core.c 151.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

36 37
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
38 39
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
40
static LIST_HEAD(regulator_ena_gpio_list);
41
static LIST_HEAD(regulator_supply_alias_list);
42
static LIST_HEAD(regulator_coupler_list);
43
static bool has_full_constraints;
44

45 46
static struct dentry *debugfs_root;

47
/*
48 49 50 51 52 53
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
54
	const char *dev_name;   /* The dev_name() for the consumer */
55
	const char *supply;
56
	struct regulator_dev *regulator;
57 58
};

59 60 61 62 63 64 65
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
66
	struct gpio_desc *gpiod;
67 68 69 70
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

71 72 73 74 75 76 77 78 79 80 81 82 83
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

84
static int _regulator_is_enabled(struct regulator_dev *rdev);
85
static int _regulator_disable(struct regulator *regulator);
86 87
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
88
static int _notifier_call_chain(struct regulator_dev *rdev,
89
				  unsigned long event, void *data);
90 91
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
92 93
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
94 95 96
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
97
static void destroy_regulator(struct regulator *regulator);
98
static void _regulator_put(struct regulator *regulator);
99

100
const char *rdev_get_name(struct regulator_dev *rdev)
101 102 103 104 105 106 107 108
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}
109
EXPORT_SYMBOL_GPL(rdev_get_name);
110

111 112
static bool have_full_constraints(void)
{
113
	return has_full_constraints || of_have_populated_dt();
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

129 130 131
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
132
 * @ww_ctx:		w/w mutex acquire context
133 134 135 136 137 138 139
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
140 141
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
142
{
143 144 145 146 147 148 149
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
150
			rdev->ref_cnt++;
151 152 153 154 155 156 157
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
158
		}
159 160
	} else {
		lock = true;
161 162
	}

163 164 165 166 167 168 169 170
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
171 172
}

173 174 175 176 177 178 179 180 181 182
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
183
static void regulator_lock(struct regulator_dev *rdev)
184
{
185
	regulator_lock_nested(rdev, NULL);
186 187 188 189 190 191 192 193 194
}

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
195
static void regulator_unlock(struct regulator_dev *rdev)
196
{
197
	mutex_lock(&regulator_nesting_mutex);
198

199 200 201
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
202
	}
203 204 205 206

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
207 208
}

209
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
210
{
211 212 213 214 215
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
216

217 218 219 220 221 222 223
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

224 225
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
226
{
227 228
	struct regulator_dev *c_rdev, *supply_rdev;
	int i, supply_n_coupled;
229

230 231
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
232 233 234 235

		if (!c_rdev)
			continue;

236 237 238 239 240 241 242
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
			supply_rdev = c_rdev->supply->rdev;
			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;

			regulator_unlock_recursive(supply_rdev,
						   supply_n_coupled);
		}
243

244 245
		regulator_unlock(c_rdev);
	}
246 247
}

248 249 250 251
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
252
{
253
	struct regulator_dev *c_rdev;
254
	int i, err;
255

256 257
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
258

259 260
		if (!c_rdev)
			continue;
261

262 263 264 265 266 267 268
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
269

270 271 272 273 274 275 276
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

277
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
278 279 280 281 282 283 284 285
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
286 287
		}
	}
288 289 290 291 292 293 294

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
295 296
}

297
/**
298 299 300 301 302
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
303
 * Unlock all regulators related with rdev by coupling or supplying.
304
 */
305 306
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
307
{
308 309
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
310 311 312
}

/**
313 314
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
315
 * @ww_ctx:			w/w mutex acquire context
316 317
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
318
 * all regulators related with rdev by coupling or supplying.
319
 */
320 321
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
322
{
323 324 325
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
326

327
	mutex_lock(&regulator_list_mutex);
328

329
	ww_acquire_init(ww_ctx, &regulator_ww_class);
330

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
351 352
}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
375 376
			if (regnode)
				goto err_node_put;
377
		} else {
378
			goto err_node_put;
379 380 381
		}
	}
	return NULL;
382 383 384 385

err_node_put:
	of_node_put(child);
	return regnode;
386 387
}

388 389 390 391 392 393
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
394
 * returns the device node corresponding to the regulator if found, else
395 396 397 398 399
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
400
	char prop_name[64]; /* 64 is max size of property name */
401 402 403

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

404
	snprintf(prop_name, 64, "%s-supply", supply);
405 406 407
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
408 409 410 411
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

412 413
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
414 415 416 417 418
		return NULL;
	}
	return regnode;
}

419
/* Platform voltage constraint check */
420 421
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
422 423 424
{
	BUG_ON(*min_uV > *max_uV);

425
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
426
		rdev_err(rdev, "voltage operation not allowed\n");
427 428 429 430 431 432 433 434
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

435 436
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
437
			 *min_uV, *max_uV);
438
		return -EINVAL;
439
	}
440 441 442 443

	return 0;
}

444 445 446 447 448 449
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

450 451 452
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
453 454 455
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
456 457
{
	struct regulator *regulator;
458
	struct regulator_voltage *voltage;
459 460

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
461
		voltage = &regulator->voltage[state];
462 463 464 465
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
466
		if (!voltage->min_uV && !voltage->max_uV)
467 468
			continue;

469 470 471 472
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
473 474
	}

475
	if (*min_uV > *max_uV) {
476 477
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
478
		return -EINVAL;
479
	}
480 481 482 483

	return 0;
}

484 485 486 487 488 489
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

490
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
491
		rdev_err(rdev, "current operation not allowed\n");
492 493 494 495 496 497 498 499
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

500 501
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
502
			 *min_uA, *max_uA);
503
		return -EINVAL;
504
	}
505 506 507 508 509

	return 0;
}

/* operating mode constraint check */
510 511
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
512
{
513
	switch (*mode) {
514 515 516 517 518 519
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
520
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
521 522 523
		return -EINVAL;
	}

524
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
525
		rdev_err(rdev, "mode operation not allowed\n");
526 527
		return -EPERM;
	}
528 529 530

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
531 532
	 * try higher modes.
	 */
533 534 535 536
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
537
	}
538 539

	return -EINVAL;
540 541
}

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return NULL;

	/* If we have no suspend mode configuration don't set anything;
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
	 */
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
			rdev_warn(rdev, "No configuration\n");
		return NULL;
	}

	return rstate;
}

584 585 586
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
587
	struct regulator_dev *rdev = dev_get_drvdata(dev);
588
	int uV;
589

590
	regulator_lock(rdev);
591
	uV = regulator_get_voltage_rdev(rdev);
592
	regulator_unlock(rdev);
593

594 595 596
	if (uV < 0)
		return uV;
	return sprintf(buf, "%d\n", uV);
597
}
598
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
599 600 601 602

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
603
	struct regulator_dev *rdev = dev_get_drvdata(dev);
604 605 606

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
607
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
608

609 610
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
611 612 613
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

614
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
615
}
616
static DEVICE_ATTR_RO(name);
617

618
static const char *regulator_opmode_to_str(int mode)
619 620 621
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
622
		return "fast";
623
	case REGULATOR_MODE_NORMAL:
624
		return "normal";
625
	case REGULATOR_MODE_IDLE:
626
		return "idle";
627
	case REGULATOR_MODE_STANDBY:
628
		return "standby";
629
	}
630 631 632 633 634 635
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
636 637
}

D
David Brownell 已提交
638 639
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
640
{
641
	struct regulator_dev *rdev = dev_get_drvdata(dev);
642

D
David Brownell 已提交
643 644
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
645
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
646 647 648

static ssize_t regulator_print_state(char *buf, int state)
{
649 650 651 652 653 654 655 656
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
657 658 659 660
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
661 662
	ssize_t ret;

663
	regulator_lock(rdev);
664
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
665
	regulator_unlock(rdev);
D
David Brownell 已提交
666

667
	return ret;
D
David Brownell 已提交
668
}
669
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
670

D
David Brownell 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
704 705 706
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
707 708 709
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
710 711 712 713 714 715 716 717
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

718 719 720
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
721
	struct regulator_dev *rdev = dev_get_drvdata(dev);
722 723 724 725 726 727

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
728
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
729 730 731 732

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
733
	struct regulator_dev *rdev = dev_get_drvdata(dev);
734 735 736 737 738 739

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
740
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
741 742 743 744

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
745
	struct regulator_dev *rdev = dev_get_drvdata(dev);
746 747 748 749 750 751

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
752
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
753 754 755 756

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
757
	struct regulator_dev *rdev = dev_get_drvdata(dev);
758 759 760 761 762 763

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
764
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
765 766 767 768

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
769
	struct regulator_dev *rdev = dev_get_drvdata(dev);
770 771 772
	struct regulator *regulator;
	int uA = 0;

773
	regulator_lock(rdev);
774 775 776 777
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
778
	regulator_unlock(rdev);
779 780
	return sprintf(buf, "%d\n", uA);
}
781
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
782

783 784
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
785
{
786
	struct regulator_dev *rdev = dev_get_drvdata(dev);
787 788
	return sprintf(buf, "%d\n", rdev->use_count);
}
789
static DEVICE_ATTR_RO(num_users);
790

791 792
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
793
{
794
	struct regulator_dev *rdev = dev_get_drvdata(dev);
795 796 797 798 799 800 801 802 803

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
804
static DEVICE_ATTR_RO(type);
805 806 807 808

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
809
	struct regulator_dev *rdev = dev_get_drvdata(dev);
810 811 812

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
813 814
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
815 816 817 818

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
819
	struct regulator_dev *rdev = dev_get_drvdata(dev);
820 821 822

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
823 824
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
825 826 827 828

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
829
	struct regulator_dev *rdev = dev_get_drvdata(dev);
830 831 832

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
833 834
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
835 836 837 838

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
839
	struct regulator_dev *rdev = dev_get_drvdata(dev);
840

D
David Brownell 已提交
841 842
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
843
}
844 845
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
846 847 848 849

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
850
	struct regulator_dev *rdev = dev_get_drvdata(dev);
851

D
David Brownell 已提交
852 853
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
854
}
855 856
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
857 858 859 860

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
861
	struct regulator_dev *rdev = dev_get_drvdata(dev);
862

D
David Brownell 已提交
863 864
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
865
}
866 867
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
868 869 870 871

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
872
	struct regulator_dev *rdev = dev_get_drvdata(dev);
873

D
David Brownell 已提交
874 875
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
876
}
877 878
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
879 880 881 882

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
883
	struct regulator_dev *rdev = dev_get_drvdata(dev);
884

D
David Brownell 已提交
885 886
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
887
}
888 889
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
890 891 892 893

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
894
	struct regulator_dev *rdev = dev_get_drvdata(dev);
895

D
David Brownell 已提交
896 897
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
898
}
899 900 901
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
923

924
/* Calculate the new optimum regulator operating mode based on the new total
925 926
 * consumer load. All locks held by caller
 */
927
static int drms_uA_update(struct regulator_dev *rdev)
928 929 930 931 932
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

933 934 935 936
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
937 938
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
939
		return 0;
940
	}
941

942 943
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
944 945
		return 0;

946 947
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
948
		return -EINVAL;
949 950

	/* calc total requested load */
951 952 953 954
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
955

956 957
	current_uA += rdev->constraints->system_load;

958 959 960 961
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
962 963
			rdev_err(rdev, "failed to set load %d: %pe\n",
				 current_uA, ERR_PTR(err));
964
	} else {
965
		/* get output voltage */
966
		output_uV = regulator_get_voltage_rdev(rdev);
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

983 984 985 986 987 988 989
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
990 991
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
				 current_uA, input_uV, output_uV, ERR_PTR(err));
992 993
			return err;
		}
994

995 996
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
997 998
			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
				 mode, ERR_PTR(err));
999 1000 1001
	}

	return err;
1002 1003
}

1004 1005
static int __suspend_set_state(struct regulator_dev *rdev,
			       const struct regulator_state *rstate)
1006 1007
{
	int ret = 0;
1008

1009 1010
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1011
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1012 1013
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1014
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1015 1016 1017
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1018
	if (ret < 0) {
1019
		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1020 1021 1022 1023 1024 1025
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1026
			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1027 1028 1029 1030 1031 1032 1033
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1034
			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1035 1036 1037 1038
			return ret;
		}
	}

1039
	return ret;
1040 1041
}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
static int suspend_set_initial_state(struct regulator_dev *rdev)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev,
			rdev->constraints->initial_state);
	if (!rstate)
		return 0;

	return __suspend_set_state(rdev, rstate);
}

1054 1055
#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
static void print_constraints_debug(struct regulator_dev *rdev)
1056 1057
{
	struct regulation_constraints *constraints = rdev->constraints;
1058
	char buf[160] = "";
1059
	size_t len = sizeof(buf) - 1;
1060 1061
	int count = 0;
	int ret;
1062

1063
	if (constraints->min_uV && constraints->max_uV) {
1064
		if (constraints->min_uV == constraints->max_uV)
1065 1066
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1067
		else
1068 1069 1070 1071
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1072 1073 1074 1075
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1076
		ret = regulator_get_voltage_rdev(rdev);
1077
		if (ret > 0)
1078 1079
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1080 1081
	}

1082
	if (constraints->uV_offset)
1083 1084
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1085

1086
	if (constraints->min_uA && constraints->max_uA) {
1087
		if (constraints->min_uA == constraints->max_uA)
1088 1089
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1090
		else
1091 1092 1093 1094
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1095 1096 1097 1098 1099 1100
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1101 1102
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1103
	}
1104

1105
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1106
		count += scnprintf(buf + count, len - count, "fast ");
1107
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1108
		count += scnprintf(buf + count, len - count, "normal ");
1109
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1110
		count += scnprintf(buf + count, len - count, "idle ");
1111
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1112
		count += scnprintf(buf + count, len - count, "standby ");
1113

1114
	if (!count)
1115 1116 1117 1118 1119 1120
		count = scnprintf(buf, len, "no parameters");
	else
		--count;

	count += scnprintf(buf + count, len - count, ", %s",
		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1121

1122
	rdev_dbg(rdev, "%s\n", buf);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
}
#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
static inline void print_constraints_debug(struct regulator_dev *rdev) {}
#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;

	print_constraints_debug(rdev);
1133 1134

	if ((constraints->min_uV != constraints->max_uV) &&
1135
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1136 1137
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1138 1139
}

1140
static int machine_constraints_voltage(struct regulator_dev *rdev,
1141
	struct regulation_constraints *constraints)
1142
{
1143
	const struct regulator_ops *ops = rdev->desc->ops;
1144 1145 1146 1147
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1148 1149
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1150
		int current_uV = regulator_get_voltage_rdev(rdev);
1151 1152

		if (current_uV == -ENOTRECOVERABLE) {
1153
			/* This regulator can't be read and must be initialized */
1154 1155 1156 1157 1158 1159
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1160
			current_uV = regulator_get_voltage_rdev(rdev);
1161 1162
		}

1163
		if (current_uV < 0) {
1164
			rdev_err(rdev,
1165 1166
				 "failed to get the current voltage: %pe\n",
				 ERR_PTR(current_uV));
1167 1168
			return current_uV;
		}
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1189 1190
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1191
			ret = _regulator_do_set_voltage(
1192
				rdev, target_min, target_max);
1193 1194
			if (ret < 0) {
				rdev_err(rdev,
1195 1196
					"failed to apply %d-%duV constraint: %pe\n",
					target_min, target_max, ERR_PTR(ret));
1197 1198
				return ret;
			}
1199
		}
1200
	}
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1213
		/* it's safe to autoconfigure fixed-voltage supplies
1214 1215
		 * and the constraints are used by list_voltage.
		 */
1216
		if (count == 1 && !cmin) {
1217
			cmin = 1;
1218
			cmax = INT_MAX;
1219 1220
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1221 1222
		}

1223 1224
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1225
			return 0;
1226

1227
		/* else require explicit machine-level constraints */
1228
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1229
			rdev_err(rdev, "invalid voltage constraints\n");
1230
			return -EINVAL;
1231 1232
		}

1233 1234 1235 1236
		/* no need to loop voltages if range is continuous */
		if (rdev->desc->continuous_voltage_range)
			return 0;

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1254 1255 1256
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1257
			return -EINVAL;
1258 1259 1260 1261
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1262 1263
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1264 1265 1266
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1267 1268
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1269 1270 1271 1272
			constraints->max_uV = max_uV;
		}
	}

1273 1274 1275
	return 0;
}

1276 1277 1278
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1279
	const struct regulator_ops *ops = rdev->desc->ops;
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1306 1307
static int _regulator_do_enable(struct regulator_dev *rdev);

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
1318
static int set_machine_constraints(struct regulator_dev *rdev)
1319 1320
{
	int ret = 0;
1321
	const struct regulator_ops *ops = rdev->desc->ops;
1322

1323
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1324
	if (ret != 0)
1325
		return ret;
1326

1327
	ret = machine_constraints_current(rdev, rdev->constraints);
1328
	if (ret != 0)
1329
		return ret;
1330

1331 1332 1333 1334
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
1335
			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1336
			return ret;
1337 1338 1339
		}
	}

1340
	/* do we need to setup our suspend state */
1341
	if (rdev->constraints->initial_state) {
1342
		ret = suspend_set_initial_state(rdev);
1343
		if (ret < 0) {
1344
			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1345
			return ret;
1346 1347
		}
	}
1348

1349
	if (rdev->constraints->initial_mode) {
1350
		if (!ops->set_mode) {
1351
			rdev_err(rdev, "no set_mode operation\n");
1352
			return -EINVAL;
1353 1354
		}

1355
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1356
		if (ret < 0) {
1357
			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1358
			return ret;
1359
		}
1360 1361 1362 1363 1364 1365
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1366 1367
	}

1368 1369
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1370 1371
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
1372
			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1373
			return ret;
1374 1375 1376
		}
	}

S
Stephen Boyd 已提交
1377 1378 1379
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
1380
			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1381
			return ret;
S
Stephen Boyd 已提交
1382 1383 1384
		}
	}

S
Stephen Boyd 已提交
1385 1386 1387
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
1388
			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1389
			return ret;
S
Stephen Boyd 已提交
1390 1391 1392
		}
	}

1393 1394 1395 1396
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
1397 1398
			rdev_err(rdev, "failed to set over current protection: %pe\n",
				 ERR_PTR(ret));
1399
			return ret;
1400 1401 1402
		}
	}

1403 1404 1405 1406 1407 1408
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
1409
			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1410 1411 1412 1413
			return ret;
		}
	}

1414 1415 1416 1417
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1418 1419 1420 1421 1422 1423 1424 1425 1426
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1427 1428
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1429
			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1430 1431
			return ret;
		}
1432 1433 1434

		if (rdev->constraints->always_on)
			rdev->use_count++;
1435
	} else if (rdev->desc->off_on_delay) {
1436
		rdev->last_off = ktime_get();
1437 1438
	}

1439
	print_constraints(rdev);
1440
	return 0;
1441 1442 1443 1444
}

/**
 * set_supply - set regulator supply regulator
1445 1446
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1447 1448 1449 1450 1451 1452
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1453
		      struct regulator_dev *supply_rdev)
1454 1455 1456
{
	int err;

1457 1458
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1459 1460 1461
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1462
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1463 1464
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1465
		return err;
1466
	}
1467
	supply_rdev->open_count++;
1468 1469

	return 0;
1470 1471 1472
}

/**
1473
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1474
 * @rdev:         regulator source
1475
 * @consumer_dev_name: dev_name() string for device supply applies to
1476
 * @supply:       symbolic name for supply
1477 1478 1479 1480 1481 1482 1483
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1484 1485
				      const char *consumer_dev_name,
				      const char *supply)
1486
{
1487
	struct regulator_map *node, *new_node;
1488
	int has_dev;
1489 1490 1491 1492

	if (supply == NULL)
		return -EINVAL;

1493 1494 1495 1496 1497
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
	if (new_node == NULL)
		return -ENOMEM;

	new_node->regulator = rdev;
	new_node->supply = supply;

	if (has_dev) {
		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (new_node->dev_name == NULL) {
			kfree(new_node);
			return -ENOMEM;
		}
	}

	mutex_lock(&regulator_list_mutex);
1514
	list_for_each_entry(node, &regulator_map_list, list) {
1515 1516 1517 1518
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1519
			continue;
1520 1521
		}

1522 1523 1524
		if (strcmp(node->supply, supply) != 0)
			continue;

1525 1526 1527 1528 1529 1530
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1531
		goto fail;
1532 1533
	}

1534 1535
	list_add(&new_node->list, &regulator_map_list);
	mutex_unlock(&regulator_list_mutex);
1536

1537
	return 0;
1538 1539 1540 1541 1542 1543

fail:
	mutex_unlock(&regulator_list_mutex);
	kfree(new_node->dev_name);
	kfree(new_node);
	return -EBUSY;
1544 1545
}

1546 1547 1548 1549 1550 1551 1552
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1553
			kfree(node->dev_name);
1554 1555 1556 1557 1558
			kfree(node);
		}
	}
}

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1608
#define REG_STR_SIZE	64
1609 1610 1611 1612 1613 1614

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
1615
	int err = 0;
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

	if (dev) {
		char buf[REG_STR_SIZE];
		int size;

		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			return NULL;

		supply_name = kstrdup(buf, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	} else {
		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	}
1634 1635

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1636 1637
	if (regulator == NULL) {
		kfree(supply_name);
1638
		return NULL;
1639
	}
1640 1641

	regulator->rdev = rdev;
1642 1643 1644
	regulator->supply_name = supply_name;

	regulator_lock(rdev);
1645
	list_add(&regulator->list, &rdev->consumer_list);
1646
	regulator_unlock(rdev);
1647 1648

	if (dev) {
1649 1650
		regulator->dev = dev;

1651
		/* Add a link to the device sysfs entry */
1652
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1653
					       supply_name);
1654
		if (err) {
1655 1656
			rdev_dbg(rdev, "could not add device link %s: %pe\n",
				  dev->kobj.name, ERR_PTR(err));
1657
			/* non-fatal */
1658
		}
1659 1660
	}

1661 1662
	if (err != -EEXIST)
		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1663
	if (!regulator->debugfs) {
1664
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1665 1666 1667 1668
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1669
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1670
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1671
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1672 1673 1674
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1675
	}
1676

1677 1678 1679 1680 1681
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1682
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1683 1684 1685
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1686 1687 1688
	return regulator;
}

1689 1690
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1691 1692
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1693 1694 1695
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1696 1697
}

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1746 1747 1748 1749 1750
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1751
 */
1752
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1753
						  const char *supply)
1754
{
1755
	struct regulator_dev *r = NULL;
1756
	struct device_node *node;
1757 1758
	struct regulator_map *map;
	const char *devname = NULL;
1759

1760 1761
	regulator_supply_alias(&dev, &supply);

1762 1763 1764
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1765
		if (node) {
1766 1767 1768
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1769

1770
			/*
1771 1772
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1773
			 */
1774
			return ERR_PTR(-EPROBE_DEFER);
1775
		}
1776 1777 1778
	}

	/* if not found, try doing it non-dt way */
1779 1780 1781
	if (dev)
		devname = dev_name(dev);

1782
	mutex_lock(&regulator_list_mutex);
1783 1784 1785 1786 1787 1788
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1789 1790
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1791 1792
			r = map->regulator;
			break;
1793
		}
1794
	}
1795
	mutex_unlock(&regulator_list_mutex);
1796

1797 1798 1799 1800
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1801 1802 1803 1804
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1805 1806
}

1807 1808 1809 1810
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
1811
	int ret = 0;
1812

1813
	/* No supply to resolve? */
1814 1815 1816
	if (!rdev->supply_name)
		return 0;

1817
	/* Supply already resolved? (fast-path without locking contention) */
1818 1819 1820
	if (rdev->supply)
		return 0;

1821 1822 1823 1824
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1825 1826
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
1827
			goto out;
1828

1829 1830
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1831
			get_device(&r->dev);
1832 1833 1834
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
1835 1836
			ret = -EPROBE_DEFER;
			goto out;
1837
		}
1838 1839
	}

1840 1841 1842
	if (r == rdev) {
		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
			rdev->desc->name, rdev->supply_name);
1843 1844 1845 1846
		if (!have_full_constraints()) {
			ret = -EINVAL;
			goto out;
		}
1847 1848
		r = dummy_regulator_rdev;
		get_device(&r->dev);
1849 1850
	}

1851 1852 1853 1854 1855 1856 1857 1858 1859
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
1860 1861
			ret = -EPROBE_DEFER;
			goto out;
1862 1863 1864
		}
	}

1865 1866
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1867 1868
	if (ret < 0) {
		put_device(&r->dev);
1869
		goto out;
1870
	}
1871

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	/*
	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
	 * between rdev->supply null check and setting rdev->supply in
	 * set_supply() from concurrent tasks.
	 */
	regulator_lock(rdev);

	/* Supply just resolved by a concurrent task? */
	if (rdev->supply) {
		regulator_unlock(rdev);
		put_device(&r->dev);
		goto out;
	}

1886
	ret = set_supply(rdev, r);
1887
	if (ret < 0) {
1888
		regulator_unlock(rdev);
1889
		put_device(&r->dev);
1890
		goto out;
1891
	}
1892

1893 1894
	regulator_unlock(rdev);

1895 1896 1897 1898 1899 1900
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1901
		ret = regulator_enable(rdev->supply);
1902
		if (ret < 0) {
1903
			_regulator_put(rdev->supply);
1904
			rdev->supply = NULL;
1905
			goto out;
1906
		}
1907 1908
	}

1909 1910
out:
	return ret;
1911 1912
}

1913
/* Internal regulator request function */
1914 1915
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1916 1917
{
	struct regulator_dev *rdev;
1918
	struct regulator *regulator;
1919
	struct device_link *link;
1920
	int ret;
1921

1922 1923 1924 1925 1926
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1927
	if (id == NULL) {
1928
		pr_err("get() with no identifier\n");
1929
		return ERR_PTR(-EINVAL);
1930 1931
	}

1932
	rdev = regulator_dev_lookup(dev, id);
1933 1934
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1935

1936 1937 1938 1939 1940 1941
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1942

1943 1944 1945 1946 1947
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1948

1949 1950 1951 1952 1953 1954 1955
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
1956
			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1957 1958 1959
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1960

1961 1962 1963
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
1964
			fallthrough;
1965

1966 1967 1968
		default:
			return ERR_PTR(-ENODEV);
		}
1969 1970
	}

1971 1972
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1973 1974
		put_device(&rdev->dev);
		return regulator;
1975 1976
	}

1977
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1978
		regulator = ERR_PTR(-EBUSY);
1979 1980
		put_device(&rdev->dev);
		return regulator;
1981 1982
	}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1993 1994 1995
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1996 1997
		put_device(&rdev->dev);
		return regulator;
1998 1999
	}

2000
	if (!try_module_get(rdev->owner)) {
2001
		regulator = ERR_PTR(-EPROBE_DEFER);
2002 2003 2004
		put_device(&rdev->dev);
		return regulator;
	}
2005

2006 2007 2008 2009
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
W
Wen Yang 已提交
2010
		put_device(&rdev->dev);
2011
		return regulator;
2012 2013
	}

2014
	rdev->open_count++;
2015
	if (get_type == EXCLUSIVE_GET) {
2016 2017 2018 2019 2020 2021 2022 2023 2024
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

2025 2026 2027
	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
	if (!IS_ERR_OR_NULL(link))
		regulator->device_link = true;
2028

2029 2030
	return regulator;
}
2031 2032 2033 2034 2035 2036 2037 2038 2039

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
2040
 * Use of supply names configured via set_consumer_device_supply() is
2041 2042 2043 2044 2045 2046
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
2047
	return _regulator_get(dev, id, NORMAL_GET);
2048
}
2049 2050
EXPORT_SYMBOL_GPL(regulator_get);

2051 2052 2053 2054 2055 2056 2057
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
2058 2059 2060
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
2061 2062 2063 2064 2065 2066
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
2067
 * Use of supply names configured via set_consumer_device_supply() is
2068 2069 2070 2071 2072 2073
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2074
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2075 2076 2077
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2078 2079 2080 2081 2082 2083
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2084
 * or IS_ERR() condition containing errno.
2085 2086 2087 2088 2089 2090 2091 2092
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
2093
 * Use of supply names configured via set_consumer_device_supply() is
2094 2095 2096 2097 2098 2099
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2100
	return _regulator_get(dev, id, OPTIONAL_GET);
2101 2102 2103
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2104
static void destroy_regulator(struct regulator *regulator)
2105
{
2106
	struct regulator_dev *rdev = regulator->rdev;
2107

2108 2109
	debugfs_remove_recursive(regulator->debugfs);

2110
	if (regulator->dev) {
2111 2112
		if (regulator->device_link)
			device_link_remove(regulator->dev, &rdev->dev);
2113 2114

		/* remove any sysfs entries */
2115
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2116 2117
	}

2118
	regulator_lock(rdev);
2119 2120
	list_del(&regulator->list);

2121 2122
	rdev->open_count--;
	rdev->exclusive = 0;
2123
	regulator_unlock(rdev);
2124

2125
	kfree_const(regulator->supply_name);
2126
	kfree(regulator);
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
}

/* regulator_list_mutex lock held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (IS_ERR_OR_NULL(regulator))
		return;

	lockdep_assert_held_once(&regulator_list_mutex);

	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

	rdev = regulator->rdev;

	destroy_regulator(regulator);
2145

2146
	module_put(rdev->owner);
W
Wen Yang 已提交
2147
	put_device(&rdev->dev);
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2162 2163 2164 2165
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2243 2244
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2245
					 struct device *alias_dev,
2246
					 const char *const *alias_id,
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2284
					    const char *const *id,
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2295 2296 2297 2298
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
2299
	struct regulator_enable_gpio *pin, *new_pin;
2300
	struct gpio_desc *gpiod;
2301

2302
	gpiod = config->ena_gpiod;
2303 2304 2305
	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);

	mutex_lock(&regulator_list_mutex);
2306

2307
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2308
		if (pin->gpiod == gpiod) {
2309
			rdev_dbg(rdev, "GPIO is already used\n");
2310 2311 2312 2313
			goto update_ena_gpio_to_rdev;
		}
	}

2314 2315
	if (new_pin == NULL) {
		mutex_unlock(&regulator_list_mutex);
2316
		return -ENOMEM;
2317 2318 2319 2320
	}

	pin = new_pin;
	new_pin = NULL;
2321

2322
	pin->gpiod = gpiod;
2323 2324 2325 2326 2327
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
2328 2329 2330 2331

	mutex_unlock(&regulator_list_mutex);
	kfree(new_pin);

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
		if (pin != rdev->ena_pin)
			continue;

		if (--pin->request_count)
			break;

		gpiod_put(pin->gpiod);
		list_del(&pin->list);
		kfree(pin);
		break;
2354
	}
2355 2356

	rdev->ena_pin = NULL;
2357 2358
}

2359
/**
2360 2361 2362 2363
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2377
			gpiod_set_value_cansleep(pin->gpiod, 1);
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2388
			gpiod_set_value_cansleep(pin->gpiod, 0);
2389 2390 2391 2392 2393 2394 2395
			pin->enable_count = 0;
		}
	}

	return 0;
}

2396 2397 2398 2399 2400 2401
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2402
 *     Documentation/timers/timers-howto.rst
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
/**
 * _regulator_check_status_enabled
 *
 * A helper function to check if the regulator status can be interpreted
 * as 'regulator is enabled'.
 * @rdev: the regulator device to check
 *
 * Return:
 * * 1			- if status shows regulator is in enabled state
 * * 0			- if not enabled state
 * * Error Value	- as received from ops->get_status()
 */
static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
{
	int ret = rdev->desc->ops->get_status(rdev);

	if (ret < 0) {
		rdev_info(rdev, "get_status returned error: %d\n", ret);
		return ret;
	}

	switch (ret) {
	case REGULATOR_STATUS_OFF:
	case REGULATOR_STATUS_ERROR:
	case REGULATOR_STATUS_UNDEFINED:
		return 0;
	default:
		return 1;
	}
}

2466 2467 2468 2469 2470 2471 2472 2473 2474
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
2475
		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2476 2477 2478 2479 2480
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2481
	if (rdev->desc->off_on_delay && rdev->last_off) {
2482 2483 2484
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
2485 2486 2487 2488 2489
		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
		s64 remaining = ktime_us_delta(end, ktime_get());

		if (remaining > 0)
			_regulator_enable_delay(remaining);
2490 2491
	}

2492
	if (rdev->ena_pin) {
2493 2494 2495 2496 2497 2498
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2499
	} else if (rdev->desc->ops->enable) {
2500 2501 2502 2503 2504 2505 2506 2507 2508
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
2509 2510
	 * together.
	 */
2511 2512
	trace_regulator_enable_delay(rdev_get_name(rdev));

2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
	/* If poll_enabled_time is set, poll upto the delay calculated
	 * above, delaying poll_enabled_time uS to check if the regulator
	 * actually got enabled.
	 * If the regulator isn't enabled after enable_delay has
	 * expired, return -ETIMEDOUT.
	 */
	if (rdev->desc->poll_enabled_time) {
		unsigned int time_remaining = delay;

		while (time_remaining > 0) {
			_regulator_enable_delay(rdev->desc->poll_enabled_time);

			if (rdev->desc->ops->get_status) {
				ret = _regulator_check_status_enabled(rdev);
				if (ret < 0)
					return ret;
				else if (ret)
					break;
			} else if (rdev->desc->ops->is_enabled(rdev))
				break;

			time_remaining -= rdev->desc->poll_enabled_time;
		}

		if (time_remaining <= 0) {
			rdev_err(rdev, "Enabled check timed out\n");
			return -ETIMEDOUT;
		}
	} else {
		_regulator_enable_delay(delay);
	}
2544 2545 2546 2547 2548 2549

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2609
/* locks held by regulator_enable() */
2610
static int _regulator_enable(struct regulator *regulator)
2611
{
2612
	struct regulator_dev *rdev = regulator->rdev;
2613
	int ret;
2614

2615 2616
	lockdep_assert_held_once(&rdev->mutex.base);

2617
	if (rdev->use_count == 0 && rdev->supply) {
2618
		ret = _regulator_enable(rdev->supply);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2629

2630 2631 2632
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2633

2634
	if (rdev->use_count == 0) {
2635 2636 2637 2638
		/*
		 * The regulator may already be enabled if it's not switchable
		 * or was left on
		 */
2639 2640
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2641
			if (!regulator_ops_is_valid(rdev,
2642 2643
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2644
				goto err_consumer_disable;
2645
			}
2646

2647
			ret = _regulator_do_enable(rdev);
2648
			if (ret < 0)
2649
				goto err_consumer_disable;
2650

2651 2652
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2653
		} else if (ret < 0) {
2654
			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2655
			goto err_consumer_disable;
2656
		}
2657
		/* Fallthrough on positive return values - already enabled */
2658 2659
	}

2660 2661 2662
	rdev->use_count++;

	return 0;
2663

2664 2665 2666
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2667
err_disable_supply:
2668
	if (rdev->use_count == 0 && rdev->supply)
2669
		_regulator_disable(rdev->supply);
2670 2671

	return ret;
2672 2673 2674 2675 2676 2677
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2678 2679 2680 2681
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2682
 * NOTE: the output value can be set by other drivers, boot loader or may be
2683
 * hardwired in the regulator.
2684 2685 2686
 */
int regulator_enable(struct regulator *regulator)
{
2687
	struct regulator_dev *rdev = regulator->rdev;
2688
	struct ww_acquire_ctx ww_ctx;
2689
	int ret;
2690

2691
	regulator_lock_dependent(rdev, &ww_ctx);
2692
	ret = _regulator_enable(regulator);
2693
	regulator_unlock_dependent(rdev, &ww_ctx);
2694

2695 2696 2697 2698
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2699 2700 2701 2702 2703 2704
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2705
	if (rdev->ena_pin) {
2706 2707 2708 2709 2710 2711
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2712 2713 2714 2715 2716 2717 2718

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2719
	if (rdev->desc->off_on_delay)
2720
		rdev->last_off = ktime_get();
2721

2722 2723 2724 2725 2726
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2727
/* locks held by regulator_disable() */
2728
static int _regulator_disable(struct regulator *regulator)
2729
{
2730
	struct regulator_dev *rdev = regulator->rdev;
2731 2732
	int ret = 0;

2733
	lockdep_assert_held_once(&rdev->mutex.base);
2734

D
David Brownell 已提交
2735
	if (WARN(rdev->use_count <= 0,
2736
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2737 2738
		return -EIO;

2739
	/* are we the last user and permitted to disable ? */
2740 2741
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2742 2743

		/* we are last user */
2744
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2745 2746 2747 2748 2749 2750
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2751
			ret = _regulator_do_disable(rdev);
2752
			if (ret < 0) {
2753
				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2754 2755 2756
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2757 2758
				return ret;
			}
2759 2760
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2761 2762 2763 2764 2765 2766
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2767

2768 2769 2770
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2771 2772 2773
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2774
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2775
		ret = _regulator_disable(rdev->supply);
2776

2777 2778 2779 2780 2781 2782 2783
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2784 2785 2786
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2787
 *
2788
 * NOTE: this will only disable the regulator output if no other consumer
2789 2790
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2791 2792 2793
 */
int regulator_disable(struct regulator *regulator)
{
2794
	struct regulator_dev *rdev = regulator->rdev;
2795
	struct ww_acquire_ctx ww_ctx;
2796
	int ret;
2797

2798
	regulator_lock_dependent(rdev, &ww_ctx);
2799
	ret = _regulator_disable(regulator);
2800
	regulator_unlock_dependent(rdev, &ww_ctx);
2801

2802 2803 2804 2805 2806
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2807
static int _regulator_force_disable(struct regulator_dev *rdev)
2808 2809 2810
{
	int ret = 0;

2811
	lockdep_assert_held_once(&rdev->mutex.base);
2812

2813 2814 2815 2816 2817
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2818 2819
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
2820
		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2821 2822
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2823
		return ret;
2824 2825
	}

2826 2827 2828 2829
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2843
	struct regulator_dev *rdev = regulator->rdev;
2844
	struct ww_acquire_ctx ww_ctx;
2845 2846
	int ret;

2847
	regulator_lock_dependent(rdev, &ww_ctx);
2848

2849
	ret = _regulator_force_disable(regulator->rdev);
2850

2851 2852
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2853 2854 2855 2856 2857 2858

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2859 2860
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2861

2862
	regulator_unlock_dependent(rdev, &ww_ctx);
2863

2864 2865 2866 2867
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2868 2869 2870 2871
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2872
	struct ww_acquire_ctx ww_ctx;
2873
	int count, i, ret;
2874 2875
	struct regulator *regulator;
	int total_count = 0;
2876

2877
	regulator_lock_dependent(rdev, &ww_ctx);
2878

2879 2880 2881 2882 2883 2884 2885 2886
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
2899 2900
				rdev_err(rdev, "Deferred disable failed: %pe\n",
					 ERR_PTR(ret));
2901
		}
2902
	}
2903
	WARN_ON(!total_count);
2904

2905 2906 2907 2908
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2909 2910 2911 2912 2913
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2914
 * @ms: milliseconds until the regulator is disabled
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2927 2928 2929
	if (!ms)
		return regulator_disable(regulator);

2930
	regulator_lock(rdev);
2931
	regulator->deferred_disables++;
2932 2933
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2934
	regulator_unlock(rdev);
2935

2936
	return 0;
2937 2938 2939
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2940 2941
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2942
	/* A GPIO control always takes precedence */
2943
	if (rdev->ena_pin)
2944 2945
		return rdev->ena_gpio_state;

2946
	/* If we don't know then assume that the regulator is always on */
2947
	if (!rdev->desc->ops->is_enabled)
2948
		return 1;
2949

2950
	return rdev->desc->ops->is_enabled(rdev);
2951 2952
}

2953 2954
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
2965 2966
		if (selector < rdev->desc->linear_min_sel)
			return 0;
2967
		if (lock)
2968
			regulator_lock(rdev);
2969 2970
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2971
			regulator_unlock(rdev);
2972
	} else if (rdev->is_switch && rdev->supply) {
2973 2974
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2989 2990 2991 2992
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2993 2994 2995 2996 2997 2998 2999
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
3000 3001 3002
 */
int regulator_is_enabled(struct regulator *regulator)
{
3003 3004
	int ret;

3005 3006 3007
	if (regulator->always_on)
		return 1;

3008
	regulator_lock(regulator->rdev);
3009
	ret = _regulator_is_enabled(regulator->rdev);
3010
	regulator_unlock(regulator->rdev);
3011 3012

	return ret;
3013 3014 3015
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

3028 3029 3030
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

3031
	if (!rdev->is_switch || !rdev->supply)
3032 3033 3034
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
3045
 * zero if this selector code can't be used on this system, or a
3046 3047 3048 3049
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
3050
	return _regulator_list_voltage(regulator->rdev, selector, 1);
3051 3052 3053
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
3086 3087
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3088 3089 3090 3091

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

3092 3093
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
3094

3095
	return 0;
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3113 3114
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3115 3116 3117

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
3118 3119
	if (selector < rdev->desc->linear_min_sel)
		return 0;
3120 3121 3122 3123 3124 3125 3126
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3142 3143 3144 3145 3146 3147 3148
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3149
 * Returns a boolean.
3150 3151 3152 3153
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3154
	struct regulator_dev *rdev = regulator->rdev;
3155 3156
	int i, voltages, ret;

3157
	/* If we can't change voltage check the current voltage */
3158
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3159 3160
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3161
			return min_uV <= ret && ret <= max_uV;
3162 3163 3164 3165
		else
			return ret;
	}

3166 3167 3168 3169 3170
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3171 3172
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3173
		return 0;
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3185
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3186

3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3201 3202 3203 3204 3205
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3206 3207 3208
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3209 3210 3211 3212 3213 3214 3215
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3216
	data.old_uV = regulator_get_voltage_rdev(rdev);
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3240
	data.old_uV = regulator_get_voltage_rdev(rdev);
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3318 3319 3320 3321 3322 3323 3324 3325 3326
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3327 3328
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3329 3330 3331 3332 3333 3334
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3335 3336

	if (ramp_delay == 0) {
3337
		rdev_dbg(rdev, "ramp_delay not set\n");
3338 3339 3340 3341 3342 3343
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3344 3345 3346 3347
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3348
	int delay = 0;
3349
	int best_val = 0;
3350
	unsigned int selector;
3351
	int old_selector = -1;
3352
	const struct regulator_ops *ops = rdev->desc->ops;
3353
	int old_uV = regulator_get_voltage_rdev(rdev);
3354 3355 3356

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3357 3358 3359
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3360 3361 3362 3363
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3364
	if (_regulator_is_enabled(rdev) &&
3365 3366
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3367 3368 3369 3370
		if (old_selector < 0)
			return old_selector;
	}

3371
	if (ops->set_voltage) {
3372 3373
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3374 3375

		if (ret >= 0) {
3376 3377 3378
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3379
			else
3380
				best_val = regulator_get_voltage_rdev(rdev);
3381 3382
		}

3383
	} else if (ops->set_voltage_sel) {
3384
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3385
		if (ret >= 0) {
3386
			best_val = ops->list_voltage(rdev, ret);
3387 3388
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3389 3390
				if (old_selector == selector)
					ret = 0;
3391 3392 3393
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3394
				else
3395 3396
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3397 3398 3399
			} else {
				ret = -EINVAL;
			}
3400
		}
3401 3402 3403
	} else {
		ret = -EINVAL;
	}
3404

3405 3406
	if (ret)
		goto out;
3407

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3425
		}
3426
	}
3427

3428
	if (delay < 0) {
3429
		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3430
		delay = 0;
3431 3432
	}

3433 3434 3435 3436 3437 3438
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3439 3440
	}

3441
	if (best_val >= 0) {
3442 3443
		unsigned long data = best_val;

3444
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3445 3446
				     (void *)data);
	}
3447

3448
out:
3449
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3450 3451 3452 3453

	return ret;
}

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3480
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3481 3482
					  int min_uV, int max_uV,
					  suspend_state_t state)
3483 3484
{
	struct regulator_dev *rdev = regulator->rdev;
3485
	struct regulator_voltage *voltage = &regulator->voltage[state];
3486
	int ret = 0;
3487
	int old_min_uV, old_max_uV;
3488
	int current_uV;
3489

3490 3491 3492 3493
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3494
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3495 3496
		goto out;

3497
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3498
	 * return successfully even though the regulator does not support
3499 3500
	 * changing the voltage.
	 */
3501
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3502
		current_uV = regulator_get_voltage_rdev(rdev);
3503
		if (min_uV <= current_uV && current_uV <= max_uV) {
3504 3505
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3506 3507 3508 3509
			goto out;
		}
	}

3510
	/* sanity check */
3511 3512
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3513 3514 3515 3516 3517 3518 3519 3520
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3521

3522
	/* restore original values in case of error */
3523 3524 3525 3526
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3527

3528 3529
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3530 3531 3532 3533
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3534

3535 3536 3537 3538
out:
	return ret;
}

3539 3540
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3541 3542 3543 3544 3545
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3546 3547 3548
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3549 3550
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3551 3552 3553 3554 3555 3556
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3557
			goto out;
3558 3559
		}

M
Mark Brown 已提交
3560
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3561 3562
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3563
			goto out;
3564 3565 3566 3567
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3568
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3569 3570
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3571
			goto out;
3572 3573 3574 3575 3576 3577 3578
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3579
				best_supply_uV, INT_MAX, state);
3580
		if (ret) {
3581 3582
			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
				ERR_PTR(ret));
3583
			goto out;
3584 3585 3586
		}
	}

3587 3588 3589 3590 3591
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3592
	if (ret < 0)
3593
		goto out;
3594

3595 3596
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3597
				best_supply_uV, INT_MAX, state);
3598
		if (ret)
3599 3600
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
				 ERR_PTR(ret));
3601 3602 3603 3604
		/* No need to fail here */
		ret = 0;
	}

3605
out:
3606
	return ret;
3607
}
3608
EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3609

3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3620
		*current_uV = regulator_get_voltage_rdev(rdev);
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3652
	int i, ret, max_spread;
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3686
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3697

3698 3699 3700 3701 3702 3703 3704 3705
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3706 3707
	max_spread = constraints->max_spread[0];

3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3725
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3763 3764 3765 3766
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3767
			ret = regulator_get_voltage_rdev(rdev);
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

3783 3784
int regulator_do_balance_voltage(struct regulator_dev *rdev,
				 suspend_state_t state, bool skip_coupled)
3785 3786 3787 3788 3789 3790
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3791 3792
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3793 3794

	c_rdevs = c_desc->coupled_rdevs;
3795
	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3822
			if (test_bit(i, &c_rdev_done))
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3850

3851 3852
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3853

3854 3855 3856
		if (ret < 0)
			goto out;

3857 3858
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
3859 3860 3861 3862

	} while (n_coupled > 1);

out:
3863 3864 3865
	return ret;
}

3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_coupler *coupler = c_desc->coupler;
	bool skip_coupled = false;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		skip_coupled = true;

	if (c_desc->n_resolved < c_desc->n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);

	return regulator_do_balance_voltage(rdev, state, skip_coupled);
}

3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3912 3913
	struct ww_acquire_ctx ww_ctx;
	int ret;
3914

3915
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3916

3917 3918
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3919

3920
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3921

3922 3923 3924 3925
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3938
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3992 3993
	struct ww_acquire_ctx ww_ctx;
	int ret;
3994 3995 3996 3997 3998

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3999
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4000 4001 4002 4003

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

4004
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4005 4006 4007 4008 4009

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
4023 4024
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
4025 4026 4027 4028 4029
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

4030 4031 4032 4033 4034
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

4035
	/* Currently requires operations to do this */
4036
	if (!ops->list_voltage || !rdev->desc->n_voltages)
4037 4038 4039 4040
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
4041 4042 4043
		if (i < rdev->desc->linear_min_sel)
			continue;

4044 4045 4046
		if (old_sel >= 0 && new_sel >= 0)
			break;

4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

4065
/**
4066 4067
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
4068 4069 4070 4071 4072 4073
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
4074
 * Drivers providing ramp_delay in regulation_constraints can use this as their
4075
 * set_voltage_time_sel() operation.
4076 4077 4078 4079 4080
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
4081
	int old_volt, new_volt;
4082

4083 4084 4085
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
4086

4087 4088 4089
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

4090 4091 4092 4093 4094
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4095
}
4096
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4097

4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
4109
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4110 4111
	int ret, min_uV, max_uV;

4112
	regulator_lock(rdev);
4113 4114 4115 4116 4117 4118 4119 4120

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
4121
	if (!voltage->min_uV && !voltage->max_uV) {
4122 4123 4124 4125
		ret = -EINVAL;
		goto out;
	}

4126 4127
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
4128 4129 4130 4131 4132 4133

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

4134
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4135 4136 4137
	if (ret < 0)
		goto out;

4138 4139 4140 4141 4142
	/* balance only, if regulator is coupled */
	if (rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
	else
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4143 4144

out:
4145
	regulator_unlock(rdev);
4146 4147 4148 4149
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

4150
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4151
{
4152
	int sel, ret;
4153 4154 4155 4156 4157 4158 4159 4160
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
4161 4162 4163 4164 4165
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
4166

4167
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4168 4169
		}
	}
4170 4171 4172 4173 4174

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4175
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4176
	} else if (rdev->desc->ops->get_voltage) {
4177
		ret = rdev->desc->ops->get_voltage(rdev);
4178 4179
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4180 4181
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4182
	} else if (rdev->supply) {
4183
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4184 4185
	} else if (rdev->supply_name) {
		return -EPROBE_DEFER;
4186
	} else {
4187
		return -EINVAL;
4188
	}
4189

4190 4191
	if (ret < 0)
		return ret;
4192
	return ret - rdev->constraints->uV_offset;
4193
}
4194
EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4207
	struct ww_acquire_ctx ww_ctx;
4208 4209
	int ret;

4210
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4211
	ret = regulator_get_voltage_rdev(regulator->rdev);
4212
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4213 4214 4215 4216 4217 4218 4219 4220

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4221
 * @min_uA: Minimum supported current in uA
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4240
	regulator_lock(rdev);
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4255
	regulator_unlock(rdev);
4256 4257 4258 4259
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4260 4261 4262 4263 4264 4265 4266 4267 4268
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4269 4270 4271 4272
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4273
	regulator_lock(rdev);
4274
	ret = _regulator_get_current_limit_unlocked(rdev);
4275
	regulator_unlock(rdev);
4276

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4310
	int regulator_curr_mode;
4311

4312
	regulator_lock(rdev);
4313 4314 4315 4316 4317 4318 4319

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4320 4321 4322 4323 4324 4325 4326 4327 4328
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4329
	/* constraints check */
4330
	ret = regulator_mode_constrain(rdev, &mode);
4331 4332 4333 4334 4335
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4336
	regulator_unlock(rdev);
4337 4338 4339 4340
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4341 4342 4343 4344 4345 4346 4347 4348 4349
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4350 4351 4352 4353
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4354
	regulator_lock(rdev);
4355
	ret = _regulator_get_mode_unlocked(rdev);
4356
	regulator_unlock(rdev);
4357

4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
{
	int ret = 0;

	if (rdev->use_cached_err) {
		spin_lock(&rdev->err_lock);
		ret = rdev->cached_err;
		spin_unlock(&rdev->err_lock);
	}
	return ret;
}

4385 4386 4387
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
4388
	int cached_flags, ret = 0;
4389

4390
	regulator_lock(rdev);
4391

4392 4393 4394 4395 4396
	cached_flags = rdev_get_cached_err_flags(rdev);

	if (rdev->desc->ops->get_error_flags)
		ret = rdev->desc->ops->get_error_flags(rdev, flags);
	else if (!rdev->use_cached_err)
4397 4398
		ret = -EINVAL;

4399 4400
	*flags |= cached_flags;

4401
	regulator_unlock(rdev);
4402

4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4420
/**
4421
 * regulator_set_load - set regulator load
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4444 4445 4446 4447 4448 4449 4450 4451
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4452
 * On error a negative errno is returned.
4453
 */
4454
int regulator_set_load(struct regulator *regulator, int uA_load)
4455 4456
{
	struct regulator_dev *rdev = regulator->rdev;
4457 4458
	int old_uA_load;
	int ret = 0;
4459

4460
	regulator_lock(rdev);
4461
	old_uA_load = regulator->uA_load;
4462
	regulator->uA_load = uA_load;
4463 4464 4465 4466 4467
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4468
	regulator_unlock(rdev);
4469

4470 4471
	return ret;
}
4472
EXPORT_SYMBOL_GPL(regulator_set_load);
4473

4474 4475 4476 4477
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4478
 * @enable: enable or disable bypass mode
4479 4480 4481 4482 4483 4484 4485 4486 4487
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
4488
	const char *name = rdev_get_name(rdev);
4489 4490 4491 4492 4493
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4494
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4495 4496
		return 0;

4497
	regulator_lock(rdev);
4498 4499 4500 4501 4502

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
4503 4504
			trace_regulator_bypass_enable(name);

4505 4506 4507
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
4508 4509
			else
				trace_regulator_bypass_enable_complete(name);
4510 4511 4512 4513 4514 4515
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
4516 4517
			trace_regulator_bypass_disable(name);

4518 4519 4520
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
4521 4522
			else
				trace_regulator_bypass_disable_complete(name);
4523 4524 4525 4526 4527 4528
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4529
	regulator_unlock(rdev);
4530 4531 4532 4533 4534

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4535 4536 4537
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4538
 * @nb: notifier block
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4553
 * @nb: notifier block
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4565 4566 4567
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4568
static int _notifier_call_chain(struct regulator_dev *rdev,
4569 4570 4571
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4572
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4599 4600
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4611
	if (ret != -EPROBE_DEFER)
4612 4613
		dev_err(dev, "Failed to get supply '%s': %pe\n",
			consumers[i].supply, ERR_PTR(ret));
4614 4615 4616 4617
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4618
	while (--i >= 0)
4619 4620 4621 4622 4623 4624
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4625 4626 4627 4628 4629 4630 4631
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4647
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4648
	int i;
4649
	int ret = 0;
4650

4651
	for (i = 0; i < num_consumers; i++) {
4652 4653
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4654
	}
4655 4656 4657 4658

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4659
	for (i = 0; i < num_consumers; i++) {
4660 4661
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4662
			goto err;
4663
		}
4664 4665 4666 4667 4668
	}

	return 0;

err:
4669 4670
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
4671 4672
			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
			       ERR_PTR(consumers[i].ret));
4673 4674 4675
		else
			regulator_disable(consumers[i].consumer);
	}
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4689 4690
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4691 4692 4693 4694 4695 4696
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4697
	int ret, r;
4698

4699
	for (i = num_consumers - 1; i >= 0; --i) {
4700 4701 4702 4703 4704 4705 4706 4707
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4708
	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4709 4710 4711
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4712 4713
			pr_err("Failed to re-enable %s: %pe\n",
			       consumers[i].supply, ERR_PTR(r));
4714
	}
4715 4716 4717 4718 4719

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4738
	int ret = 0;
4739

4740
	for (i = 0; i < num_consumers; i++) {
4741 4742 4743
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4744 4745
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4746 4747 4748 4749 4750 4751 4752
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4776
 * @rdev: regulator source
4777
 * @event: notifier block
4778
 * @data: callback-specific data.
4779 4780
 *
 * Called by regulator drivers to notify clients a regulator event has
4781
 * occurred.
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4808
	case REGULATOR_MODE_STANDBY:
4809 4810
		return REGULATOR_STATUS_STANDBY;
	default:
4811
		return REGULATOR_STATUS_UNDEFINED;
4812 4813 4814 4815
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4843 4844 4845 4846
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4847 4848
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4849
{
4850
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4851
	struct regulator_dev *rdev = dev_to_rdev(dev);
4852
	const struct regulator_ops *ops = rdev->desc->ops;
4853 4854 4855 4856 4857 4858 4859
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4860 4861

	/* some attributes need specific methods to be displayed */
4862 4863 4864 4865 4866 4867 4868
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4869
	}
4870

4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4886
	/* constraints need specific supporting methods */
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4922

4923 4924 4925
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4926 4927 4928

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4929
	kfree(rdev);
4930 4931
}

4932 4933
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4946
	if (!rdev->debugfs) {
4947 4948 4949 4950 4951 4952 4953 4954
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4955 4956
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4957 4958
}

4959 4960
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4961 4962 4963 4964 4965 4966
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4967 4968
}

4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

5020
static void regulator_resolve_coupling(struct regulator_dev *rdev)
5021
{
5022
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

5035 5036
		if (!c_rdev)
			continue;
5037

5038 5039 5040 5041 5042 5043
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

5044 5045
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
5046

5047 5048
		regulator_resolve_coupling(c_rdev);
	}
5049 5050
}

5051
static void regulator_remove_coupling(struct regulator_dev *rdev)
5052
{
5053
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5054 5055 5056 5057
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
5058
	int err;
5059

5060
	n_coupled = c_desc->n_coupled;
5061

5062 5063
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
5064

5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
5088 5089 5090 5091

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
5092 5093
			rdev_err(rdev, "failed to detach from coupler: %pe\n",
				 ERR_PTR(err));
5094 5095 5096 5097
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
5098 5099
}

5100
static int regulator_init_coupling(struct regulator_dev *rdev)
5101
{
5102
	struct regulator_dev **coupled;
5103
	int err, n_phandles;
5104 5105 5106 5107 5108 5109

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

5110 5111
	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
	if (!coupled)
5112
		return -ENOMEM;
5113

5114 5115
	rdev->coupling_desc.coupled_rdevs = coupled;

5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

5128
	if (!of_check_coupling_data(rdev))
5129 5130
		return -EPERM;

5131
	mutex_lock(&regulator_list_mutex);
5132
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5133 5134
	mutex_unlock(&regulator_list_mutex);

5135 5136
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
5137
		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5138
		return err;
5139 5140
	}

5141 5142 5143 5144 5145 5146 5147 5148 5149
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5150
		return -EPERM;
5151
	}
5152

5153 5154 5155 5156 5157 5158
	if (!rdev->constraints->always_on) {
		rdev_err(rdev,
			 "Coupling of a non always-on regulator is unimplemented\n");
		return -ENOTSUPP;
	}

5159 5160 5161
	return 0;
}

5162 5163 5164 5165
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

5166 5167
/**
 * regulator_register - register regulator
5168
 * @regulator_desc: regulator to register
5169
 * @cfg: runtime configuration for regulator
5170 5171
 *
 * Called by regulator drivers to register a regulator.
5172 5173
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
5174
 */
5175 5176
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
5177
		   const struct regulator_config *cfg)
5178
{
5179
	const struct regulator_init_data *init_data;
5180
	struct regulator_config *config = NULL;
5181
	static atomic_t regulator_no = ATOMIC_INIT(-1);
5182
	struct regulator_dev *rdev;
5183 5184
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
5185
	struct device *dev;
5186
	int ret, i;
5187

5188
	if (cfg == NULL)
5189
		return ERR_PTR(-EINVAL);
5190 5191 5192 5193 5194 5195
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5196

5197
	dev = cfg->dev;
5198
	WARN_ON(!dev);
5199

5200 5201 5202 5203
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5204

5205
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5206 5207 5208 5209
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5210

5211 5212 5213
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5214 5215
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5216 5217 5218 5219

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5220 5221
		ret = -EINVAL;
		goto rinse;
5222
	}
5223 5224
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5225 5226
		ret = -EINVAL;
		goto rinse;
5227
	}
5228

5229
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5230 5231 5232 5233
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5234
	device_initialize(&rdev->dev);
5235
	spin_lock_init(&rdev->err_lock);
5236

5237 5238 5239 5240 5241 5242
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
5243
		ret = -ENOMEM;
5244
		goto clean;
5245 5246
	}

5247
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5248
					       &rdev->dev.of_node);
5249 5250 5251 5252 5253 5254 5255 5256

	/*
	 * Sometimes not all resources are probed already so we need to take
	 * that into account. This happens most the time if the ena_gpiod comes
	 * from a gpio extender or something else.
	 */
	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
		ret = -EPROBE_DEFER;
5257
		goto clean;
5258 5259
	}

5260 5261 5262 5263 5264
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5265
	 * a descriptor, we definitely got one from parsing the device
5266 5267 5268 5269
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5270 5271 5272 5273 5274
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5275
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5276
	rdev->reg_data = config->driver_data;
5277 5278
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5279 5280
	if (config->regmap)
		rdev->regmap = config->regmap;
5281
	else if (dev_get_regmap(dev, NULL))
5282
		rdev->regmap = dev_get_regmap(dev, NULL);
5283 5284
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5285 5286 5287
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5288
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5289

5290
	/* preform any regulator specific init */
5291
	if (init_data && init_data->regulator_init) {
5292
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5293 5294
		if (ret < 0)
			goto clean;
5295 5296
	}

5297
	if (config->ena_gpiod) {
5298 5299
		ret = regulator_ena_gpio_request(rdev, config);
		if (ret != 0) {
5300 5301
			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
				 ERR_PTR(ret));
5302
			goto clean;
5303
		}
5304 5305 5306
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5307 5308
	}

5309
	/* register with sysfs */
5310
	rdev->dev.class = &regulator_class;
5311
	rdev->dev.parent = dev;
5312
	dev_set_name(&rdev->dev, "regulator.%lu",
5313
		    (unsigned long) atomic_inc_return(&regulator_no));
5314
	dev_set_drvdata(&rdev->dev, rdev);
5315

5316
	/* set regulator constraints */
5317
	if (init_data)
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
		rdev->constraints = kmemdup(&init_data->constraints,
					    sizeof(*rdev->constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
					    GFP_KERNEL);
	if (!rdev->constraints) {
		ret = -ENOMEM;
		goto wash;
	}
5328 5329

	if (init_data && init_data->supply_regulator)
5330
		rdev->supply_name = init_data->supply_regulator;
5331
	else if (regulator_desc->supply_name)
5332
		rdev->supply_name = regulator_desc->supply_name;
5333

5334
	ret = set_machine_constraints(rdev);
5335 5336
	if (ret == -EPROBE_DEFER) {
		/* Regulator might be in bypass mode and so needs its supply
5337 5338
		 * to set the constraints
		 */
5339 5340
		/* FIXME: this currently triggers a chicken-and-egg problem
		 * when creating -SUPPLY symlink in sysfs to a regulator
5341 5342
		 * that is just being created
		 */
5343 5344
		rdev_dbg(rdev, "will resolve supply early: %s\n",
			 rdev->supply_name);
5345 5346
		ret = regulator_resolve_supply(rdev);
		if (!ret)
5347
			ret = set_machine_constraints(rdev);
5348 5349 5350 5351
		else
			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
				 ERR_PTR(ret));
	}
5352 5353 5354
	if (ret < 0)
		goto wash;

5355 5356
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
5357 5358
		goto wash;

5359
	/* add consumers devices */
5360 5361 5362 5363
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5364
				init_data->consumer_supplies[i].supply);
5365 5366 5367 5368 5369
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5370
		}
5371
	}
5372

5373 5374 5375 5376 5377
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5378 5379
	ret = device_add(&rdev->dev);
	if (ret != 0)
5380 5381
		goto unset_supplies;

5382
	rdev_init_debugfs(rdev);
5383

5384 5385 5386 5387 5388
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5389 5390 5391
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5392
	kfree(config);
5393
	return rdev;
D
David Brownell 已提交
5394

5395
unset_supplies:
5396
	mutex_lock(&regulator_list_mutex);
5397
	unset_regulator_supplies(rdev);
5398
	regulator_remove_coupling(rdev);
5399
	mutex_unlock(&regulator_list_mutex);
5400
wash:
5401
	kfree(rdev->coupling_desc.coupled_rdevs);
5402
	mutex_lock(&regulator_list_mutex);
5403
	regulator_ena_gpio_free(rdev);
5404
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5405
clean:
5406 5407
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
5408
	kfree(config);
5409
	put_device(&rdev->dev);
5410 5411 5412
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5413
	return ERR_PTR(ret);
5414 5415 5416 5417 5418
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5419
 * @rdev: regulator to unregister
5420 5421 5422 5423 5424 5425 5426 5427
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5428 5429 5430
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5431
		regulator_put(rdev->supply);
5432
	}
5433

5434 5435
	flush_work(&rdev->disable_work.work);

5436
	mutex_lock(&regulator_list_mutex);
5437

5438
	debugfs_remove_recursive(rdev->debugfs);
5439
	WARN_ON(rdev->open_count);
5440
	regulator_remove_coupling(rdev);
5441
	unset_regulator_supplies(rdev);
5442
	list_del(&rdev->list);
5443
	regulator_ena_gpio_free(rdev);
5444
	device_unregister(&rdev->dev);
5445 5446

	mutex_unlock(&regulator_list_mutex);
5447 5448 5449
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5450
#ifdef CONFIG_SUSPEND
5451
/**
5452
 * regulator_suspend - prepare regulators for system wide suspend
5453
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5454 5455 5456
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5457
static int regulator_suspend(struct device *dev)
5458
{
5459
	struct regulator_dev *rdev = dev_to_rdev(dev);
5460
	suspend_state_t state = pm_suspend_target_state;
5461
	int ret;
5462 5463 5464 5465 5466
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev, state);
	if (!rstate)
		return 0;
5467 5468

	regulator_lock(rdev);
5469
	ret = __suspend_set_state(rdev, rstate);
5470
	regulator_unlock(rdev);
5471

5472
	return ret;
5473
}
5474

5475
static int regulator_resume(struct device *dev)
5476
{
5477
	suspend_state_t state = pm_suspend_target_state;
5478
	struct regulator_dev *rdev = dev_to_rdev(dev);
5479
	struct regulator_state *rstate;
5480
	int ret = 0;
5481

5482
	rstate = regulator_get_suspend_state(rdev, state);
5483
	if (rstate == NULL)
5484
		return 0;
5485

5486 5487 5488 5489
	/* Avoid grabbing the lock if we don't need to */
	if (!rdev->desc->ops->resume)
		return 0;

5490
	regulator_lock(rdev);
5491

5492 5493
	if (rstate->enabled == ENABLE_IN_SUSPEND ||
	    rstate->enabled == DISABLE_IN_SUSPEND)
5494
		ret = rdev->desc->ops->resume(rdev);
5495

5496
	regulator_unlock(rdev);
5497

5498
	return ret;
5499
}
5500 5501
#else /* !CONFIG_SUSPEND */

5502 5503
#define regulator_suspend	NULL
#define regulator_resume	NULL
5504 5505 5506 5507 5508

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5509 5510
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5511 5512 5513
};
#endif

M
Mark Brown 已提交
5514
struct class regulator_class = {
5515 5516 5517 5518 5519 5520 5521
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5539 5540
/**
 * rdev_get_drvdata - get rdev regulator driver data
5541
 * @rdev: regulator
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
5577
 * rdev_get_id - get regulator ID
5578
 * @rdev: regulator
5579 5580 5581 5582 5583 5584 5585
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5586 5587 5588 5589 5590 5591
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5592 5593 5594 5595 5596 5597
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5598 5599 5600 5601 5602 5603
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5604
#ifdef CONFIG_DEBUG_FS
5605
static int supply_map_show(struct seq_file *sf, void *data)
5606 5607 5608 5609
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5610 5611 5612
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5613 5614
	}

5615 5616
	return 0;
}
5617
DEFINE_SHOW_ATTRIBUTE(supply_map);
5618

5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5641 5642 5643 5644 5645 5646
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5647
	struct summary_data summary_data;
5648
	unsigned int opmode;
5649 5650 5651 5652

	if (!rdev)
		return;

5653
	opmode = _regulator_get_mode_unlocked(rdev);
5654
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5655 5656
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5657
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5658
		   regulator_opmode_to_str(opmode));
5659

5660
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5661 5662
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5681
		if (consumer->dev && consumer->dev->class == &regulator_class)
5682 5683 5684 5685
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5686
			   30 - (level + 1) * 3,
5687
			   consumer->supply_name ? consumer->supply_name :
5688
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5689 5690 5691

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5692 5693
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5694
				   consumer->uA_load / 1000,
5695 5696
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5697 5698
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5699 5700 5701 5702 5703 5704 5705 5706
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5707 5708 5709
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5710

5711 5712
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5750 5751

	regulator_unlock(rdev);
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5782 5783
	mutex_lock(&regulator_list_mutex);

5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5810 5811

	mutex_unlock(&regulator_list_mutex);
5812 5813
}

5814
static int regulator_summary_show_roots(struct device *dev, void *data)
5815
{
5816 5817
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5818

5819 5820
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5821

5822 5823
	return 0;
}
5824

5825 5826
static int regulator_summary_show(struct seq_file *s, void *data)
{
5827 5828
	struct ww_acquire_ctx ww_ctx;

5829 5830
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5831

5832 5833
	regulator_summary_lock(&ww_ctx);

5834 5835
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5836

5837 5838
	regulator_summary_unlock(&ww_ctx);

5839 5840
	return 0;
}
5841 5842
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5843

5844 5845
static int __init regulator_init(void)
{
5846 5847 5848 5849
	int ret;

	ret = class_register(&regulator_class);

5850
	debugfs_root = debugfs_create_dir("regulator", NULL);
5851
	if (!debugfs_root)
5852
		pr_warn("regulator: Failed to create debugfs directory\n");
5853

5854
#ifdef CONFIG_DEBUG_FS
5855 5856
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5857

5858
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5859
			    NULL, &regulator_summary_fops);
5860
#endif
5861 5862
	regulator_dummy_init();

5863 5864
	regulator_coupler_register(&generic_regulator_coupler);

5865
	return ret;
5866 5867 5868 5869
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5870

5871
static int regulator_late_cleanup(struct device *dev, void *data)
5872
{
5873 5874 5875
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5876 5877
	int enabled, ret;

5878 5879 5880
	if (c && c->always_on)
		return 0;

5881
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5882 5883
		return 0;

5884
	regulator_lock(rdev);
5885 5886 5887 5888

	if (rdev->use_count)
		goto unlock;

5889
	/* If we can't read the status assume it's always on. */
5890 5891 5892 5893 5894
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

5895 5896
	/* But if reading the status failed, assume that it's off. */
	if (enabled <= 0)
5897 5898 5899 5900
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
5901 5902
		 * wrong.
		 */
5903 5904 5905
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
5906
			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5917
	regulator_unlock(rdev);
5918 5919 5920 5921

	return 0;
}

5922
static void regulator_init_complete_work_function(struct work_struct *work)
5923
{
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5934
	/* If we have a full configuration then disable any regulators
5935 5936 5937
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5938
	 */
5939 5940
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
}

static DECLARE_DELAYED_WORK(regulator_init_complete_work,
			    regulator_init_complete_work_function);

static int __init regulator_init_complete(void)
{
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

	/*
5958 5959 5960 5961 5962 5963 5964 5965 5966
	 * We punt completion for an arbitrary amount of time since
	 * systems like distros will load many drivers from userspace
	 * so consumers might not always be ready yet, this is
	 * particularly an issue with laptops where this might bounce
	 * the display off then on.  Ideally we'd get a notification
	 * from userspace when this happens but we don't so just wait
	 * a bit and hope we waited long enough.  It'd be better if
	 * we'd only do this on systems that need it, and a kernel
	 * command line option might be useful.
5967
	 */
5968 5969
	schedule_delayed_work(&regulator_init_complete_work,
			      msecs_to_jiffies(30000));
5970 5971 5972

	return 0;
}
5973
late_initcall_sync(regulator_init_complete);