core.c 145.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

M
Mark Brown 已提交
36 37
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 39 40 41 42 43 44 45 46
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

47 48
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
49 50
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
51
static LIST_HEAD(regulator_ena_gpio_list);
52
static LIST_HEAD(regulator_supply_alias_list);
53
static LIST_HEAD(regulator_coupler_list);
54
static bool has_full_constraints;
55

56 57
static struct dentry *debugfs_root;

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69
};

70 71 72 73 74 75 76
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
77
	struct gpio_desc *gpiod;
78 79 80 81
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

95
static int _regulator_is_enabled(struct regulator_dev *rdev);
96
static int _regulator_disable(struct regulator *regulator);
97 98
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99
static int _notifier_call_chain(struct regulator_dev *rdev,
100
				  unsigned long event, void *data);
101 102
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
103 104
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
105 106 107
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
108
static void _regulator_put(struct regulator *regulator);
109

110
const char *rdev_get_name(struct regulator_dev *rdev)
111 112 113 114 115 116 117 118 119
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

120 121
static bool have_full_constraints(void)
{
122
	return has_full_constraints || of_have_populated_dt();
123 124
}

125 126 127 128 129 130 131 132 133 134 135 136 137
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

138 139 140
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
141
 * @ww_ctx:		w/w mutex acquire context
142 143 144 145 146 147 148
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
149 150
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
151
{
152 153 154 155 156 157 158
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
159
			rdev->ref_cnt++;
160 161 162 163 164 165 166
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
167
		}
168 169
	} else {
		lock = true;
170 171
	}

172 173 174 175 176 177 178 179
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
180 181
}

182 183 184 185 186 187 188 189 190 191 192
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
void regulator_lock(struct regulator_dev *rdev)
193
{
194
	regulator_lock_nested(rdev, NULL);
195
}
196
EXPORT_SYMBOL_GPL(regulator_lock);
197 198 199 200 201 202 203 204

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
205
void regulator_unlock(struct regulator_dev *rdev)
206
{
207
	mutex_lock(&regulator_nesting_mutex);
208

209 210 211
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
212
	}
213 214 215 216

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
217
}
218
EXPORT_SYMBOL_GPL(regulator_unlock);
219

220
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
221
{
222 223 224 225 226
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
227

228 229 230 231 232 233 234
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

235 236
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
237
{
238
	struct regulator_dev *c_rdev;
239
	int i;
240

241 242
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
243 244 245 246

		if (!c_rdev)
			continue;

247
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
248 249 250
			regulator_unlock_recursive(
					c_rdev->supply->rdev,
					c_rdev->coupling_desc.n_coupled);
251

252 253
		regulator_unlock(c_rdev);
	}
254 255
}

256 257 258 259
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
260
{
261
	struct regulator_dev *c_rdev;
262
	int i, err;
263

264 265
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
266

267 268
		if (!c_rdev)
			continue;
269

270 271 272 273 274 275 276
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
277

278 279 280 281 282 283 284
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

285
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
286 287 288 289 290 291 292 293
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
294 295
		}
	}
296 297 298 299 300 301 302

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
303 304
}

305
/**
306 307 308 309 310
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
311
 * Unlock all regulators related with rdev by coupling or supplying.
312
 */
313 314
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
315
{
316 317
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
318 319 320
}

/**
321 322
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
323
 * @ww_ctx:			w/w mutex acquire context
324 325
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
326
 * all regulators related with rdev by coupling or supplying.
327
 */
328 329
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
330
{
331 332 333
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
334

335
	mutex_lock(&regulator_list_mutex);
336

337
	ww_acquire_init(ww_ctx, &regulator_ww_class);
338

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
359 360
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
383 384
			if (regnode) {
				of_node_put(child);
385
				return regnode;
386
			}
387
		} else {
388
			of_node_put(child);
389 390 391 392 393 394
			return regnode;
		}
	}
	return NULL;
}

395 396 397 398 399 400
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
401
 * returns the device node corresponding to the regulator if found, else
402 403 404 405 406 407 408 409 410 411 412 413 414
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
415 416 417 418
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

419 420
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
421 422 423 424 425
		return NULL;
	}
	return regnode;
}

426
/* Platform voltage constraint check */
427 428
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
429 430 431
{
	BUG_ON(*min_uV > *max_uV);

432
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
433
		rdev_err(rdev, "voltage operation not allowed\n");
434 435 436 437 438 439 440 441
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

442 443
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
444
			 *min_uV, *max_uV);
445
		return -EINVAL;
446
	}
447 448 449 450

	return 0;
}

451 452 453 454 455 456
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

457 458 459
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
460 461 462
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
463 464
{
	struct regulator *regulator;
465
	struct regulator_voltage *voltage;
466 467

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
468
		voltage = &regulator->voltage[state];
469 470 471 472
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
473
		if (!voltage->min_uV && !voltage->max_uV)
474 475
			continue;

476 477 478 479
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
480 481
	}

482
	if (*min_uV > *max_uV) {
483 484
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
485
		return -EINVAL;
486
	}
487 488 489 490

	return 0;
}

491 492 493 494 495 496
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

497
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
498
		rdev_err(rdev, "current operation not allowed\n");
499 500 501 502 503 504 505 506
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

507 508
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
509
			 *min_uA, *max_uA);
510
		return -EINVAL;
511
	}
512 513 514 515 516

	return 0;
}

/* operating mode constraint check */
517 518
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
519
{
520
	switch (*mode) {
521 522 523 524 525 526
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
527
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
528 529 530
		return -EINVAL;
	}

531
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
532
		rdev_err(rdev, "mode operation not allowed\n");
533 534
		return -EPERM;
	}
535 536 537 538 539 540 541 542

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
543
	}
544 545

	return -EINVAL;
546 547
}

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

566 567 568
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
569
	struct regulator_dev *rdev = dev_get_drvdata(dev);
570 571
	ssize_t ret;

572
	regulator_lock(rdev);
573
	ret = sprintf(buf, "%d\n", regulator_get_voltage_rdev(rdev));
574
	regulator_unlock(rdev);
575 576 577

	return ret;
}
578
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
579 580 581 582

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
583
	struct regulator_dev *rdev = dev_get_drvdata(dev);
584 585 586

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
587
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
588

589 590
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
591 592 593
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

594
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
595
}
596
static DEVICE_ATTR_RO(name);
597

598
static const char *regulator_opmode_to_str(int mode)
599 600 601
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
602
		return "fast";
603
	case REGULATOR_MODE_NORMAL:
604
		return "normal";
605
	case REGULATOR_MODE_IDLE:
606
		return "idle";
607
	case REGULATOR_MODE_STANDBY:
608
		return "standby";
609
	}
610 611 612 613 614 615
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
616 617
}

D
David Brownell 已提交
618 619
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
620
{
621
	struct regulator_dev *rdev = dev_get_drvdata(dev);
622

D
David Brownell 已提交
623 624
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
625
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
626 627 628

static ssize_t regulator_print_state(char *buf, int state)
{
629 630 631 632 633 634 635 636
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
637 638 639 640
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
641 642
	ssize_t ret;

643
	regulator_lock(rdev);
644
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
645
	regulator_unlock(rdev);
D
David Brownell 已提交
646

647
	return ret;
D
David Brownell 已提交
648
}
649
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
650

D
David Brownell 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
684 685 686
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
687 688 689
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
690 691 692 693 694 695 696 697
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

698 699 700
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
701
	struct regulator_dev *rdev = dev_get_drvdata(dev);
702 703 704 705 706 707

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
708
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
709 710 711 712

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
713
	struct regulator_dev *rdev = dev_get_drvdata(dev);
714 715 716 717 718 719

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
720
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
721 722 723 724

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
725
	struct regulator_dev *rdev = dev_get_drvdata(dev);
726 727 728 729 730 731

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
732
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
733 734 735 736

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
737
	struct regulator_dev *rdev = dev_get_drvdata(dev);
738 739 740 741 742 743

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
744
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
745 746 747 748

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
749
	struct regulator_dev *rdev = dev_get_drvdata(dev);
750 751 752
	struct regulator *regulator;
	int uA = 0;

753
	regulator_lock(rdev);
754 755 756 757
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
758
	regulator_unlock(rdev);
759 760
	return sprintf(buf, "%d\n", uA);
}
761
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
762

763 764
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
765
{
766
	struct regulator_dev *rdev = dev_get_drvdata(dev);
767 768
	return sprintf(buf, "%d\n", rdev->use_count);
}
769
static DEVICE_ATTR_RO(num_users);
770

771 772
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
773
{
774
	struct regulator_dev *rdev = dev_get_drvdata(dev);
775 776 777 778 779 780 781 782 783

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
784
static DEVICE_ATTR_RO(type);
785 786 787 788

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
789
	struct regulator_dev *rdev = dev_get_drvdata(dev);
790 791 792

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
793 794
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
795 796 797 798

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
799
	struct regulator_dev *rdev = dev_get_drvdata(dev);
800 801 802

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
803 804
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
805 806 807 808

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
809
	struct regulator_dev *rdev = dev_get_drvdata(dev);
810 811 812

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
813 814
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
815 816 817 818

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
819
	struct regulator_dev *rdev = dev_get_drvdata(dev);
820

D
David Brownell 已提交
821 822
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
823
}
824 825
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
826 827 828 829

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
830
	struct regulator_dev *rdev = dev_get_drvdata(dev);
831

D
David Brownell 已提交
832 833
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
834
}
835 836
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
837 838 839 840

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
841
	struct regulator_dev *rdev = dev_get_drvdata(dev);
842

D
David Brownell 已提交
843 844
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
845
}
846 847
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
848 849 850 851

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
852
	struct regulator_dev *rdev = dev_get_drvdata(dev);
853

D
David Brownell 已提交
854 855
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
856
}
857 858
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
859 860 861 862

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
863
	struct regulator_dev *rdev = dev_get_drvdata(dev);
864

D
David Brownell 已提交
865 866
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
867
}
868 869
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
870 871 872 873

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
874
	struct regulator_dev *rdev = dev_get_drvdata(dev);
875

D
David Brownell 已提交
876 877
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
878
}
879 880 881
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
903

904 905
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
906
static int drms_uA_update(struct regulator_dev *rdev)
907 908 909 910 911
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

912 913 914 915
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
916 917
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
918
		return 0;
919
	}
920

921 922
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
923 924
		return 0;

925 926
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
927
		return -EINVAL;
928 929

	/* calc total requested load */
930 931 932 933
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
934

935 936
	current_uA += rdev->constraints->system_load;

937 938 939 940 941 942
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
943
		/* get output voltage */
944
		output_uV = regulator_get_voltage_rdev(rdev);
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

961 962 963 964 965 966 967 968 969 970 971
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
972

973 974 975
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
976 977 978
	}

	return err;
979 980 981
}

static int suspend_set_state(struct regulator_dev *rdev,
982
				    suspend_state_t state)
983 984
{
	int ret = 0;
985 986 987 988
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
989
		return 0;
990

991
	/* If we have no suspend mode configuration don't set anything;
992 993
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
994
	 */
995 996
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
997 998
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
999
			rdev_warn(rdev, "No configuration\n");
1000 1001 1002
		return 0;
	}

1003 1004
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1005
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1006 1007
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1008
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1009 1010 1011
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1012
	if (ret < 0) {
1013
		rdev_err(rdev, "failed to enabled/disable\n");
1014 1015 1016 1017 1018 1019
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1020
			rdev_err(rdev, "failed to set voltage\n");
1021 1022 1023 1024 1025 1026 1027
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1028
			rdev_err(rdev, "failed to set mode\n");
1029 1030 1031 1032
			return ret;
		}
	}

1033
	return ret;
1034 1035 1036 1037 1038
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
1039
	char buf[160] = "";
1040
	size_t len = sizeof(buf) - 1;
1041 1042
	int count = 0;
	int ret;
1043

1044
	if (constraints->min_uV && constraints->max_uV) {
1045
		if (constraints->min_uV == constraints->max_uV)
1046 1047
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1048
		else
1049 1050 1051 1052
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1053 1054 1055 1056
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1057
		ret = regulator_get_voltage_rdev(rdev);
1058
		if (ret > 0)
1059 1060
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1061 1062
	}

1063
	if (constraints->uV_offset)
1064 1065
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1066

1067
	if (constraints->min_uA && constraints->max_uA) {
1068
		if (constraints->min_uA == constraints->max_uA)
1069 1070
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1071
		else
1072 1073 1074 1075
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1076 1077 1078 1079 1080 1081
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1082 1083
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1084
	}
1085

1086
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1087
		count += scnprintf(buf + count, len - count, "fast ");
1088
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1089
		count += scnprintf(buf + count, len - count, "normal ");
1090
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1091
		count += scnprintf(buf + count, len - count, "idle ");
1092
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1093
		count += scnprintf(buf + count, len - count, "standby");
1094

1095
	if (!count)
1096
		scnprintf(buf, len, "no parameters");
1097

1098
	rdev_dbg(rdev, "%s\n", buf);
1099 1100

	if ((constraints->min_uV != constraints->max_uV) &&
1101
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1102 1103
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1104 1105
}

1106
static int machine_constraints_voltage(struct regulator_dev *rdev,
1107
	struct regulation_constraints *constraints)
1108
{
1109
	const struct regulator_ops *ops = rdev->desc->ops;
1110 1111 1112 1113
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1114 1115
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1116
		int current_uV = regulator_get_voltage_rdev(rdev);
1117 1118

		if (current_uV == -ENOTRECOVERABLE) {
1119
			/* This regulator can't be read and must be initialized */
1120 1121 1122 1123 1124 1125
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1126
			current_uV = regulator_get_voltage_rdev(rdev);
1127 1128
		}

1129
		if (current_uV < 0) {
1130 1131 1132
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
1133 1134
			return current_uV;
		}
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1155 1156
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1157
			ret = _regulator_do_set_voltage(
1158
				rdev, target_min, target_max);
1159 1160
			if (ret < 0) {
				rdev_err(rdev,
1161 1162
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1163 1164
				return ret;
			}
1165
		}
1166
	}
1167

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1179 1180
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1181
		if (count == 1 && !cmin) {
1182
			cmin = 1;
1183
			cmax = INT_MAX;
1184 1185
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1186 1187
		}

1188 1189
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1190
			return 0;
1191

1192
		/* else require explicit machine-level constraints */
1193
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1194
			rdev_err(rdev, "invalid voltage constraints\n");
1195
			return -EINVAL;
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1215 1216 1217
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1218
			return -EINVAL;
1219 1220 1221 1222
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1223 1224
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1225 1226 1227
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1228 1229
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1230 1231 1232 1233
			constraints->max_uV = max_uV;
		}
	}

1234 1235 1236
	return 0;
}

1237 1238 1239
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1240
	const struct regulator_ops *ops = rdev->desc->ops;
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1267 1268
static int _regulator_do_enable(struct regulator_dev *rdev);

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1281
	const struct regulation_constraints *constraints)
1282 1283
{
	int ret = 0;
1284
	const struct regulator_ops *ops = rdev->desc->ops;
1285

1286 1287 1288 1289 1290 1291
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1292 1293
	if (!rdev->constraints)
		return -ENOMEM;
1294

1295
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1296
	if (ret != 0)
1297
		return ret;
1298

1299
	ret = machine_constraints_current(rdev, rdev->constraints);
1300
	if (ret != 0)
1301
		return ret;
1302

1303 1304 1305 1306 1307
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1308
			return ret;
1309 1310 1311
		}
	}

1312
	/* do we need to setup our suspend state */
1313
	if (rdev->constraints->initial_state) {
1314
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1315
		if (ret < 0) {
1316
			rdev_err(rdev, "failed to set suspend state\n");
1317
			return ret;
1318 1319
		}
	}
1320

1321
	if (rdev->constraints->initial_mode) {
1322
		if (!ops->set_mode) {
1323
			rdev_err(rdev, "no set_mode operation\n");
1324
			return -EINVAL;
1325 1326
		}

1327
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1328
		if (ret < 0) {
1329
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1330
			return ret;
1331
		}
1332 1333 1334 1335 1336 1337
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1338 1339
	}

1340 1341
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1342 1343 1344
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1345
			return ret;
1346 1347 1348
		}
	}

S
Stephen Boyd 已提交
1349 1350 1351 1352
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1353
			return ret;
S
Stephen Boyd 已提交
1354 1355 1356
		}
	}

S
Stephen Boyd 已提交
1357 1358 1359 1360
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1361
			return ret;
S
Stephen Boyd 已提交
1362 1363 1364
		}
	}

1365 1366 1367 1368 1369
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1370
			return ret;
1371 1372 1373
		}
	}

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1385 1386 1387 1388
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1389 1390 1391 1392 1393 1394 1395 1396 1397
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1398 1399 1400 1401 1402
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
			rdev_err(rdev, "failed to enable\n");
			return ret;
		}
1403
		rdev->use_count++;
1404 1405
	}

1406
	print_constraints(rdev);
1407
	return 0;
1408 1409 1410 1411
}

/**
 * set_supply - set regulator supply regulator
1412 1413
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1414 1415 1416 1417 1418 1419
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1420
		      struct regulator_dev *supply_rdev)
1421 1422 1423
{
	int err;

1424 1425
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1426 1427 1428
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1429
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1430 1431
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1432
		return err;
1433
	}
1434
	supply_rdev->open_count++;
1435 1436

	return 0;
1437 1438 1439
}

/**
1440
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1441
 * @rdev:         regulator source
1442
 * @consumer_dev_name: dev_name() string for device supply applies to
1443
 * @supply:       symbolic name for supply
1444 1445 1446 1447 1448 1449 1450
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1451 1452
				      const char *consumer_dev_name,
				      const char *supply)
1453 1454
{
	struct regulator_map *node;
1455
	int has_dev;
1456 1457 1458 1459

	if (supply == NULL)
		return -EINVAL;

1460 1461 1462 1463 1464
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1465
	list_for_each_entry(node, &regulator_map_list, list) {
1466 1467 1468 1469
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1470
			continue;
1471 1472
		}

1473 1474 1475
		if (strcmp(node->supply, supply) != 0)
			continue;

1476 1477 1478 1479 1480 1481
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1482 1483 1484
		return -EBUSY;
	}

1485
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1486 1487 1488 1489 1490 1491
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1492 1493 1494 1495 1496 1497
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1498 1499
	}

1500 1501 1502 1503
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1504 1505 1506 1507 1508 1509 1510
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1511
			kfree(node->dev_name);
1512 1513 1514 1515 1516
			kfree(node);
		}
	}
}

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1566
#define REG_STR_SIZE	64
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

1580
	regulator_lock(rdev);
1581 1582 1583 1584
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1585 1586
		regulator->dev = dev;

1587
		/* Add a link to the device sysfs entry */
1588 1589
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1590
		if (size >= REG_STR_SIZE)
1591
			goto overflow_err;
1592 1593 1594

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1595
			goto overflow_err;
1596

1597
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1598 1599
					buf);
		if (err) {
1600
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1601
				  dev->kobj.name, err);
1602
			/* non-fatal */
1603
		}
1604
	} else {
1605
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1606
		if (regulator->supply_name == NULL)
1607
			goto overflow_err;
1608 1609 1610 1611
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1612
	if (!regulator->debugfs) {
1613
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1614 1615 1616 1617
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1618
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1619
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1620
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1621 1622 1623
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1624
	}
1625

1626 1627 1628 1629 1630
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1631
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1632 1633 1634
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1635
	regulator_unlock(rdev);
1636 1637 1638 1639
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
1640
	regulator_unlock(rdev);
1641 1642 1643
	return NULL;
}

1644 1645
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1646 1647
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1648 1649 1650
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1651 1652
}

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1701 1702 1703 1704 1705
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1706
 */
1707
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1708
						  const char *supply)
1709
{
1710
	struct regulator_dev *r = NULL;
1711
	struct device_node *node;
1712 1713
	struct regulator_map *map;
	const char *devname = NULL;
1714

1715 1716
	regulator_supply_alias(&dev, &supply);

1717 1718 1719
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1720
		if (node) {
1721 1722 1723
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1724

1725
			/*
1726 1727
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1728
			 */
1729
			return ERR_PTR(-EPROBE_DEFER);
1730
		}
1731 1732 1733
	}

	/* if not found, try doing it non-dt way */
1734 1735 1736
	if (dev)
		devname = dev_name(dev);

1737
	mutex_lock(&regulator_list_mutex);
1738 1739 1740 1741 1742 1743
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1744 1745
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1746 1747
			r = map->regulator;
			break;
1748
		}
1749
	}
1750
	mutex_unlock(&regulator_list_mutex);
1751

1752 1753 1754 1755
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1756 1757 1758 1759
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1760 1761
}

1762 1763 1764 1765 1766 1767
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

1768
	/* No supply to resolve? */
1769 1770 1771 1772 1773 1774 1775
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1776 1777 1778 1779
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1780 1781 1782 1783
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1784 1785
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1786
			get_device(&r->dev);
1787 1788 1789 1790 1791
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1792 1793
	}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1807 1808
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1809 1810
	if (ret < 0) {
		put_device(&r->dev);
1811
		return ret;
1812
	}
1813 1814

	ret = set_supply(rdev, r);
1815 1816
	if (ret < 0) {
		put_device(&r->dev);
1817
		return ret;
1818
	}
1819

1820 1821 1822 1823 1824 1825
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1826
		ret = regulator_enable(rdev->supply);
1827
		if (ret < 0) {
1828
			_regulator_put(rdev->supply);
1829
			rdev->supply = NULL;
1830
			return ret;
1831
		}
1832 1833 1834 1835 1836
	}

	return 0;
}

1837
/* Internal regulator request function */
1838 1839
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1840 1841
{
	struct regulator_dev *rdev;
1842
	struct regulator *regulator;
1843
	const char *devname = dev ? dev_name(dev) : "deviceless";
1844
	int ret;
1845

1846 1847 1848 1849 1850
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1851
	if (id == NULL) {
1852
		pr_err("get() with no identifier\n");
1853
		return ERR_PTR(-EINVAL);
1854 1855
	}

1856
	rdev = regulator_dev_lookup(dev, id);
1857 1858
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1859

1860 1861 1862 1863 1864 1865
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1866

1867 1868 1869 1870 1871
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1872

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1886

1887 1888 1889 1890
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1891

1892 1893 1894
		default:
			return ERR_PTR(-ENODEV);
		}
1895 1896
	}

1897 1898
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1899 1900
		put_device(&rdev->dev);
		return regulator;
1901 1902
	}

1903
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1904
		regulator = ERR_PTR(-EBUSY);
1905 1906
		put_device(&rdev->dev);
		return regulator;
1907 1908
	}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1919 1920 1921
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1922 1923
		put_device(&rdev->dev);
		return regulator;
1924 1925
	}

1926
	if (!try_module_get(rdev->owner)) {
1927
		regulator = ERR_PTR(-EPROBE_DEFER);
1928 1929 1930
		put_device(&rdev->dev);
		return regulator;
	}
1931

1932 1933 1934
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1935
		put_device(&rdev->dev);
1936
		module_put(rdev->owner);
1937
		return regulator;
1938 1939
	}

1940
	rdev->open_count++;
1941
	if (get_type == EXCLUSIVE_GET) {
1942 1943 1944 1945 1946 1947 1948 1949 1950
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1951 1952
	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);

1953 1954
	return regulator;
}
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1971
	return _regulator_get(dev, id, NORMAL_GET);
1972
}
1973 1974
EXPORT_SYMBOL_GPL(regulator_get);

1975 1976 1977 1978 1979 1980 1981
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1982 1983 1984
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1998
	return _regulator_get(dev, id, EXCLUSIVE_GET);
1999 2000 2001
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2002 2003 2004 2005 2006 2007
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2008
 * or IS_ERR() condition containing errno.
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2024
	return _regulator_get(dev, id, OPTIONAL_GET);
2025 2026 2027
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2028
/* regulator_list_mutex lock held by regulator_put() */
2029
static void _regulator_put(struct regulator *regulator)
2030 2031 2032
{
	struct regulator_dev *rdev;

2033
	if (IS_ERR_OR_NULL(regulator))
2034 2035
		return;

2036 2037
	lockdep_assert_held_once(&regulator_list_mutex);

2038 2039 2040
	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

2041 2042
	rdev = regulator->rdev;

2043 2044
	debugfs_remove_recursive(regulator->debugfs);

2045
	if (regulator->dev) {
2046
		device_link_remove(regulator->dev, &rdev->dev);
2047 2048

		/* remove any sysfs entries */
2049
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2050 2051
	}

2052
	regulator_lock(rdev);
2053 2054
	list_del(&regulator->list);

2055 2056
	rdev->open_count--;
	rdev->exclusive = 0;
2057
	put_device(&rdev->dev);
2058
	regulator_unlock(rdev);
2059

2060
	kfree_const(regulator->supply_name);
2061 2062
	kfree(regulator);

2063
	module_put(rdev->owner);
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2078 2079 2080 2081
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2159 2160
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2161
					 struct device *alias_dev,
2162
					 const char *const *alias_id,
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2200
					    const char *const *id,
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2211 2212 2213 2214 2215
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
2216
	struct gpio_desc *gpiod;
2217

2218
	gpiod = config->ena_gpiod;
2219

2220
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2221
		if (pin->gpiod == gpiod) {
2222
			rdev_dbg(rdev, "GPIO is already used\n");
2223 2224 2225 2226 2227
			goto update_ena_gpio_to_rdev;
		}
	}

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2228
	if (pin == NULL)
2229 2230
		return -ENOMEM;

2231
	pin->gpiod = gpiod;
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2249
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2250 2251
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2252
				gpiod_put(pin->gpiod);
2253 2254
				list_del(&pin->list);
				kfree(pin);
2255 2256
				rdev->ena_pin = NULL;
				return;
2257 2258 2259 2260 2261 2262 2263
			} else {
				pin->request_count--;
			}
		}
	}
}

2264
/**
2265 2266 2267 2268
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2282
			gpiod_set_value_cansleep(pin->gpiod, 1);
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2293
			gpiod_set_value_cansleep(pin->gpiod, 0);
2294 2295 2296 2297 2298 2299 2300
			pin->enable_count = 0;
		}
	}

	return 0;
}

2301 2302 2303 2304 2305 2306
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2307
 *     Documentation/timers/timers-howto.rst
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
2370
			 * detected and we get a penalty of
2371 2372 2373 2374 2375 2376 2377 2378 2379
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2380
	if (rdev->ena_pin) {
2381 2382 2383 2384 2385 2386
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2387
	} else if (rdev->desc->ops->enable) {
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2400
	_regulator_enable_delay(delay);
2401 2402 2403 2404 2405 2406

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2466
/* locks held by regulator_enable() */
2467
static int _regulator_enable(struct regulator *regulator)
2468
{
2469
	struct regulator_dev *rdev = regulator->rdev;
2470
	int ret;
2471

2472 2473
	lockdep_assert_held_once(&rdev->mutex.base);

2474
	if (rdev->use_count == 0 && rdev->supply) {
2475
		ret = _regulator_enable(rdev->supply);
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2486

2487 2488 2489
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2490

2491 2492 2493 2494
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2495
			if (!regulator_ops_is_valid(rdev,
2496 2497
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2498
				goto err_consumer_disable;
2499
			}
2500

2501
			ret = _regulator_do_enable(rdev);
2502
			if (ret < 0)
2503
				goto err_consumer_disable;
2504

2505 2506
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2507
		} else if (ret < 0) {
2508
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2509
			goto err_consumer_disable;
2510
		}
2511
		/* Fallthrough on positive return values - already enabled */
2512 2513
	}

2514 2515 2516
	rdev->use_count++;

	return 0;
2517

2518 2519 2520
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2521
err_disable_supply:
2522
	if (rdev->use_count == 0 && rdev->supply)
2523
		_regulator_disable(rdev->supply);
2524 2525

	return ret;
2526 2527 2528 2529 2530 2531
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2532 2533 2534 2535
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2536
 * NOTE: the output value can be set by other drivers, boot loader or may be
2537
 * hardwired in the regulator.
2538 2539 2540
 */
int regulator_enable(struct regulator *regulator)
{
2541
	struct regulator_dev *rdev = regulator->rdev;
2542
	struct ww_acquire_ctx ww_ctx;
2543
	int ret;
2544

2545
	regulator_lock_dependent(rdev, &ww_ctx);
2546
	ret = _regulator_enable(regulator);
2547
	regulator_unlock_dependent(rdev, &ww_ctx);
2548

2549 2550 2551 2552
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2553 2554 2555 2556 2557 2558
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2559
	if (rdev->ena_pin) {
2560 2561 2562 2563 2564 2565
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2566 2567 2568 2569 2570 2571 2572

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2573 2574 2575 2576 2577 2578
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2579 2580 2581 2582 2583
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2584
/* locks held by regulator_disable() */
2585
static int _regulator_disable(struct regulator *regulator)
2586
{
2587
	struct regulator_dev *rdev = regulator->rdev;
2588 2589
	int ret = 0;

2590
	lockdep_assert_held_once(&rdev->mutex.base);
2591

D
David Brownell 已提交
2592
	if (WARN(rdev->use_count <= 0,
2593
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2594 2595
		return -EIO;

2596
	/* are we the last user and permitted to disable ? */
2597 2598
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2599 2600

		/* we are last user */
2601
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2602 2603 2604 2605 2606 2607
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2608
			ret = _regulator_do_disable(rdev);
2609
			if (ret < 0) {
2610
				rdev_err(rdev, "failed to disable\n");
2611 2612 2613
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2614 2615
				return ret;
			}
2616 2617
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2618 2619 2620 2621 2622 2623
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2624

2625 2626 2627
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2628 2629 2630
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2631
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2632
		ret = _regulator_disable(rdev->supply);
2633

2634 2635 2636 2637 2638 2639 2640
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2641 2642 2643
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2644
 *
2645
 * NOTE: this will only disable the regulator output if no other consumer
2646 2647
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2648 2649 2650
 */
int regulator_disable(struct regulator *regulator)
{
2651
	struct regulator_dev *rdev = regulator->rdev;
2652
	struct ww_acquire_ctx ww_ctx;
2653
	int ret;
2654

2655
	regulator_lock_dependent(rdev, &ww_ctx);
2656
	ret = _regulator_disable(regulator);
2657
	regulator_unlock_dependent(rdev, &ww_ctx);
2658

2659 2660 2661 2662 2663
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2664
static int _regulator_force_disable(struct regulator_dev *rdev)
2665 2666 2667
{
	int ret = 0;

2668
	lockdep_assert_held_once(&rdev->mutex.base);
2669

2670 2671 2672 2673 2674
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2675 2676 2677
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2678 2679
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2680
		return ret;
2681 2682
	}

2683 2684 2685 2686
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2700
	struct regulator_dev *rdev = regulator->rdev;
2701
	struct ww_acquire_ctx ww_ctx;
2702 2703
	int ret;

2704
	regulator_lock_dependent(rdev, &ww_ctx);
2705

2706
	ret = _regulator_force_disable(regulator->rdev);
2707

2708 2709
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2710 2711 2712 2713 2714 2715

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2716 2717
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2718

2719
	regulator_unlock_dependent(rdev, &ww_ctx);
2720

2721 2722 2723 2724
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2725 2726 2727 2728
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2729
	struct ww_acquire_ctx ww_ctx;
2730
	int count, i, ret;
2731 2732
	struct regulator *regulator;
	int total_count = 0;
2733

2734
	regulator_lock_dependent(rdev, &ww_ctx);
2735

2736 2737 2738 2739 2740 2741 2742 2743
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
		}
2758
	}
2759
	WARN_ON(!total_count);
2760

2761 2762 2763 2764
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2765 2766 2767 2768 2769
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2770
 * @ms: milliseconds until the regulator is disabled
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2783 2784 2785
	if (!ms)
		return regulator_disable(regulator);

2786
	regulator_lock(rdev);
2787
	regulator->deferred_disables++;
2788 2789
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2790
	regulator_unlock(rdev);
2791

2792
	return 0;
2793 2794 2795
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2796 2797
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2798
	/* A GPIO control always takes precedence */
2799
	if (rdev->ena_pin)
2800 2801
		return rdev->ena_gpio_state;

2802
	/* If we don't know then assume that the regulator is always on */
2803
	if (!rdev->desc->ops->is_enabled)
2804
		return 1;
2805

2806
	return rdev->desc->ops->is_enabled(rdev);
2807 2808
}

2809 2810
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2822
			regulator_lock(rdev);
2823 2824
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2825
			regulator_unlock(rdev);
2826
	} else if (rdev->is_switch && rdev->supply) {
2827 2828
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2843 2844 2845 2846
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2847 2848 2849 2850 2851 2852 2853
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2854 2855 2856
 */
int regulator_is_enabled(struct regulator *regulator)
{
2857 2858
	int ret;

2859 2860 2861
	if (regulator->always_on)
		return 1;

2862
	regulator_lock(regulator->rdev);
2863
	ret = _regulator_is_enabled(regulator->rdev);
2864
	regulator_unlock(regulator->rdev);
2865 2866

	return ret;
2867 2868 2869
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2882 2883 2884
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2885
	if (!rdev->is_switch || !rdev->supply)
2886 2887 2888
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2899
 * zero if this selector code can't be used on this system, or a
2900 2901 2902 2903
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2904
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2905 2906 2907
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2940 2941
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2942 2943 2944 2945

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2946 2947
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2967 2968
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2994 2995 2996 2997 2998 2999 3000
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3001
 * Returns a boolean.
3002 3003 3004 3005
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3006
	struct regulator_dev *rdev = regulator->rdev;
3007 3008
	int i, voltages, ret;

3009
	/* If we can't change voltage check the current voltage */
3010
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3011 3012
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3013
			return min_uV <= ret && ret <= max_uV;
3014 3015 3016 3017
		else
			return ret;
	}

3018 3019 3020 3021 3022
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3023 3024
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3025
		return 0;
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3037
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3038

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3053 3054 3055 3056 3057
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3058 3059 3060
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3061 3062 3063 3064 3065 3066 3067
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3068
	data.old_uV = regulator_get_voltage_rdev(rdev);
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3092
	data.old_uV = regulator_get_voltage_rdev(rdev);
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3170 3171 3172 3173 3174 3175 3176 3177 3178
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3179 3180
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3181 3182 3183 3184 3185 3186
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3187 3188

	if (ramp_delay == 0) {
3189
		rdev_dbg(rdev, "ramp_delay not set\n");
3190 3191 3192 3193 3194 3195
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3196 3197 3198 3199
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3200
	int delay = 0;
3201
	int best_val = 0;
3202
	unsigned int selector;
3203
	int old_selector = -1;
3204
	const struct regulator_ops *ops = rdev->desc->ops;
3205
	int old_uV = regulator_get_voltage_rdev(rdev);
3206 3207 3208

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3209 3210 3211
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3212 3213 3214 3215
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3216
	if (_regulator_is_enabled(rdev) &&
3217 3218
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3219 3220 3221 3222
		if (old_selector < 0)
			return old_selector;
	}

3223
	if (ops->set_voltage) {
3224 3225
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3226 3227

		if (ret >= 0) {
3228 3229 3230
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3231
			else
3232
				best_val = regulator_get_voltage_rdev(rdev);
3233 3234
		}

3235
	} else if (ops->set_voltage_sel) {
3236
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3237
		if (ret >= 0) {
3238
			best_val = ops->list_voltage(rdev, ret);
3239 3240
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3241 3242
				if (old_selector == selector)
					ret = 0;
3243 3244 3245
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3246
				else
3247 3248
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3249 3250 3251
			} else {
				ret = -EINVAL;
			}
3252
		}
3253 3254 3255
	} else {
		ret = -EINVAL;
	}
3256

3257 3258
	if (ret)
		goto out;
3259

3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3277
		}
3278
	}
3279

3280 3281 3282
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3283 3284
	}

3285 3286 3287 3288 3289 3290
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3291 3292
	}

3293
	if (best_val >= 0) {
3294 3295
		unsigned long data = best_val;

3296
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3297 3298
				     (void *)data);
	}
3299

3300
out:
3301
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3302 3303 3304 3305

	return ret;
}

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3332
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3333 3334
					  int min_uV, int max_uV,
					  suspend_state_t state)
3335 3336
{
	struct regulator_dev *rdev = regulator->rdev;
3337
	struct regulator_voltage *voltage = &regulator->voltage[state];
3338
	int ret = 0;
3339
	int old_min_uV, old_max_uV;
3340
	int current_uV;
3341

3342 3343 3344 3345
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3346
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3347 3348
		goto out;

3349
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3350
	 * return successfully even though the regulator does not support
3351 3352
	 * changing the voltage.
	 */
3353
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3354
		current_uV = regulator_get_voltage_rdev(rdev);
3355
		if (min_uV <= current_uV && current_uV <= max_uV) {
3356 3357
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3358 3359 3360 3361
			goto out;
		}
	}

3362
	/* sanity check */
3363 3364
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3365 3366 3367 3368 3369 3370 3371 3372
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3373

3374
	/* restore original values in case of error */
3375 3376 3377 3378
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3379

3380 3381
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3382 3383 3384 3385
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3386

3387 3388 3389 3390
out:
	return ret;
}

3391 3392
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3393 3394 3395 3396 3397
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3398 3399 3400
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3401 3402
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3403 3404 3405 3406 3407 3408
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3409
			goto out;
3410 3411
		}

M
Mark Brown 已提交
3412
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3413 3414
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3415
			goto out;
3416 3417 3418 3419
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3420
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3421 3422
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3423
			goto out;
3424 3425 3426 3427 3428 3429 3430
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3431
				best_supply_uV, INT_MAX, state);
3432 3433 3434
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3435
			goto out;
3436 3437 3438
		}
	}

3439 3440 3441 3442 3443
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3444
	if (ret < 0)
3445
		goto out;
3446

3447 3448
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3449
				best_supply_uV, INT_MAX, state);
3450 3451 3452 3453 3454 3455 3456
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3457
out:
3458
	return ret;
3459 3460
}

3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3471
		*current_uV = regulator_get_voltage_rdev(rdev);
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3503
	int i, ret, max_spread;
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3537
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3548

3549 3550 3551 3552 3553 3554 3555 3556
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3557 3558
	max_spread = constraints->max_spread[0];

3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3576
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3614 3615 3616 3617
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3618
			ret = regulator_get_voltage_rdev(rdev);
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
3640
	struct regulator_coupler *coupler = c_desc->coupler;
3641 3642
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3643 3644
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660

	c_rdevs = c_desc->coupled_rdevs;
	n_coupled = c_desc->n_coupled;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		n_coupled = 1;

	if (c_desc->n_resolved < n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

3661 3662 3663
	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3690
			if (test_bit(i, &c_rdev_done))
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3718

3719 3720
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3721

3722 3723 3724
		if (ret < 0)
			goto out;

3725 3726
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
3727 3728 3729 3730

	} while (n_coupled > 1);

out:
3731 3732 3733
	return ret;
}

3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3754 3755
	struct ww_acquire_ctx ww_ctx;
	int ret;
3756

3757
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3758

3759 3760
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3761

3762
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3763

3764 3765 3766 3767
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3780
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3834 3835
	struct ww_acquire_ctx ww_ctx;
	int ret;
3836 3837 3838 3839 3840

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3841
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3842 3843 3844 3845

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3846
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3847 3848 3849 3850 3851

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3865 3866
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3867 3868 3869 3870 3871
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3872 3873 3874 3875 3876
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3877
	/* Currently requires operations to do this */
3878
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3901
/**
3902 3903
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3904 3905 3906 3907 3908 3909
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3910
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3911
 * set_voltage_time_sel() operation.
3912 3913 3914 3915 3916
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3917
	int old_volt, new_volt;
3918

3919 3920 3921
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3922

3923 3924 3925
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3926 3927 3928 3929 3930
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3931
}
3932
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3933

3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
3945
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3946 3947
	int ret, min_uV, max_uV;

3948
	regulator_lock(rdev);
3949 3950 3951 3952 3953 3954 3955 3956

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
3957
	if (!voltage->min_uV && !voltage->max_uV) {
3958 3959 3960 3961
		ret = -EINVAL;
		goto out;
	}

3962 3963
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
3964 3965 3966 3967 3968 3969

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

3970
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3971 3972 3973 3974 3975 3976
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
3977
	regulator_unlock(rdev);
3978 3979 3980 3981
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3982
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3983
{
3984
	int sel, ret;
3985 3986 3987 3988 3989 3990 3991 3992
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3993 3994 3995 3996 3997
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
3998

3999
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4000 4001
		}
	}
4002 4003 4004 4005 4006

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4007
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4008
	} else if (rdev->desc->ops->get_voltage) {
4009
		ret = rdev->desc->ops->get_voltage(rdev);
4010 4011
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4012 4013
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4014
	} else if (rdev->supply) {
4015
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4016
	} else {
4017
		return -EINVAL;
4018
	}
4019

4020 4021
	if (ret < 0)
		return ret;
4022
	return ret - rdev->constraints->uV_offset;
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4036
	struct ww_acquire_ctx ww_ctx;
4037 4038
	int ret;

4039
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4040
	ret = regulator_get_voltage_rdev(regulator->rdev);
4041
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4042 4043 4044 4045 4046 4047 4048 4049

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4050
 * @min_uA: Minimum supported current in uA
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4069
	regulator_lock(rdev);
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4084
	regulator_unlock(rdev);
4085 4086 4087 4088
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4089 4090 4091 4092 4093 4094 4095 4096 4097
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4098 4099 4100 4101
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4102
	regulator_lock(rdev);
4103
	ret = _regulator_get_current_limit_unlocked(rdev);
4104
	regulator_unlock(rdev);
4105

4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4139
	int regulator_curr_mode;
4140

4141
	regulator_lock(rdev);
4142 4143 4144 4145 4146 4147 4148

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4149 4150 4151 4152 4153 4154 4155 4156 4157
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4158
	/* constraints check */
4159
	ret = regulator_mode_constrain(rdev, &mode);
4160 4161 4162 4163 4164
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4165
	regulator_unlock(rdev);
4166 4167 4168 4169
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4170 4171 4172 4173 4174 4175 4176 4177 4178
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4179 4180 4181 4182
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4183
	regulator_lock(rdev);
4184
	ret = _regulator_get_mode_unlocked(rdev);
4185
	regulator_unlock(rdev);
4186

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4202 4203 4204 4205 4206
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4207
	regulator_lock(rdev);
4208 4209 4210 4211 4212 4213 4214 4215 4216

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4217
	regulator_unlock(rdev);
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4235
/**
4236
 * regulator_set_load - set regulator load
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4259 4260 4261 4262 4263 4264 4265 4266
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4267
 * On error a negative errno is returned.
4268
 */
4269
int regulator_set_load(struct regulator *regulator, int uA_load)
4270 4271
{
	struct regulator_dev *rdev = regulator->rdev;
4272 4273
	int old_uA_load;
	int ret = 0;
4274

4275
	regulator_lock(rdev);
4276
	old_uA_load = regulator->uA_load;
4277
	regulator->uA_load = uA_load;
4278 4279 4280 4281 4282
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4283
	regulator_unlock(rdev);
4284

4285 4286
	return ret;
}
4287
EXPORT_SYMBOL_GPL(regulator_set_load);
4288

4289 4290 4291 4292
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4293
 * @enable: enable or disable bypass mode
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4308
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4309 4310
		return 0;

4311
	regulator_lock(rdev);
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4335
	regulator_unlock(rdev);
4336 4337 4338 4339 4340

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4341 4342 4343
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4344
 * @nb: notifier block
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4359
 * @nb: notifier block
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4371 4372 4373
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4374
static int _notifier_call_chain(struct regulator_dev *rdev,
4375 4376 4377
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4378
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4405 4406
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4417 4418 4419 4420 4421 4422 4423
	if (ret != -EPROBE_DEFER)
		dev_err(dev, "Failed to get supply '%s': %d\n",
			consumers[i].supply, ret);
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4424
	while (--i >= 0)
4425 4426 4427 4428 4429 4430
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4431 4432 4433 4434 4435 4436 4437
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4453
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4454
	int i;
4455
	int ret = 0;
4456

4457
	for (i = 0; i < num_consumers; i++) {
4458 4459
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4460
	}
4461 4462 4463 4464

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4465
	for (i = 0; i < num_consumers; i++) {
4466 4467
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4468
			goto err;
4469
		}
4470 4471 4472 4473 4474
	}

	return 0;

err:
4475 4476 4477 4478 4479 4480 4481
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4495 4496
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4497 4498 4499 4500 4501 4502
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4503
	int ret, r;
4504

4505
	for (i = num_consumers - 1; i >= 0; --i) {
4506 4507 4508 4509 4510 4511 4512 4513
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4514
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4515 4516 4517
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4518
			pr_err("Failed to re-enable %s: %d\n",
4519 4520
			       consumers[i].supply, r);
	}
4521 4522 4523 4524 4525

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4544
	int ret = 0;
4545

4546
	for (i = 0; i < num_consumers; i++) {
4547 4548 4549
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4550 4551
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4552 4553 4554 4555 4556 4557 4558
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4582
 * @rdev: regulator source
4583
 * @event: notifier block
4584
 * @data: callback-specific data.
4585 4586 4587
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4588
 * Note lock must be held by caller.
4589 4590 4591 4592
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4593
	lockdep_assert_held_once(&rdev->mutex.base);
4594

4595 4596 4597 4598 4599 4600
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4617
	case REGULATOR_MODE_STANDBY:
4618 4619
		return REGULATOR_STATUS_STANDBY;
	default:
4620
		return REGULATOR_STATUS_UNDEFINED;
4621 4622 4623 4624
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4652 4653 4654 4655
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4656 4657
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4658
{
4659
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4660
	struct regulator_dev *rdev = dev_to_rdev(dev);
4661
	const struct regulator_ops *ops = rdev->desc->ops;
4662 4663 4664 4665 4666 4667 4668
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4669 4670

	/* some attributes need specific methods to be displayed */
4671 4672 4673 4674 4675 4676 4677
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4678
	}
4679

4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4695
	/* constraints need specific supporting methods */
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4731

4732 4733 4734
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4735 4736 4737

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4738
	kfree(rdev);
4739 4740
}

4741 4742
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4755
	if (!rdev->debugfs) {
4756 4757 4758 4759 4760 4761 4762 4763
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4764 4765
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4766 4767
}

4768 4769
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4770 4771 4772 4773 4774 4775
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4776 4777
}

4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

4829
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4830
{
4831
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4844 4845
		if (!c_rdev)
			continue;
4846

4847 4848 4849 4850 4851 4852
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

4853
		regulator_lock(c_rdev);
4854

4855 4856
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
4857

4858
		regulator_unlock(c_rdev);
4859

4860 4861
		regulator_resolve_coupling(c_rdev);
	}
4862 4863
}

4864
static void regulator_remove_coupling(struct regulator_dev *rdev)
4865
{
4866
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4867 4868 4869 4870
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
4871
	int err;
4872

4873
	n_coupled = c_desc->n_coupled;
4874

4875 4876
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
4877

4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
			rdev_err(rdev, "failed to detach from coupler: %d\n",
				 err);
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
4911 4912
}

4913
static int regulator_init_coupling(struct regulator_dev *rdev)
4914
{
4915 4916
	int err, n_phandles;
	size_t alloc_size;
4917 4918 4919 4920 4921 4922

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

4923 4924 4925 4926 4927
	alloc_size = sizeof(*rdev) * (n_phandles + 1);

	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
	if (!rdev->coupling_desc.coupled_rdevs)
		return -ENOMEM;
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

4941
	if (!of_check_coupling_data(rdev))
4942 4943
		return -EPERM;

4944 4945 4946 4947 4948
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
		rdev_err(rdev, "failed to get coupler: %d\n", err);
		return err;
4949 4950
	}

4951 4952 4953 4954 4955 4956 4957 4958 4959
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
4960
		return -EPERM;
4961
	}
4962 4963 4964 4965

	return 0;
}

4966 4967 4968 4969
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

4970 4971
/**
 * regulator_register - register regulator
4972
 * @regulator_desc: regulator to register
4973
 * @cfg: runtime configuration for regulator
4974 4975
 *
 * Called by regulator drivers to register a regulator.
4976 4977
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
4978
 */
4979 4980
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
4981
		   const struct regulator_config *cfg)
4982
{
4983
	const struct regulation_constraints *constraints = NULL;
4984
	const struct regulator_init_data *init_data;
4985
	struct regulator_config *config = NULL;
4986
	static atomic_t regulator_no = ATOMIC_INIT(-1);
4987
	struct regulator_dev *rdev;
4988 4989
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
4990
	struct device *dev;
4991
	int ret, i;
4992

4993
	if (cfg == NULL)
4994
		return ERR_PTR(-EINVAL);
4995 4996 4997 4998 4999 5000
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5001

5002
	dev = cfg->dev;
5003
	WARN_ON(!dev);
5004

5005 5006 5007 5008
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5009

5010
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5011 5012 5013 5014
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5015

5016 5017 5018
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5019 5020
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5021 5022 5023 5024

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5025 5026
		ret = -EINVAL;
		goto rinse;
5027
	}
5028 5029
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5030 5031
		ret = -EINVAL;
		goto rinse;
5032
	}
5033

5034
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5035 5036 5037 5038
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5039

5040 5041 5042 5043 5044 5045 5046
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
5047 5048
		ret = -ENOMEM;
		goto rinse;
5049 5050
	}

5051
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5052
					       &rdev->dev.of_node);
5053 5054 5055 5056 5057
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5058
	 * a descriptor, we definitely got one from parsing the device
5059 5060 5061 5062
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5063 5064 5065 5066 5067
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5068
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5069
	rdev->reg_data = config->driver_data;
5070 5071
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5072 5073
	if (config->regmap)
		rdev->regmap = config->regmap;
5074
	else if (dev_get_regmap(dev, NULL))
5075
		rdev->regmap = dev_get_regmap(dev, NULL);
5076 5077
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5078 5079 5080
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5081
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5082

5083
	/* preform any regulator specific init */
5084
	if (init_data && init_data->regulator_init) {
5085
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5086 5087
		if (ret < 0)
			goto clean;
5088 5089
	}

5090
	if (config->ena_gpiod) {
5091
		mutex_lock(&regulator_list_mutex);
5092
		ret = regulator_ena_gpio_request(rdev, config);
5093
		mutex_unlock(&regulator_list_mutex);
5094
		if (ret != 0) {
5095 5096
			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
				 ret);
5097
			goto clean;
5098
		}
5099 5100 5101
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5102 5103
	}

5104
	/* register with sysfs */
5105
	rdev->dev.class = &regulator_class;
5106
	rdev->dev.parent = dev;
5107
	dev_set_name(&rdev->dev, "regulator.%lu",
5108
		    (unsigned long) atomic_inc_return(&regulator_no));
5109

5110
	/* set regulator constraints */
5111 5112 5113 5114
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
5115
		rdev->supply_name = init_data->supply_regulator;
5116
	else if (regulator_desc->supply_name)
5117
		rdev->supply_name = regulator_desc->supply_name;
5118

5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

5131
	mutex_lock(&regulator_list_mutex);
5132
	ret = regulator_init_coupling(rdev);
5133
	mutex_unlock(&regulator_list_mutex);
5134
	if (ret < 0)
5135 5136
		goto wash;

5137
	/* add consumers devices */
5138
	if (init_data) {
5139
		mutex_lock(&regulator_list_mutex);
5140 5141 5142
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5143
				init_data->consumer_supplies[i].supply);
5144
			if (ret < 0) {
5145
				mutex_unlock(&regulator_list_mutex);
5146 5147 5148 5149
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5150
		}
5151
		mutex_unlock(&regulator_list_mutex);
5152
	}
5153

5154 5155 5156 5157 5158
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5159
	dev_set_drvdata(&rdev->dev, rdev);
5160 5161 5162 5163 5164 5165
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

5166
	rdev_init_debugfs(rdev);
5167

5168 5169 5170 5171 5172
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5173 5174 5175
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5176
	kfree(config);
5177
	return rdev;
D
David Brownell 已提交
5178

5179
unset_supplies:
5180
	mutex_lock(&regulator_list_mutex);
5181
	unset_regulator_supplies(rdev);
5182
	regulator_remove_coupling(rdev);
5183
	mutex_unlock(&regulator_list_mutex);
5184
wash:
5185
	kfree(rdev->constraints);
5186
	mutex_lock(&regulator_list_mutex);
5187
	regulator_ena_gpio_free(rdev);
5188
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5189
clean:
5190 5191
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
D
David Brownell 已提交
5192
	kfree(rdev);
5193
	kfree(config);
5194 5195 5196
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5197
	return ERR_PTR(ret);
5198 5199 5200 5201 5202
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5203
 * @rdev: regulator to unregister
5204 5205 5206 5207 5208 5209 5210 5211
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5212 5213 5214
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5215
		regulator_put(rdev->supply);
5216
	}
5217

5218 5219
	flush_work(&rdev->disable_work.work);

5220
	mutex_lock(&regulator_list_mutex);
5221

5222
	debugfs_remove_recursive(rdev->debugfs);
5223
	WARN_ON(rdev->open_count);
5224
	regulator_remove_coupling(rdev);
5225
	unset_regulator_supplies(rdev);
5226
	list_del(&rdev->list);
5227
	regulator_ena_gpio_free(rdev);
5228
	device_unregister(&rdev->dev);
5229 5230

	mutex_unlock(&regulator_list_mutex);
5231 5232 5233
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5234
#ifdef CONFIG_SUSPEND
5235
/**
5236
 * regulator_suspend - prepare regulators for system wide suspend
5237
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5238 5239 5240
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5241
static int regulator_suspend(struct device *dev)
5242
{
5243
	struct regulator_dev *rdev = dev_to_rdev(dev);
5244
	suspend_state_t state = pm_suspend_target_state;
5245 5246 5247 5248 5249
	int ret;

	regulator_lock(rdev);
	ret = suspend_set_state(rdev, state);
	regulator_unlock(rdev);
5250

5251
	return ret;
5252
}
5253

5254
static int regulator_resume(struct device *dev)
5255
{
5256
	suspend_state_t state = pm_suspend_target_state;
5257
	struct regulator_dev *rdev = dev_to_rdev(dev);
5258
	struct regulator_state *rstate;
5259
	int ret = 0;
5260

5261
	rstate = regulator_get_suspend_state(rdev, state);
5262
	if (rstate == NULL)
5263
		return 0;
5264

5265
	regulator_lock(rdev);
5266

5267
	if (rdev->desc->ops->resume &&
5268 5269
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
5270
		ret = rdev->desc->ops->resume(rdev);
5271

5272
	regulator_unlock(rdev);
5273

5274
	return ret;
5275
}
5276 5277
#else /* !CONFIG_SUSPEND */

5278 5279
#define regulator_suspend	NULL
#define regulator_resume	NULL
5280 5281 5282 5283 5284

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5285 5286
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5287 5288 5289
};
#endif

M
Mark Brown 已提交
5290
struct class regulator_class = {
5291 5292 5293 5294 5295 5296 5297
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5315 5316
/**
 * rdev_get_drvdata - get rdev regulator driver data
5317
 * @rdev: regulator
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5354
 * @rdev: regulator
5355 5356 5357 5358 5359 5360 5361
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5362 5363 5364 5365 5366 5367
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5368 5369 5370 5371 5372 5373
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5374 5375 5376 5377 5378 5379
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5380
#ifdef CONFIG_DEBUG_FS
5381
static int supply_map_show(struct seq_file *sf, void *data)
5382 5383 5384 5385
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5386 5387 5388
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5389 5390
	}

5391 5392
	return 0;
}
5393
DEFINE_SHOW_ATTRIBUTE(supply_map);
5394

5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5417 5418 5419 5420 5421 5422
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5423
	struct summary_data summary_data;
5424
	unsigned int opmode;
5425 5426 5427 5428

	if (!rdev)
		return;

5429
	opmode = _regulator_get_mode_unlocked(rdev);
5430
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5431 5432
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5433
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5434
		   regulator_opmode_to_str(opmode));
5435

5436
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5437 5438
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5457
		if (consumer->dev && consumer->dev->class == &regulator_class)
5458 5459 5460 5461
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5462 5463
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5464 5465 5466

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5467 5468
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5469
				   consumer->uA_load / 1000,
5470 5471
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5472 5473
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5474 5475 5476 5477 5478 5479 5480 5481
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5482 5483 5484
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5485

5486 5487
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5525 5526

	regulator_unlock(rdev);
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5557 5558
	mutex_lock(&regulator_list_mutex);

5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5585 5586

	mutex_unlock(&regulator_list_mutex);
5587 5588
}

5589
static int regulator_summary_show_roots(struct device *dev, void *data)
5590
{
5591 5592
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5593

5594 5595
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5596

5597 5598
	return 0;
}
5599

5600 5601
static int regulator_summary_show(struct seq_file *s, void *data)
{
5602 5603
	struct ww_acquire_ctx ww_ctx;

5604 5605
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5606

5607 5608
	regulator_summary_lock(&ww_ctx);

5609 5610
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5611

5612 5613
	regulator_summary_unlock(&ww_ctx);

5614 5615
	return 0;
}
5616 5617
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5618

5619 5620
static int __init regulator_init(void)
{
5621 5622 5623 5624
	int ret;

	ret = class_register(&regulator_class);

5625
	debugfs_root = debugfs_create_dir("regulator", NULL);
5626
	if (!debugfs_root)
5627
		pr_warn("regulator: Failed to create debugfs directory\n");
5628

5629
#ifdef CONFIG_DEBUG_FS
5630 5631
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5632

5633
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5634
			    NULL, &regulator_summary_fops);
5635
#endif
5636 5637
	regulator_dummy_init();

5638 5639
	regulator_coupler_register(&generic_regulator_coupler);

5640
	return ret;
5641 5642 5643 5644
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5645

5646
static int __init regulator_late_cleanup(struct device *dev, void *data)
5647
{
5648 5649 5650
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5651 5652
	int enabled, ret;

5653 5654 5655
	if (c && c->always_on)
		return 0;

5656
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5657 5658
		return 0;

5659
	regulator_lock(rdev);
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5690
	regulator_unlock(rdev);
5691 5692 5693 5694 5695 5696

	return 0;
}

static int __init regulator_init_complete(void)
{
5697 5698 5699 5700 5701 5702 5703 5704 5705
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

5706 5707 5708 5709 5710 5711 5712 5713 5714 5715
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5716
	/* If we have a full configuration then disable any regulators
5717 5718 5719
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5720
	 */
5721 5722
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5723 5724 5725

	return 0;
}
5726
late_initcall_sync(regulator_init_complete);