		}
3097
	}
3098
	WARN_ON(!total_count);
3099

3100 3101 3102 3103
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
3104 3105 3106 3107 3108
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
3109
 * @ms: milliseconds until the regulator is disabled
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

3122 3123 3124
	if (!ms)
		return regulator_disable(regulator);

3125
	regulator_lock(rdev);
3126
	regulator->deferred_disables++;
3127 3128
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
3129
	regulator_unlock(rdev);
3130

3131
	return 0;
3132 3133 3134
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

3135 3136
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
3137
	/* A GPIO control always takes precedence */
3138
	if (rdev->ena_pin)
3139 3140
		return rdev->ena_gpio_state;

3141
	/* If we don't know then assume that the regulator is always on */
3142
	if (!rdev->desc->ops->is_enabled)
3143
		return 1;
3144

3145
	return rdev->desc->ops->is_enabled(rdev);
3146 3147
}

3148 3149
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
3160 3161
		if (selector < rdev->desc->linear_min_sel)
			return 0;
3162
		if (lock)
3163
			regulator_lock(rdev);
3164 3165
		ret = ops->list_voltage(rdev, selector);
		if (lock)
3166
			regulator_unlock(rdev);
3167
	} else if (rdev->is_switch && rdev->supply) {
3168 3169
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

3184 3185 3186 3187
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
3188 3189 3190 3191 3192 3193 3194
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
3195 3196 3197
 */
int regulator_is_enabled(struct regulator *regulator)
{
3198 3199
	int ret;

3200 3201 3202
	if (regulator->always_on)
		return 1;

3203
	regulator_lock(regulator->rdev);
3204
	ret = _regulator_is_enabled(regulator->rdev);
3205
	regulator_unlock(regulator->rdev);
3206 3207

	return ret;
3208 3209 3210
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

3223 3224 3225
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

3226
	if (!rdev->is_switch || !rdev->supply)
3227 3228 3229
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
3240
 * zero if this selector code can't be used on this system, or a
3241 3242 3243 3244
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
3245
	return _regulator_list_voltage(regulator->rdev, selector, 1);
3246 3247 3248
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
3281 3282
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3283 3284 3285 3286

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

3287 3288
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
3289

3290
	return 0;
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3308 3309
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3310 3311 3312

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
3313 3314
	if (selector < rdev->desc->linear_min_sel)
		return 0;
3315 3316 3317 3318 3319 3320 3321
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3337 3338 3339 3340 3341 3342 3343
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3344
 * Returns a boolean.
3345 3346 3347 3348
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3349
	struct regulator_dev *rdev = regulator->rdev;
3350 3351
	int i, voltages, ret;

3352
	/* If we can't change voltage check the current voltage */
3353
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3354 3355
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3356
			return min_uV <= ret && ret <= max_uV;
3357 3358 3359 3360
		else
			return ret;
	}

3361 3362 3363 3364 3365
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3366 3367
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3368
		return 0;
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3380
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3381

3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3396 3397 3398 3399 3400
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3401 3402 3403
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3404 3405 3406 3407 3408 3409 3410
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3411
	data.old_uV = regulator_get_voltage_rdev(rdev);
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3435
	data.old_uV = regulator_get_voltage_rdev(rdev);
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3513 3514 3515 3516 3517 3518 3519 3520 3521
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3522 3523
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3524 3525 3526 3527 3528 3529
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3530

3531
	if (ramp_delay == 0)
3532 3533 3534 3535 3536
		return 0;

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3537 3538 3539 3540
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3541
	int delay = 0;
3542
	int best_val = 0;
3543
	unsigned int selector;
3544
	int old_selector = -1;
3545
	const struct regulator_ops *ops = rdev->desc->ops;
3546
	int old_uV = regulator_get_voltage_rdev(rdev);
3547 3548 3549

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3550 3551 3552
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3553 3554 3555 3556
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3557
	if (_regulator_is_enabled(rdev) &&
3558 3559
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3560 3561 3562 3563
		if (old_selector < 0)
			return old_selector;
	}

3564
	if (ops->set_voltage) {
3565 3566
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3567 3568

		if (ret >= 0) {
3569 3570 3571
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3572
			else
3573
				best_val = regulator_get_voltage_rdev(rdev);
3574 3575
		}

3576
	} else if (ops->set_voltage_sel) {
3577
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3578
		if (ret >= 0) {
3579
			best_val = ops->list_voltage(rdev, ret);
3580 3581
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3582 3583
				if (old_selector == selector)
					ret = 0;
3584 3585 3586
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3587
				else
3588 3589
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3590 3591 3592
			} else {
				ret = -EINVAL;
			}
3593
		}
3594 3595 3596
	} else {
		ret = -EINVAL;
	}
3597

3598 3599
	if (ret)
		goto out;
3600

3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3618
		}
3619
	}
3620

3621
	if (delay < 0) {
3622
		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3623
		delay = 0;
3624 3625
	}

3626
	/* Insert any necessary delays */
3627
	_regulator_delay_helper(delay);
3628

3629
	if (best_val >= 0) {
3630 3631
		unsigned long data = best_val;

3632
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3633 3634
				     (void *)data);
	}
3635

3636
out:
3637
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3638 3639 3640 3641

	return ret;
}

3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3668
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3669 3670
					  int min_uV, int max_uV,
					  suspend_state_t state)
3671 3672
{
	struct regulator_dev *rdev = regulator->rdev;
3673
	struct regulator_voltage *voltage = &regulator->voltage[state];
3674
	int ret = 0;
3675
	int old_min_uV, old_max_uV;
3676
	int current_uV;
3677

3678 3679 3680 3681
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3682
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3683 3684
		goto out;

3685
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3686
	 * return successfully even though the regulator does not support
3687 3688
	 * changing the voltage.
	 */
3689
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3690
		current_uV = regulator_get_voltage_rdev(rdev);
3691
		if (min_uV <= current_uV && current_uV <= max_uV) {
3692 3693
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3694 3695 3696 3697
			goto out;
		}
	}

3698
	/* sanity check */
3699 3700
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3701 3702 3703 3704 3705 3706 3707 3708
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3709

3710
	/* restore original values in case of error */
3711 3712 3713 3714
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3715

3716 3717
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3718 3719 3720 3721
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3722

3723 3724 3725 3726
out:
	return ret;
}

3727 3728
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3729 3730 3731 3732 3733
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3734 3735 3736
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3737 3738
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3739 3740 3741 3742 3743 3744
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3745
			goto out;
3746 3747
		}

M
Mark Brown 已提交
3748
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3749 3750
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3751
			goto out;
3752 3753 3754 3755
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3756
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3757 3758
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3759
			goto out;
3760 3761 3762 3763 3764 3765 3766
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3767
				best_supply_uV, INT_MAX, state);
3768
		if (ret) {
3769 3770
			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
				ERR_PTR(ret));
3771
			goto out;
3772 3773 3774
		}
	}

3775 3776 3777 3778 3779
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3780
	if (ret < 0)
3781
		goto out;
3782

3783 3784
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3785
				best_supply_uV, INT_MAX, state);
3786
		if (ret)
3787 3788
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
				 ERR_PTR(ret));
3789 3790 3791 3792
		/* No need to fail here */
		ret = 0;
	}

3793
out:
3794
	return ret;
3795
}
3796
EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3797

3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3808
		*current_uV = regulator_get_voltage_rdev(rdev);
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3840
	int i, ret, max_spread;
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3874
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3885

3886 3887 3888 3889 3890 3891 3892 3893
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3894 3895
	max_spread = constraints->max_spread[0];

3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3913
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3951 3952 3953 3954
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3955
			ret = regulator_get_voltage_rdev(rdev);
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

3971 3972
int regulator_do_balance_voltage(struct regulator_dev *rdev,
				 suspend_state_t state, bool skip_coupled)
3973 3974 3975 3976 3977 3978
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3979 3980
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3981 3982

	c_rdevs = c_desc->coupled_rdevs;
3983
	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

4010
			if (test_bit(i, &c_rdev_done))
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
4038

4039 4040
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
4041

4042 4043 4044
		if (ret < 0)
			goto out;

4045 4046
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
4047 4048 4049 4050

	} while (n_coupled > 1);

out:
4051 4052 4053
	return ret;
}

4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_coupler *coupler = c_desc->coupler;
	bool skip_coupled = false;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		skip_coupled = true;

	if (c_desc->n_resolved < c_desc->n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);

	return regulator_do_balance_voltage(rdev, state, skip_coupled);
}

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
4100 4101
	struct ww_acquire_ctx ww_ctx;
	int ret;
4102

4103
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4104

4105 4106
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
4107

4108
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4109

4110 4111 4112 4113
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

4126
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
4180 4181
	struct ww_acquire_ctx ww_ctx;
	int ret;
4182 4183 4184 4185 4186

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

4187
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4188 4189 4190 4191

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

4192
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4193 4194 4195 4196 4197

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
4211 4212
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
4213 4214 4215 4216 4217
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

4218 4219 4220 4221 4222
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

4223
	/* Currently requires operations to do this */
4224
	if (!ops->list_voltage || !rdev->desc->n_voltages)
4225 4226 4227 4228
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
4229 4230 4231
		if (i < rdev->desc->linear_min_sel)
			continue;

4232 4233 4234
		if (old_sel >= 0 && new_sel >= 0)
			break;

4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

4253
/**
4254 4255
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
4256 4257 4258 4259 4260 4261
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
4262
 * Drivers providing ramp_delay in regulation_constraints can use this as their
4263
 * set_voltage_time_sel() operation.
4264 4265 4266 4267 4268
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
4269
	int old_volt, new_volt;
4270

4271 4272 4273
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
4274

4275 4276 4277
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

4278 4279 4280 4281 4282
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4283
}
4284
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4285

4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
{
	int ret;

	regulator_lock(rdev);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* balance only, if regulator is coupled */
	if (rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
	else
		ret = -EOPNOTSUPP;

out:
	regulator_unlock(rdev);
	return ret;
}

4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
4320
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4321 4322
	int ret, min_uV, max_uV;

4323 4324 4325
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
		return 0;

4326
	regulator_lock(rdev);
4327 4328 4329 4330 4331 4332 4333 4334

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
4335
	if (!voltage->min_uV && !voltage->max_uV) {
4336 4337 4338 4339
		ret = -EINVAL;
		goto out;
	}

4340 4341
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
4342 4343 4344 4345 4346 4347

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

4348
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4349 4350 4351
	if (ret < 0)
		goto out;

4352 4353 4354 4355 4356
	/* balance only, if regulator is coupled */
	if (rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
	else
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4357 4358

out:
4359
	regulator_unlock(rdev);
4360 4361 4362 4363
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

4364
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4365
{
4366
	int sel, ret;
4367 4368 4369 4370 4371 4372 4373 4374
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
4375 4376 4377 4378 4379
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
4380

4381
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4382 4383
		}
	}
4384 4385 4386 4387 4388

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4389
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4390
	} else if (rdev->desc->ops->get_voltage) {
4391
		ret = rdev->desc->ops->get_voltage(rdev);
4392 4393
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4394 4395
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4396
	} else if (rdev->supply) {
4397
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4398 4399
	} else if (rdev->supply_name) {
		return -EPROBE_DEFER;
4400
	} else {
4401
		return -EINVAL;
4402
	}
4403

4404 4405
	if (ret < 0)
		return ret;
4406
	return ret - rdev->constraints->uV_offset;
4407
}
4408
EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4421
	struct ww_acquire_ctx ww_ctx;
4422 4423
	int ret;

4424
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4425
	ret = regulator_get_voltage_rdev(regulator->rdev);
4426
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4427 4428 4429 4430 4431 4432 4433 4434

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4435
 * @min_uA: Minimum supported current in uA
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4454
	regulator_lock(rdev);
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4469
	regulator_unlock(rdev);
4470 4471 4472 4473
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4474 4475 4476 4477 4478 4479 4480 4481 4482
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4483 4484 4485 4486
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4487
	regulator_lock(rdev);
4488
	ret = _regulator_get_current_limit_unlocked(rdev);
4489
	regulator_unlock(rdev);
4490

4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4524
	int regulator_curr_mode;
4525

4526
	regulator_lock(rdev);
4527 4528 4529 4530 4531 4532 4533

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4534 4535 4536 4537 4538 4539 4540 4541 4542
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4543
	/* constraints check */
4544
	ret = regulator_mode_constrain(rdev, &mode);
4545 4546 4547 4548 4549
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4550
	regulator_unlock(rdev);
4551 4552 4553 4554
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4555 4556 4557 4558 4559 4560 4561 4562 4563
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4564 4565 4566 4567
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4568
	regulator_lock(rdev);
4569
	ret = _regulator_get_mode_unlocked(rdev);
4570
	regulator_unlock(rdev);
4571

4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
{
	int ret = 0;

	if (rdev->use_cached_err) {
		spin_lock(&rdev->err_lock);
		ret = rdev->cached_err;
		spin_unlock(&rdev->err_lock);
	}
	return ret;
}

4599 4600 4601
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
4602
	int cached_flags, ret = 0;
4603

4604
	regulator_lock(rdev);
4605

4606 4607 4608 4609 4610
	cached_flags = rdev_get_cached_err_flags(rdev);

	if (rdev->desc->ops->get_error_flags)
		ret = rdev->desc->ops->get_error_flags(rdev, flags);
	else if (!rdev->use_cached_err)
4611 4612
		ret = -EINVAL;

4613 4614
	*flags |= cached_flags;

4615
	regulator_unlock(rdev);
4616

4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4634
/**
4635
 * regulator_set_load - set regulator load
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4658 4659 4660 4661 4662 4663 4664 4665
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4666
 * On error a negative errno is returned.
4667
 */
4668
int regulator_set_load(struct regulator *regulator, int uA_load)
4669 4670
{
	struct regulator_dev *rdev = regulator->rdev;
4671 4672
	int old_uA_load;
	int ret = 0;
4673

4674
	regulator_lock(rdev);
4675
	old_uA_load = regulator->uA_load;
4676
	regulator->uA_load = uA_load;
4677 4678 4679 4680 4681
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4682
	regulator_unlock(rdev);
4683

4684 4685
	return ret;
}
4686
EXPORT_SYMBOL_GPL(regulator_set_load);
4687

4688 4689 4690 4691
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4692
 * @enable: enable or disable bypass mode
4693 4694 4695 4696 4697 4698 4699 4700 4701
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
4702
	const char *name = rdev_get_name(rdev);
4703 4704 4705 4706 4707
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4708
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4709 4710
		return 0;

4711
	regulator_lock(rdev);
4712 4713 4714 4715 4716

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
4717 4718
			trace_regulator_bypass_enable(name);

4719 4720 4721
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
4722 4723
			else
				trace_regulator_bypass_enable_complete(name);
4724 4725 4726 4727 4728 4729
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
4730 4731
			trace_regulator_bypass_disable(name);

4732 4733 4734
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
4735 4736
			else
				trace_regulator_bypass_disable_complete(name);
4737 4738 4739 4740 4741 4742
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4743
	regulator_unlock(rdev);
4744 4745 4746 4747 4748

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4749 4750 4751
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4752
 * @nb: notifier block
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4767
 * @nb: notifier block
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4779 4780 4781
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4782
static int _notifier_call_chain(struct regulator_dev *rdev,
4783 4784 4785
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4786
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4787 4788
}

4789 4790
int _regulator_bulk_get(struct device *dev, int num_consumers,
			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4791 4792 4793 4794 4795 4796 4797 4798
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4799 4800
		consumers[i].consumer = _regulator_get(dev,
						       consumers[i].supply, get_type);
4801
		if (IS_ERR(consumers[i].consumer)) {
4802 4803 4804
			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
					    "Failed to get supply '%s'",
					    consumers[i].supply);
4805
			consumers[i].consumer = NULL;
4806 4807
			goto err;
		}
4808 4809 4810 4811 4812 4813 4814 4815 4816

		if (consumers[i].init_load_uA > 0) {
			ret = regulator_set_load(consumers[i].consumer,
						 consumers[i].init_load_uA);
			if (ret) {
				i++;
				goto err;
			}
		}
4817 4818 4819 4820 4821
	}

	return 0;

err:
4822
	while (--i >= 0)
4823 4824 4825 4826
		regulator_put(consumers[i].consumer);

	return ret;
}
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
}
4847 4848
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4849 4850 4851 4852 4853 4854 4855
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4871
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4872
	int i;
4873
	int ret = 0;
4874

4875
	for (i = 0; i < num_consumers; i++) {
4876 4877
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4878
	}
4879 4880 4881 4882

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4883
	for (i = 0; i < num_consumers; i++) {
4884 4885
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4886
			goto err;
4887
		}
4888 4889 4890 4891 4892
	}

	return 0;

err:
4893 4894
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
4895 4896
			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
			       ERR_PTR(consumers[i].ret));
4897 4898 4899
		else
			regulator_disable(consumers[i].consumer);
	}
4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4913 4914
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4915 4916 4917 4918 4919 4920
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4921
	int ret, r;
4922

4923
	for (i = num_consumers - 1; i >= 0; --i) {
4924 4925 4926 4927 4928 4929 4930 4931
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4932
	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4933 4934 4935
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4936 4937
			pr_err("Failed to re-enable %s: %pe\n",
			       consumers[i].supply, ERR_PTR(r));
4938
	}
4939 4940 4941 4942 4943

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4962
	int ret = 0;
4963

4964
	for (i = 0; i < num_consumers; i++) {
4965 4966 4967
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4968 4969
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4970 4971 4972 4973 4974 4975 4976
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
5000
 * @rdev: regulator source
5001
 * @event: notifier block
5002
 * @data: callback-specific data.
5003 5004
 *
 * Called by regulator drivers to notify clients a regulator event has
5005
 * occurred.
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
5032
	case REGULATOR_MODE_STANDBY:
5033 5034
		return REGULATOR_STATUS_STANDBY;
	default:
5035
		return REGULATOR_STATUS_UNDEFINED;
5036 5037 5038 5039
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
5055 5056 5057 5058 5059 5060 5061 5062 5063
	&dev_attr_under_voltage.attr,
	&dev_attr_over_current.attr,
	&dev_attr_regulation_out.attr,
	&dev_attr_fail.attr,
	&dev_attr_over_temp.attr,
	&dev_attr_under_voltage_warn.attr,
	&dev_attr_over_current_warn.attr,
	&dev_attr_over_voltage_warn.attr,
	&dev_attr_over_temp_warn.attr,
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

5076 5077 5078 5079
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
5080 5081
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
5082
{
5083
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
5084
	struct regulator_dev *rdev = dev_to_rdev(dev);
5085
	const struct regulator_ops *ops = rdev->desc->ops;
5086 5087 5088 5089 5090 5091 5092
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
5093 5094

	/* some attributes need specific methods to be displayed */
5095 5096 5097 5098 5099 5100 5101
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
5102
	}
5103

5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
	if (attr == &dev_attr_under_voltage.attr ||
	    attr == &dev_attr_over_current.attr ||
	    attr == &dev_attr_regulation_out.attr ||
	    attr == &dev_attr_fail.attr ||
	    attr == &dev_attr_over_temp.attr ||
	    attr == &dev_attr_under_voltage_warn.attr ||
	    attr == &dev_attr_over_current_warn.attr ||
	    attr == &dev_attr_over_voltage_warn.attr ||
	    attr == &dev_attr_over_temp_warn.attr)
		return ops->get_error_flags ? mode : 0;

5130
	/* constraints need specific supporting methods */
5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
5166

5167 5168 5169
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
5170 5171 5172

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
5173
	kfree(rdev);
5174 5175
}

5176 5177
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5190
	if (!rdev->debugfs) {
5191 5192 5193 5194 5195 5196 5197 5198
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
5199 5200
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
5201 5202
}

5203 5204
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
5205 5206 5207 5208 5209 5210
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
5211 5212
}

5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

5264
static void regulator_resolve_coupling(struct regulator_dev *rdev)
5265
{
5266
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

5279 5280
		if (!c_rdev)
			continue;
5281

5282 5283 5284 5285 5286 5287
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

5288 5289
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
5290

5291 5292
		regulator_resolve_coupling(c_rdev);
	}
5293 5294
}

5295
static void regulator_remove_coupling(struct regulator_dev *rdev)
5296
{
5297
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5298 5299 5300 5301
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
5302
	int err;
5303

5304
	n_coupled = c_desc->n_coupled;
5305

5306 5307
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
5308

5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
5332 5333 5334 5335

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
5336 5337
			rdev_err(rdev, "failed to detach from coupler: %pe\n",
				 ERR_PTR(err));
5338 5339 5340 5341
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
5342 5343
}

5344
static int regulator_init_coupling(struct regulator_dev *rdev)
5345
{
5346
	struct regulator_dev **coupled;
5347
	int err, n_phandles;
5348 5349 5350 5351 5352 5353

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

5354 5355
	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
	if (!coupled)
5356
		return -ENOMEM;
5357

5358 5359
	rdev->coupling_desc.coupled_rdevs = coupled;

5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

5372
	if (!of_check_coupling_data(rdev))
5373 5374
		return -EPERM;

5375
	mutex_lock(&regulator_list_mutex);
5376
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5377 5378
	mutex_unlock(&regulator_list_mutex);

5379 5380
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
5381
		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5382
		return err;
5383 5384
	}

5385 5386 5387 5388 5389 5390 5391 5392 5393
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5394
		return -EPERM;
5395
	}
5396

5397 5398 5399 5400 5401 5402
	if (!rdev->constraints->always_on) {
		rdev_err(rdev,
			 "Coupling of a non always-on regulator is unimplemented\n");
		return -ENOTSUPP;
	}

5403 5404 5405
	return 0;
}

5406 5407 5408 5409
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

5410 5411
/**
 * regulator_register - register regulator
5412
 * @regulator_desc: regulator to register
5413
 * @cfg: runtime configuration for regulator
5414 5415
 *
 * Called by regulator drivers to register a regulator.
5416 5417
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
5418
 */
5419 5420
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
5421
		   const struct regulator_config *cfg)
5422
{
5423
	const struct regulator_init_data *init_data;
5424
	struct regulator_config *config = NULL;
5425
	static atomic_t regulator_no = ATOMIC_INIT(-1);
5426
	struct regulator_dev *rdev;
5427 5428
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
5429
	struct device *dev;
5430
	int ret, i;
5431
	bool resolved_early = false;
5432

5433
	if (cfg == NULL)
5434
		return ERR_PTR(-EINVAL);
5435 5436 5437 5438 5439 5440
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5441

5442
	dev = cfg->dev;
5443
	WARN_ON(!dev);
5444

5445 5446 5447 5448
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5449

5450
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5451 5452 5453 5454
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5455

5456 5457 5458
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5459 5460
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5461 5462 5463 5464

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5465 5466
		ret = -EINVAL;
		goto rinse;
5467
	}
5468 5469
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5470 5471
		ret = -EINVAL;
		goto rinse;
5472
	}
5473

5474
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5475 5476 5477 5478
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5479
	device_initialize(&rdev->dev);
5480
	spin_lock_init(&rdev->err_lock);
5481

5482 5483 5484 5485 5486 5487
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
5488
		ret = -ENOMEM;
5489
		goto clean;
5490 5491
	}

5492
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5493
					       &rdev->dev.of_node);
5494 5495 5496 5497 5498 5499 5500 5501

	/*
	 * Sometimes not all resources are probed already so we need to take
	 * that into account. This happens most the time if the ena_gpiod comes
	 * from a gpio extender or something else.
	 */
	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
		ret = -EPROBE_DEFER;
5502
		goto clean;
5503 5504
	}

5505 5506 5507 5508 5509
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5510
	 * a descriptor, we definitely got one from parsing the device
5511 5512 5513 5514
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5515 5516 5517 5518 5519
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5520
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5521
	rdev->reg_data = config->driver_data;
5522 5523
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5524 5525
	if (config->regmap)
		rdev->regmap = config->regmap;
5526
	else if (dev_get_regmap(dev, NULL))
5527
		rdev->regmap = dev_get_regmap(dev, NULL);
5528 5529
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5530 5531 5532
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5533
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5534

5535 5536 5537 5538
	if (init_data && init_data->supply_regulator)
		rdev->supply_name = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		rdev->supply_name = regulator_desc->supply_name;
5539

5540
	/* register with sysfs */
5541
	rdev->dev.class = &regulator_class;
5542
	rdev->dev.parent = dev;
5543
	dev_set_name(&rdev->dev, "regulator.%lu",
5544
		    (unsigned long) atomic_inc_return(&regulator_no));
5545
	dev_set_drvdata(&rdev->dev, rdev);
5546

5547
	/* set regulator constraints */
5548
	if (init_data)
5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
		rdev->constraints = kmemdup(&init_data->constraints,
					    sizeof(*rdev->constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
					    GFP_KERNEL);
	if (!rdev->constraints) {
		ret = -ENOMEM;
		goto wash;
	}
5559

5560
	if ((rdev->supply_name && !rdev->supply) &&
5561 5562
		(rdev->constraints->always_on ||
		 rdev->constraints->boot_on)) {
5563 5564 5565 5566
		ret = regulator_resolve_supply(rdev);
		if (ret)
			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
					 ERR_PTR(ret));
5567 5568

		resolved_early = true;
5569 5570 5571
	}

	/* perform any regulator specific init */
5572
	if (init_data && init_data->regulator_init) {
5573
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5574
		if (ret < 0)
5575
			goto wash;
5576 5577
	}

5578
	if (config->ena_gpiod) {
5579 5580
		ret = regulator_ena_gpio_request(rdev, config);
		if (ret != 0) {
5581 5582
			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
				 ERR_PTR(ret));
5583
			goto wash;
5584
		}
5585 5586 5587
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5588
	}
5589

5590
	ret = set_machine_constraints(rdev);
5591
	if (ret == -EPROBE_DEFER && !resolved_early) {
5592
		/* Regulator might be in bypass mode and so needs its supply
5593 5594
		 * to set the constraints
		 */
5595 5596
		/* FIXME: this currently triggers a chicken-and-egg problem
		 * when creating -SUPPLY symlink in sysfs to a regulator
5597 5598
		 * that is just being created
		 */
5599 5600
		rdev_dbg(rdev, "will resolve supply early: %s\n",
			 rdev->supply_name);
5601 5602
		ret = regulator_resolve_supply(rdev);
		if (!ret)
5603
			ret = set_machine_constraints(rdev);
5604 5605 5606 5607
		else
			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
				 ERR_PTR(ret));
	}
5608 5609 5610
	if (ret < 0)
		goto wash;

5611 5612
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
5613 5614
		goto wash;

5615
	/* add consumers devices */
5616 5617 5618 5619
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5620
				init_data->consumer_supplies[i].supply);
5621 5622 5623 5624 5625
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5626
		}
5627
	}
5628

5629 5630 5631 5632 5633
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5634 5635
	ret = device_add(&rdev->dev);
	if (ret != 0)
5636 5637
		goto unset_supplies;

5638
	rdev_init_debugfs(rdev);
5639

5640 5641 5642 5643 5644
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5645 5646 5647
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5648
	kfree(config);
5649
	return rdev;
D
David Brownell 已提交
5650

5651
unset_supplies:
5652
	mutex_lock(&regulator_list_mutex);
5653
	unset_regulator_supplies(rdev);
5654
	regulator_remove_coupling(rdev);
5655
	mutex_unlock(&regulator_list_mutex);
5656
wash:
5657
	kfree(rdev->coupling_desc.coupled_rdevs);
5658
	mutex_lock(&regulator_list_mutex);
5659
	regulator_ena_gpio_free(rdev);
5660
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5661
clean:
5662 5663
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
5664
	kfree(config);
5665
	put_device(&rdev->dev);
5666 5667 5668
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5669
	return ERR_PTR(ret);
5670 5671 5672 5673 5674
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5675
 * @rdev: regulator to unregister
5676 5677 5678 5679 5680 5681 5682 5683
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5684 5685 5686
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5687
		regulator_put(rdev->supply);
5688
	}
5689

5690 5691
	flush_work(&rdev->disable_work.work);

5692
	mutex_lock(&regulator_list_mutex);
5693

5694
	debugfs_remove_recursive(rdev->debugfs);
5695
	WARN_ON(rdev->open_count);
5696
	regulator_remove_coupling(rdev);
5697
	unset_regulator_supplies(rdev);
5698
	list_del(&rdev->list);
5699
	regulator_ena_gpio_free(rdev);
5700
	device_unregister(&rdev->dev);
5701 5702

	mutex_unlock(&regulator_list_mutex);
5703 5704 5705
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5706
#ifdef CONFIG_SUSPEND
5707
/**
5708
 * regulator_suspend - prepare regulators for system wide suspend
5709
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5710 5711 5712
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5713
static int regulator_suspend(struct device *dev)
5714
{
5715
	struct regulator_dev *rdev = dev_to_rdev(dev);
5716
	suspend_state_t state = pm_suspend_target_state;
5717
	int ret;
5718 5719 5720 5721 5722
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev, state);
	if (!rstate)
		return 0;
5723 5724

	regulator_lock(rdev);
5725
	ret = __suspend_set_state(rdev, rstate);
5726
	regulator_unlock(rdev);
5727

5728
	return ret;
5729
}
5730

5731
static int regulator_resume(struct device *dev)
5732
{
5733
	suspend_state_t state = pm_suspend_target_state;
5734
	struct regulator_dev *rdev = dev_to_rdev(dev);
5735
	struct regulator_state *rstate;
5736
	int ret = 0;
5737

5738
	rstate = regulator_get_suspend_state(rdev, state);
5739
	if (rstate == NULL)
5740
		return 0;
5741

5742 5743 5744 5745
	/* Avoid grabbing the lock if we don't need to */
	if (!rdev->desc->ops->resume)
		return 0;

5746
	regulator_lock(rdev);
5747

5748 5749
	if (rstate->enabled == ENABLE_IN_SUSPEND ||
	    rstate->enabled == DISABLE_IN_SUSPEND)
5750
		ret = rdev->desc->ops->resume(rdev);
5751

5752
	regulator_unlock(rdev);
5753

5754
	return ret;
5755
}
5756 5757
#else /* !CONFIG_SUSPEND */

5758 5759
#define regulator_suspend	NULL
#define regulator_resume	NULL
5760 5761 5762 5763 5764

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5765 5766
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5767 5768 5769
};
#endif

M
Mark Brown 已提交
5770
struct class regulator_class = {
5771 5772 5773 5774 5775 5776 5777
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5795 5796
/**
 * rdev_get_drvdata - get rdev regulator driver data
5797
 * @rdev: regulator
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
5833
 * rdev_get_id - get regulator ID
5834
 * @rdev: regulator
5835 5836 5837 5838 5839 5840 5841
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5842 5843 5844 5845 5846 5847
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5848 5849 5850 5851 5852 5853
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5854 5855 5856 5857 5858 5859
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5860
#ifdef CONFIG_DEBUG_FS
5861
static int supply_map_show(struct seq_file *sf, void *data)
5862 5863 5864 5865
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5866 5867 5868
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5869 5870
	}

5871 5872
	return 0;
}
5873
DEFINE_SHOW_ATTRIBUTE(supply_map);
5874

5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5897 5898 5899 5900 5901 5902
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5903
	struct summary_data summary_data;
5904
	unsigned int opmode;
5905 5906 5907 5908

	if (!rdev)
		return;

5909
	opmode = _regulator_get_mode_unlocked(rdev);
5910
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5911 5912
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5913
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5914
		   regulator_opmode_to_str(opmode));
5915

5916
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5917 5918
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5937
		if (consumer->dev && consumer->dev->class == &regulator_class)
5938 5939 5940 5941
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5942
			   30 - (level + 1) * 3,
5943
			   consumer->supply_name ? consumer->supply_name :
5944
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5945 5946 5947

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5948 5949
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5950
				   consumer->uA_load / 1000,
5951 5952
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5953 5954
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5955 5956 5957 5958 5959 5960 5961 5962
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5963 5964 5965
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5966

5967 5968
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
6006 6007

	regulator_unlock(rdev);
6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

6038 6039
	mutex_lock(&regulator_list_mutex);

6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
6066 6067

	mutex_unlock(&regulator_list_mutex);
6068 6069
}

6070
static int regulator_summary_show_roots(struct device *dev, void *data)
6071
{
6072 6073
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
6074

6075 6076
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
6077

6078 6079
	return 0;
}
6080

6081 6082
static int regulator_summary_show(struct seq_file *s, void *data)
{
6083 6084
	struct ww_acquire_ctx ww_ctx;

6085 6086
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6087

6088 6089
	regulator_summary_lock(&ww_ctx);

6090 6091
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
6092

6093 6094
	regulator_summary_unlock(&ww_ctx);

6095 6096
	return 0;
}
6097 6098
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
6099

6100 6101
static int __init regulator_init(void)
{
6102 6103 6104 6105
	int ret;

	ret = class_register(&regulator_class);

6106
	debugfs_root = debugfs_create_dir("regulator", NULL);
6107
	if (!debugfs_root)
6108
		pr_warn("regulator: Failed to create debugfs directory\n");
6109

6110
#ifdef CONFIG_DEBUG_FS
6111 6112
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
6113

6114
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6115
			    NULL, &regulator_summary_fops);
6116
#endif
6117 6118
	regulator_dummy_init();

6119 6120
	regulator_coupler_register(&generic_regulator_coupler);

6121
	return ret;
6122 6123 6124 6125
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
6126

6127
static int regulator_late_cleanup(struct device *dev, void *data)
6128
{
6129 6130
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct regulation_constraints *c = rdev->constraints;
6131
	int ret;
6132

6133 6134 6135
	if (c && c->always_on)
		return 0;

6136
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6137 6138
		return 0;

6139
	regulator_lock(rdev);
6140 6141 6142 6143

	if (rdev->use_count)
		goto unlock;

6144 6145
	/* If reading the status failed, assume that it's off. */
	if (_regulator_is_enabled(rdev) <= 0)
6146 6147 6148 6149
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
6150 6151
		 * wrong.
		 */
6152 6153 6154
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
6155
			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
6166
	regulator_unlock(rdev);
6167 6168 6169 6170

	return 0;
}

6171
static void regulator_init_complete_work_function(struct work_struct *work)
6172
{
6173 6174 6175 6176 6177 6178 6179 6180 6181 6182
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

6183
	/* If we have a full configuration then disable any regulators
6184 6185 6186
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
6187
	 */
6188 6189
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206
}

static DECLARE_DELAYED_WORK(regulator_init_complete_work,
			    regulator_init_complete_work_function);

static int __init regulator_init_complete(void)
{
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

	/*
6207 6208 6209 6210 6211 6212 6213 6214 6215
	 * We punt completion for an arbitrary amount of time since
	 * systems like distros will load many drivers from userspace
	 * so consumers might not always be ready yet, this is
	 * particularly an issue with laptops where this might bounce
	 * the display off then on.  Ideally we'd get a notification
	 * from userspace when this happens but we don't so just wait
	 * a bit and hope we waited long enough.  It'd be better if
	 * we'd only do this on systems that need it, and a kernel
	 * command line option might be useful.
6216
	 */
6217 6218
	schedule_delayed_work(&regulator_init_complete_work,
			      msecs_to_jiffies(30000));
6219 6220 6221

	return 0;
}
6222
late_initcall_sync(regulator_init_complete);