core.c 150.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

M
Mark Brown 已提交
36 37
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 39 40 41 42 43 44 45 46
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

47 48
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
49 50
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
51
static LIST_HEAD(regulator_ena_gpio_list);
52
static LIST_HEAD(regulator_supply_alias_list);
53
static LIST_HEAD(regulator_coupler_list);
54
static bool has_full_constraints;
55

56 57
static struct dentry *debugfs_root;

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69
};

70 71 72 73 74 75 76
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
77
	struct gpio_desc *gpiod;
78 79 80 81
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

95
static int _regulator_is_enabled(struct regulator_dev *rdev);
96
static int _regulator_disable(struct regulator *regulator);
97 98
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99
static int _notifier_call_chain(struct regulator_dev *rdev,
100
				  unsigned long event, void *data);
101 102
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
103 104
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
105 106 107
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
108
static void destroy_regulator(struct regulator *regulator);
109
static void _regulator_put(struct regulator *regulator);
110

111
const char *rdev_get_name(struct regulator_dev *rdev)
112 113 114 115 116 117 118 119 120
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

121 122
static bool have_full_constraints(void)
{
123
	return has_full_constraints || of_have_populated_dt();
124 125
}

126 127 128 129 130 131 132 133 134 135 136 137 138
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

139 140 141
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
142
 * @ww_ctx:		w/w mutex acquire context
143 144 145 146 147 148 149
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
150 151
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
152
{
153 154 155 156 157 158 159
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
160
			rdev->ref_cnt++;
161 162 163 164 165 166 167
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
168
		}
169 170
	} else {
		lock = true;
171 172
	}

173 174 175 176 177 178 179 180
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
181 182
}

183 184 185 186 187 188 189 190 191 192
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
193
static void regulator_lock(struct regulator_dev *rdev)
194
{
195
	regulator_lock_nested(rdev, NULL);
196 197 198 199 200 201 202 203 204
}

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
205
static void regulator_unlock(struct regulator_dev *rdev)
206
{
207
	mutex_lock(&regulator_nesting_mutex);
208

209 210 211
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
212
	}
213 214 215 216

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
217 218
}

219
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220
{
221 222 223 224 225
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226

227 228 229 230 231 232 233
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

234 235
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
236
{
237
	struct regulator_dev *c_rdev;
238
	int i;
239

240 241
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242 243 244 245

		if (!c_rdev)
			continue;

246
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
247 248 249
			regulator_unlock_recursive(
					c_rdev->supply->rdev,
					c_rdev->coupling_desc.n_coupled);
250

251 252
		regulator_unlock(c_rdev);
	}
253 254
}

255 256 257 258
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
259
{
260
	struct regulator_dev *c_rdev;
261
	int i, err;
262

263 264
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
265

266 267
		if (!c_rdev)
			continue;
268

269 270 271 272 273 274 275
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
276

277 278 279 280 281 282 283
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

284
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
285 286 287 288 289 290 291 292
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
293 294
		}
	}
295 296 297 298 299 300 301

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
302 303
}

304
/**
305 306 307 308 309
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
310
 * Unlock all regulators related with rdev by coupling or supplying.
311
 */
312 313
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
314
{
315 316
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
317 318 319
}

/**
320 321
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
322
 * @ww_ctx:			w/w mutex acquire context
323 324
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
325
 * all regulators related with rdev by coupling or supplying.
326
 */
327 328
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
329
{
330 331 332
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
333

334
	mutex_lock(&regulator_list_mutex);
335

336
	ww_acquire_init(ww_ctx, &regulator_ww_class);
337

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
358 359
}

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
382 383
			if (regnode)
				goto err_node_put;
384
		} else {
385
			goto err_node_put;
386 387 388
		}
	}
	return NULL;
389 390 391 392

err_node_put:
	of_node_put(child);
	return regnode;
393 394
}

395 396 397 398 399 400
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
401
 * returns the device node corresponding to the regulator if found, else
402 403 404 405 406 407 408 409 410 411 412 413 414
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
415 416 417 418
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

419 420
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
421 422 423 424 425
		return NULL;
	}
	return regnode;
}

426
/* Platform voltage constraint check */
427 428
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
429 430 431
{
	BUG_ON(*min_uV > *max_uV);

432
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
433
		rdev_err(rdev, "voltage operation not allowed\n");
434 435 436 437 438 439 440 441
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

442 443
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
444
			 *min_uV, *max_uV);
445
		return -EINVAL;
446
	}
447 448 449 450

	return 0;
}

451 452 453 454 455 456
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

457 458 459
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
460 461 462
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
463 464
{
	struct regulator *regulator;
465
	struct regulator_voltage *voltage;
466 467

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
468
		voltage = &regulator->voltage[state];
469 470 471 472
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
473
		if (!voltage->min_uV && !voltage->max_uV)
474 475
			continue;

476 477 478 479
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
480 481
	}

482
	if (*min_uV > *max_uV) {
483 484
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
485
		return -EINVAL;
486
	}
487 488 489 490

	return 0;
}

491 492 493 494 495 496
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

497
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
498
		rdev_err(rdev, "current operation not allowed\n");
499 500 501 502 503 504 505 506
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

507 508
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
509
			 *min_uA, *max_uA);
510
		return -EINVAL;
511
	}
512 513 514 515 516

	return 0;
}

/* operating mode constraint check */
517 518
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
519
{
520
	switch (*mode) {
521 522 523 524 525 526
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
527
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
528 529 530
		return -EINVAL;
	}

531
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
532
		rdev_err(rdev, "mode operation not allowed\n");
533 534
		return -EPERM;
	}
535 536 537 538 539 540 541 542

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
543
	}
544 545

	return -EINVAL;
546 547
}

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return NULL;

	/* If we have no suspend mode configuration don't set anything;
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
	 */
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
			rdev_warn(rdev, "No configuration\n");
		return NULL;
	}

	return rstate;
}

590 591 592
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
593
	struct regulator_dev *rdev = dev_get_drvdata(dev);
594
	int uV;
595

596
	regulator_lock(rdev);
597
	uV = regulator_get_voltage_rdev(rdev);
598
	regulator_unlock(rdev);
599

600 601 602
	if (uV < 0)
		return uV;
	return sprintf(buf, "%d\n", uV);
603
}
604
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
605 606 607 608

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
609
	struct regulator_dev *rdev = dev_get_drvdata(dev);
610 611 612

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
613
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
614

615 616
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
617 618 619
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

620
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
621
}
622
static DEVICE_ATTR_RO(name);
623

624
static const char *regulator_opmode_to_str(int mode)
625 626 627
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
628
		return "fast";
629
	case REGULATOR_MODE_NORMAL:
630
		return "normal";
631
	case REGULATOR_MODE_IDLE:
632
		return "idle";
633
	case REGULATOR_MODE_STANDBY:
634
		return "standby";
635
	}
636 637 638 639 640 641
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
642 643
}

D
David Brownell 已提交
644 645
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
646
{
647
	struct regulator_dev *rdev = dev_get_drvdata(dev);
648

D
David Brownell 已提交
649 650
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
651
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
652 653 654

static ssize_t regulator_print_state(char *buf, int state)
{
655 656 657 658 659 660 661 662
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
663 664 665 666
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
667 668
	ssize_t ret;

669
	regulator_lock(rdev);
670
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
671
	regulator_unlock(rdev);
D
David Brownell 已提交
672

673
	return ret;
D
David Brownell 已提交
674
}
675
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
676

D
David Brownell 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
710 711 712
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
713 714 715
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
716 717 718 719 720 721 722 723
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

724 725 726
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
727
	struct regulator_dev *rdev = dev_get_drvdata(dev);
728 729 730 731 732 733

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
734
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
735 736 737 738

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
739
	struct regulator_dev *rdev = dev_get_drvdata(dev);
740 741 742 743 744 745

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
746
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
747 748 749 750

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
751
	struct regulator_dev *rdev = dev_get_drvdata(dev);
752 753 754 755 756 757

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
758
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
759 760 761 762

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
763
	struct regulator_dev *rdev = dev_get_drvdata(dev);
764 765 766 767 768 769

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
770
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
771 772 773 774

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
775
	struct regulator_dev *rdev = dev_get_drvdata(dev);
776 777 778
	struct regulator *regulator;
	int uA = 0;

779
	regulator_lock(rdev);
780 781 782 783
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
784
	regulator_unlock(rdev);
785 786
	return sprintf(buf, "%d\n", uA);
}
787
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
788

789 790
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
791
{
792
	struct regulator_dev *rdev = dev_get_drvdata(dev);
793 794
	return sprintf(buf, "%d\n", rdev->use_count);
}
795
static DEVICE_ATTR_RO(num_users);
796

797 798
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
799
{
800
	struct regulator_dev *rdev = dev_get_drvdata(dev);
801 802 803 804 805 806 807 808 809

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
810
static DEVICE_ATTR_RO(type);
811 812 813 814

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
815
	struct regulator_dev *rdev = dev_get_drvdata(dev);
816 817 818

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
819 820
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
821 822 823 824

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
825
	struct regulator_dev *rdev = dev_get_drvdata(dev);
826 827 828

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
829 830
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
831 832 833 834

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
835
	struct regulator_dev *rdev = dev_get_drvdata(dev);
836 837 838

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
839 840
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
841 842 843 844

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
845
	struct regulator_dev *rdev = dev_get_drvdata(dev);
846

D
David Brownell 已提交
847 848
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
849
}
850 851
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
852 853 854 855

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
856
	struct regulator_dev *rdev = dev_get_drvdata(dev);
857

D
David Brownell 已提交
858 859
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
860
}
861 862
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
863 864 865 866

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
867
	struct regulator_dev *rdev = dev_get_drvdata(dev);
868

D
David Brownell 已提交
869 870
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
871
}
872 873
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
874 875 876 877

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
878
	struct regulator_dev *rdev = dev_get_drvdata(dev);
879

D
David Brownell 已提交
880 881
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
882
}
883 884
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
885 886 887 888

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
889
	struct regulator_dev *rdev = dev_get_drvdata(dev);
890

D
David Brownell 已提交
891 892
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
893
}
894 895
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
896 897 898 899

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
900
	struct regulator_dev *rdev = dev_get_drvdata(dev);
901

D
David Brownell 已提交
902 903
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
904
}
905 906 907
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
929

930 931
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
932
static int drms_uA_update(struct regulator_dev *rdev)
933 934 935 936 937
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

938 939 940 941
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
942 943
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
944
		return 0;
945
	}
946

947 948
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
949 950
		return 0;

951 952
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
953
		return -EINVAL;
954 955

	/* calc total requested load */
956 957 958 959
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
960

961 962
	current_uA += rdev->constraints->system_load;

963 964 965 966
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
967 968
			rdev_err(rdev, "failed to set load %d: %pe\n",
				 current_uA, ERR_PTR(err));
969
	} else {
970
		/* get output voltage */
971
		output_uV = regulator_get_voltage_rdev(rdev);
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

988 989 990 991 992 993 994
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
995 996
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
				 current_uA, input_uV, output_uV, ERR_PTR(err));
997 998
			return err;
		}
999

1000 1001
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
1002 1003
			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
				 mode, ERR_PTR(err));
1004 1005 1006
	}

	return err;
1007 1008
}

1009 1010
static int __suspend_set_state(struct regulator_dev *rdev,
			       const struct regulator_state *rstate)
1011 1012
{
	int ret = 0;
1013

1014 1015
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1016
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1017 1018
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1019
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1020 1021 1022
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1023
	if (ret < 0) {
1024
		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1025 1026 1027 1028 1029 1030
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1031
			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1032 1033 1034 1035 1036 1037 1038
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1039
			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1040 1041 1042 1043
			return ret;
		}
	}

1044
	return ret;
1045 1046
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
static int suspend_set_initial_state(struct regulator_dev *rdev)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev,
			rdev->constraints->initial_state);
	if (!rstate)
		return 0;

	return __suspend_set_state(rdev, rstate);
}

1059 1060 1061
static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
1062
	char buf[160] = "";
1063
	size_t len = sizeof(buf) - 1;
1064 1065
	int count = 0;
	int ret;
1066

1067
	if (constraints->min_uV && constraints->max_uV) {
1068
		if (constraints->min_uV == constraints->max_uV)
1069 1070
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1071
		else
1072 1073 1074 1075
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1076 1077 1078 1079
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1080
		ret = regulator_get_voltage_rdev(rdev);
1081
		if (ret > 0)
1082 1083
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1084 1085
	}

1086
	if (constraints->uV_offset)
1087 1088
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1089

1090
	if (constraints->min_uA && constraints->max_uA) {
1091
		if (constraints->min_uA == constraints->max_uA)
1092 1093
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1094
		else
1095 1096 1097 1098
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1099 1100 1101 1102 1103 1104
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1105 1106
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1107
	}
1108

1109
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1110
		count += scnprintf(buf + count, len - count, "fast ");
1111
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1112
		count += scnprintf(buf + count, len - count, "normal ");
1113
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1114
		count += scnprintf(buf + count, len - count, "idle ");
1115
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1116
		count += scnprintf(buf + count, len - count, "standby ");
1117

1118
	if (!count)
1119 1120 1121 1122 1123 1124
		count = scnprintf(buf, len, "no parameters");
	else
		--count;

	count += scnprintf(buf + count, len - count, ", %s",
		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1125

1126
	rdev_dbg(rdev, "%s\n", buf);
1127 1128

	if ((constraints->min_uV != constraints->max_uV) &&
1129
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1130 1131
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1132 1133
}

1134
static int machine_constraints_voltage(struct regulator_dev *rdev,
1135
	struct regulation_constraints *constraints)
1136
{
1137
	const struct regulator_ops *ops = rdev->desc->ops;
1138 1139 1140 1141
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1142 1143
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1144
		int current_uV = regulator_get_voltage_rdev(rdev);
1145 1146

		if (current_uV == -ENOTRECOVERABLE) {
1147
			/* This regulator can't be read and must be initialized */
1148 1149 1150 1151 1152 1153
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1154
			current_uV = regulator_get_voltage_rdev(rdev);
1155 1156
		}

1157
		if (current_uV < 0) {
1158
			rdev_err(rdev,
1159 1160
				 "failed to get the current voltage: %pe\n",
				 ERR_PTR(current_uV));
1161 1162
			return current_uV;
		}
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1183 1184
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1185
			ret = _regulator_do_set_voltage(
1186
				rdev, target_min, target_max);
1187 1188
			if (ret < 0) {
				rdev_err(rdev,
1189 1190
					"failed to apply %d-%duV constraint: %pe\n",
					target_min, target_max, ERR_PTR(ret));
1191 1192
				return ret;
			}
1193
		}
1194
	}
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1207 1208
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1209
		if (count == 1 && !cmin) {
1210
			cmin = 1;
1211
			cmax = INT_MAX;
1212 1213
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1214 1215
		}

1216 1217
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1218
			return 0;
1219

1220
		/* else require explicit machine-level constraints */
1221
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1222
			rdev_err(rdev, "invalid voltage constraints\n");
1223
			return -EINVAL;
1224 1225
		}

1226 1227 1228 1229
		/* no need to loop voltages if range is continuous */
		if (rdev->desc->continuous_voltage_range)
			return 0;

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1247 1248 1249
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1250
			return -EINVAL;
1251 1252 1253 1254
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1255 1256
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1257 1258 1259
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1260 1261
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1262 1263 1264 1265
			constraints->max_uV = max_uV;
		}
	}

1266 1267 1268
	return 0;
}

1269 1270 1271
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1272
	const struct regulator_ops *ops = rdev->desc->ops;
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1299 1300
static int _regulator_do_enable(struct regulator_dev *rdev);

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1313
	const struct regulation_constraints *constraints)
1314 1315
{
	int ret = 0;
1316
	const struct regulator_ops *ops = rdev->desc->ops;
1317

1318 1319 1320 1321 1322 1323
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1324 1325
	if (!rdev->constraints)
		return -ENOMEM;
1326

1327
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1328
	if (ret != 0)
1329
		return ret;
1330

1331
	ret = machine_constraints_current(rdev, rdev->constraints);
1332
	if (ret != 0)
1333
		return ret;
1334

1335 1336 1337 1338
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
1339
			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1340
			return ret;
1341 1342 1343
		}
	}

1344
	/* do we need to setup our suspend state */
1345
	if (rdev->constraints->initial_state) {
1346
		ret = suspend_set_initial_state(rdev);
1347
		if (ret < 0) {
1348
			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1349
			return ret;
1350 1351
		}
	}
1352

1353
	if (rdev->constraints->initial_mode) {
1354
		if (!ops->set_mode) {
1355
			rdev_err(rdev, "no set_mode operation\n");
1356
			return -EINVAL;
1357 1358
		}

1359
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1360
		if (ret < 0) {
1361
			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1362
			return ret;
1363
		}
1364 1365 1366 1367 1368 1369
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1370 1371
	}

1372 1373
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1374 1375
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
1376
			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1377
			return ret;
1378 1379 1380
		}
	}

S
Stephen Boyd 已提交
1381 1382 1383
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
1384
			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1385
			return ret;
S
Stephen Boyd 已提交
1386 1387 1388
		}
	}

S
Stephen Boyd 已提交
1389 1390 1391
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
1392
			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1393
			return ret;
S
Stephen Boyd 已提交
1394 1395 1396
		}
	}

1397 1398 1399 1400
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
1401 1402
			rdev_err(rdev, "failed to set over current protection: %pe\n",
				 ERR_PTR(ret));
1403
			return ret;
1404 1405 1406
		}
	}

1407 1408 1409 1410 1411 1412
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
1413
			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1414 1415 1416 1417
			return ret;
		}
	}

1418 1419 1420 1421
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1422 1423 1424 1425 1426 1427 1428 1429 1430
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1431 1432
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1433
			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1434 1435
			return ret;
		}
1436 1437 1438

		if (rdev->constraints->always_on)
			rdev->use_count++;
1439 1440
	}

1441
	print_constraints(rdev);
1442
	return 0;
1443 1444 1445 1446
}

/**
 * set_supply - set regulator supply regulator
1447 1448
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1449 1450 1451 1452 1453 1454
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1455
		      struct regulator_dev *supply_rdev)
1456 1457 1458
{
	int err;

1459 1460
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1461 1462 1463
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1464
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1465 1466
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1467
		return err;
1468
	}
1469
	supply_rdev->open_count++;
1470 1471

	return 0;
1472 1473 1474
}

/**
1475
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1476
 * @rdev:         regulator source
1477
 * @consumer_dev_name: dev_name() string for device supply applies to
1478
 * @supply:       symbolic name for supply
1479 1480 1481 1482 1483 1484 1485
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1486 1487
				      const char *consumer_dev_name,
				      const char *supply)
1488
{
1489
	struct regulator_map *node, *new_node;
1490
	int has_dev;
1491 1492 1493 1494

	if (supply == NULL)
		return -EINVAL;

1495 1496 1497 1498 1499
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
	if (new_node == NULL)
		return -ENOMEM;

	new_node->regulator = rdev;
	new_node->supply = supply;

	if (has_dev) {
		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (new_node->dev_name == NULL) {
			kfree(new_node);
			return -ENOMEM;
		}
	}

	mutex_lock(&regulator_list_mutex);
1516
	list_for_each_entry(node, &regulator_map_list, list) {
1517 1518 1519 1520
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1521
			continue;
1522 1523
		}

1524 1525 1526
		if (strcmp(node->supply, supply) != 0)
			continue;

1527 1528 1529 1530 1531 1532
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1533
		goto fail;
1534 1535
	}

1536 1537
	list_add(&new_node->list, &regulator_map_list);
	mutex_unlock(&regulator_list_mutex);
1538

1539
	return 0;
1540 1541 1542 1543 1544 1545

fail:
	mutex_unlock(&regulator_list_mutex);
	kfree(new_node->dev_name);
	kfree(new_node);
	return -EBUSY;
1546 1547
}

1548 1549 1550 1551 1552 1553 1554
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1555
			kfree(node->dev_name);
1556 1557 1558 1559 1560
			kfree(node);
		}
	}
}

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1610
#define REG_STR_SIZE	64
1611 1612 1613 1614 1615 1616

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	int err;

	if (dev) {
		char buf[REG_STR_SIZE];
		int size;

		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			return NULL;

		supply_name = kstrdup(buf, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	} else {
		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	}
1636 1637

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1638 1639
	if (regulator == NULL) {
		kfree(supply_name);
1640
		return NULL;
1641
	}
1642 1643

	regulator->rdev = rdev;
1644 1645 1646
	regulator->supply_name = supply_name;

	regulator_lock(rdev);
1647
	list_add(&regulator->list, &rdev->consumer_list);
1648
	regulator_unlock(rdev);
1649 1650

	if (dev) {
1651 1652
		regulator->dev = dev;

1653
		/* Add a link to the device sysfs entry */
1654
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1655
					       supply_name);
1656
		if (err) {
1657 1658
			rdev_dbg(rdev, "could not add device link %s: %pe\n",
				  dev->kobj.name, ERR_PTR(err));
1659
			/* non-fatal */
1660
		}
1661 1662
	}

1663
	regulator->debugfs = debugfs_create_dir(supply_name,
1664
						rdev->debugfs);
1665
	if (!regulator->debugfs) {
1666
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1667 1668 1669 1670
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1671
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1672
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1673
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1674 1675 1676
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1677
	}
1678

1679 1680 1681 1682 1683
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1684
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1685 1686 1687
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1688 1689 1690
	return regulator;
}

1691 1692
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1693 1694
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1695 1696 1697
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1698 1699
}

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1748 1749 1750 1751 1752
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1753
 */
1754
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1755
						  const char *supply)
1756
{
1757
	struct regulator_dev *r = NULL;
1758
	struct device_node *node;
1759 1760
	struct regulator_map *map;
	const char *devname = NULL;
1761

1762 1763
	regulator_supply_alias(&dev, &supply);

1764 1765 1766
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1767
		if (node) {
1768 1769 1770
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1771

1772
			/*
1773 1774
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1775
			 */
1776
			return ERR_PTR(-EPROBE_DEFER);
1777
		}
1778 1779 1780
	}

	/* if not found, try doing it non-dt way */
1781 1782 1783
	if (dev)
		devname = dev_name(dev);

1784
	mutex_lock(&regulator_list_mutex);
1785 1786 1787 1788 1789 1790
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1791 1792
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1793 1794
			r = map->regulator;
			break;
1795
		}
1796
	}
1797
	mutex_unlock(&regulator_list_mutex);
1798

1799 1800 1801 1802
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1803 1804 1805 1806
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1807 1808
}

1809 1810 1811 1812 1813 1814
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

1815
	/* No supply to resolve? */
1816 1817 1818 1819 1820 1821 1822
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1823 1824 1825 1826
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1827 1828 1829 1830
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1831 1832
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1833
			get_device(&r->dev);
1834 1835 1836 1837 1838
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1839 1840
	}

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1854 1855
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1856 1857
	if (ret < 0) {
		put_device(&r->dev);
1858
		return ret;
1859
	}
1860 1861

	ret = set_supply(rdev, r);
1862 1863
	if (ret < 0) {
		put_device(&r->dev);
1864
		return ret;
1865
	}
1866

1867 1868 1869 1870 1871 1872
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1873
		ret = regulator_enable(rdev->supply);
1874
		if (ret < 0) {
1875
			_regulator_put(rdev->supply);
1876
			rdev->supply = NULL;
1877
			return ret;
1878
		}
1879 1880 1881 1882 1883
	}

	return 0;
}

1884
/* Internal regulator request function */
1885 1886
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1887 1888
{
	struct regulator_dev *rdev;
1889
	struct regulator *regulator;
1890
	struct device_link *link;
1891
	int ret;
1892

1893 1894 1895 1896 1897
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1898
	if (id == NULL) {
1899
		pr_err("get() with no identifier\n");
1900
		return ERR_PTR(-EINVAL);
1901 1902
	}

1903
	rdev = regulator_dev_lookup(dev, id);
1904 1905
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1906

1907 1908 1909 1910 1911 1912
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1913

1914 1915 1916 1917 1918
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1919

1920 1921 1922 1923 1924 1925 1926
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
1927
			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1928 1929 1930
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1931

1932 1933 1934
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
1935
			fallthrough;
1936

1937 1938 1939
		default:
			return ERR_PTR(-ENODEV);
		}
1940 1941
	}

1942 1943
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1944 1945
		put_device(&rdev->dev);
		return regulator;
1946 1947
	}

1948
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1949
		regulator = ERR_PTR(-EBUSY);
1950 1951
		put_device(&rdev->dev);
		return regulator;
1952 1953
	}

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1964 1965 1966
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1967 1968
		put_device(&rdev->dev);
		return regulator;
1969 1970
	}

1971
	if (!try_module_get(rdev->owner)) {
1972
		regulator = ERR_PTR(-EPROBE_DEFER);
1973 1974 1975
		put_device(&rdev->dev);
		return regulator;
	}
1976

1977 1978 1979 1980
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
W
Wen Yang 已提交
1981
		put_device(&rdev->dev);
1982
		return regulator;
1983 1984
	}

1985
	rdev->open_count++;
1986
	if (get_type == EXCLUSIVE_GET) {
1987 1988 1989 1990 1991 1992 1993 1994 1995
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1996 1997 1998
	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
	if (!IS_ERR_OR_NULL(link))
		regulator->device_link = true;
1999

2000 2001
	return regulator;
}
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
2018
	return _regulator_get(dev, id, NORMAL_GET);
2019
}
2020 2021
EXPORT_SYMBOL_GPL(regulator_get);

2022 2023 2024 2025 2026 2027 2028
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
2029 2030 2031
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2045
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2046 2047 2048
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2049 2050 2051 2052 2053 2054
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2055
 * or IS_ERR() condition containing errno.
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2071
	return _regulator_get(dev, id, OPTIONAL_GET);
2072 2073 2074
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2075
static void destroy_regulator(struct regulator *regulator)
2076
{
2077
	struct regulator_dev *rdev = regulator->rdev;
2078

2079 2080
	debugfs_remove_recursive(regulator->debugfs);

2081
	if (regulator->dev) {
2082 2083
		if (regulator->device_link)
			device_link_remove(regulator->dev, &rdev->dev);
2084 2085

		/* remove any sysfs entries */
2086
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2087 2088
	}

2089
	regulator_lock(rdev);
2090 2091
	list_del(&regulator->list);

2092 2093
	rdev->open_count--;
	rdev->exclusive = 0;
2094
	regulator_unlock(rdev);
2095

2096
	kfree_const(regulator->supply_name);
2097
	kfree(regulator);
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
}

/* regulator_list_mutex lock held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (IS_ERR_OR_NULL(regulator))
		return;

	lockdep_assert_held_once(&regulator_list_mutex);

	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

	rdev = regulator->rdev;

	destroy_regulator(regulator);
2116

2117
	module_put(rdev->owner);
W
Wen Yang 已提交
2118
	put_device(&rdev->dev);
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2133 2134 2135 2136
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2214 2215
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2216
					 struct device *alias_dev,
2217
					 const char *const *alias_id,
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2255
					    const char *const *id,
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2266 2267 2268 2269
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
2270
	struct regulator_enable_gpio *pin, *new_pin;
2271
	struct gpio_desc *gpiod;
2272

2273
	gpiod = config->ena_gpiod;
2274 2275 2276
	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);

	mutex_lock(&regulator_list_mutex);
2277

2278
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2279
		if (pin->gpiod == gpiod) {
2280
			rdev_dbg(rdev, "GPIO is already used\n");
2281 2282 2283 2284
			goto update_ena_gpio_to_rdev;
		}
	}

2285 2286
	if (new_pin == NULL) {
		mutex_unlock(&regulator_list_mutex);
2287
		return -ENOMEM;
2288 2289 2290 2291
	}

	pin = new_pin;
	new_pin = NULL;
2292

2293
	pin->gpiod = gpiod;
2294 2295 2296 2297 2298
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
2299 2300 2301 2302

	mutex_unlock(&regulator_list_mutex);
	kfree(new_pin);

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
		if (pin != rdev->ena_pin)
			continue;

		if (--pin->request_count)
			break;

		gpiod_put(pin->gpiod);
		list_del(&pin->list);
		kfree(pin);
		break;
2325
	}
2326 2327

	rdev->ena_pin = NULL;
2328 2329
}

2330
/**
2331 2332 2333 2334
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2348
			gpiod_set_value_cansleep(pin->gpiod, 1);
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2359
			gpiod_set_value_cansleep(pin->gpiod, 0);
2360 2361 2362 2363 2364 2365 2366
			pin->enable_count = 0;
		}
	}

	return 0;
}

2367 2368 2369 2370 2371 2372
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2373
 *     Documentation/timers/timers-howto.rst
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
/**
 * _regulator_check_status_enabled
 *
 * A helper function to check if the regulator status can be interpreted
 * as 'regulator is enabled'.
 * @rdev: the regulator device to check
 *
 * Return:
 * * 1			- if status shows regulator is in enabled state
 * * 0			- if not enabled state
 * * Error Value	- as received from ops->get_status()
 */
static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
{
	int ret = rdev->desc->ops->get_status(rdev);

	if (ret < 0) {
		rdev_info(rdev, "get_status returned error: %d\n", ret);
		return ret;
	}

	switch (ret) {
	case REGULATOR_STATUS_OFF:
	case REGULATOR_STATUS_ERROR:
	case REGULATOR_STATUS_UNDEFINED:
		return 0;
	default:
		return 1;
	}
}

2437 2438 2439 2440 2441 2442 2443 2444 2445
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
2446
		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2447 2448 2449 2450 2451
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
2467
			 * detected and we get a penalty of
2468 2469 2470 2471 2472 2473 2474 2475 2476
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2477
	if (rdev->ena_pin) {
2478 2479 2480 2481 2482 2483
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2484
	} else if (rdev->desc->ops->enable) {
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
	/* If poll_enabled_time is set, poll upto the delay calculated
	 * above, delaying poll_enabled_time uS to check if the regulator
	 * actually got enabled.
	 * If the regulator isn't enabled after enable_delay has
	 * expired, return -ETIMEDOUT.
	 */
	if (rdev->desc->poll_enabled_time) {
		unsigned int time_remaining = delay;

		while (time_remaining > 0) {
			_regulator_enable_delay(rdev->desc->poll_enabled_time);

			if (rdev->desc->ops->get_status) {
				ret = _regulator_check_status_enabled(rdev);
				if (ret < 0)
					return ret;
				else if (ret)
					break;
			} else if (rdev->desc->ops->is_enabled(rdev))
				break;

			time_remaining -= rdev->desc->poll_enabled_time;
		}

		if (time_remaining <= 0) {
			rdev_err(rdev, "Enabled check timed out\n");
			return -ETIMEDOUT;
		}
	} else {
		_regulator_enable_delay(delay);
	}
2528 2529 2530 2531 2532 2533

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2593
/* locks held by regulator_enable() */
2594
static int _regulator_enable(struct regulator *regulator)
2595
{
2596
	struct regulator_dev *rdev = regulator->rdev;
2597
	int ret;
2598

2599 2600
	lockdep_assert_held_once(&rdev->mutex.base);

2601
	if (rdev->use_count == 0 && rdev->supply) {
2602
		ret = _regulator_enable(rdev->supply);
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2613

2614 2615 2616
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2617

2618 2619 2620 2621
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2622
			if (!regulator_ops_is_valid(rdev,
2623 2624
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2625
				goto err_consumer_disable;
2626
			}
2627

2628
			ret = _regulator_do_enable(rdev);
2629
			if (ret < 0)
2630
				goto err_consumer_disable;
2631

2632 2633
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2634
		} else if (ret < 0) {
2635
			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2636
			goto err_consumer_disable;
2637
		}
2638
		/* Fallthrough on positive return values - already enabled */
2639 2640
	}

2641 2642 2643
	rdev->use_count++;

	return 0;
2644

2645 2646 2647
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2648
err_disable_supply:
2649
	if (rdev->use_count == 0 && rdev->supply)
2650
		_regulator_disable(rdev->supply);
2651 2652

	return ret;
2653 2654 2655 2656 2657 2658
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2659 2660 2661 2662
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2663
 * NOTE: the output value can be set by other drivers, boot loader or may be
2664
 * hardwired in the regulator.
2665 2666 2667
 */
int regulator_enable(struct regulator *regulator)
{
2668
	struct regulator_dev *rdev = regulator->rdev;
2669
	struct ww_acquire_ctx ww_ctx;
2670
	int ret;
2671

2672
	regulator_lock_dependent(rdev, &ww_ctx);
2673
	ret = _regulator_enable(regulator);
2674
	regulator_unlock_dependent(rdev, &ww_ctx);
2675

2676 2677 2678 2679
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2680 2681 2682 2683 2684 2685
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2686
	if (rdev->ena_pin) {
2687 2688 2689 2690 2691 2692
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2693 2694 2695 2696 2697 2698 2699

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2700 2701 2702 2703 2704 2705
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2706 2707 2708 2709 2710
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2711
/* locks held by regulator_disable() */
2712
static int _regulator_disable(struct regulator *regulator)
2713
{
2714
	struct regulator_dev *rdev = regulator->rdev;
2715 2716
	int ret = 0;

2717
	lockdep_assert_held_once(&rdev->mutex.base);
2718

D
David Brownell 已提交
2719
	if (WARN(rdev->use_count <= 0,
2720
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2721 2722
		return -EIO;

2723
	/* are we the last user and permitted to disable ? */
2724 2725
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2726 2727

		/* we are last user */
2728
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2729 2730 2731 2732 2733 2734
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2735
			ret = _regulator_do_disable(rdev);
2736
			if (ret < 0) {
2737
				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2738 2739 2740
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2741 2742
				return ret;
			}
2743 2744
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2745 2746 2747 2748 2749 2750
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2751

2752 2753 2754
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2755 2756 2757
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2758
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2759
		ret = _regulator_disable(rdev->supply);
2760

2761 2762 2763 2764 2765 2766 2767
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2768 2769 2770
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2771
 *
2772
 * NOTE: this will only disable the regulator output if no other consumer
2773 2774
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2775 2776 2777
 */
int regulator_disable(struct regulator *regulator)
{
2778
	struct regulator_dev *rdev = regulator->rdev;
2779
	struct ww_acquire_ctx ww_ctx;
2780
	int ret;
2781

2782
	regulator_lock_dependent(rdev, &ww_ctx);
2783
	ret = _regulator_disable(regulator);
2784
	regulator_unlock_dependent(rdev, &ww_ctx);
2785

2786 2787 2788 2789 2790
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2791
static int _regulator_force_disable(struct regulator_dev *rdev)
2792 2793 2794
{
	int ret = 0;

2795
	lockdep_assert_held_once(&rdev->mutex.base);
2796

2797 2798 2799 2800 2801
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2802 2803
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
2804
		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2805 2806
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2807
		return ret;
2808 2809
	}

2810 2811 2812 2813
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2827
	struct regulator_dev *rdev = regulator->rdev;
2828
	struct ww_acquire_ctx ww_ctx;
2829 2830
	int ret;

2831
	regulator_lock_dependent(rdev, &ww_ctx);
2832

2833
	ret = _regulator_force_disable(regulator->rdev);
2834

2835 2836
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2837 2838 2839 2840 2841 2842

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2843 2844
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2845

2846
	regulator_unlock_dependent(rdev, &ww_ctx);
2847

2848 2849 2850 2851
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2852 2853 2854 2855
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2856
	struct ww_acquire_ctx ww_ctx;
2857
	int count, i, ret;
2858 2859
	struct regulator *regulator;
	int total_count = 0;
2860

2861
	regulator_lock_dependent(rdev, &ww_ctx);
2862

2863 2864 2865 2866 2867 2868 2869 2870
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
2883 2884
				rdev_err(rdev, "Deferred disable failed: %pe\n",
					 ERR_PTR(ret));
2885
		}
2886
	}
2887
	WARN_ON(!total_count);
2888

2889 2890 2891 2892
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2893 2894 2895 2896 2897
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2898
 * @ms: milliseconds until the regulator is disabled
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2911 2912 2913
	if (!ms)
		return regulator_disable(regulator);

2914
	regulator_lock(rdev);
2915
	regulator->deferred_disables++;
2916 2917
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2918
	regulator_unlock(rdev);
2919

2920
	return 0;
2921 2922 2923
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2924 2925
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2926
	/* A GPIO control always takes precedence */
2927
	if (rdev->ena_pin)
2928 2929
		return rdev->ena_gpio_state;

2930
	/* If we don't know then assume that the regulator is always on */
2931
	if (!rdev->desc->ops->is_enabled)
2932
		return 1;
2933

2934
	return rdev->desc->ops->is_enabled(rdev);
2935 2936
}

2937 2938
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2950
			regulator_lock(rdev);
2951 2952
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2953
			regulator_unlock(rdev);
2954
	} else if (rdev->is_switch && rdev->supply) {
2955 2956
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2971 2972 2973 2974
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2975 2976 2977 2978 2979 2980 2981
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2982 2983 2984
 */
int regulator_is_enabled(struct regulator *regulator)
{
2985 2986
	int ret;

2987 2988 2989
	if (regulator->always_on)
		return 1;

2990
	regulator_lock(regulator->rdev);
2991
	ret = _regulator_is_enabled(regulator->rdev);
2992
	regulator_unlock(regulator->rdev);
2993 2994

	return ret;
2995 2996 2997
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

3010 3011 3012
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

3013
	if (!rdev->is_switch || !rdev->supply)
3014 3015 3016
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
3027
 * zero if this selector code can't be used on this system, or a
3028 3029 3030 3031
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
3032
	return _regulator_list_voltage(regulator->rdev, selector, 1);
3033 3034 3035
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
3068 3069
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3070 3071 3072 3073

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

3074 3075
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
3076

3077
	return 0;
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3095 3096
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3122 3123 3124 3125 3126 3127 3128
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3129
 * Returns a boolean.
3130 3131 3132 3133
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3134
	struct regulator_dev *rdev = regulator->rdev;
3135 3136
	int i, voltages, ret;

3137
	/* If we can't change voltage check the current voltage */
3138
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3139 3140
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3141
			return min_uV <= ret && ret <= max_uV;
3142 3143 3144 3145
		else
			return ret;
	}

3146 3147 3148 3149 3150
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3151 3152
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3153
		return 0;
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3165
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3166

3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3181 3182 3183 3184 3185
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3186 3187 3188
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3189 3190 3191 3192 3193 3194 3195
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3196
	data.old_uV = regulator_get_voltage_rdev(rdev);
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3220
	data.old_uV = regulator_get_voltage_rdev(rdev);
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3298 3299 3300 3301 3302 3303 3304 3305 3306
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3307 3308
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3309 3310 3311 3312 3313 3314
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3315 3316

	if (ramp_delay == 0) {
3317
		rdev_dbg(rdev, "ramp_delay not set\n");
3318 3319 3320 3321 3322 3323
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3324 3325 3326 3327
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3328
	int delay = 0;
3329
	int best_val = 0;
3330
	unsigned int selector;
3331
	int old_selector = -1;
3332
	const struct regulator_ops *ops = rdev->desc->ops;
3333
	int old_uV = regulator_get_voltage_rdev(rdev);
3334 3335 3336

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3337 3338 3339
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3340 3341 3342 3343
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3344
	if (_regulator_is_enabled(rdev) &&
3345 3346
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3347 3348 3349 3350
		if (old_selector < 0)
			return old_selector;
	}

3351
	if (ops->set_voltage) {
3352 3353
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3354 3355

		if (ret >= 0) {
3356 3357 3358
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3359
			else
3360
				best_val = regulator_get_voltage_rdev(rdev);
3361 3362
		}

3363
	} else if (ops->set_voltage_sel) {
3364
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3365
		if (ret >= 0) {
3366
			best_val = ops->list_voltage(rdev, ret);
3367 3368
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3369 3370
				if (old_selector == selector)
					ret = 0;
3371 3372 3373
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3374
				else
3375 3376
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3377 3378 3379
			} else {
				ret = -EINVAL;
			}
3380
		}
3381 3382 3383
	} else {
		ret = -EINVAL;
	}
3384

3385 3386
	if (ret)
		goto out;
3387

3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3405
		}
3406
	}
3407

3408
	if (delay < 0) {
3409
		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3410
		delay = 0;
3411 3412
	}

3413 3414 3415 3416 3417 3418
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3419 3420
	}

3421
	if (best_val >= 0) {
3422 3423
		unsigned long data = best_val;

3424
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3425 3426
				     (void *)data);
	}
3427

3428
out:
3429
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3430 3431 3432 3433

	return ret;
}

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3460
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3461 3462
					  int min_uV, int max_uV,
					  suspend_state_t state)
3463 3464
{
	struct regulator_dev *rdev = regulator->rdev;
3465
	struct regulator_voltage *voltage = &regulator->voltage[state];
3466
	int ret = 0;
3467
	int old_min_uV, old_max_uV;
3468
	int current_uV;
3469

3470 3471 3472 3473
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3474
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3475 3476
		goto out;

3477
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3478
	 * return successfully even though the regulator does not support
3479 3480
	 * changing the voltage.
	 */
3481
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3482
		current_uV = regulator_get_voltage_rdev(rdev);
3483
		if (min_uV <= current_uV && current_uV <= max_uV) {
3484 3485
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3486 3487 3488 3489
			goto out;
		}
	}

3490
	/* sanity check */
3491 3492
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3493 3494 3495 3496 3497 3498 3499 3500
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3501

3502
	/* restore original values in case of error */
3503 3504 3505 3506
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3507

3508 3509
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3510 3511 3512 3513
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3514

3515 3516 3517 3518
out:
	return ret;
}

3519 3520
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3521 3522 3523 3524 3525
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3526 3527 3528
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3529 3530
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3531 3532 3533 3534 3535 3536
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3537
			goto out;
3538 3539
		}

M
Mark Brown 已提交
3540
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3541 3542
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3543
			goto out;
3544 3545 3546 3547
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3548
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3549 3550
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3551
			goto out;
3552 3553 3554 3555 3556 3557 3558
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3559
				best_supply_uV, INT_MAX, state);
3560
		if (ret) {
3561 3562
			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
				ERR_PTR(ret));
3563
			goto out;
3564 3565 3566
		}
	}

3567 3568 3569 3570 3571
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3572
	if (ret < 0)
3573
		goto out;
3574

3575 3576
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3577
				best_supply_uV, INT_MAX, state);
3578
		if (ret)
3579 3580
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
				 ERR_PTR(ret));
3581 3582 3583 3584
		/* No need to fail here */
		ret = 0;
	}

3585
out:
3586
	return ret;
3587
}
3588
EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3589

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3600
		*current_uV = regulator_get_voltage_rdev(rdev);
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3632
	int i, ret, max_spread;
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3666
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3677

3678 3679 3680 3681 3682 3683 3684 3685
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3686 3687
	max_spread = constraints->max_spread[0];

3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3705
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3743 3744 3745 3746
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3747
			ret = regulator_get_voltage_rdev(rdev);
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

3763 3764
int regulator_do_balance_voltage(struct regulator_dev *rdev,
				 suspend_state_t state, bool skip_coupled)
3765 3766 3767 3768 3769 3770
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3771 3772
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3773 3774

	c_rdevs = c_desc->coupled_rdevs;
3775
	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3802
			if (test_bit(i, &c_rdev_done))
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3830

3831 3832
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3833

3834 3835 3836
		if (ret < 0)
			goto out;

3837 3838
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
3839 3840 3841 3842

	} while (n_coupled > 1);

out:
3843 3844 3845
	return ret;
}

3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_coupler *coupler = c_desc->coupler;
	bool skip_coupled = false;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		skip_coupled = true;

	if (c_desc->n_resolved < c_desc->n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);

	return regulator_do_balance_voltage(rdev, state, skip_coupled);
}

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3892 3893
	struct ww_acquire_ctx ww_ctx;
	int ret;
3894

3895
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3896

3897 3898
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3899

3900
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3901

3902 3903 3904 3905
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3918
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3972 3973
	struct ww_acquire_ctx ww_ctx;
	int ret;
3974 3975 3976 3977 3978

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3979
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3980 3981 3982 3983

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3984
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3985 3986 3987 3988 3989

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
4003 4004
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
4005 4006 4007 4008 4009
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

4010 4011 4012 4013 4014
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

4015
	/* Currently requires operations to do this */
4016
	if (!ops->list_voltage || !rdev->desc->n_voltages)
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

4039
/**
4040 4041
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
4042 4043 4044 4045 4046 4047
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
4048
 * Drivers providing ramp_delay in regulation_constraints can use this as their
4049
 * set_voltage_time_sel() operation.
4050 4051 4052 4053 4054
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
4055
	int old_volt, new_volt;
4056

4057 4058 4059
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
4060

4061 4062 4063
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

4064 4065 4066 4067 4068
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4069
}
4070
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4071

4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
4083
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4084 4085
	int ret, min_uV, max_uV;

4086
	regulator_lock(rdev);
4087 4088 4089 4090 4091 4092 4093 4094

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
4095
	if (!voltage->min_uV && !voltage->max_uV) {
4096 4097 4098 4099
		ret = -EINVAL;
		goto out;
	}

4100 4101
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
4102 4103 4104 4105 4106 4107

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

4108
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4109 4110 4111 4112 4113 4114
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
4115
	regulator_unlock(rdev);
4116 4117 4118 4119
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

4120
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4121
{
4122
	int sel, ret;
4123 4124 4125 4126 4127 4128 4129 4130
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
4131 4132 4133 4134 4135
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
4136

4137
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4138 4139
		}
	}
4140 4141 4142 4143 4144

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4145
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4146
	} else if (rdev->desc->ops->get_voltage) {
4147
		ret = rdev->desc->ops->get_voltage(rdev);
4148 4149
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4150 4151
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4152
	} else if (rdev->supply) {
4153
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4154
	} else {
4155
		return -EINVAL;
4156
	}
4157

4158 4159
	if (ret < 0)
		return ret;
4160
	return ret - rdev->constraints->uV_offset;
4161
}
4162
EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4175
	struct ww_acquire_ctx ww_ctx;
4176 4177
	int ret;

4178
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4179
	ret = regulator_get_voltage_rdev(regulator->rdev);
4180
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4181 4182 4183 4184 4185 4186 4187 4188

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4189
 * @min_uA: Minimum supported current in uA
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4208
	regulator_lock(rdev);
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4223
	regulator_unlock(rdev);
4224 4225 4226 4227
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4228 4229 4230 4231 4232 4233 4234 4235 4236
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4237 4238 4239 4240
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4241
	regulator_lock(rdev);
4242
	ret = _regulator_get_current_limit_unlocked(rdev);
4243
	regulator_unlock(rdev);
4244

4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4278
	int regulator_curr_mode;
4279

4280
	regulator_lock(rdev);
4281 4282 4283 4284 4285 4286 4287

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4288 4289 4290 4291 4292 4293 4294 4295 4296
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4297
	/* constraints check */
4298
	ret = regulator_mode_constrain(rdev, &mode);
4299 4300 4301 4302 4303
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4304
	regulator_unlock(rdev);
4305 4306 4307 4308
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4309 4310 4311 4312 4313 4314 4315 4316 4317
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4318 4319 4320 4321
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4322
	regulator_lock(rdev);
4323
	ret = _regulator_get_mode_unlocked(rdev);
4324
	regulator_unlock(rdev);
4325

4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4341 4342 4343 4344 4345
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4346
	regulator_lock(rdev);
4347 4348 4349 4350 4351 4352 4353 4354 4355

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4356
	regulator_unlock(rdev);
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4374
/**
4375
 * regulator_set_load - set regulator load
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4398 4399 4400 4401 4402 4403 4404 4405
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4406
 * On error a negative errno is returned.
4407
 */
4408
int regulator_set_load(struct regulator *regulator, int uA_load)
4409 4410
{
	struct regulator_dev *rdev = regulator->rdev;
4411 4412
	int old_uA_load;
	int ret = 0;
4413

4414
	regulator_lock(rdev);
4415
	old_uA_load = regulator->uA_load;
4416
	regulator->uA_load = uA_load;
4417 4418 4419 4420 4421
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4422
	regulator_unlock(rdev);
4423

4424 4425
	return ret;
}
4426
EXPORT_SYMBOL_GPL(regulator_set_load);
4427

4428 4429 4430 4431
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4432
 * @enable: enable or disable bypass mode
4433 4434 4435 4436 4437 4438 4439 4440 4441
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
4442
	const char *name = rdev_get_name(rdev);
4443 4444 4445 4446 4447
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4448
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4449 4450
		return 0;

4451
	regulator_lock(rdev);
4452 4453 4454 4455 4456

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
4457 4458
			trace_regulator_bypass_enable(name);

4459 4460 4461
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
4462 4463
			else
				trace_regulator_bypass_enable_complete(name);
4464 4465 4466 4467 4468 4469
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
4470 4471
			trace_regulator_bypass_disable(name);

4472 4473 4474
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
4475 4476
			else
				trace_regulator_bypass_disable_complete(name);
4477 4478 4479 4480 4481 4482
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4483
	regulator_unlock(rdev);
4484 4485 4486 4487 4488

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4489 4490 4491
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4492
 * @nb: notifier block
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4507
 * @nb: notifier block
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4519 4520 4521
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4522
static int _notifier_call_chain(struct regulator_dev *rdev,
4523 4524 4525
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4526
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4553 4554
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4565
	if (ret != -EPROBE_DEFER)
4566 4567
		dev_err(dev, "Failed to get supply '%s': %pe\n",
			consumers[i].supply, ERR_PTR(ret));
4568 4569 4570 4571
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4572
	while (--i >= 0)
4573 4574 4575 4576 4577 4578
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4579 4580 4581 4582 4583 4584 4585
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4601
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4602
	int i;
4603
	int ret = 0;
4604

4605
	for (i = 0; i < num_consumers; i++) {
4606 4607
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4608
	}
4609 4610 4611 4612

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4613
	for (i = 0; i < num_consumers; i++) {
4614 4615
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4616
			goto err;
4617
		}
4618 4619 4620 4621 4622
	}

	return 0;

err:
4623 4624
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
4625 4626
			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
			       ERR_PTR(consumers[i].ret));
4627 4628 4629
		else
			regulator_disable(consumers[i].consumer);
	}
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4643 4644
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4645 4646 4647 4648 4649 4650
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4651
	int ret, r;
4652

4653
	for (i = num_consumers - 1; i >= 0; --i) {
4654 4655 4656 4657 4658 4659 4660 4661
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4662
	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4663 4664 4665
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4666 4667
			pr_err("Failed to re-enable %s: %pe\n",
			       consumers[i].supply, ERR_PTR(r));
4668
	}
4669 4670 4671 4672 4673

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4692
	int ret = 0;
4693

4694
	for (i = 0; i < num_consumers; i++) {
4695 4696 4697
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4698 4699
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4700 4701 4702 4703 4704 4705 4706
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4730
 * @rdev: regulator source
4731
 * @event: notifier block
4732
 * @data: callback-specific data.
4733 4734
 *
 * Called by regulator drivers to notify clients a regulator event has
4735
 * occurred.
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4762
	case REGULATOR_MODE_STANDBY:
4763 4764
		return REGULATOR_STATUS_STANDBY;
	default:
4765
		return REGULATOR_STATUS_UNDEFINED;
4766 4767 4768 4769
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4797 4798 4799 4800
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4801 4802
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4803
{
4804
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4805
	struct regulator_dev *rdev = dev_to_rdev(dev);
4806
	const struct regulator_ops *ops = rdev->desc->ops;
4807 4808 4809 4810 4811 4812 4813
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4814 4815

	/* some attributes need specific methods to be displayed */
4816 4817 4818 4819 4820 4821 4822
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4823
	}
4824

4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4840
	/* constraints need specific supporting methods */
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4876

4877 4878 4879
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4880 4881 4882

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4883
	kfree(rdev);
4884 4885
}

4886 4887
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4900
	if (!rdev->debugfs) {
4901 4902 4903 4904 4905 4906 4907 4908
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4909 4910
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4911 4912
}

4913 4914
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4915 4916 4917 4918 4919 4920
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4921 4922
}

4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

4974
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4975
{
4976
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4989 4990
		if (!c_rdev)
			continue;
4991

4992 4993 4994 4995 4996 4997
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

4998
		regulator_lock(c_rdev);
4999

5000 5001
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
5002

5003
		regulator_unlock(c_rdev);
5004

5005 5006
		regulator_resolve_coupling(c_rdev);
	}
5007 5008
}

5009
static void regulator_remove_coupling(struct regulator_dev *rdev)
5010
{
5011
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5012 5013 5014 5015
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
5016
	int err;
5017

5018
	n_coupled = c_desc->n_coupled;
5019

5020 5021
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
5022

5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
5046 5047 5048 5049

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
5050 5051
			rdev_err(rdev, "failed to detach from coupler: %pe\n",
				 ERR_PTR(err));
5052 5053 5054 5055
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
5056 5057
}

5058
static int regulator_init_coupling(struct regulator_dev *rdev)
5059
{
5060
	struct regulator_dev **coupled;
5061
	int err, n_phandles;
5062 5063 5064 5065 5066 5067

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

5068 5069
	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
	if (!coupled)
5070
		return -ENOMEM;
5071

5072 5073
	rdev->coupling_desc.coupled_rdevs = coupled;

5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

5086
	if (!of_check_coupling_data(rdev))
5087 5088
		return -EPERM;

5089
	mutex_lock(&regulator_list_mutex);
5090
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5091 5092
	mutex_unlock(&regulator_list_mutex);

5093 5094
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
5095
		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5096
		return err;
5097 5098
	}

5099 5100 5101 5102 5103 5104 5105 5106 5107
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5108
		return -EPERM;
5109
	}
5110

5111 5112 5113 5114 5115 5116
	if (!rdev->constraints->always_on) {
		rdev_err(rdev,
			 "Coupling of a non always-on regulator is unimplemented\n");
		return -ENOTSUPP;
	}

5117 5118 5119
	return 0;
}

5120 5121 5122 5123
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

5124 5125
/**
 * regulator_register - register regulator
5126
 * @regulator_desc: regulator to register
5127
 * @cfg: runtime configuration for regulator
5128 5129
 *
 * Called by regulator drivers to register a regulator.
5130 5131
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
5132
 */
5133 5134
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
5135
		   const struct regulator_config *cfg)
5136
{
5137
	const struct regulation_constraints *constraints = NULL;
5138
	const struct regulator_init_data *init_data;
5139
	struct regulator_config *config = NULL;
5140
	static atomic_t regulator_no = ATOMIC_INIT(-1);
5141
	struct regulator_dev *rdev;
5142 5143
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
5144
	struct device *dev;
5145
	int ret, i;
5146

5147
	if (cfg == NULL)
5148
		return ERR_PTR(-EINVAL);
5149 5150 5151 5152 5153 5154
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5155

5156
	dev = cfg->dev;
5157
	WARN_ON(!dev);
5158

5159 5160 5161 5162
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5163

5164
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5165 5166 5167 5168
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5169

5170 5171 5172
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5173 5174
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5175 5176 5177 5178

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5179 5180
		ret = -EINVAL;
		goto rinse;
5181
	}
5182 5183
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5184 5185
		ret = -EINVAL;
		goto rinse;
5186
	}
5187

5188
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5189 5190 5191 5192
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5193
	device_initialize(&rdev->dev);
5194

5195 5196 5197 5198 5199 5200
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
5201
		ret = -ENOMEM;
5202
		goto clean;
5203 5204
	}

5205
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5206
					       &rdev->dev.of_node);
5207 5208 5209 5210 5211 5212 5213 5214

	/*
	 * Sometimes not all resources are probed already so we need to take
	 * that into account. This happens most the time if the ena_gpiod comes
	 * from a gpio extender or something else.
	 */
	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
		ret = -EPROBE_DEFER;
5215
		goto clean;
5216 5217
	}

5218 5219 5220 5221 5222
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5223
	 * a descriptor, we definitely got one from parsing the device
5224 5225 5226 5227
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5228 5229 5230 5231 5232
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5233
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5234
	rdev->reg_data = config->driver_data;
5235 5236
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5237 5238
	if (config->regmap)
		rdev->regmap = config->regmap;
5239
	else if (dev_get_regmap(dev, NULL))
5240
		rdev->regmap = dev_get_regmap(dev, NULL);
5241 5242
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5243 5244 5245
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5246
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5247

5248
	/* preform any regulator specific init */
5249
	if (init_data && init_data->regulator_init) {
5250
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5251 5252
		if (ret < 0)
			goto clean;
5253 5254
	}

5255
	if (config->ena_gpiod) {
5256 5257
		ret = regulator_ena_gpio_request(rdev, config);
		if (ret != 0) {
5258 5259
			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
				 ERR_PTR(ret));
5260
			goto clean;
5261
		}
5262 5263 5264
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5265 5266
	}

5267
	/* register with sysfs */
5268
	rdev->dev.class = &regulator_class;
5269
	rdev->dev.parent = dev;
5270
	dev_set_name(&rdev->dev, "regulator.%lu",
5271
		    (unsigned long) atomic_inc_return(&regulator_no));
5272
	dev_set_drvdata(&rdev->dev, rdev);
5273

5274
	/* set regulator constraints */
5275 5276 5277 5278
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
5279
		rdev->supply_name = init_data->supply_regulator;
5280
	else if (regulator_desc->supply_name)
5281
		rdev->supply_name = regulator_desc->supply_name;
5282

5283
	ret = set_machine_constraints(rdev, constraints);
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
	if (ret == -EPROBE_DEFER) {
		/* Regulator might be in bypass mode and so needs its supply
		 * to set the constraints */
		/* FIXME: this currently triggers a chicken-and-egg problem
		 * when creating -SUPPLY symlink in sysfs to a regulator
		 * that is just being created */
		ret = regulator_resolve_supply(rdev);
		if (!ret)
			ret = set_machine_constraints(rdev, constraints);
		else
			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
				 ERR_PTR(ret));
	}
5297 5298 5299
	if (ret < 0)
		goto wash;

5300 5301
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
5302 5303
		goto wash;

5304
	/* add consumers devices */
5305 5306 5307 5308
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5309
				init_data->consumer_supplies[i].supply);
5310 5311 5312 5313 5314
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5315
		}
5316
	}
5317

5318 5319 5320 5321 5322
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5323 5324
	ret = device_add(&rdev->dev);
	if (ret != 0)
5325 5326
		goto unset_supplies;

5327
	rdev_init_debugfs(rdev);
5328

5329 5330 5331 5332 5333
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5334 5335 5336
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5337
	kfree(config);
5338
	return rdev;
D
David Brownell 已提交
5339

5340
unset_supplies:
5341
	mutex_lock(&regulator_list_mutex);
5342
	unset_regulator_supplies(rdev);
5343
	regulator_remove_coupling(rdev);
5344
	mutex_unlock(&regulator_list_mutex);
5345
wash:
5346
	kfree(rdev->coupling_desc.coupled_rdevs);
5347
	mutex_lock(&regulator_list_mutex);
5348
	regulator_ena_gpio_free(rdev);
5349
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5350
clean:
5351 5352
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
5353
	kfree(config);
5354
	put_device(&rdev->dev);
5355 5356 5357
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5358
	return ERR_PTR(ret);
5359 5360 5361 5362 5363
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5364
 * @rdev: regulator to unregister
5365 5366 5367 5368 5369 5370 5371 5372
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5373 5374 5375
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5376
		regulator_put(rdev->supply);
5377
	}
5378

5379 5380
	flush_work(&rdev->disable_work.work);

5381
	mutex_lock(&regulator_list_mutex);
5382

5383
	debugfs_remove_recursive(rdev->debugfs);
5384
	WARN_ON(rdev->open_count);
5385
	regulator_remove_coupling(rdev);
5386
	unset_regulator_supplies(rdev);
5387
	list_del(&rdev->list);
5388
	regulator_ena_gpio_free(rdev);
5389
	device_unregister(&rdev->dev);
5390 5391

	mutex_unlock(&regulator_list_mutex);
5392 5393 5394
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5395
#ifdef CONFIG_SUSPEND
5396
/**
5397
 * regulator_suspend - prepare regulators for system wide suspend
5398
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5399 5400 5401
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5402
static int regulator_suspend(struct device *dev)
5403
{
5404
	struct regulator_dev *rdev = dev_to_rdev(dev);
5405
	suspend_state_t state = pm_suspend_target_state;
5406
	int ret;
5407 5408 5409 5410 5411
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev, state);
	if (!rstate)
		return 0;
5412 5413

	regulator_lock(rdev);
5414
	ret = __suspend_set_state(rdev, rstate);
5415
	regulator_unlock(rdev);
5416

5417
	return ret;
5418
}
5419

5420
static int regulator_resume(struct device *dev)
5421
{
5422
	suspend_state_t state = pm_suspend_target_state;
5423
	struct regulator_dev *rdev = dev_to_rdev(dev);
5424
	struct regulator_state *rstate;
5425
	int ret = 0;
5426

5427
	rstate = regulator_get_suspend_state(rdev, state);
5428
	if (rstate == NULL)
5429
		return 0;
5430

5431 5432 5433 5434
	/* Avoid grabbing the lock if we don't need to */
	if (!rdev->desc->ops->resume)
		return 0;

5435
	regulator_lock(rdev);
5436

5437 5438
	if (rstate->enabled == ENABLE_IN_SUSPEND ||
	    rstate->enabled == DISABLE_IN_SUSPEND)
5439
		ret = rdev->desc->ops->resume(rdev);
5440

5441
	regulator_unlock(rdev);
5442

5443
	return ret;
5444
}
5445 5446
#else /* !CONFIG_SUSPEND */

5447 5448
#define regulator_suspend	NULL
#define regulator_resume	NULL
5449 5450 5451 5452 5453

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5454 5455
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5456 5457 5458
};
#endif

M
Mark Brown 已提交
5459
struct class regulator_class = {
5460 5461 5462 5463 5464 5465 5466
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5484 5485
/**
 * rdev_get_drvdata - get rdev regulator driver data
5486
 * @rdev: regulator
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5523
 * @rdev: regulator
5524 5525 5526 5527 5528 5529 5530
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5531 5532 5533 5534 5535 5536
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5537 5538 5539 5540 5541 5542
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5543 5544 5545 5546 5547 5548
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5549
#ifdef CONFIG_DEBUG_FS
5550
static int supply_map_show(struct seq_file *sf, void *data)
5551 5552 5553 5554
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5555 5556 5557
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5558 5559
	}

5560 5561
	return 0;
}
5562
DEFINE_SHOW_ATTRIBUTE(supply_map);
5563

5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5586 5587 5588 5589 5590 5591
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5592
	struct summary_data summary_data;
5593
	unsigned int opmode;
5594 5595 5596 5597

	if (!rdev)
		return;

5598
	opmode = _regulator_get_mode_unlocked(rdev);
5599
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5600 5601
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5602
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5603
		   regulator_opmode_to_str(opmode));
5604

5605
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5606 5607
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5626
		if (consumer->dev && consumer->dev->class == &regulator_class)
5627 5628 5629 5630
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5631
			   30 - (level + 1) * 3,
5632
			   consumer->supply_name ? consumer->supply_name :
5633
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5634 5635 5636

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5637 5638
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5639
				   consumer->uA_load / 1000,
5640 5641
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5642 5643
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5644 5645 5646 5647 5648 5649 5650 5651
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5652 5653 5654
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5655

5656 5657
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5695 5696

	regulator_unlock(rdev);
5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5727 5728
	mutex_lock(&regulator_list_mutex);

5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5755 5756

	mutex_unlock(&regulator_list_mutex);
5757 5758
}

5759
static int regulator_summary_show_roots(struct device *dev, void *data)
5760
{
5761 5762
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5763

5764 5765
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5766

5767 5768
	return 0;
}
5769

5770 5771
static int regulator_summary_show(struct seq_file *s, void *data)
{
5772 5773
	struct ww_acquire_ctx ww_ctx;

5774 5775
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5776

5777 5778
	regulator_summary_lock(&ww_ctx);

5779 5780
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5781

5782 5783
	regulator_summary_unlock(&ww_ctx);

5784 5785
	return 0;
}
5786 5787
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5788

5789 5790
static int __init regulator_init(void)
{
5791 5792 5793 5794
	int ret;

	ret = class_register(&regulator_class);

5795
	debugfs_root = debugfs_create_dir("regulator", NULL);
5796
	if (!debugfs_root)
5797
		pr_warn("regulator: Failed to create debugfs directory\n");
5798

5799
#ifdef CONFIG_DEBUG_FS
5800 5801
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5802

5803
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5804
			    NULL, &regulator_summary_fops);
5805
#endif
5806 5807
	regulator_dummy_init();

5808 5809
	regulator_coupler_register(&generic_regulator_coupler);

5810
	return ret;
5811 5812 5813 5814
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5815

5816
static int regulator_late_cleanup(struct device *dev, void *data)
5817
{
5818 5819 5820
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5821 5822
	int enabled, ret;

5823 5824 5825
	if (c && c->always_on)
		return 0;

5826
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5827 5828
		return 0;

5829
	regulator_lock(rdev);
5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
5849
			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5860
	regulator_unlock(rdev);
5861 5862 5863 5864

	return 0;
}

5865
static void regulator_init_complete_work_function(struct work_struct *work)
5866
{
5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5877
	/* If we have a full configuration then disable any regulators
5878 5879 5880
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5881
	 */
5882 5883
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
}

static DECLARE_DELAYED_WORK(regulator_init_complete_work,
			    regulator_init_complete_work_function);

static int __init regulator_init_complete(void)
{
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

	/*
5901 5902 5903 5904 5905 5906 5907 5908 5909
	 * We punt completion for an arbitrary amount of time since
	 * systems like distros will load many drivers from userspace
	 * so consumers might not always be ready yet, this is
	 * particularly an issue with laptops where this might bounce
	 * the display off then on.  Ideally we'd get a notification
	 * from userspace when this happens but we don't so just wait
	 * a bit and hope we waited long enough.  It'd be better if
	 * we'd only do this on systems that need it, and a kernel
	 * command line option might be useful.
5910
	 */
5911 5912
	schedule_delayed_work(&regulator_init_complete_work,
			      msecs_to_jiffies(30000));
5913 5914 5915

	return 0;
}
5916
late_initcall_sync(regulator_init_complete);