core.c 149.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

M
Mark Brown 已提交
36 37
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 39 40 41 42 43 44 45 46
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

47 48
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
49 50
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
51
static LIST_HEAD(regulator_ena_gpio_list);
52
static LIST_HEAD(regulator_supply_alias_list);
53
static LIST_HEAD(regulator_coupler_list);
54
static bool has_full_constraints;
55

56 57
static struct dentry *debugfs_root;

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69
};

70 71 72 73 74 75 76
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
77
	struct gpio_desc *gpiod;
78 79 80 81
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

95
static int _regulator_is_enabled(struct regulator_dev *rdev);
96
static int _regulator_disable(struct regulator *regulator);
97 98
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99
static int _notifier_call_chain(struct regulator_dev *rdev,
100
				  unsigned long event, void *data);
101 102
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
103 104
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
105 106 107
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
108
static void destroy_regulator(struct regulator *regulator);
109
static void _regulator_put(struct regulator *regulator);
110

111
const char *rdev_get_name(struct regulator_dev *rdev)
112 113 114 115 116 117 118 119 120
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

121 122
static bool have_full_constraints(void)
{
123
	return has_full_constraints || of_have_populated_dt();
124 125
}

126 127 128 129 130 131 132 133 134 135 136 137 138
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

139 140 141
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
142
 * @ww_ctx:		w/w mutex acquire context
143 144 145 146 147 148 149
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
150 151
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
152
{
153 154 155 156 157 158 159
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
160
			rdev->ref_cnt++;
161 162 163 164 165 166 167
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
168
		}
169 170
	} else {
		lock = true;
171 172
	}

173 174 175 176 177 178 179 180
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
181 182
}

183 184 185 186 187 188 189 190 191 192 193
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
void regulator_lock(struct regulator_dev *rdev)
194
{
195
	regulator_lock_nested(rdev, NULL);
196
}
197
EXPORT_SYMBOL_GPL(regulator_lock);
198 199 200 201 202 203 204 205

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
206
void regulator_unlock(struct regulator_dev *rdev)
207
{
208
	mutex_lock(&regulator_nesting_mutex);
209

210 211 212
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
213
	}
214 215 216 217

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
218
}
219
EXPORT_SYMBOL_GPL(regulator_unlock);
220

221
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
222
{
223 224 225 226 227
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
228

229 230 231 232 233 234 235
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

236 237
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
238
{
239
	struct regulator_dev *c_rdev;
240
	int i;
241

242 243
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
244 245 246 247

		if (!c_rdev)
			continue;

248
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
249 250 251
			regulator_unlock_recursive(
					c_rdev->supply->rdev,
					c_rdev->coupling_desc.n_coupled);
252

253 254
		regulator_unlock(c_rdev);
	}
255 256
}

257 258 259 260
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
261
{
262
	struct regulator_dev *c_rdev;
263
	int i, err;
264

265 266
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
267

268 269
		if (!c_rdev)
			continue;
270

271 272 273 274 275 276 277
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
278

279 280 281 282 283 284 285
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

286
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
287 288 289 290 291 292 293 294
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
295 296
		}
	}
297 298 299 300 301 302 303

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
304 305
}

306
/**
307 308 309 310 311
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
312
 * Unlock all regulators related with rdev by coupling or supplying.
313
 */
314 315
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
316
{
317 318
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
319 320 321
}

/**
322 323
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
324
 * @ww_ctx:			w/w mutex acquire context
325 326
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
327
 * all regulators related with rdev by coupling or supplying.
328
 */
329 330
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
331
{
332 333 334
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
335

336
	mutex_lock(&regulator_list_mutex);
337

338
	ww_acquire_init(ww_ctx, &regulator_ww_class);
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
360 361
}

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
384 385
			if (regnode)
				goto err_node_put;
386
		} else {
387
			goto err_node_put;
388 389 390
		}
	}
	return NULL;
391 392 393 394

err_node_put:
	of_node_put(child);
	return regnode;
395 396
}

397 398 399 400 401 402
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
403
 * returns the device node corresponding to the regulator if found, else
404 405 406 407 408 409 410 411 412 413 414 415 416
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
417 418 419 420
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

421 422
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
423 424 425 426 427
		return NULL;
	}
	return regnode;
}

428
/* Platform voltage constraint check */
429 430
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
431 432 433
{
	BUG_ON(*min_uV > *max_uV);

434
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
435
		rdev_err(rdev, "voltage operation not allowed\n");
436 437 438 439 440 441 442 443
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

444 445
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
446
			 *min_uV, *max_uV);
447
		return -EINVAL;
448
	}
449 450 451 452

	return 0;
}

453 454 455 456 457 458
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

459 460 461
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
462 463 464
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
465 466
{
	struct regulator *regulator;
467
	struct regulator_voltage *voltage;
468 469

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
470
		voltage = &regulator->voltage[state];
471 472 473 474
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
475
		if (!voltage->min_uV && !voltage->max_uV)
476 477
			continue;

478 479 480 481
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
482 483
	}

484
	if (*min_uV > *max_uV) {
485 486
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
487
		return -EINVAL;
488
	}
489 490 491 492

	return 0;
}

493 494 495 496 497 498
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

499
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
500
		rdev_err(rdev, "current operation not allowed\n");
501 502 503 504 505 506 507 508
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

509 510
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
511
			 *min_uA, *max_uA);
512
		return -EINVAL;
513
	}
514 515 516 517 518

	return 0;
}

/* operating mode constraint check */
519 520
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
521
{
522
	switch (*mode) {
523 524 525 526 527 528
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
529
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
530 531 532
		return -EINVAL;
	}

533
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
534
		rdev_err(rdev, "mode operation not allowed\n");
535 536
		return -EPERM;
	}
537 538 539 540 541 542 543 544

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
545
	}
546 547

	return -EINVAL;
548 549
}

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

568 569 570
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
571
	struct regulator_dev *rdev = dev_get_drvdata(dev);
572
	int uV;
573

574
	regulator_lock(rdev);
575
	uV = regulator_get_voltage_rdev(rdev);
576
	regulator_unlock(rdev);
577

578 579 580
	if (uV < 0)
		return uV;
	return sprintf(buf, "%d\n", uV);
581
}
582
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
583 584 585 586

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
587
	struct regulator_dev *rdev = dev_get_drvdata(dev);
588 589 590

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
591
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
592

593 594
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
595 596 597
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

598
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
599
}
600
static DEVICE_ATTR_RO(name);
601

602
static const char *regulator_opmode_to_str(int mode)
603 604 605
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
606
		return "fast";
607
	case REGULATOR_MODE_NORMAL:
608
		return "normal";
609
	case REGULATOR_MODE_IDLE:
610
		return "idle";
611
	case REGULATOR_MODE_STANDBY:
612
		return "standby";
613
	}
614 615 616 617 618 619
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
620 621
}

D
David Brownell 已提交
622 623
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
624
{
625
	struct regulator_dev *rdev = dev_get_drvdata(dev);
626

D
David Brownell 已提交
627 628
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
629
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
630 631 632

static ssize_t regulator_print_state(char *buf, int state)
{
633 634 635 636 637 638 639 640
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
641 642 643 644
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
645 646
	ssize_t ret;

647
	regulator_lock(rdev);
648
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
649
	regulator_unlock(rdev);
D
David Brownell 已提交
650

651
	return ret;
D
David Brownell 已提交
652
}
653
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
654

D
David Brownell 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
688 689 690
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
691 692 693
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
694 695 696 697 698 699 700 701
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

702 703 704
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
705
	struct regulator_dev *rdev = dev_get_drvdata(dev);
706 707 708 709 710 711

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
712
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
713 714 715 716

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
717
	struct regulator_dev *rdev = dev_get_drvdata(dev);
718 719 720 721 722 723

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
724
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
725 726 727 728

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
729
	struct regulator_dev *rdev = dev_get_drvdata(dev);
730 731 732 733 734 735

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
736
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
737 738 739 740

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
741
	struct regulator_dev *rdev = dev_get_drvdata(dev);
742 743 744 745 746 747

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
748
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
749 750 751 752

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
753
	struct regulator_dev *rdev = dev_get_drvdata(dev);
754 755 756
	struct regulator *regulator;
	int uA = 0;

757
	regulator_lock(rdev);
758 759 760 761
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
762
	regulator_unlock(rdev);
763 764
	return sprintf(buf, "%d\n", uA);
}
765
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
766

767 768
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
769
{
770
	struct regulator_dev *rdev = dev_get_drvdata(dev);
771 772
	return sprintf(buf, "%d\n", rdev->use_count);
}
773
static DEVICE_ATTR_RO(num_users);
774

775 776
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
777
{
778
	struct regulator_dev *rdev = dev_get_drvdata(dev);
779 780 781 782 783 784 785 786 787

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
788
static DEVICE_ATTR_RO(type);
789 790 791 792

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
793
	struct regulator_dev *rdev = dev_get_drvdata(dev);
794 795 796

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
797 798
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
799 800 801 802

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
803
	struct regulator_dev *rdev = dev_get_drvdata(dev);
804 805 806

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
807 808
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
809 810 811 812

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
813
	struct regulator_dev *rdev = dev_get_drvdata(dev);
814 815 816

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
817 818
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
819 820 821 822

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
823
	struct regulator_dev *rdev = dev_get_drvdata(dev);
824

D
David Brownell 已提交
825 826
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
827
}
828 829
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
830 831 832 833

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
834
	struct regulator_dev *rdev = dev_get_drvdata(dev);
835

D
David Brownell 已提交
836 837
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
838
}
839 840
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
841 842 843 844

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
845
	struct regulator_dev *rdev = dev_get_drvdata(dev);
846

D
David Brownell 已提交
847 848
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
849
}
850 851
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
852 853 854 855

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
856
	struct regulator_dev *rdev = dev_get_drvdata(dev);
857

D
David Brownell 已提交
858 859
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
860
}
861 862
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
863 864 865 866

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
867
	struct regulator_dev *rdev = dev_get_drvdata(dev);
868

D
David Brownell 已提交
869 870
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
871
}
872 873
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
874 875 876 877

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
878
	struct regulator_dev *rdev = dev_get_drvdata(dev);
879

D
David Brownell 已提交
880 881
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
882
}
883 884 885
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
907

908 909
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
910
static int drms_uA_update(struct regulator_dev *rdev)
911 912 913 914 915
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

916 917 918 919
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
920 921
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
922
		return 0;
923
	}
924

925 926
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
927 928
		return 0;

929 930
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
931
		return -EINVAL;
932 933

	/* calc total requested load */
934 935 936 937
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
938

939 940
	current_uA += rdev->constraints->system_load;

941 942 943 944 945 946
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
947
		/* get output voltage */
948
		output_uV = regulator_get_voltage_rdev(rdev);
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

965 966 967 968 969 970 971 972 973 974 975
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
976

977 978 979
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
980 981 982
	}

	return err;
983 984 985
}

static int suspend_set_state(struct regulator_dev *rdev,
986
				    suspend_state_t state)
987 988
{
	int ret = 0;
989 990 991 992
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
993
		return 0;
994

995
	/* If we have no suspend mode configuration don't set anything;
996 997
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
998
	 */
999 1000
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
1001 1002
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
1003
			rdev_warn(rdev, "No configuration\n");
1004 1005 1006
		return 0;
	}

1007 1008
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1009
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1010 1011
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1012
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1013 1014 1015
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1016
	if (ret < 0) {
1017
		rdev_err(rdev, "failed to enabled/disable\n");
1018 1019 1020 1021 1022 1023
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1024
			rdev_err(rdev, "failed to set voltage\n");
1025 1026 1027 1028 1029 1030 1031
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1032
			rdev_err(rdev, "failed to set mode\n");
1033 1034 1035 1036
			return ret;
		}
	}

1037
	return ret;
1038 1039 1040 1041 1042
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
1043
	char buf[160] = "";
1044
	size_t len = sizeof(buf) - 1;
1045 1046
	int count = 0;
	int ret;
1047

1048
	if (constraints->min_uV && constraints->max_uV) {
1049
		if (constraints->min_uV == constraints->max_uV)
1050 1051
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1052
		else
1053 1054 1055 1056
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1057 1058 1059 1060
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1061
		ret = regulator_get_voltage_rdev(rdev);
1062
		if (ret > 0)
1063 1064
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1065 1066
	}

1067
	if (constraints->uV_offset)
1068 1069
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1070

1071
	if (constraints->min_uA && constraints->max_uA) {
1072
		if (constraints->min_uA == constraints->max_uA)
1073 1074
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1075
		else
1076 1077 1078 1079
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1080 1081 1082 1083 1084 1085
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1086 1087
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1088
	}
1089

1090
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1091
		count += scnprintf(buf + count, len - count, "fast ");
1092
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1093
		count += scnprintf(buf + count, len - count, "normal ");
1094
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1095
		count += scnprintf(buf + count, len - count, "idle ");
1096
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1097
		count += scnprintf(buf + count, len - count, "standby");
1098

1099
	if (!count)
1100
		scnprintf(buf, len, "no parameters");
1101

1102
	rdev_dbg(rdev, "%s\n", buf);
1103 1104

	if ((constraints->min_uV != constraints->max_uV) &&
1105
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1106 1107
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1108 1109
}

1110
static int machine_constraints_voltage(struct regulator_dev *rdev,
1111
	struct regulation_constraints *constraints)
1112
{
1113
	const struct regulator_ops *ops = rdev->desc->ops;
1114 1115 1116 1117
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1118 1119
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1120
		int current_uV = regulator_get_voltage_rdev(rdev);
1121 1122

		if (current_uV == -ENOTRECOVERABLE) {
1123
			/* This regulator can't be read and must be initialized */
1124 1125 1126 1127 1128 1129
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1130
			current_uV = regulator_get_voltage_rdev(rdev);
1131 1132
		}

1133
		if (current_uV < 0) {
1134 1135 1136
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
1137 1138
			return current_uV;
		}
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1159 1160
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1161
			ret = _regulator_do_set_voltage(
1162
				rdev, target_min, target_max);
1163 1164
			if (ret < 0) {
				rdev_err(rdev,
1165 1166
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1167 1168
				return ret;
			}
1169
		}
1170
	}
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1183 1184
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1185
		if (count == 1 && !cmin) {
1186
			cmin = 1;
1187
			cmax = INT_MAX;
1188 1189
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1190 1191
		}

1192 1193
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1194
			return 0;
1195

1196
		/* else require explicit machine-level constraints */
1197
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1198
			rdev_err(rdev, "invalid voltage constraints\n");
1199
			return -EINVAL;
1200 1201
		}

1202 1203 1204 1205
		/* no need to loop voltages if range is continuous */
		if (rdev->desc->continuous_voltage_range)
			return 0;

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1223 1224 1225
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1226
			return -EINVAL;
1227 1228 1229 1230
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1231 1232
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1233 1234 1235
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1236 1237
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1238 1239 1240 1241
			constraints->max_uV = max_uV;
		}
	}

1242 1243 1244
	return 0;
}

1245 1246 1247
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1248
	const struct regulator_ops *ops = rdev->desc->ops;
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1275 1276
static int _regulator_do_enable(struct regulator_dev *rdev);

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1289
	const struct regulation_constraints *constraints)
1290 1291
{
	int ret = 0;
1292
	const struct regulator_ops *ops = rdev->desc->ops;
1293

1294 1295 1296 1297 1298 1299
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1300 1301
	if (!rdev->constraints)
		return -ENOMEM;
1302

1303
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1304
	if (ret != 0)
1305
		return ret;
1306

1307
	ret = machine_constraints_current(rdev, rdev->constraints);
1308
	if (ret != 0)
1309
		return ret;
1310

1311 1312 1313 1314 1315
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1316
			return ret;
1317 1318 1319
		}
	}

1320
	/* do we need to setup our suspend state */
1321
	if (rdev->constraints->initial_state) {
1322
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1323
		if (ret < 0) {
1324
			rdev_err(rdev, "failed to set suspend state\n");
1325
			return ret;
1326 1327
		}
	}
1328

1329
	if (rdev->constraints->initial_mode) {
1330
		if (!ops->set_mode) {
1331
			rdev_err(rdev, "no set_mode operation\n");
1332
			return -EINVAL;
1333 1334
		}

1335
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1336
		if (ret < 0) {
1337
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1338
			return ret;
1339
		}
1340 1341 1342 1343 1344 1345
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1346 1347
	}

1348 1349
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1350 1351 1352
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1353
			return ret;
1354 1355 1356
		}
	}

S
Stephen Boyd 已提交
1357 1358 1359 1360
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1361
			return ret;
S
Stephen Boyd 已提交
1362 1363 1364
		}
	}

S
Stephen Boyd 已提交
1365 1366 1367 1368
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1369
			return ret;
S
Stephen Boyd 已提交
1370 1371 1372
		}
	}

1373 1374 1375 1376 1377
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1378
			return ret;
1379 1380 1381
		}
	}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1393 1394 1395 1396
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1397 1398 1399 1400 1401 1402 1403 1404 1405
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1406 1407 1408 1409 1410
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
			rdev_err(rdev, "failed to enable\n");
			return ret;
		}
1411 1412 1413

		if (rdev->constraints->always_on)
			rdev->use_count++;
1414 1415
	}

1416
	print_constraints(rdev);
1417
	return 0;
1418 1419 1420 1421
}

/**
 * set_supply - set regulator supply regulator
1422 1423
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1424 1425 1426 1427 1428 1429
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1430
		      struct regulator_dev *supply_rdev)
1431 1432 1433
{
	int err;

1434 1435
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1436 1437 1438
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1439
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1440 1441
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1442
		return err;
1443
	}
1444
	supply_rdev->open_count++;
1445 1446

	return 0;
1447 1448 1449
}

/**
1450
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1451
 * @rdev:         regulator source
1452
 * @consumer_dev_name: dev_name() string for device supply applies to
1453
 * @supply:       symbolic name for supply
1454 1455 1456 1457 1458 1459 1460
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1461 1462
				      const char *consumer_dev_name,
				      const char *supply)
1463
{
1464
	struct regulator_map *node, *new_node;
1465
	int has_dev;
1466 1467 1468 1469

	if (supply == NULL)
		return -EINVAL;

1470 1471 1472 1473 1474
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
	if (new_node == NULL)
		return -ENOMEM;

	new_node->regulator = rdev;
	new_node->supply = supply;

	if (has_dev) {
		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (new_node->dev_name == NULL) {
			kfree(new_node);
			return -ENOMEM;
		}
	}

	mutex_lock(&regulator_list_mutex);
1491
	list_for_each_entry(node, &regulator_map_list, list) {
1492 1493 1494 1495
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1496
			continue;
1497 1498
		}

1499 1500 1501
		if (strcmp(node->supply, supply) != 0)
			continue;

1502 1503 1504 1505 1506 1507
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1508
		goto fail;
1509 1510
	}

1511 1512
	list_add(&new_node->list, &regulator_map_list);
	mutex_unlock(&regulator_list_mutex);
1513

1514
	return 0;
1515 1516 1517 1518 1519 1520

fail:
	mutex_unlock(&regulator_list_mutex);
	kfree(new_node->dev_name);
	kfree(new_node);
	return -EBUSY;
1521 1522
}

1523 1524 1525 1526 1527 1528 1529
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1530
			kfree(node->dev_name);
1531 1532 1533 1534 1535
			kfree(node);
		}
	}
}

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1585
#define REG_STR_SIZE	64
1586 1587 1588 1589 1590 1591

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	int err;

	if (dev) {
		char buf[REG_STR_SIZE];
		int size;

		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			return NULL;

		supply_name = kstrdup(buf, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	} else {
		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	}
1611 1612

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1613 1614
	if (regulator == NULL) {
		kfree(supply_name);
1615
		return NULL;
1616
	}
1617 1618

	regulator->rdev = rdev;
1619 1620 1621
	regulator->supply_name = supply_name;

	regulator_lock(rdev);
1622
	list_add(&regulator->list, &rdev->consumer_list);
1623
	regulator_unlock(rdev);
1624 1625

	if (dev) {
1626 1627
		regulator->dev = dev;

1628
		/* Add a link to the device sysfs entry */
1629
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1630
					       supply_name);
1631
		if (err) {
1632
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1633
				  dev->kobj.name, err);
1634
			/* non-fatal */
1635
		}
1636 1637
	}

1638
	regulator->debugfs = debugfs_create_dir(supply_name,
1639
						rdev->debugfs);
1640
	if (!regulator->debugfs) {
1641
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1642 1643 1644 1645
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1646
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1647
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1648
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1649 1650 1651
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1652
	}
1653

1654 1655 1656 1657 1658
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1659
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1660 1661 1662
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1663 1664 1665
	return regulator;
}

1666 1667
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1668 1669
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1670 1671 1672
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1673 1674
}

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1723 1724 1725 1726 1727
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1728
 */
1729
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1730
						  const char *supply)
1731
{
1732
	struct regulator_dev *r = NULL;
1733
	struct device_node *node;
1734 1735
	struct regulator_map *map;
	const char *devname = NULL;
1736

1737 1738
	regulator_supply_alias(&dev, &supply);

1739 1740 1741
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1742
		if (node) {
1743 1744 1745
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1746

1747
			/*
1748 1749
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1750
			 */
1751
			return ERR_PTR(-EPROBE_DEFER);
1752
		}
1753 1754 1755
	}

	/* if not found, try doing it non-dt way */
1756 1757 1758
	if (dev)
		devname = dev_name(dev);

1759
	mutex_lock(&regulator_list_mutex);
1760 1761 1762 1763 1764 1765
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1766 1767
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1768 1769
			r = map->regulator;
			break;
1770
		}
1771
	}
1772
	mutex_unlock(&regulator_list_mutex);
1773

1774 1775 1776 1777
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1778 1779 1780 1781
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1782 1783
}

1784 1785 1786 1787 1788 1789
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

1790
	/* No supply to resolve? */
1791 1792 1793 1794 1795 1796 1797
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1798 1799 1800 1801
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1802 1803 1804 1805
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1806 1807
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1808
			get_device(&r->dev);
1809 1810 1811 1812 1813
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1814 1815
	}

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1829 1830
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1831 1832
	if (ret < 0) {
		put_device(&r->dev);
1833
		return ret;
1834
	}
1835 1836

	ret = set_supply(rdev, r);
1837 1838
	if (ret < 0) {
		put_device(&r->dev);
1839
		return ret;
1840
	}
1841

1842 1843 1844 1845 1846 1847
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1848
		ret = regulator_enable(rdev->supply);
1849
		if (ret < 0) {
1850
			_regulator_put(rdev->supply);
1851
			rdev->supply = NULL;
1852
			return ret;
1853
		}
1854 1855 1856 1857 1858
	}

	return 0;
}

1859
/* Internal regulator request function */
1860 1861
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1862 1863
{
	struct regulator_dev *rdev;
1864
	struct regulator *regulator;
1865
	struct device_link *link;
1866
	int ret;
1867

1868 1869 1870 1871 1872
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1873
	if (id == NULL) {
1874
		pr_err("get() with no identifier\n");
1875
		return ERR_PTR(-EINVAL);
1876 1877
	}

1878
	rdev = regulator_dev_lookup(dev, id);
1879 1880
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1881

1882 1883 1884 1885 1886 1887
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1888

1889 1890 1891 1892 1893
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1894

1895 1896 1897 1898 1899 1900 1901
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
1902
			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1903 1904 1905
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1906

1907 1908 1909 1910
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1911

1912 1913 1914
		default:
			return ERR_PTR(-ENODEV);
		}
1915 1916
	}

1917 1918
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1919 1920
		put_device(&rdev->dev);
		return regulator;
1921 1922
	}

1923
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1924
		regulator = ERR_PTR(-EBUSY);
1925 1926
		put_device(&rdev->dev);
		return regulator;
1927 1928
	}

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1939 1940 1941
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1942 1943
		put_device(&rdev->dev);
		return regulator;
1944 1945
	}

1946
	if (!try_module_get(rdev->owner)) {
1947
		regulator = ERR_PTR(-EPROBE_DEFER);
1948 1949 1950
		put_device(&rdev->dev);
		return regulator;
	}
1951

1952 1953 1954 1955
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
W
Wen Yang 已提交
1956
		put_device(&rdev->dev);
1957
		return regulator;
1958 1959
	}

1960
	rdev->open_count++;
1961
	if (get_type == EXCLUSIVE_GET) {
1962 1963 1964 1965 1966 1967 1968 1969 1970
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1971 1972 1973
	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
	if (!IS_ERR_OR_NULL(link))
		regulator->device_link = true;
1974

1975 1976
	return regulator;
}
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1993
	return _regulator_get(dev, id, NORMAL_GET);
1994
}
1995 1996
EXPORT_SYMBOL_GPL(regulator_get);

1997 1998 1999 2000 2001 2002 2003
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
2004 2005 2006
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2020
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2021 2022 2023
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2024 2025 2026 2027 2028 2029
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2030
 * or IS_ERR() condition containing errno.
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2046
	return _regulator_get(dev, id, OPTIONAL_GET);
2047 2048 2049
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2050
static void destroy_regulator(struct regulator *regulator)
2051
{
2052
	struct regulator_dev *rdev = regulator->rdev;
2053

2054 2055
	debugfs_remove_recursive(regulator->debugfs);

2056
	if (regulator->dev) {
2057 2058
		if (regulator->device_link)
			device_link_remove(regulator->dev, &rdev->dev);
2059 2060

		/* remove any sysfs entries */
2061
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2062 2063
	}

2064
	regulator_lock(rdev);
2065 2066
	list_del(&regulator->list);

2067 2068
	rdev->open_count--;
	rdev->exclusive = 0;
2069
	regulator_unlock(rdev);
2070

2071
	kfree_const(regulator->supply_name);
2072
	kfree(regulator);
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
}

/* regulator_list_mutex lock held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (IS_ERR_OR_NULL(regulator))
		return;

	lockdep_assert_held_once(&regulator_list_mutex);

	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

	rdev = regulator->rdev;

	destroy_regulator(regulator);
2091

2092
	module_put(rdev->owner);
W
Wen Yang 已提交
2093
	put_device(&rdev->dev);
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2108 2109 2110 2111
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2189 2190
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2191
					 struct device *alias_dev,
2192
					 const char *const *alias_id,
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2230
					    const char *const *id,
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2241 2242 2243 2244
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
2245
	struct regulator_enable_gpio *pin, *new_pin;
2246
	struct gpio_desc *gpiod;
2247

2248
	gpiod = config->ena_gpiod;
2249 2250 2251
	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);

	mutex_lock(&regulator_list_mutex);
2252

2253
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2254
		if (pin->gpiod == gpiod) {
2255
			rdev_dbg(rdev, "GPIO is already used\n");
2256 2257 2258 2259
			goto update_ena_gpio_to_rdev;
		}
	}

2260 2261
	if (new_pin == NULL) {
		mutex_unlock(&regulator_list_mutex);
2262
		return -ENOMEM;
2263 2264 2265 2266
	}

	pin = new_pin;
	new_pin = NULL;
2267

2268
	pin->gpiod = gpiod;
2269 2270 2271 2272 2273
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
2274 2275 2276 2277

	mutex_unlock(&regulator_list_mutex);
	kfree(new_pin);

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
		if (pin != rdev->ena_pin)
			continue;

		if (--pin->request_count)
			break;

		gpiod_put(pin->gpiod);
		list_del(&pin->list);
		kfree(pin);
		break;
2300
	}
2301 2302

	rdev->ena_pin = NULL;
2303 2304
}

2305
/**
2306 2307 2308 2309
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2323
			gpiod_set_value_cansleep(pin->gpiod, 1);
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2334
			gpiod_set_value_cansleep(pin->gpiod, 0);
2335 2336 2337 2338 2339 2340 2341
			pin->enable_count = 0;
		}
	}

	return 0;
}

2342 2343 2344 2345 2346 2347
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2348
 *     Documentation/timers/timers-howto.rst
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
/**
 * _regulator_check_status_enabled
 *
 * A helper function to check if the regulator status can be interpreted
 * as 'regulator is enabled'.
 * @rdev: the regulator device to check
 *
 * Return:
 * * 1			- if status shows regulator is in enabled state
 * * 0			- if not enabled state
 * * Error Value	- as received from ops->get_status()
 */
static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
{
	int ret = rdev->desc->ops->get_status(rdev);

	if (ret < 0) {
		rdev_info(rdev, "get_status returned error: %d\n", ret);
		return ret;
	}

	switch (ret) {
	case REGULATOR_STATUS_OFF:
	case REGULATOR_STATUS_ERROR:
	case REGULATOR_STATUS_UNDEFINED:
		return 0;
	default:
		return 1;
	}
}

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
2442
			 * detected and we get a penalty of
2443 2444 2445 2446 2447 2448 2449 2450 2451
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2452
	if (rdev->ena_pin) {
2453 2454 2455 2456 2457 2458
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2459
	} else if (rdev->desc->ops->enable) {
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	/* If poll_enabled_time is set, poll upto the delay calculated
	 * above, delaying poll_enabled_time uS to check if the regulator
	 * actually got enabled.
	 * If the regulator isn't enabled after enable_delay has
	 * expired, return -ETIMEDOUT.
	 */
	if (rdev->desc->poll_enabled_time) {
		unsigned int time_remaining = delay;

		while (time_remaining > 0) {
			_regulator_enable_delay(rdev->desc->poll_enabled_time);

			if (rdev->desc->ops->get_status) {
				ret = _regulator_check_status_enabled(rdev);
				if (ret < 0)
					return ret;
				else if (ret)
					break;
			} else if (rdev->desc->ops->is_enabled(rdev))
				break;

			time_remaining -= rdev->desc->poll_enabled_time;
		}

		if (time_remaining <= 0) {
			rdev_err(rdev, "Enabled check timed out\n");
			return -ETIMEDOUT;
		}
	} else {
		_regulator_enable_delay(delay);
	}
2503 2504 2505 2506 2507 2508

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2568
/* locks held by regulator_enable() */
2569
static int _regulator_enable(struct regulator *regulator)
2570
{
2571
	struct regulator_dev *rdev = regulator->rdev;
2572
	int ret;
2573

2574 2575
	lockdep_assert_held_once(&rdev->mutex.base);

2576
	if (rdev->use_count == 0 && rdev->supply) {
2577
		ret = _regulator_enable(rdev->supply);
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2588

2589 2590 2591
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2592

2593 2594 2595 2596
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2597
			if (!regulator_ops_is_valid(rdev,
2598 2599
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2600
				goto err_consumer_disable;
2601
			}
2602

2603
			ret = _regulator_do_enable(rdev);
2604
			if (ret < 0)
2605
				goto err_consumer_disable;
2606

2607 2608
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2609
		} else if (ret < 0) {
2610
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2611
			goto err_consumer_disable;
2612
		}
2613
		/* Fallthrough on positive return values - already enabled */
2614 2615
	}

2616 2617 2618
	rdev->use_count++;

	return 0;
2619

2620 2621 2622
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2623
err_disable_supply:
2624
	if (rdev->use_count == 0 && rdev->supply)
2625
		_regulator_disable(rdev->supply);
2626 2627

	return ret;
2628 2629 2630 2631 2632 2633
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2634 2635 2636 2637
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2638
 * NOTE: the output value can be set by other drivers, boot loader or may be
2639
 * hardwired in the regulator.
2640 2641 2642
 */
int regulator_enable(struct regulator *regulator)
{
2643
	struct regulator_dev *rdev = regulator->rdev;
2644
	struct ww_acquire_ctx ww_ctx;
2645
	int ret;
2646

2647
	regulator_lock_dependent(rdev, &ww_ctx);
2648
	ret = _regulator_enable(regulator);
2649
	regulator_unlock_dependent(rdev, &ww_ctx);
2650

2651 2652 2653 2654
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2655 2656 2657 2658 2659 2660
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2661
	if (rdev->ena_pin) {
2662 2663 2664 2665 2666 2667
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2668 2669 2670 2671 2672 2673 2674

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2675 2676 2677 2678 2679 2680
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2681 2682 2683 2684 2685
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2686
/* locks held by regulator_disable() */
2687
static int _regulator_disable(struct regulator *regulator)
2688
{
2689
	struct regulator_dev *rdev = regulator->rdev;
2690 2691
	int ret = 0;

2692
	lockdep_assert_held_once(&rdev->mutex.base);
2693

D
David Brownell 已提交
2694
	if (WARN(rdev->use_count <= 0,
2695
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2696 2697
		return -EIO;

2698
	/* are we the last user and permitted to disable ? */
2699 2700
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2701 2702

		/* we are last user */
2703
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2704 2705 2706 2707 2708 2709
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2710
			ret = _regulator_do_disable(rdev);
2711
			if (ret < 0) {
2712
				rdev_err(rdev, "failed to disable\n");
2713 2714 2715
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2716 2717
				return ret;
			}
2718 2719
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2720 2721 2722 2723 2724 2725
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2726

2727 2728 2729
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2730 2731 2732
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2733
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2734
		ret = _regulator_disable(rdev->supply);
2735

2736 2737 2738 2739 2740 2741 2742
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2743 2744 2745
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2746
 *
2747
 * NOTE: this will only disable the regulator output if no other consumer
2748 2749
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2750 2751 2752
 */
int regulator_disable(struct regulator *regulator)
{
2753
	struct regulator_dev *rdev = regulator->rdev;
2754
	struct ww_acquire_ctx ww_ctx;
2755
	int ret;
2756

2757
	regulator_lock_dependent(rdev, &ww_ctx);
2758
	ret = _regulator_disable(regulator);
2759
	regulator_unlock_dependent(rdev, &ww_ctx);
2760

2761 2762 2763 2764 2765
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2766
static int _regulator_force_disable(struct regulator_dev *rdev)
2767 2768 2769
{
	int ret = 0;

2770
	lockdep_assert_held_once(&rdev->mutex.base);
2771

2772 2773 2774 2775 2776
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2777 2778 2779
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2780 2781
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2782
		return ret;
2783 2784
	}

2785 2786 2787 2788
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2802
	struct regulator_dev *rdev = regulator->rdev;
2803
	struct ww_acquire_ctx ww_ctx;
2804 2805
	int ret;

2806
	regulator_lock_dependent(rdev, &ww_ctx);
2807

2808
	ret = _regulator_force_disable(regulator->rdev);
2809

2810 2811
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2812 2813 2814 2815 2816 2817

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2818 2819
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2820

2821
	regulator_unlock_dependent(rdev, &ww_ctx);
2822

2823 2824 2825 2826
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2827 2828 2829 2830
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2831
	struct ww_acquire_ctx ww_ctx;
2832
	int count, i, ret;
2833 2834
	struct regulator *regulator;
	int total_count = 0;
2835

2836
	regulator_lock_dependent(rdev, &ww_ctx);
2837

2838 2839 2840 2841 2842 2843 2844 2845
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
		}
2860
	}
2861
	WARN_ON(!total_count);
2862

2863 2864 2865 2866
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2867 2868 2869 2870 2871
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2872
 * @ms: milliseconds until the regulator is disabled
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2885 2886 2887
	if (!ms)
		return regulator_disable(regulator);

2888
	regulator_lock(rdev);
2889
	regulator->deferred_disables++;
2890 2891
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2892
	regulator_unlock(rdev);
2893

2894
	return 0;
2895 2896 2897
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2898 2899
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2900
	/* A GPIO control always takes precedence */
2901
	if (rdev->ena_pin)
2902 2903
		return rdev->ena_gpio_state;

2904
	/* If we don't know then assume that the regulator is always on */
2905
	if (!rdev->desc->ops->is_enabled)
2906
		return 1;
2907

2908
	return rdev->desc->ops->is_enabled(rdev);
2909 2910
}

2911 2912
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2924
			regulator_lock(rdev);
2925 2926
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2927
			regulator_unlock(rdev);
2928
	} else if (rdev->is_switch && rdev->supply) {
2929 2930
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2945 2946 2947 2948
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2949 2950 2951 2952 2953 2954 2955
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2956 2957 2958
 */
int regulator_is_enabled(struct regulator *regulator)
{
2959 2960
	int ret;

2961 2962 2963
	if (regulator->always_on)
		return 1;

2964
	regulator_lock(regulator->rdev);
2965
	ret = _regulator_is_enabled(regulator->rdev);
2966
	regulator_unlock(regulator->rdev);
2967 2968

	return ret;
2969 2970 2971
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2984 2985 2986
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2987
	if (!rdev->is_switch || !rdev->supply)
2988 2989 2990
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
3001
 * zero if this selector code can't be used on this system, or a
3002 3003 3004 3005
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
3006
	return _regulator_list_voltage(regulator->rdev, selector, 1);
3007 3008 3009
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
3042 3043
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3044 3045 3046 3047

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

3048 3049
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3069 3070
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3096 3097 3098 3099 3100 3101 3102
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3103
 * Returns a boolean.
3104 3105 3106 3107
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3108
	struct regulator_dev *rdev = regulator->rdev;
3109 3110
	int i, voltages, ret;

3111
	/* If we can't change voltage check the current voltage */
3112
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3113 3114
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3115
			return min_uV <= ret && ret <= max_uV;
3116 3117 3118 3119
		else
			return ret;
	}

3120 3121 3122 3123 3124
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3125 3126
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3127
		return 0;
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3139
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3140

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3155 3156 3157 3158 3159
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3160 3161 3162
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3163 3164 3165 3166 3167 3168 3169
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3170
	data.old_uV = regulator_get_voltage_rdev(rdev);
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3194
	data.old_uV = regulator_get_voltage_rdev(rdev);
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3272 3273 3274 3275 3276 3277 3278 3279 3280
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3281 3282
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3283 3284 3285 3286 3287 3288
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3289 3290

	if (ramp_delay == 0) {
3291
		rdev_dbg(rdev, "ramp_delay not set\n");
3292 3293 3294 3295 3296 3297
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3298 3299 3300 3301
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3302
	int delay = 0;
3303
	int best_val = 0;
3304
	unsigned int selector;
3305
	int old_selector = -1;
3306
	const struct regulator_ops *ops = rdev->desc->ops;
3307
	int old_uV = regulator_get_voltage_rdev(rdev);
3308 3309 3310

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3311 3312 3313
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3314 3315 3316 3317
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3318
	if (_regulator_is_enabled(rdev) &&
3319 3320
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3321 3322 3323 3324
		if (old_selector < 0)
			return old_selector;
	}

3325
	if (ops->set_voltage) {
3326 3327
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3328 3329

		if (ret >= 0) {
3330 3331 3332
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3333
			else
3334
				best_val = regulator_get_voltage_rdev(rdev);
3335 3336
		}

3337
	} else if (ops->set_voltage_sel) {
3338
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3339
		if (ret >= 0) {
3340
			best_val = ops->list_voltage(rdev, ret);
3341 3342
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3343 3344
				if (old_selector == selector)
					ret = 0;
3345 3346 3347
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3348
				else
3349 3350
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3351 3352 3353
			} else {
				ret = -EINVAL;
			}
3354
		}
3355 3356 3357
	} else {
		ret = -EINVAL;
	}
3358

3359 3360
	if (ret)
		goto out;
3361

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3379
		}
3380
	}
3381

3382 3383 3384
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3385 3386
	}

3387 3388 3389 3390 3391 3392
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3393 3394
	}

3395
	if (best_val >= 0) {
3396 3397
		unsigned long data = best_val;

3398
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3399 3400
				     (void *)data);
	}
3401

3402
out:
3403
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3404 3405 3406 3407

	return ret;
}

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3434
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3435 3436
					  int min_uV, int max_uV,
					  suspend_state_t state)
3437 3438
{
	struct regulator_dev *rdev = regulator->rdev;
3439
	struct regulator_voltage *voltage = &regulator->voltage[state];
3440
	int ret = 0;
3441
	int old_min_uV, old_max_uV;
3442
	int current_uV;
3443

3444 3445 3446 3447
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3448
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3449 3450
		goto out;

3451
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3452
	 * return successfully even though the regulator does not support
3453 3454
	 * changing the voltage.
	 */
3455
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3456
		current_uV = regulator_get_voltage_rdev(rdev);
3457
		if (min_uV <= current_uV && current_uV <= max_uV) {
3458 3459
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3460 3461 3462 3463
			goto out;
		}
	}

3464
	/* sanity check */
3465 3466
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3467 3468 3469 3470 3471 3472 3473 3474
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3475

3476
	/* restore original values in case of error */
3477 3478 3479 3480
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3481

3482 3483
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3484 3485 3486 3487
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3488

3489 3490 3491 3492
out:
	return ret;
}

3493 3494
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3495 3496 3497 3498 3499
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3500 3501 3502
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3503 3504
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3505 3506 3507 3508 3509 3510
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3511
			goto out;
3512 3513
		}

M
Mark Brown 已提交
3514
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3515 3516
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3517
			goto out;
3518 3519 3520 3521
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3522
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3523 3524
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3525
			goto out;
3526 3527 3528 3529 3530 3531 3532
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3533
				best_supply_uV, INT_MAX, state);
3534 3535 3536
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3537
			goto out;
3538 3539 3540
		}
	}

3541 3542 3543 3544 3545
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3546
	if (ret < 0)
3547
		goto out;
3548

3549 3550
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3551
				best_supply_uV, INT_MAX, state);
3552 3553 3554 3555 3556 3557 3558
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3559
out:
3560
	return ret;
3561
}
3562
EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3563

3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3574
		*current_uV = regulator_get_voltage_rdev(rdev);
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3606
	int i, ret, max_spread;
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3640
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3651

3652 3653 3654 3655 3656 3657 3658 3659
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3660 3661
	max_spread = constraints->max_spread[0];

3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3679
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3717 3718 3719 3720
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3721
			ret = regulator_get_voltage_rdev(rdev);
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

3737 3738
int regulator_do_balance_voltage(struct regulator_dev *rdev,
				 suspend_state_t state, bool skip_coupled)
3739 3740 3741 3742 3743 3744
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3745 3746
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3747 3748

	c_rdevs = c_desc->coupled_rdevs;
3749
	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3776
			if (test_bit(i, &c_rdev_done))
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3804

3805 3806
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3807

3808 3809 3810
		if (ret < 0)
			goto out;

3811 3812
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
3813 3814 3815 3816

	} while (n_coupled > 1);

out:
3817 3818 3819
	return ret;
}

3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_coupler *coupler = c_desc->coupler;
	bool skip_coupled = false;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		skip_coupled = true;

	if (c_desc->n_resolved < c_desc->n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);

	return regulator_do_balance_voltage(rdev, state, skip_coupled);
}

3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3866 3867
	struct ww_acquire_ctx ww_ctx;
	int ret;
3868

3869
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3870

3871 3872
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3873

3874
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3875

3876 3877 3878 3879
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3892
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3946 3947
	struct ww_acquire_ctx ww_ctx;
	int ret;
3948 3949 3950 3951 3952

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3953
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3954 3955 3956 3957

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3958
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3959 3960 3961 3962 3963

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3977 3978
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3979 3980 3981 3982 3983
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3984 3985 3986 3987 3988
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3989
	/* Currently requires operations to do this */
3990
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

4013
/**
4014 4015
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
4016 4017 4018 4019 4020 4021
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
4022
 * Drivers providing ramp_delay in regulation_constraints can use this as their
4023
 * set_voltage_time_sel() operation.
4024 4025 4026 4027 4028
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
4029
	int old_volt, new_volt;
4030

4031 4032 4033
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
4034

4035 4036 4037
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

4038 4039 4040 4041 4042
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4043
}
4044
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4045

4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
4057
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4058 4059
	int ret, min_uV, max_uV;

4060
	regulator_lock(rdev);
4061 4062 4063 4064 4065 4066 4067 4068

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
4069
	if (!voltage->min_uV && !voltage->max_uV) {
4070 4071 4072 4073
		ret = -EINVAL;
		goto out;
	}

4074 4075
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
4076 4077 4078 4079 4080 4081

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

4082
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4083 4084 4085 4086 4087 4088
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
4089
	regulator_unlock(rdev);
4090 4091 4092 4093
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

4094
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4095
{
4096
	int sel, ret;
4097 4098 4099 4100 4101 4102 4103 4104
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
4105 4106 4107 4108 4109
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
4110

4111
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4112 4113
		}
	}
4114 4115 4116 4117 4118

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4119
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4120
	} else if (rdev->desc->ops->get_voltage) {
4121
		ret = rdev->desc->ops->get_voltage(rdev);
4122 4123
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4124 4125
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4126
	} else if (rdev->supply) {
4127
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4128
	} else {
4129
		return -EINVAL;
4130
	}
4131

4132 4133
	if (ret < 0)
		return ret;
4134
	return ret - rdev->constraints->uV_offset;
4135
}
4136
EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4149
	struct ww_acquire_ctx ww_ctx;
4150 4151
	int ret;

4152
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4153
	ret = regulator_get_voltage_rdev(regulator->rdev);
4154
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4155 4156 4157 4158 4159 4160 4161 4162

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4163
 * @min_uA: Minimum supported current in uA
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4182
	regulator_lock(rdev);
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4197
	regulator_unlock(rdev);
4198 4199 4200 4201
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4202 4203 4204 4205 4206 4207 4208 4209 4210
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4211 4212 4213 4214
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4215
	regulator_lock(rdev);
4216
	ret = _regulator_get_current_limit_unlocked(rdev);
4217
	regulator_unlock(rdev);
4218

4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4252
	int regulator_curr_mode;
4253

4254
	regulator_lock(rdev);
4255 4256 4257 4258 4259 4260 4261

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4262 4263 4264 4265 4266 4267 4268 4269 4270
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4271
	/* constraints check */
4272
	ret = regulator_mode_constrain(rdev, &mode);
4273 4274 4275 4276 4277
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4278
	regulator_unlock(rdev);
4279 4280 4281 4282
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4283 4284 4285 4286 4287 4288 4289 4290 4291
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4292 4293 4294 4295
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4296
	regulator_lock(rdev);
4297
	ret = _regulator_get_mode_unlocked(rdev);
4298
	regulator_unlock(rdev);
4299

4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4315 4316 4317 4318 4319
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4320
	regulator_lock(rdev);
4321 4322 4323 4324 4325 4326 4327 4328 4329

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4330
	regulator_unlock(rdev);
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4348
/**
4349
 * regulator_set_load - set regulator load
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4372 4373 4374 4375 4376 4377 4378 4379
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4380
 * On error a negative errno is returned.
4381
 */
4382
int regulator_set_load(struct regulator *regulator, int uA_load)
4383 4384
{
	struct regulator_dev *rdev = regulator->rdev;
4385 4386
	int old_uA_load;
	int ret = 0;
4387

4388
	regulator_lock(rdev);
4389
	old_uA_load = regulator->uA_load;
4390
	regulator->uA_load = uA_load;
4391 4392 4393 4394 4395
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4396
	regulator_unlock(rdev);
4397

4398 4399
	return ret;
}
4400
EXPORT_SYMBOL_GPL(regulator_set_load);
4401

4402 4403 4404 4405
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4406
 * @enable: enable or disable bypass mode
4407 4408 4409 4410 4411 4412 4413 4414 4415
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
4416
	const char *name = rdev_get_name(rdev);
4417 4418 4419 4420 4421
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4422
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4423 4424
		return 0;

4425
	regulator_lock(rdev);
4426 4427 4428 4429 4430

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
4431 4432
			trace_regulator_bypass_enable(name);

4433 4434 4435
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
4436 4437
			else
				trace_regulator_bypass_enable_complete(name);
4438 4439 4440 4441 4442 4443
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
4444 4445
			trace_regulator_bypass_disable(name);

4446 4447 4448
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
4449 4450
			else
				trace_regulator_bypass_disable_complete(name);
4451 4452 4453 4454 4455 4456
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4457
	regulator_unlock(rdev);
4458 4459 4460 4461 4462

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4463 4464 4465
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4466
 * @nb: notifier block
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4481
 * @nb: notifier block
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4493 4494 4495
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4496
static int _notifier_call_chain(struct regulator_dev *rdev,
4497 4498 4499
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4500
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4527 4528
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4539 4540 4541 4542 4543 4544 4545
	if (ret != -EPROBE_DEFER)
		dev_err(dev, "Failed to get supply '%s': %d\n",
			consumers[i].supply, ret);
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4546
	while (--i >= 0)
4547 4548 4549 4550 4551 4552
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4553 4554 4555 4556 4557 4558 4559
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4575
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4576
	int i;
4577
	int ret = 0;
4578

4579
	for (i = 0; i < num_consumers; i++) {
4580 4581
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4582
	}
4583 4584 4585 4586

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4587
	for (i = 0; i < num_consumers; i++) {
4588 4589
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4590
			goto err;
4591
		}
4592 4593 4594 4595 4596
	}

	return 0;

err:
4597 4598 4599 4600 4601 4602 4603
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4617 4618
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4619 4620 4621 4622 4623 4624
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4625
	int ret, r;
4626

4627
	for (i = num_consumers - 1; i >= 0; --i) {
4628 4629 4630 4631 4632 4633 4634 4635
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4636
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4637 4638 4639
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4640
			pr_err("Failed to re-enable %s: %d\n",
4641 4642
			       consumers[i].supply, r);
	}
4643 4644 4645 4646 4647

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4666
	int ret = 0;
4667

4668
	for (i = 0; i < num_consumers; i++) {
4669 4670 4671
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4672 4673
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4674 4675 4676 4677 4678 4679 4680
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4704
 * @rdev: regulator source
4705
 * @event: notifier block
4706
 * @data: callback-specific data.
4707 4708 4709
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4710
 * Note lock must be held by caller.
4711 4712 4713 4714
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4715
	lockdep_assert_held_once(&rdev->mutex.base);
4716

4717 4718 4719 4720 4721 4722
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4739
	case REGULATOR_MODE_STANDBY:
4740 4741
		return REGULATOR_STATUS_STANDBY;
	default:
4742
		return REGULATOR_STATUS_UNDEFINED;
4743 4744 4745 4746
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4774 4775 4776 4777
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4778 4779
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4780
{
4781
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4782
	struct regulator_dev *rdev = dev_to_rdev(dev);
4783
	const struct regulator_ops *ops = rdev->desc->ops;
4784 4785 4786 4787 4788 4789 4790
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4791 4792

	/* some attributes need specific methods to be displayed */
4793 4794 4795 4796 4797 4798 4799
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4800
	}
4801

4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4817
	/* constraints need specific supporting methods */
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4853

4854 4855 4856
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4857 4858 4859

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4860
	kfree(rdev);
4861 4862
}

4863 4864
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4877
	if (!rdev->debugfs) {
4878 4879 4880 4881 4882 4883 4884 4885
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4886 4887
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4888 4889
}

4890 4891
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4892 4893 4894 4895 4896 4897
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4898 4899
}

4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

4951
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4952
{
4953
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4966 4967
		if (!c_rdev)
			continue;
4968

4969 4970 4971 4972 4973 4974
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

4975 4976
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
4977

4978 4979
		regulator_resolve_coupling(c_rdev);
	}
4980 4981
}

4982
static void regulator_remove_coupling(struct regulator_dev *rdev)
4983
{
4984
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4985 4986 4987 4988
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
4989
	int err;
4990

4991
	n_coupled = c_desc->n_coupled;
4992

4993 4994
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
4995

4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
5019 5020 5021 5022 5023 5024 5025 5026 5027 5028

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
			rdev_err(rdev, "failed to detach from coupler: %d\n",
				 err);
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
5029 5030
}

5031
static int regulator_init_coupling(struct regulator_dev *rdev)
5032
{
5033 5034
	int err, n_phandles;
	size_t alloc_size;
5035 5036 5037 5038 5039 5040

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

5041 5042 5043 5044 5045
	alloc_size = sizeof(*rdev) * (n_phandles + 1);

	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
	if (!rdev->coupling_desc.coupled_rdevs)
		return -ENOMEM;
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

5059
	if (!of_check_coupling_data(rdev))
5060 5061
		return -EPERM;

5062
	mutex_lock(&regulator_list_mutex);
5063
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5064 5065
	mutex_unlock(&regulator_list_mutex);

5066 5067 5068 5069
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
		rdev_err(rdev, "failed to get coupler: %d\n", err);
		return err;
5070 5071
	}

5072 5073 5074 5075 5076 5077 5078 5079 5080
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5081
		return -EPERM;
5082
	}
5083

5084 5085 5086 5087 5088 5089
	if (!rdev->constraints->always_on) {
		rdev_err(rdev,
			 "Coupling of a non always-on regulator is unimplemented\n");
		return -ENOTSUPP;
	}

5090 5091 5092
	return 0;
}

5093 5094 5095 5096
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

5097 5098
/**
 * regulator_register - register regulator
5099
 * @regulator_desc: regulator to register
5100
 * @cfg: runtime configuration for regulator
5101 5102
 *
 * Called by regulator drivers to register a regulator.
5103 5104
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
5105
 */
5106 5107
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
5108
		   const struct regulator_config *cfg)
5109
{
5110
	const struct regulation_constraints *constraints = NULL;
5111
	const struct regulator_init_data *init_data;
5112
	struct regulator_config *config = NULL;
5113
	static atomic_t regulator_no = ATOMIC_INIT(-1);
5114
	struct regulator_dev *rdev;
5115 5116
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
5117
	struct device *dev;
5118
	int ret, i;
5119

5120
	if (cfg == NULL)
5121
		return ERR_PTR(-EINVAL);
5122 5123 5124 5125 5126 5127
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5128

5129
	dev = cfg->dev;
5130
	WARN_ON(!dev);
5131

5132 5133 5134 5135
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5136

5137
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5138 5139 5140 5141
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5142

5143 5144 5145
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5146 5147
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5148 5149 5150 5151

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5152 5153
		ret = -EINVAL;
		goto rinse;
5154
	}
5155 5156
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5157 5158
		ret = -EINVAL;
		goto rinse;
5159
	}
5160

5161
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5162 5163 5164 5165
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5166
	device_initialize(&rdev->dev);
5167

5168 5169 5170 5171 5172 5173
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
5174
		ret = -ENOMEM;
5175
		goto clean;
5176 5177
	}

5178
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5179
					       &rdev->dev.of_node);
5180 5181 5182 5183 5184 5185 5186 5187

	/*
	 * Sometimes not all resources are probed already so we need to take
	 * that into account. This happens most the time if the ena_gpiod comes
	 * from a gpio extender or something else.
	 */
	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
		ret = -EPROBE_DEFER;
5188
		goto clean;
5189 5190
	}

5191 5192 5193 5194 5195
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5196
	 * a descriptor, we definitely got one from parsing the device
5197 5198 5199 5200
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5201 5202 5203 5204 5205
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5206
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5207
	rdev->reg_data = config->driver_data;
5208 5209
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5210 5211
	if (config->regmap)
		rdev->regmap = config->regmap;
5212
	else if (dev_get_regmap(dev, NULL))
5213
		rdev->regmap = dev_get_regmap(dev, NULL);
5214 5215
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5216 5217 5218
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5219
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5220

5221
	/* preform any regulator specific init */
5222
	if (init_data && init_data->regulator_init) {
5223
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5224 5225
		if (ret < 0)
			goto clean;
5226 5227
	}

5228
	if (config->ena_gpiod) {
5229 5230
		ret = regulator_ena_gpio_request(rdev, config);
		if (ret != 0) {
5231 5232
			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
				 ret);
5233
			goto clean;
5234
		}
5235 5236 5237
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5238 5239
	}

5240
	/* register with sysfs */
5241
	rdev->dev.class = &regulator_class;
5242
	rdev->dev.parent = dev;
5243
	dev_set_name(&rdev->dev, "regulator.%lu",
5244
		    (unsigned long) atomic_inc_return(&regulator_no));
5245
	dev_set_drvdata(&rdev->dev, rdev);
5246

5247
	/* set regulator constraints */
5248 5249 5250 5251
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
5252
		rdev->supply_name = init_data->supply_regulator;
5253
	else if (regulator_desc->supply_name)
5254
		rdev->supply_name = regulator_desc->supply_name;
5255

5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

5268 5269
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
5270 5271
		goto wash;

5272
	/* add consumers devices */
5273 5274 5275 5276
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5277
				init_data->consumer_supplies[i].supply);
5278 5279 5280 5281 5282
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5283
		}
5284
	}
5285

5286 5287 5288 5289 5290
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5291 5292
	ret = device_add(&rdev->dev);
	if (ret != 0)
5293 5294
		goto unset_supplies;

5295
	rdev_init_debugfs(rdev);
5296

5297 5298 5299 5300 5301
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5302 5303 5304
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5305
	kfree(config);
5306
	return rdev;
D
David Brownell 已提交
5307

5308
unset_supplies:
5309
	mutex_lock(&regulator_list_mutex);
5310
	unset_regulator_supplies(rdev);
5311
	regulator_remove_coupling(rdev);
5312
	mutex_unlock(&regulator_list_mutex);
5313
wash:
5314
	kfree(rdev->coupling_desc.coupled_rdevs);
5315
	mutex_lock(&regulator_list_mutex);
5316
	regulator_ena_gpio_free(rdev);
5317
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5318
clean:
5319 5320
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
5321
	kfree(config);
5322
	put_device(&rdev->dev);
5323 5324 5325
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5326
	return ERR_PTR(ret);
5327 5328 5329 5330 5331
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5332
 * @rdev: regulator to unregister
5333 5334 5335 5336 5337 5338 5339 5340
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5341 5342 5343
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5344
		regulator_put(rdev->supply);
5345
	}
5346

5347 5348
	flush_work(&rdev->disable_work.work);

5349
	mutex_lock(&regulator_list_mutex);
5350

5351
	debugfs_remove_recursive(rdev->debugfs);
5352
	WARN_ON(rdev->open_count);
5353
	regulator_remove_coupling(rdev);
5354
	unset_regulator_supplies(rdev);
5355
	list_del(&rdev->list);
5356
	regulator_ena_gpio_free(rdev);
5357
	device_unregister(&rdev->dev);
5358 5359

	mutex_unlock(&regulator_list_mutex);
5360 5361 5362
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5363
#ifdef CONFIG_SUSPEND
5364
/**
5365
 * regulator_suspend - prepare regulators for system wide suspend
5366
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5367 5368 5369
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5370
static int regulator_suspend(struct device *dev)
5371
{
5372
	struct regulator_dev *rdev = dev_to_rdev(dev);
5373
	suspend_state_t state = pm_suspend_target_state;
5374 5375 5376 5377 5378
	int ret;

	regulator_lock(rdev);
	ret = suspend_set_state(rdev, state);
	regulator_unlock(rdev);
5379

5380
	return ret;
5381
}
5382

5383
static int regulator_resume(struct device *dev)
5384
{
5385
	suspend_state_t state = pm_suspend_target_state;
5386
	struct regulator_dev *rdev = dev_to_rdev(dev);
5387
	struct regulator_state *rstate;
5388
	int ret = 0;
5389

5390
	rstate = regulator_get_suspend_state(rdev, state);
5391
	if (rstate == NULL)
5392
		return 0;
5393

5394
	regulator_lock(rdev);
5395

5396
	if (rdev->desc->ops->resume &&
5397 5398
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
5399
		ret = rdev->desc->ops->resume(rdev);
5400

5401
	regulator_unlock(rdev);
5402

5403
	return ret;
5404
}
5405 5406
#else /* !CONFIG_SUSPEND */

5407 5408
#define regulator_suspend	NULL
#define regulator_resume	NULL
5409 5410 5411 5412 5413

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5414 5415
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5416 5417 5418
};
#endif

M
Mark Brown 已提交
5419
struct class regulator_class = {
5420 5421 5422 5423 5424 5425 5426
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5444 5445
/**
 * rdev_get_drvdata - get rdev regulator driver data
5446
 * @rdev: regulator
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5483
 * @rdev: regulator
5484 5485 5486 5487 5488 5489 5490
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5491 5492 5493 5494 5495 5496
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5497 5498 5499 5500 5501 5502
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5503 5504 5505 5506 5507 5508
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5509
#ifdef CONFIG_DEBUG_FS
5510
static int supply_map_show(struct seq_file *sf, void *data)
5511 5512 5513 5514
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5515 5516 5517
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5518 5519
	}

5520 5521
	return 0;
}
5522
DEFINE_SHOW_ATTRIBUTE(supply_map);
5523

5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5546 5547 5548 5549 5550 5551
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5552
	struct summary_data summary_data;
5553
	unsigned int opmode;
5554 5555 5556 5557

	if (!rdev)
		return;

5558
	opmode = _regulator_get_mode_unlocked(rdev);
5559
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5560 5561
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5562
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5563
		   regulator_opmode_to_str(opmode));
5564

5565
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5566 5567
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5586
		if (consumer->dev && consumer->dev->class == &regulator_class)
5587 5588 5589 5590
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5591
			   30 - (level + 1) * 3,
5592
			   consumer->supply_name ? consumer->supply_name :
5593
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5594 5595 5596

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5597 5598
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5599
				   consumer->uA_load / 1000,
5600 5601
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5602 5603
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5604 5605 5606 5607 5608 5609 5610 5611
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5612 5613 5614
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5615

5616 5617
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5655 5656

	regulator_unlock(rdev);
5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5687 5688
	mutex_lock(&regulator_list_mutex);

5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5715 5716

	mutex_unlock(&regulator_list_mutex);
5717 5718
}

5719
static int regulator_summary_show_roots(struct device *dev, void *data)
5720
{
5721 5722
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5723

5724 5725
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5726

5727 5728
	return 0;
}
5729

5730 5731
static int regulator_summary_show(struct seq_file *s, void *data)
{
5732 5733
	struct ww_acquire_ctx ww_ctx;

5734 5735
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5736

5737 5738
	regulator_summary_lock(&ww_ctx);

5739 5740
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5741

5742 5743
	regulator_summary_unlock(&ww_ctx);

5744 5745
	return 0;
}
5746 5747
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5748

5749 5750
static int __init regulator_init(void)
{
5751 5752 5753 5754
	int ret;

	ret = class_register(&regulator_class);

5755
	debugfs_root = debugfs_create_dir("regulator", NULL);
5756
	if (!debugfs_root)
5757
		pr_warn("regulator: Failed to create debugfs directory\n");
5758

5759
#ifdef CONFIG_DEBUG_FS
5760 5761
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5762

5763
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5764
			    NULL, &regulator_summary_fops);
5765
#endif
5766 5767
	regulator_dummy_init();

5768 5769
	regulator_coupler_register(&generic_regulator_coupler);

5770
	return ret;
5771 5772 5773 5774
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5775

5776
static int regulator_late_cleanup(struct device *dev, void *data)
5777
{
5778 5779 5780
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5781 5782
	int enabled, ret;

5783 5784 5785
	if (c && c->always_on)
		return 0;

5786
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5787 5788
		return 0;

5789
	regulator_lock(rdev);
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5820
	regulator_unlock(rdev);
5821 5822 5823 5824

	return 0;
}

5825
static void regulator_init_complete_work_function(struct work_struct *work)
5826
{
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5837
	/* If we have a full configuration then disable any regulators
5838 5839 5840
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5841
	 */
5842 5843
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860
}

static DECLARE_DELAYED_WORK(regulator_init_complete_work,
			    regulator_init_complete_work_function);

static int __init regulator_init_complete(void)
{
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

	/*
5861 5862 5863 5864 5865 5866 5867 5868 5869
	 * We punt completion for an arbitrary amount of time since
	 * systems like distros will load many drivers from userspace
	 * so consumers might not always be ready yet, this is
	 * particularly an issue with laptops where this might bounce
	 * the display off then on.  Ideally we'd get a notification
	 * from userspace when this happens but we don't so just wait
	 * a bit and hope we waited long enough.  It'd be better if
	 * we'd only do this on systems that need it, and a kernel
	 * command line option might be useful.
5870
	 */
5871 5872
	schedule_delayed_work(&regulator_init_complete_work,
			      msecs_to_jiffies(30000));
5873 5874 5875

	return 0;
}
5876
late_initcall_sync(regulator_init_complete);