core.c 117.6 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
55
static LIST_HEAD(regulator_ena_gpio_list);
56
static LIST_HEAD(regulator_supply_alias_list);
57
static bool has_full_constraints;
58

59 60
static struct dentry *debugfs_root;

61
/*
62 63 64 65 66 67
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
68
	const char *dev_name;   /* The dev_name() for the consumer */
69
	const char *supply;
70
	struct regulator_dev *regulator;
71 72
};

73 74 75 76 77 78 79
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
80
	struct gpio_desc *gpiod;
81 82 83 84 85
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

99
static int _regulator_is_enabled(struct regulator_dev *rdev);
100
static int _regulator_disable(struct regulator_dev *rdev);
101 102 103
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104
static int _notifier_call_chain(struct regulator_dev *rdev,
105
				  unsigned long event, void *data);
106 107
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
108 109 110
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
111
static void _regulator_put(struct regulator *regulator);
112

113 114 115 116 117 118 119 120 121 122
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

123 124
static bool have_full_constraints(void)
{
125
	return has_full_constraints || of_have_populated_dt();
126 127
}

128 129 130 131 132 133 134 135 136 137 138 139 140
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

141 142 143 144 145 146 147 148
static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
{
	if (rdev && rdev->supply)
		return rdev->supply->rdev;

	return NULL;
}

149 150 151 152 153 154
/**
 * regulator_lock_supply - lock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_lock_supply(struct regulator_dev *rdev)
{
155
	int i;
156

157
	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
158
		mutex_lock_nested(&rdev->mutex, i);
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
}

/**
 * regulator_unlock_supply - unlock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_unlock_supply(struct regulator_dev *rdev)
{
	struct regulator *supply;

	while (1) {
		mutex_unlock(&rdev->mutex);
		supply = rdev->supply;

		if (!rdev->supply)
			return;

		rdev = supply->rdev;
	}
}

180 181 182 183 184 185
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
186
 * returns the device node corresponding to the regulator if found, else
187 188 189 190 191 192 193 194 195 196 197 198 199
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
200 201
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
202 203 204 205 206
		return NULL;
	}
	return regnode;
}

207 208 209 210 211 212
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

213
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
214
		rdev_err(rdev, "voltage operation not allowed\n");
215 216 217 218 219 220 221 222
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

223 224
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
225
			 *min_uV, *max_uV);
226
		return -EINVAL;
227
	}
228 229 230 231

	return 0;
}

232 233 234 235 236 237 238 239 240
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
241 242 243 244 245 246 247
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

248 249 250 251 252 253
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

254
	if (*min_uV > *max_uV) {
255 256
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
257
		return -EINVAL;
258
	}
259 260 261 262

	return 0;
}

263 264 265 266 267 268
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

269
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
270
		rdev_err(rdev, "current operation not allowed\n");
271 272 273 274 275 276 277 278
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

279 280
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
281
			 *min_uA, *max_uA);
282
		return -EINVAL;
283
	}
284 285 286 287 288

	return 0;
}

/* operating mode constraint check */
289 290
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
291
{
292
	switch (*mode) {
293 294 295 296 297 298
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
299
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
300 301 302
		return -EINVAL;
	}

303
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
304
		rdev_err(rdev, "mode operation not allowed\n");
305 306
		return -EPERM;
	}
307 308 309 310 311 312 313 314

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
315
	}
316 317

	return -EINVAL;
318 319 320 321 322
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
323
	struct regulator_dev *rdev = dev_get_drvdata(dev);
324 325 326 327 328 329 330 331
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
332
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
333 334 335 336

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
337
	struct regulator_dev *rdev = dev_get_drvdata(dev);
338 339 340

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
341
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
342

343 344
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
345 346 347
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

348
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
349
}
350
static DEVICE_ATTR_RO(name);
351

D
David Brownell 已提交
352
static ssize_t regulator_print_opmode(char *buf, int mode)
353 354 355 356 357 358 359 360 361 362 363 364 365 366
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
367 368
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
369
{
370
	struct regulator_dev *rdev = dev_get_drvdata(dev);
371

D
David Brownell 已提交
372 373
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
374
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
375 376 377

static ssize_t regulator_print_state(char *buf, int state)
{
378 379 380 381 382 383 384 385
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
386 387 388 389
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
390 391 392 393 394
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
395

396
	return ret;
D
David Brownell 已提交
397
}
398
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
399

D
David Brownell 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
433 434 435
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
436 437 438
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
439 440 441 442 443 444 445 446
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

447 448 449
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
450
	struct regulator_dev *rdev = dev_get_drvdata(dev);
451 452 453 454 455 456

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
457
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
458 459 460 461

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
462
	struct regulator_dev *rdev = dev_get_drvdata(dev);
463 464 465 466 467 468

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
469
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
470 471 472 473

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
474
	struct regulator_dev *rdev = dev_get_drvdata(dev);
475 476 477 478 479 480

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
481
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
482 483 484 485

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
486
	struct regulator_dev *rdev = dev_get_drvdata(dev);
487 488 489 490 491 492

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
493
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
494 495 496 497

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
498
	struct regulator_dev *rdev = dev_get_drvdata(dev);
499 500 501 502 503
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
504
		uA += regulator->uA_load;
505 506 507
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
508
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
509

510 511
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
512
{
513
	struct regulator_dev *rdev = dev_get_drvdata(dev);
514 515
	return sprintf(buf, "%d\n", rdev->use_count);
}
516
static DEVICE_ATTR_RO(num_users);
517

518 519
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
520
{
521
	struct regulator_dev *rdev = dev_get_drvdata(dev);
522 523 524 525 526 527 528 529 530

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
531
static DEVICE_ATTR_RO(type);
532 533 534 535

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
536
	struct regulator_dev *rdev = dev_get_drvdata(dev);
537 538 539

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
540 541
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
542 543 544 545

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
546
	struct regulator_dev *rdev = dev_get_drvdata(dev);
547 548 549

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
550 551
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
552 553 554 555

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
556
	struct regulator_dev *rdev = dev_get_drvdata(dev);
557 558 559

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
560 561
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
562 563 564 565

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
566
	struct regulator_dev *rdev = dev_get_drvdata(dev);
567

D
David Brownell 已提交
568 569
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
570
}
571 572
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
573 574 575 576

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
577
	struct regulator_dev *rdev = dev_get_drvdata(dev);
578

D
David Brownell 已提交
579 580
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
581
}
582 583
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
584 585 586 587

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
588
	struct regulator_dev *rdev = dev_get_drvdata(dev);
589

D
David Brownell 已提交
590 591
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
592
}
593 594
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
595 596 597 598

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
599
	struct regulator_dev *rdev = dev_get_drvdata(dev);
600

D
David Brownell 已提交
601 602
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
603
}
604 605
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
606 607 608 609

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
610
	struct regulator_dev *rdev = dev_get_drvdata(dev);
611

D
David Brownell 已提交
612 613
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
614
}
615 616
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
617 618 619 620

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
621
	struct regulator_dev *rdev = dev_get_drvdata(dev);
622

D
David Brownell 已提交
623 624
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
625
}
626 627 628
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
650

651 652
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
653
static int drms_uA_update(struct regulator_dev *rdev)
654 655 656 657 658
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

659 660
	lockdep_assert_held_once(&rdev->mutex);

661 662 663 664
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
665
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
666 667
		return 0;

668 669
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
670 671
		return 0;

672 673
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
674
		return -EINVAL;
675 676 677

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
678
		current_uA += sibling->uA_load;
679

680 681
	current_uA += rdev->constraints->system_load;

682 683 684 685 686 687
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
		/* get output voltage */
		output_uV = _regulator_get_voltage(rdev);
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

706 707 708 709 710 711 712 713 714 715 716
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
717

718 719 720
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
721 722 723
	}

	return err;
724 725 726 727 728 729
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
730 731

	/* If we have no suspend mode configration don't set anything;
732 733
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
734 735
	 */
	if (!rstate->enabled && !rstate->disabled) {
736 737
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
738
			rdev_warn(rdev, "No configuration\n");
739 740 741 742
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
743
		rdev_err(rdev, "invalid configuration\n");
744 745
		return -EINVAL;
	}
746

747
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
748
		ret = rdev->desc->ops->set_suspend_enable(rdev);
749
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
750
		ret = rdev->desc->ops->set_suspend_disable(rdev);
751 752 753
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

754
	if (ret < 0) {
755
		rdev_err(rdev, "failed to enabled/disable\n");
756 757 758 759 760 761
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
762
			rdev_err(rdev, "failed to set voltage\n");
763 764 765 766 767 768 769
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
770
			rdev_err(rdev, "failed to set mode\n");
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
801
	char buf[160] = "";
802
	size_t len = sizeof(buf) - 1;
803 804
	int count = 0;
	int ret;
805

806
	if (constraints->min_uV && constraints->max_uV) {
807
		if (constraints->min_uV == constraints->max_uV)
808 809
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
810
		else
811 812 813 814
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
815 816 817 818 819 820
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
821 822
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
823 824
	}

825
	if (constraints->uV_offset)
826 827
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
828

829
	if (constraints->min_uA && constraints->max_uA) {
830
		if (constraints->min_uA == constraints->max_uA)
831 832
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
833
		else
834 835 836 837
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
838 839 840 841 842 843
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
844 845
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
846
	}
847

848
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
849
		count += scnprintf(buf + count, len - count, "fast ");
850
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
851
		count += scnprintf(buf + count, len - count, "normal ");
852
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
853
		count += scnprintf(buf + count, len - count, "idle ");
854
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
855
		count += scnprintf(buf + count, len - count, "standby");
856

857
	if (!count)
858
		scnprintf(buf, len, "no parameters");
859

860
	rdev_dbg(rdev, "%s\n", buf);
861 862

	if ((constraints->min_uV != constraints->max_uV) &&
863
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
864 865
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
866 867
}

868
static int machine_constraints_voltage(struct regulator_dev *rdev,
869
	struct regulation_constraints *constraints)
870
{
871
	const struct regulator_ops *ops = rdev->desc->ops;
872 873 874 875
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
876 877
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
878 879
		int current_uV = _regulator_get_voltage(rdev);
		if (current_uV < 0) {
880 881 882
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
883 884
			return current_uV;
		}
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
905 906
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
907
			ret = _regulator_do_set_voltage(
908
				rdev, target_min, target_max);
909 910
			if (ret < 0) {
				rdev_err(rdev,
911 912
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
913 914
				return ret;
			}
915
		}
916
	}
917

918 919 920 921 922 923 924 925 926 927 928
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

929 930
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
931
		if (count == 1 && !cmin) {
932
			cmin = 1;
933
			cmax = INT_MAX;
934 935
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
936 937
		}

938 939
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
940
			return 0;
941

942
		/* else require explicit machine-level constraints */
943
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
944
			rdev_err(rdev, "invalid voltage constraints\n");
945
			return -EINVAL;
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
965 966 967
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
968
			return -EINVAL;
969 970 971 972
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
973 974
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
975 976 977
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
978 979
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
980 981 982 983
			constraints->max_uV = max_uV;
		}
	}

984 985 986
	return 0;
}

987 988 989
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
990
	const struct regulator_ops *ops = rdev->desc->ops;
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1017 1018
static int _regulator_do_enable(struct regulator_dev *rdev);

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1031
	const struct regulation_constraints *constraints)
1032 1033
{
	int ret = 0;
1034
	const struct regulator_ops *ops = rdev->desc->ops;
1035

1036 1037 1038 1039 1040 1041
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1042 1043
	if (!rdev->constraints)
		return -ENOMEM;
1044

1045
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1046
	if (ret != 0)
1047
		return ret;
1048

1049
	ret = machine_constraints_current(rdev, rdev->constraints);
1050
	if (ret != 0)
1051
		return ret;
1052

1053 1054 1055 1056 1057
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1058
			return ret;
1059 1060 1061
		}
	}

1062
	/* do we need to setup our suspend state */
1063
	if (rdev->constraints->initial_state) {
1064
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1065
		if (ret < 0) {
1066
			rdev_err(rdev, "failed to set suspend state\n");
1067
			return ret;
1068 1069
		}
	}
1070

1071
	if (rdev->constraints->initial_mode) {
1072
		if (!ops->set_mode) {
1073
			rdev_err(rdev, "no set_mode operation\n");
1074
			return -EINVAL;
1075 1076
		}

1077
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1078
		if (ret < 0) {
1079
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1080
			return ret;
1081 1082 1083
		}
	}

1084 1085 1086
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1087 1088 1089
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1090
			rdev_err(rdev, "failed to enable\n");
1091
			return ret;
1092 1093 1094
		}
	}

1095 1096
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1097 1098 1099
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1100
			return ret;
1101 1102 1103
		}
	}

S
Stephen Boyd 已提交
1104 1105 1106 1107
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1108
			return ret;
S
Stephen Boyd 已提交
1109 1110 1111
		}
	}

S
Stephen Boyd 已提交
1112 1113 1114 1115
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1116
			return ret;
S
Stephen Boyd 已提交
1117 1118 1119
		}
	}

1120 1121 1122 1123 1124
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1125
			return ret;
1126 1127 1128
		}
	}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1140
	print_constraints(rdev);
1141
	return 0;
1142 1143 1144 1145
}

/**
 * set_supply - set regulator supply regulator
1146 1147
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1148 1149 1150 1151 1152 1153
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1154
		      struct regulator_dev *supply_rdev)
1155 1156 1157
{
	int err;

1158 1159
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1160 1161 1162
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1163
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1164 1165
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1166
		return err;
1167
	}
1168
	supply_rdev->open_count++;
1169 1170

	return 0;
1171 1172 1173
}

/**
1174
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1175
 * @rdev:         regulator source
1176
 * @consumer_dev_name: dev_name() string for device supply applies to
1177
 * @supply:       symbolic name for supply
1178 1179 1180 1181 1182 1183 1184
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1185 1186
				      const char *consumer_dev_name,
				      const char *supply)
1187 1188
{
	struct regulator_map *node;
1189
	int has_dev;
1190 1191 1192 1193

	if (supply == NULL)
		return -EINVAL;

1194 1195 1196 1197 1198
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1199
	list_for_each_entry(node, &regulator_map_list, list) {
1200 1201 1202 1203
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1204
			continue;
1205 1206
		}

1207 1208 1209
		if (strcmp(node->supply, supply) != 0)
			continue;

1210 1211 1212 1213 1214 1215
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1216 1217 1218
		return -EBUSY;
	}

1219
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1220 1221 1222 1223 1224 1225
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1226 1227 1228 1229 1230 1231
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1232 1233
	}

1234 1235 1236 1237
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1238 1239 1240 1241 1242 1243 1244
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1245
			kfree(node->dev_name);
1246 1247 1248 1249 1250
			kfree(node);
		}
	}
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1300
#define REG_STR_SIZE	64
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1319 1320
		regulator->dev = dev;

1321
		/* Add a link to the device sysfs entry */
1322 1323
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1324
		if (size >= REG_STR_SIZE)
1325
			goto overflow_err;
1326 1327 1328

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1329
			goto overflow_err;
1330

1331
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1332 1333
					buf);
		if (err) {
1334
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1335
				  dev->kobj.name, err);
1336
			/* non-fatal */
1337
		}
1338
	} else {
1339
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1340
		if (regulator->supply_name == NULL)
1341
			goto overflow_err;
1342 1343 1344 1345
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1346
	if (!regulator->debugfs) {
1347
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1348 1349 1350 1351 1352 1353 1354
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1355 1356 1357
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1358
	}
1359

1360 1361 1362 1363 1364
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1365
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1366 1367 1368
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1369 1370 1371 1372 1373 1374 1375 1376 1377
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1378 1379
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1380 1381
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1382
	if (!rdev->desc->ops->enable_time)
1383
		return rdev->desc->enable_time;
1384 1385 1386
	return rdev->desc->ops->enable_time(rdev);
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1435 1436 1437 1438 1439
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1440
 */
1441
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1442
						  const char *supply)
1443
{
1444
	struct regulator_dev *r = NULL;
1445
	struct device_node *node;
1446 1447
	struct regulator_map *map;
	const char *devname = NULL;
1448

1449 1450
	regulator_supply_alias(&dev, &supply);

1451 1452 1453
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1454
		if (node) {
1455 1456 1457
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1458

1459
			/*
1460 1461
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1462
			 */
1463
			return ERR_PTR(-EPROBE_DEFER);
1464
		}
1465 1466 1467
	}

	/* if not found, try doing it non-dt way */
1468 1469 1470
	if (dev)
		devname = dev_name(dev);

1471
	mutex_lock(&regulator_list_mutex);
1472 1473 1474 1475 1476 1477
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1478 1479
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1480 1481
			r = map->regulator;
			break;
1482
		}
1483
	}
1484
	mutex_unlock(&regulator_list_mutex);
1485

1486 1487 1488 1489
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1490 1491 1492 1493
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1494 1495
}

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1510 1511 1512 1513
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1514 1515 1516 1517
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1518 1519
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1520
			get_device(&r->dev);
1521 1522 1523 1524 1525
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1526 1527
	}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1541 1542
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1543 1544
	if (ret < 0) {
		put_device(&r->dev);
1545
		return ret;
1546
	}
1547 1548

	ret = set_supply(rdev, r);
1549 1550
	if (ret < 0) {
		put_device(&r->dev);
1551
		return ret;
1552
	}
1553 1554

	/* Cascade always-on state to supply */
1555
	if (_regulator_is_enabled(rdev)) {
1556
		ret = regulator_enable(rdev->supply);
1557
		if (ret < 0) {
1558
			_regulator_put(rdev->supply);
1559
			rdev->supply = NULL;
1560
			return ret;
1561
		}
1562 1563 1564 1565 1566
	}

	return 0;
}

1567
/* Internal regulator request function */
1568 1569
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1570 1571
{
	struct regulator_dev *rdev;
1572
	struct regulator *regulator;
1573
	const char *devname = dev ? dev_name(dev) : "deviceless";
1574
	int ret;
1575

1576 1577 1578 1579 1580
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1581
	if (id == NULL) {
1582
		pr_err("get() with no identifier\n");
1583
		return ERR_PTR(-EINVAL);
1584 1585
	}

1586
	rdev = regulator_dev_lookup(dev, id);
1587 1588
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1589

1590 1591 1592 1593 1594 1595
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1596

1597 1598 1599 1600 1601
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1602

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1616

1617 1618 1619 1620
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1621

1622 1623 1624
		default:
			return ERR_PTR(-ENODEV);
		}
1625 1626
	}

1627 1628
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1629 1630
		put_device(&rdev->dev);
		return regulator;
1631 1632
	}

1633
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1634
		regulator = ERR_PTR(-EBUSY);
1635 1636
		put_device(&rdev->dev);
		return regulator;
1637 1638
	}

1639 1640 1641
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1642 1643
		put_device(&rdev->dev);
		return regulator;
1644 1645
	}

1646
	if (!try_module_get(rdev->owner)) {
1647
		regulator = ERR_PTR(-EPROBE_DEFER);
1648 1649 1650
		put_device(&rdev->dev);
		return regulator;
	}
1651

1652 1653 1654
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1655
		put_device(&rdev->dev);
1656
		module_put(rdev->owner);
1657
		return regulator;
1658 1659
	}

1660
	rdev->open_count++;
1661
	if (get_type == EXCLUSIVE_GET) {
1662 1663 1664 1665 1666 1667 1668 1669 1670
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1671 1672
	return regulator;
}
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1689
	return _regulator_get(dev, id, NORMAL_GET);
1690
}
1691 1692
EXPORT_SYMBOL_GPL(regulator_get);

1693 1694 1695 1696 1697 1698 1699
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1700 1701 1702
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1716
	return _regulator_get(dev, id, EXCLUSIVE_GET);
1717 1718 1719
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1720 1721 1722 1723 1724 1725
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1726
 * or IS_ERR() condition containing errno.
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1742
	return _regulator_get(dev, id, OPTIONAL_GET);
1743 1744 1745
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1746
/* regulator_list_mutex lock held by regulator_put() */
1747
static void _regulator_put(struct regulator *regulator)
1748 1749 1750
{
	struct regulator_dev *rdev;

1751
	if (IS_ERR_OR_NULL(regulator))
1752 1753
		return;

1754 1755
	lockdep_assert_held_once(&regulator_list_mutex);

1756 1757
	rdev = regulator->rdev;

1758 1759
	debugfs_remove_recursive(regulator->debugfs);

1760
	/* remove any sysfs entries */
1761
	if (regulator->dev)
1762
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1763
	mutex_lock(&rdev->mutex);
1764 1765
	list_del(&regulator->list);

1766 1767
	rdev->open_count--;
	rdev->exclusive = 0;
1768
	put_device(&rdev->dev);
1769
	mutex_unlock(&rdev->mutex);
1770

1771
	kfree_const(regulator->supply_name);
1772 1773
	kfree(regulator);

1774
	module_put(rdev->owner);
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1789 1790 1791 1792
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1870 1871
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1872
					 struct device *alias_dev,
1873
					 const char *const *alias_id,
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
1911
					    const char *const *id,
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


1922 1923 1924 1925 1926
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
1927
	struct gpio_desc *gpiod;
1928 1929
	int ret;

1930 1931
	gpiod = gpio_to_desc(config->ena_gpio);

1932
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1933
		if (pin->gpiod == gpiod) {
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

1952
	pin->gpiod = gpiod;
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1971
		if (pin->gpiod == rdev->ena_pin->gpiod) {
1972 1973
			if (pin->request_count <= 1) {
				pin->request_count = 0;
1974
				gpiod_put(pin->gpiod);
1975 1976
				list_del(&pin->list);
				kfree(pin);
1977 1978
				rdev->ena_pin = NULL;
				return;
1979 1980 1981 1982 1983 1984 1985
			} else {
				pin->request_count--;
			}
		}
	}
}

1986
/**
1987 1988 1989 1990
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2004 2005
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2016 2017
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
2018 2019 2020 2021 2022 2023 2024
			pin->enable_count = 0;
		}
	}

	return 0;
}

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2104
	if (rdev->ena_pin) {
2105 2106 2107 2108 2109 2110
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2111
	} else if (rdev->desc->ops->enable) {
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2124
	_regulator_enable_delay(delay);
2125 2126 2127 2128 2129 2130

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2131 2132 2133
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
2134
	int ret;
2135

2136 2137
	lockdep_assert_held_once(&rdev->mutex);

2138
	/* check voltage and requested load before enabling */
2139
	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2140
		drms_uA_update(rdev);
2141

2142 2143 2144 2145
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2146 2147
			if (!regulator_ops_is_valid(rdev,
					REGULATOR_CHANGE_STATUS))
2148 2149
				return -EPERM;

2150
			ret = _regulator_do_enable(rdev);
2151 2152 2153
			if (ret < 0)
				return ret;

2154 2155
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2156
		} else if (ret < 0) {
2157
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2158 2159
			return ret;
		}
2160
		/* Fallthrough on positive return values - already enabled */
2161 2162
	}

2163 2164 2165
	rdev->use_count++;

	return 0;
2166 2167 2168 2169 2170 2171
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2172 2173 2174 2175
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2176
 * NOTE: the output value can be set by other drivers, boot loader or may be
2177
 * hardwired in the regulator.
2178 2179 2180
 */
int regulator_enable(struct regulator *regulator)
{
2181 2182
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2183

2184 2185 2186
	if (regulator->always_on)
		return 0;

2187 2188 2189 2190 2191 2192
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

2193
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
2194
	ret = _regulator_enable(rdev);
2195
	mutex_unlock(&rdev->mutex);
2196

2197
	if (ret != 0 && rdev->supply)
2198 2199
		regulator_disable(rdev->supply);

2200 2201 2202 2203
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2204 2205 2206 2207 2208 2209
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2210
	if (rdev->ena_pin) {
2211 2212 2213 2214 2215 2216
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2217 2218 2219 2220 2221 2222 2223

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2224 2225 2226 2227 2228 2229
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2230 2231 2232 2233 2234
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2235
/* locks held by regulator_disable() */
2236
static int _regulator_disable(struct regulator_dev *rdev)
2237 2238 2239
{
	int ret = 0;

2240 2241
	lockdep_assert_held_once(&rdev->mutex);

D
David Brownell 已提交
2242
	if (WARN(rdev->use_count <= 0,
2243
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2244 2245
		return -EIO;

2246
	/* are we the last user and permitted to disable ? */
2247 2248
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2249 2250

		/* we are last user */
2251
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2252 2253 2254 2255 2256 2257
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2258
			ret = _regulator_do_disable(rdev);
2259
			if (ret < 0) {
2260
				rdev_err(rdev, "failed to disable\n");
2261 2262 2263
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2264 2265
				return ret;
			}
2266 2267
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2268 2269 2270 2271
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
2272
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2273 2274 2275 2276
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2277

2278 2279 2280 2281 2282 2283 2284
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2285 2286 2287
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2288
 *
2289
 * NOTE: this will only disable the regulator output if no other consumer
2290 2291
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2292 2293 2294
 */
int regulator_disable(struct regulator *regulator)
{
2295 2296
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2297

2298 2299 2300
	if (regulator->always_on)
		return 0;

2301
	mutex_lock(&rdev->mutex);
2302
	ret = _regulator_disable(rdev);
2303
	mutex_unlock(&rdev->mutex);
2304

2305 2306
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2307

2308 2309 2310 2311 2312
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2313
static int _regulator_force_disable(struct regulator_dev *rdev)
2314 2315 2316
{
	int ret = 0;

2317 2318
	lockdep_assert_held_once(&rdev->mutex);

2319 2320 2321 2322 2323
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2324 2325 2326
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2327 2328
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2329
		return ret;
2330 2331
	}

2332 2333 2334 2335
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2349
	struct regulator_dev *rdev = regulator->rdev;
2350 2351
	int ret;

2352
	mutex_lock(&rdev->mutex);
2353
	regulator->uA_load = 0;
2354
	ret = _regulator_force_disable(regulator->rdev);
2355
	mutex_unlock(&rdev->mutex);
2356

2357 2358 2359
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2360

2361 2362 2363 2364
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

2378 2379 2380 2381 2382 2383 2384 2385
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2421 2422 2423
	if (regulator->always_on)
		return 0;

2424 2425 2426
	if (!ms)
		return regulator_disable(regulator);

2427 2428
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
2429 2430
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2431 2432
	mutex_unlock(&rdev->mutex);

2433
	return 0;
2434 2435 2436
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2437 2438
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2439
	/* A GPIO control always takes precedence */
2440
	if (rdev->ena_pin)
2441 2442
		return rdev->ena_gpio_state;

2443
	/* If we don't know then assume that the regulator is always on */
2444
	if (!rdev->desc->ops->is_enabled)
2445
		return 1;
2446

2447
	return rdev->desc->ops->is_enabled(rdev);
2448 2449
}

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
static int _regulator_list_voltage(struct regulator *regulator,
				    unsigned selector, int lock)
{
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
			mutex_lock(&rdev->mutex);
		ret = ops->list_voltage(rdev, selector);
		if (lock)
			mutex_unlock(&rdev->mutex);
2468
	} else if (rdev->is_switch && rdev->supply) {
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
		ret = _regulator_list_voltage(rdev->supply, selector, lock);
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2484 2485 2486 2487
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2488 2489 2490 2491 2492 2493 2494
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2495 2496 2497
 */
int regulator_is_enabled(struct regulator *regulator)
{
2498 2499
	int ret;

2500 2501 2502
	if (regulator->always_on)
		return 1;

2503 2504 2505 2506 2507
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2508 2509 2510
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2523 2524 2525
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2526
	if (!rdev->is_switch || !rdev->supply)
2527 2528 2529
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2540
 * zero if this selector code can't be used on this system, or a
2541 2542 2543 2544
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2545
	return _regulator_list_voltage(regulator, selector, 1);
2546 2547 2548
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2581 2582
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2583 2584 2585 2586

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2587 2588
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2608 2609
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2647
	struct regulator_dev *rdev = regulator->rdev;
2648 2649
	int i, voltages, ret;

2650
	/* If we can't change voltage check the current voltage */
2651
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2652 2653
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2654
			return min_uV <= ret && ret <= max_uV;
2655 2656 2657 2658
		else
			return ret;
	}

2659 2660 2661 2662 2663
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2678
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2679

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2746 2747 2748 2749 2750 2751 2752 2753 2754
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
2755 2756
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
2757 2758 2759 2760 2761 2762
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
2763 2764

	if (ramp_delay == 0) {
2765
		rdev_dbg(rdev, "ramp_delay not set\n");
2766 2767 2768 2769 2770 2771
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

2772 2773 2774 2775
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2776
	int delay = 0;
2777
	int best_val = 0;
2778
	unsigned int selector;
2779
	int old_selector = -1;
2780
	const struct regulator_ops *ops = rdev->desc->ops;
2781
	int old_uV = _regulator_get_voltage(rdev);
2782 2783 2784

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2785 2786 2787
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2788 2789 2790 2791
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2792
	if (_regulator_is_enabled(rdev) &&
2793 2794
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
2795 2796 2797 2798
		if (old_selector < 0)
			return old_selector;
	}

2799
	if (ops->set_voltage) {
2800 2801
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2802 2803

		if (ret >= 0) {
2804 2805 2806
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
2807 2808 2809 2810
			else
				best_val = _regulator_get_voltage(rdev);
		}

2811
	} else if (ops->set_voltage_sel) {
2812
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2813
		if (ret >= 0) {
2814
			best_val = ops->list_voltage(rdev, ret);
2815 2816
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2817 2818 2819
				if (old_selector == selector)
					ret = 0;
				else
2820 2821
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2822 2823 2824
			} else {
				ret = -EINVAL;
			}
2825
		}
2826 2827 2828
	} else {
		ret = -EINVAL;
	}
2829

2830 2831
	if (ret)
		goto out;
2832

2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
2850
		}
2851
	}
2852

2853 2854 2855
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
2856 2857
	}

2858 2859 2860 2861 2862 2863
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
2864 2865
	}

2866
	if (best_val >= 0) {
2867 2868
		unsigned long data = best_val;

2869
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2870 2871
				     (void *)data);
	}
2872

2873
out:
2874
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2875 2876 2877 2878

	return ret;
}

2879 2880
static int regulator_set_voltage_unlocked(struct regulator *regulator,
					  int min_uV, int max_uV)
2881 2882
{
	struct regulator_dev *rdev = regulator->rdev;
2883
	int ret = 0;
2884
	int old_min_uV, old_max_uV;
2885
	int current_uV;
2886 2887
	int best_supply_uV = 0;
	int supply_change_uV = 0;
2888

2889 2890 2891 2892 2893 2894 2895
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2896
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
2897
	 * return successfully even though the regulator does not support
2898 2899
	 * changing the voltage.
	 */
2900
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2901 2902 2903 2904 2905 2906 2907 2908
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
			regulator->min_uV = min_uV;
			regulator->max_uV = max_uV;
			goto out;
		}
	}

2909
	/* sanity check */
2910 2911
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2912 2913 2914 2915 2916 2917 2918 2919
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2920

2921 2922 2923
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2924 2925
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2926

2927 2928
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2929
		goto out2;
2930

2931 2932 2933
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
2934 2935
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
			goto out2;
		}

		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
			goto out2;
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
			goto out2;
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
				best_supply_uV, INT_MAX);
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
			goto out2;
		}
	}

2972
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2973 2974
	if (ret < 0)
		goto out2;
2975

2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
				best_supply_uV, INT_MAX);
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

2986 2987
out:
	return ret;
2988 2989 2990
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016

	return ret;
}

/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	int ret = 0;

3017
	regulator_lock_supply(regulator->rdev);
3018 3019 3020

	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);

3021
	regulator_unlock_supply(regulator->rdev);
3022

3023 3024 3025 3026
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3040 3041
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3042 3043 3044 3045 3046
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3047 3048 3049 3050 3051
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3052
	/* Currently requires operations to do this */
3053
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3076
/**
3077 3078
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3079 3080 3081 3082 3083 3084
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3085
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3086
 * set_voltage_time_sel() operation.
3087 3088 3089 3090 3091
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3092
	int old_volt, new_volt;
3093

3094 3095 3096
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3097

3098 3099 3100
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3101 3102 3103 3104 3105
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3106
}
3107
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3108

3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3156 3157
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3158
	int sel, ret;
3159 3160 3161 3162 3163 3164 3165 3166
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3167 3168 3169 3170 3171
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
3172 3173 3174 3175

			return _regulator_get_voltage(rdev->supply->rdev);
		}
	}
3176 3177 3178 3179 3180

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3181
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3182
	} else if (rdev->desc->ops->get_voltage) {
3183
		ret = rdev->desc->ops->get_voltage(rdev);
3184 3185
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3186 3187
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3188
	} else if (rdev->supply) {
3189
		ret = _regulator_get_voltage(rdev->supply->rdev);
3190
	} else {
3191
		return -EINVAL;
3192
	}
3193

3194 3195
	if (ret < 0)
		return ret;
3196
	return ret - rdev->constraints->uV_offset;
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

3212
	regulator_lock_supply(regulator->rdev);
3213 3214 3215

	ret = _regulator_get_voltage(regulator->rdev);

3216
	regulator_unlock_supply(regulator->rdev);
3217 3218 3219 3220 3221 3222 3223 3224

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
3225
 * @min_uA: Minimum supported current in uA
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
3312
	int regulator_curr_mode;
3313 3314 3315 3316 3317 3318 3319 3320 3321

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

3322 3323 3324 3325 3326 3327 3328 3329 3330
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

3331
	/* constraints check */
3332
	ret = regulator_mode_constrain(rdev, &mode);
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

3406
/**
3407
 * regulator_set_load - set regulator load
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
3430
 * On error a negative errno is returned.
3431
 */
3432
int regulator_set_load(struct regulator *regulator, int uA_load)
3433 3434
{
	struct regulator_dev *rdev = regulator->rdev;
3435
	int ret;
3436

3437 3438
	mutex_lock(&rdev->mutex);
	regulator->uA_load = uA_load;
3439
	ret = drms_uA_update(rdev);
3440
	mutex_unlock(&rdev->mutex);
3441

3442 3443
	return ret;
}
3444
EXPORT_SYMBOL_GPL(regulator_set_load);
3445

3446 3447 3448 3449
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3450
 * @enable: enable or disable bypass mode
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

3465
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

3498 3499 3500
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
3501
 * @nb: notifier block
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
3516
 * @nb: notifier block
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

3528 3529 3530
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
3531
static int _notifier_call_chain(struct regulator_dev *rdev,
3532 3533 3534
				  unsigned long event, void *data)
{
	/* call rdev chain first */
3535
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
3562 3563
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
3564 3565
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3566 3567
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3568 3569 3570 3571 3572 3573 3574 3575
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3576
	while (--i >= 0)
3577 3578 3579 3580 3581 3582
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3583 3584 3585 3586 3587 3588 3589
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3605
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3606
	int i;
3607
	int ret = 0;
3608

3609 3610 3611 3612 3613 3614 3615
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3616 3617 3618 3619

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3620
	for (i = 0; i < num_consumers; i++) {
3621 3622
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3623
			goto err;
3624
		}
3625 3626 3627 3628 3629
	}

	return 0;

err:
3630 3631 3632 3633 3634 3635 3636
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3650 3651
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3652 3653 3654 3655 3656 3657
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3658
	int ret, r;
3659

3660
	for (i = num_consumers - 1; i >= 0; --i) {
3661 3662 3663 3664 3665 3666 3667 3668
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3669
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3670 3671 3672
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
3673
			pr_err("Failed to re-enable %s: %d\n",
3674 3675
			       consumers[i].supply, r);
	}
3676 3677 3678 3679 3680

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3699
	int ret = 0;
3700

3701
	for (i = 0; i < num_consumers; i++) {
3702 3703 3704
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

3705 3706
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
3707 3708 3709 3710 3711 3712 3713
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3737
 * @rdev: regulator source
3738
 * @event: notifier block
3739
 * @data: callback-specific data.
3740 3741 3742
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3743
 * Note lock must be held by caller.
3744 3745 3746 3747
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
3748 3749
	lockdep_assert_held_once(&rdev->mutex);

3750 3751 3752 3753 3754 3755
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3772
	case REGULATOR_MODE_STANDBY:
3773 3774
		return REGULATOR_STATUS_STANDBY;
	default:
3775
		return REGULATOR_STATUS_UNDEFINED;
3776 3777 3778 3779
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

3807 3808 3809 3810
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
3811 3812
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
3813
{
3814
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
3815
	struct regulator_dev *rdev = dev_to_rdev(dev);
3816
	const struct regulator_ops *ops = rdev->desc->ops;
3817 3818 3819 3820 3821 3822 3823
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
3824 3825

	/* some attributes need specific methods to be displayed */
3826 3827 3828 3829 3830 3831 3832
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
3833
	}
3834

3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

3850
	/* some attributes are type-specific */
3851 3852
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3853 3854

	/* constraints need specific supporting methods */
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
3890

3891 3892 3893
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
3894 3895 3896

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
3897
	kfree(rdev);
3898 3899
}

3900
struct class regulator_class = {
3901 3902 3903 3904 3905
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
};

3906 3907
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3920
	if (!rdev->debugfs) {
3921 3922 3923 3924 3925 3926 3927 3928
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3929 3930
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3931 3932
}

3933 3934
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
3935 3936 3937 3938 3939 3940
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
3941 3942
}

3943 3944
/**
 * regulator_register - register regulator
3945
 * @regulator_desc: regulator to register
3946
 * @cfg: runtime configuration for regulator
3947 3948
 *
 * Called by regulator drivers to register a regulator.
3949 3950
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3951
 */
3952 3953
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3954
		   const struct regulator_config *cfg)
3955
{
3956
	const struct regulation_constraints *constraints = NULL;
3957
	const struct regulator_init_data *init_data;
3958
	struct regulator_config *config = NULL;
3959
	static atomic_t regulator_no = ATOMIC_INIT(-1);
3960
	struct regulator_dev *rdev;
3961
	struct device *dev;
3962
	int ret, i;
3963

3964
	if (regulator_desc == NULL || cfg == NULL)
3965 3966
		return ERR_PTR(-EINVAL);

3967
	dev = cfg->dev;
3968
	WARN_ON(!dev);
3969

3970 3971 3972
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3973 3974
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3975 3976
		return ERR_PTR(-EINVAL);

3977 3978 3979
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3980 3981
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3982 3983 3984 3985 3986 3987

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3988 3989 3990 3991
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3992

3993 3994 3995 3996
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

4007
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4008 4009 4010 4011 4012 4013
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

4014
	mutex_init(&rdev->mutex);
4015
	rdev->reg_data = config->driver_data;
4016 4017
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
4018 4019
	if (config->regmap)
		rdev->regmap = config->regmap;
4020
	else if (dev_get_regmap(dev, NULL))
4021
		rdev->regmap = dev_get_regmap(dev, NULL);
4022 4023
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4024 4025 4026
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4027
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4028

4029
	/* preform any regulator specific init */
4030
	if (init_data && init_data->regulator_init) {
4031
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
4032 4033
		if (ret < 0)
			goto clean;
4034 4035
	}

4036 4037
	if ((config->ena_gpio || config->ena_gpio_initialized) &&
	    gpio_is_valid(config->ena_gpio)) {
4038
		mutex_lock(&regulator_list_mutex);
4039
		ret = regulator_ena_gpio_request(rdev, config);
4040
		mutex_unlock(&regulator_list_mutex);
4041 4042 4043
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
4044
			goto clean;
4045 4046 4047
		}
	}

4048
	/* register with sysfs */
4049
	rdev->dev.class = &regulator_class;
4050
	rdev->dev.parent = dev;
4051
	dev_set_name(&rdev->dev, "regulator.%lu",
4052
		    (unsigned long) atomic_inc_return(&regulator_no));
4053

4054
	/* set regulator constraints */
4055 4056 4057 4058
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
4059
		rdev->supply_name = init_data->supply_regulator;
4060
	else if (regulator_desc->supply_name)
4061
		rdev->supply_name = regulator_desc->supply_name;
4062

4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

4075
	/* add consumers devices */
4076
	if (init_data) {
4077
		mutex_lock(&regulator_list_mutex);
4078 4079 4080
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
4081
				init_data->consumer_supplies[i].supply);
4082
			if (ret < 0) {
4083
				mutex_unlock(&regulator_list_mutex);
4084 4085 4086 4087
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
4088
		}
4089
		mutex_unlock(&regulator_list_mutex);
4090
	}
4091

4092 4093 4094 4095 4096
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

4097 4098 4099 4100 4101 4102 4103
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

	dev_set_drvdata(&rdev->dev, rdev);
4104
	rdev_init_debugfs(rdev);
4105 4106 4107 4108

	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
4109
	kfree(config);
4110
	return rdev;
D
David Brownell 已提交
4111

4112
unset_supplies:
4113
	mutex_lock(&regulator_list_mutex);
4114
	unset_regulator_supplies(rdev);
4115
	mutex_unlock(&regulator_list_mutex);
4116
wash:
4117
	kfree(rdev->constraints);
4118
	mutex_lock(&regulator_list_mutex);
4119
	regulator_ena_gpio_free(rdev);
4120
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
4121 4122
clean:
	kfree(rdev);
4123 4124
	kfree(config);
	return ERR_PTR(ret);
4125 4126 4127 4128 4129
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
4130
 * @rdev: regulator to unregister
4131 4132 4133 4134 4135 4136 4137 4138
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

4139 4140 4141
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
4142
		regulator_put(rdev->supply);
4143
	}
4144
	mutex_lock(&regulator_list_mutex);
4145
	debugfs_remove_recursive(rdev->debugfs);
4146
	flush_work(&rdev->disable_work.work);
4147
	WARN_ON(rdev->open_count);
4148
	unset_regulator_supplies(rdev);
4149
	list_del(&rdev->list);
4150
	regulator_ena_gpio_free(rdev);
4151
	mutex_unlock(&regulator_list_mutex);
4152
	device_unregister(&rdev->dev);
4153 4154 4155
}
EXPORT_SYMBOL_GPL(regulator_unregister);

4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
static int _regulator_suspend_prepare(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const suspend_state_t *state = data;
	int ret;

	mutex_lock(&rdev->mutex);
	ret = suspend_prepare(rdev, *state);
	mutex_unlock(&rdev->mutex);

	return ret;
}

4169
/**
4170
 * regulator_suspend_prepare - prepare regulators for system wide suspend
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

4182 4183 4184 4185
	return class_for_each_device(&regulator_class, NULL, &state,
				     _regulator_suspend_prepare);
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4186

4187 4188 4189 4190
static int _regulator_suspend_finish(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	int ret;
4191

4192 4193 4194 4195 4196 4197 4198 4199
	mutex_lock(&rdev->mutex);
	if (rdev->use_count > 0  || rdev->constraints->always_on) {
		if (!_regulator_is_enabled(rdev)) {
			ret = _regulator_do_enable(rdev);
			if (ret)
				dev_err(dev,
					"Failed to resume regulator %d\n",
					ret);
4200
		}
4201 4202 4203 4204 4205 4206 4207 4208 4209
	} else {
		if (!have_full_constraints())
			goto unlock;
		if (!_regulator_is_enabled(rdev))
			goto unlock;

		ret = _regulator_do_disable(rdev);
		if (ret)
			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4210
	}
4211 4212 4213 4214 4215
unlock:
	mutex_unlock(&rdev->mutex);

	/* Keep processing regulators in spite of any errors */
	return 0;
4216 4217
}

4218 4219 4220 4221 4222 4223 4224 4225
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
4226 4227
	return class_for_each_device(&regulator_class, NULL, NULL,
				     _regulator_suspend_finish);
4228 4229 4230
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

4248 4249
/**
 * rdev_get_drvdata - get rdev regulator driver data
4250
 * @rdev: regulator
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
4287
 * @rdev: regulator
4288 4289 4290 4291 4292 4293 4294
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

4307
#ifdef CONFIG_DEBUG_FS
4308
static int supply_map_show(struct seq_file *sf, void *data)
4309 4310 4311 4312
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
4313 4314 4315
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
4316 4317
	}

4318 4319
	return 0;
}
4320

4321 4322 4323
static int supply_map_open(struct inode *inode, struct file *file)
{
	return single_open(file, supply_map_show, inode->i_private);
4324
}
4325
#endif
4326 4327

static const struct file_operations supply_map_fops = {
4328
#ifdef CONFIG_DEBUG_FS
4329 4330 4331 4332
	.open = supply_map_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
4333
#endif
4334
};
4335

4336
#ifdef CONFIG_DEBUG_FS
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

4359 4360 4361 4362 4363 4364
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
4365
	struct summary_data summary_data;
4366 4367 4368 4369 4370 4371 4372 4373 4374

	if (!rdev)
		return;

	seq_printf(s, "%*s%-*s %3d %4d %6d ",
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
		   rdev->use_count, rdev->open_count, rdev->bypass_count);

4375 4376
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4395
		if (consumer->dev && consumer->dev->class == &regulator_class)
4396 4397 4398 4399
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
4400 4401
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4402 4403 4404

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
4405
			seq_printf(s, "%37dmV %5dmV",
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
				   consumer->min_uV / 1000,
				   consumer->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

4416 4417 4418
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
4419

4420 4421
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
4422 4423
}

4424
static int regulator_summary_show_roots(struct device *dev, void *data)
4425
{
4426 4427
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
4428

4429 4430
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
4431

4432 4433
	return 0;
}
4434

4435 4436 4437 4438
static int regulator_summary_show(struct seq_file *s, void *data)
{
	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
	seq_puts(s, "-------------------------------------------------------------------------------\n");
4439

4440 4441
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460

	return 0;
}

static int regulator_summary_open(struct inode *inode, struct file *file)
{
	return single_open(file, regulator_summary_show, inode->i_private);
}
#endif

static const struct file_operations regulator_summary_fops = {
#ifdef CONFIG_DEBUG_FS
	.open		= regulator_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
#endif
};

4461 4462
static int __init regulator_init(void)
{
4463 4464 4465 4466
	int ret;

	ret = class_register(&regulator_class);

4467
	debugfs_root = debugfs_create_dir("regulator", NULL);
4468
	if (!debugfs_root)
4469
		pr_warn("regulator: Failed to create debugfs directory\n");
4470

4471 4472
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
4473

4474
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4475
			    NULL, &regulator_summary_fops);
4476

4477 4478 4479
	regulator_dummy_init();

	return ret;
4480 4481 4482 4483
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
4484

4485
static int __init regulator_late_cleanup(struct device *dev, void *data)
4486
{
4487 4488 4489
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
4490 4491
	int enabled, ret;

4492 4493 4494
	if (c && c->always_on)
		return 0;

4495
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
		return 0;

	mutex_lock(&rdev->mutex);

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
	mutex_unlock(&rdev->mutex);

	return 0;
}

static int __init regulator_init_complete(void)
{
4536 4537 4538 4539 4540 4541 4542 4543 4544
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

4555
	/* If we have a full configuration then disable any regulators
4556 4557 4558
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
4559
	 */
4560 4561
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
4562 4563 4564

	return 0;
}
4565
late_initcall_sync(regulator_init_complete);