core.c 158.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

36 37
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
38 39
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
40
static LIST_HEAD(regulator_ena_gpio_list);
41
static LIST_HEAD(regulator_supply_alias_list);
42
static LIST_HEAD(regulator_coupler_list);
43
static bool has_full_constraints;
44

45 46
static struct dentry *debugfs_root;

47
/*
48 49 50 51 52 53
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
54
	const char *dev_name;   /* The dev_name() for the consumer */
55
	const char *supply;
56
	struct regulator_dev *regulator;
57 58
};

59 60 61 62 63 64 65
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
66
	struct gpio_desc *gpiod;
67 68 69 70
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

71 72 73 74 75 76 77 78 79 80 81 82 83
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

84
static int _regulator_is_enabled(struct regulator_dev *rdev);
85
static int _regulator_disable(struct regulator *regulator);
86
static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87 88
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89
static int _notifier_call_chain(struct regulator_dev *rdev,
90
				  unsigned long event, void *data);
91 92
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
93 94
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
95 96 97
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
98
static void destroy_regulator(struct regulator *regulator);
99
static void _regulator_put(struct regulator *regulator);
100

101
const char *rdev_get_name(struct regulator_dev *rdev)
102 103 104 105 106 107 108 109
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}
110
EXPORT_SYMBOL_GPL(rdev_get_name);
111

112 113
static bool have_full_constraints(void)
{
114
	return has_full_constraints || of_have_populated_dt();
115 116
}

117 118 119 120 121 122 123 124 125 126 127 128 129
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

130 131 132
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
133
 * @ww_ctx:		w/w mutex acquire context
134 135 136 137 138 139 140
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
141 142
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
143
{
144 145 146 147 148
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

149
	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150
		if (rdev->mutex_owner == current)
151
			rdev->ref_cnt++;
152 153 154 155 156 157 158
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
159
		}
160 161
	} else {
		lock = true;
162 163
	}

164 165 166 167 168 169 170 171
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
172 173
}

174 175 176 177 178 179 180 181 182 183
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
184
static void regulator_lock(struct regulator_dev *rdev)
185
{
186
	regulator_lock_nested(rdev, NULL);
187 188 189 190 191 192 193 194 195
}

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
196
static void regulator_unlock(struct regulator_dev *rdev)
197
{
198
	mutex_lock(&regulator_nesting_mutex);
199

200 201 202
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
203
	}
204 205 206 207

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
208 209
}

210
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
211
{
212 213 214 215 216
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
217

218 219 220 221 222 223 224
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

225 226
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
227
{
228 229
	struct regulator_dev *c_rdev, *supply_rdev;
	int i, supply_n_coupled;
230

231 232
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
233 234 235 236

		if (!c_rdev)
			continue;

237 238 239 240 241 242 243
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
			supply_rdev = c_rdev->supply->rdev;
			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;

			regulator_unlock_recursive(supply_rdev,
						   supply_n_coupled);
		}
244

245 246
		regulator_unlock(c_rdev);
	}
247 248
}

249 250 251 252
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
253
{
254
	struct regulator_dev *c_rdev;
255
	int i, err;
256

257 258
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
259

260 261
		if (!c_rdev)
			continue;
262

263 264 265 266 267 268 269
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
270

271 272 273 274 275 276 277
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

278
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
279 280 281 282 283 284 285 286
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
287 288
		}
	}
289 290 291 292 293 294 295

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
296 297
}

298
/**
299 300 301 302 303
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
304
 * Unlock all regulators related with rdev by coupling or supplying.
305
 */
306 307
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
308
{
309 310
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
311 312 313
}

/**
314 315
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
316
 * @ww_ctx:			w/w mutex acquire context
317 318
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
319
 * all regulators related with rdev by coupling or supplying.
320
 */
321 322
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
323
{
324 325 326
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
327

328
	mutex_lock(&regulator_list_mutex);
329

330
	ww_acquire_init(ww_ctx, &regulator_ww_class);
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
352 353
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
376 377
			if (regnode)
				goto err_node_put;
378
		} else {
379
			goto err_node_put;
380 381 382
		}
	}
	return NULL;
383 384 385 386

err_node_put:
	of_node_put(child);
	return regnode;
387 388
}

389 390 391 392 393 394
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
395
 * returns the device node corresponding to the regulator if found, else
396 397 398 399 400
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
401
	char prop_name[64]; /* 64 is max size of property name */
402 403 404

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

405
	snprintf(prop_name, 64, "%s-supply", supply);
406 407 408
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
409 410 411 412
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

413 414
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
415 416 417 418 419
		return NULL;
	}
	return regnode;
}

420
/* Platform voltage constraint check */
421 422
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
423 424 425
{
	BUG_ON(*min_uV > *max_uV);

426
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
427
		rdev_err(rdev, "voltage operation not allowed\n");
428 429 430 431 432 433 434 435
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

436 437
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
438
			 *min_uV, *max_uV);
439
		return -EINVAL;
440
	}
441 442 443 444

	return 0;
}

445 446 447 448 449 450
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

451 452 453
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
454 455 456
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
457 458
{
	struct regulator *regulator;
459
	struct regulator_voltage *voltage;
460 461

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
462
		voltage = &regulator->voltage[state];
463 464 465 466
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
467
		if (!voltage->min_uV && !voltage->max_uV)
468 469
			continue;

470 471 472 473
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
474 475
	}

476
	if (*min_uV > *max_uV) {
477 478
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
479
		return -EINVAL;
480
	}
481 482 483 484

	return 0;
}

485 486 487 488 489 490
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

491
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
492
		rdev_err(rdev, "current operation not allowed\n");
493 494 495 496 497 498 499 500
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

501 502
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
503
			 *min_uA, *max_uA);
504
		return -EINVAL;
505
	}
506 507 508 509 510

	return 0;
}

/* operating mode constraint check */
511 512
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
513
{
514
	switch (*mode) {
515 516 517 518 519 520
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
521
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
522 523 524
		return -EINVAL;
	}

525
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
526
		rdev_err(rdev, "mode operation not allowed\n");
527 528
		return -EPERM;
	}
529 530 531

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
532 533
	 * try higher modes.
	 */
534 535 536 537
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
538
	}
539 540

	return -EINVAL;
541 542
}

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return NULL;

	/* If we have no suspend mode configuration don't set anything;
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
	 */
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
			rdev_warn(rdev, "No configuration\n");
		return NULL;
	}

	return rstate;
}

585 586
static ssize_t microvolts_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
587
{
588
	struct regulator_dev *rdev = dev_get_drvdata(dev);
589
	int uV;
590

591
	regulator_lock(rdev);
592
	uV = regulator_get_voltage_rdev(rdev);
593
	regulator_unlock(rdev);
594

595 596 597
	if (uV < 0)
		return uV;
	return sprintf(buf, "%d\n", uV);
598
}
599
static DEVICE_ATTR_RO(microvolts);
600

601 602
static ssize_t microamps_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
603
{
604
	struct regulator_dev *rdev = dev_get_drvdata(dev);
605 606 607

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
608
static DEVICE_ATTR_RO(microamps);
609

610 611
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
612 613 614
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

615
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
616
}
617
static DEVICE_ATTR_RO(name);
618

619
static const char *regulator_opmode_to_str(int mode)
620 621 622
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
623
		return "fast";
624
	case REGULATOR_MODE_NORMAL:
625
		return "normal";
626
	case REGULATOR_MODE_IDLE:
627
		return "idle";
628
	case REGULATOR_MODE_STANDBY:
629
		return "standby";
630
	}
631 632 633 634 635 636
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
637 638
}

639 640
static ssize_t opmode_show(struct device *dev,
			   struct device_attribute *attr, char *buf)
641
{
642
	struct regulator_dev *rdev = dev_get_drvdata(dev);
643

D
David Brownell 已提交
644 645
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
646
static DEVICE_ATTR_RO(opmode);
D
David Brownell 已提交
647 648 649

static ssize_t regulator_print_state(char *buf, int state)
{
650 651 652 653 654 655 656 657
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

658 659
static ssize_t state_show(struct device *dev,
			  struct device_attribute *attr, char *buf)
D
David Brownell 已提交
660 661
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
662 663
	ssize_t ret;

664
	regulator_lock(rdev);
665
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
666
	regulator_unlock(rdev);
D
David Brownell 已提交
667

668
	return ret;
D
David Brownell 已提交
669
}
670
static DEVICE_ATTR_RO(state);
D
David Brownell 已提交
671

672 673
static ssize_t status_show(struct device *dev,
			   struct device_attribute *attr, char *buf)
D
David Brownell 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
705 706 707
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
708 709 710
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
711 712 713 714 715 716
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
717
static DEVICE_ATTR_RO(status);
D
David Brownell 已提交
718

719 720
static ssize_t min_microamps_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
721
{
722
	struct regulator_dev *rdev = dev_get_drvdata(dev);
723 724 725 726 727 728

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
729
static DEVICE_ATTR_RO(min_microamps);
730

731 732
static ssize_t max_microamps_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
733
{
734
	struct regulator_dev *rdev = dev_get_drvdata(dev);
735 736 737 738 739 740

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
741
static DEVICE_ATTR_RO(max_microamps);
742

743 744
static ssize_t min_microvolts_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
745
{
746
	struct regulator_dev *rdev = dev_get_drvdata(dev);
747 748 749 750 751 752

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
753
static DEVICE_ATTR_RO(min_microvolts);
754

755 756
static ssize_t max_microvolts_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
757
{
758
	struct regulator_dev *rdev = dev_get_drvdata(dev);
759 760 761 762 763 764

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
765
static DEVICE_ATTR_RO(max_microvolts);
766

767 768
static ssize_t requested_microamps_show(struct device *dev,
					struct device_attribute *attr, char *buf)
769
{
770
	struct regulator_dev *rdev = dev_get_drvdata(dev);
771 772 773
	struct regulator *regulator;
	int uA = 0;

774
	regulator_lock(rdev);
775 776 777 778
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
779
	regulator_unlock(rdev);
780 781
	return sprintf(buf, "%d\n", uA);
}
782
static DEVICE_ATTR_RO(requested_microamps);
783

784 785
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
786
{
787
	struct regulator_dev *rdev = dev_get_drvdata(dev);
788 789
	return sprintf(buf, "%d\n", rdev->use_count);
}
790
static DEVICE_ATTR_RO(num_users);
791

792 793
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
794
{
795
	struct regulator_dev *rdev = dev_get_drvdata(dev);
796 797 798 799 800 801 802 803 804

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
805
static DEVICE_ATTR_RO(type);
806

807 808
static ssize_t suspend_mem_microvolts_show(struct device *dev,
					   struct device_attribute *attr, char *buf)
809
{
810
	struct regulator_dev *rdev = dev_get_drvdata(dev);
811 812 813

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
814
static DEVICE_ATTR_RO(suspend_mem_microvolts);
815

816 817
static ssize_t suspend_disk_microvolts_show(struct device *dev,
					    struct device_attribute *attr, char *buf)
818
{
819
	struct regulator_dev *rdev = dev_get_drvdata(dev);
820 821 822

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
823
static DEVICE_ATTR_RO(suspend_disk_microvolts);
824

825 826
static ssize_t suspend_standby_microvolts_show(struct device *dev,
					       struct device_attribute *attr, char *buf)
827
{
828
	struct regulator_dev *rdev = dev_get_drvdata(dev);
829 830 831

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
832
static DEVICE_ATTR_RO(suspend_standby_microvolts);
833

834 835
static ssize_t suspend_mem_mode_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
836
{
837
	struct regulator_dev *rdev = dev_get_drvdata(dev);
838

D
David Brownell 已提交
839 840
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
841
}
842
static DEVICE_ATTR_RO(suspend_mem_mode);
843

844 845
static ssize_t suspend_disk_mode_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
846
{
847
	struct regulator_dev *rdev = dev_get_drvdata(dev);
848

D
David Brownell 已提交
849 850
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
851
}
852
static DEVICE_ATTR_RO(suspend_disk_mode);
853

854 855
static ssize_t suspend_standby_mode_show(struct device *dev,
					 struct device_attribute *attr, char *buf)
856
{
857
	struct regulator_dev *rdev = dev_get_drvdata(dev);
858

D
David Brownell 已提交
859 860
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
861
}
862
static DEVICE_ATTR_RO(suspend_standby_mode);
863

864 865
static ssize_t suspend_mem_state_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
866
{
867
	struct regulator_dev *rdev = dev_get_drvdata(dev);
868

D
David Brownell 已提交
869 870
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
871
}
872
static DEVICE_ATTR_RO(suspend_mem_state);
873

874 875
static ssize_t suspend_disk_state_show(struct device *dev,
				       struct device_attribute *attr, char *buf)
876
{
877
	struct regulator_dev *rdev = dev_get_drvdata(dev);
878

D
David Brownell 已提交
879 880
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
881
}
882
static DEVICE_ATTR_RO(suspend_disk_state);
883

884 885
static ssize_t suspend_standby_state_show(struct device *dev,
					  struct device_attribute *attr, char *buf)
886
{
887
	struct regulator_dev *rdev = dev_get_drvdata(dev);
888

D
David Brownell 已提交
889 890
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
891
}
892
static DEVICE_ATTR_RO(suspend_standby_state);
893

894 895
static ssize_t bypass_show(struct device *dev,
			   struct device_attribute *attr, char *buf)
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
913
static DEVICE_ATTR_RO(bypass);
914

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
#define REGULATOR_ERROR_ATTR(name, bit)							\
	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
				   char *buf)						\
	{										\
		int ret;								\
		unsigned int flags;							\
		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
		ret = _regulator_get_error_flags(rdev, &flags);				\
		if (ret)								\
			return ret;							\
		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
	}										\
	static DEVICE_ATTR_RO(name)

REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);

939
/* Calculate the new optimum regulator operating mode based on the new total
940 941
 * consumer load. All locks held by caller
 */
942
static int drms_uA_update(struct regulator_dev *rdev)
943 944 945 946 947
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

948 949 950 951
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
952 953
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
954
		return 0;
955
	}
956

957 958
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
959 960
		return 0;

961 962
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
963
		return -EINVAL;
964 965

	/* calc total requested load */
966 967 968 969
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
970

971 972
	current_uA += rdev->constraints->system_load;

973 974 975 976
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
977 978
			rdev_err(rdev, "failed to set load %d: %pe\n",
				 current_uA, ERR_PTR(err));
979
	} else {
980 981 982 983 984 985 986 987 988 989 990 991
		/*
		 * Unfortunately in some cases the constraints->valid_ops has
		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
		 * That's not really legit but we won't consider it a fatal
		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
		 * wasn't set.
		 */
		if (!rdev->constraints->valid_modes_mask) {
			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
			return 0;
		}

992
		/* get output voltage */
993
		output_uV = regulator_get_voltage_rdev(rdev);
994 995 996 997 998 999 1000

		/*
		 * Don't return an error; if regulator driver cares about
		 * output_uV then it's up to the driver to validate.
		 */
		if (output_uV <= 0)
			rdev_dbg(rdev, "invalid output voltage found\n");
1001 1002 1003 1004 1005 1006 1007

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
1008 1009 1010 1011 1012 1013 1014

		/*
		 * Don't return an error; if regulator driver cares about
		 * input_uV then it's up to the driver to validate.
		 */
		if (input_uV <= 0)
			rdev_dbg(rdev, "invalid input voltage found\n");
1015

1016 1017 1018 1019 1020 1021 1022
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
1023 1024
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
				 current_uA, input_uV, output_uV, ERR_PTR(err));
1025 1026
			return err;
		}
1027

1028 1029
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
1030 1031
			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
				 mode, ERR_PTR(err));
1032 1033 1034
	}

	return err;
1035 1036
}

1037 1038
static int __suspend_set_state(struct regulator_dev *rdev,
			       const struct regulator_state *rstate)
1039 1040
{
	int ret = 0;
1041

1042 1043
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1044
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1045 1046
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1047
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1048 1049 1050
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1051
	if (ret < 0) {
1052
		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1053 1054 1055 1056 1057 1058
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1059
			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1060 1061 1062 1063 1064 1065 1066
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1067
			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1068 1069 1070 1071
			return ret;
		}
	}

1072
	return ret;
1073 1074
}

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
static int suspend_set_initial_state(struct regulator_dev *rdev)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev,
			rdev->constraints->initial_state);
	if (!rstate)
		return 0;

	return __suspend_set_state(rdev, rstate);
}

1087 1088
#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
static void print_constraints_debug(struct regulator_dev *rdev)
1089 1090
{
	struct regulation_constraints *constraints = rdev->constraints;
1091
	char buf[160] = "";
1092
	size_t len = sizeof(buf) - 1;
1093 1094
	int count = 0;
	int ret;
1095

1096
	if (constraints->min_uV && constraints->max_uV) {
1097
		if (constraints->min_uV == constraints->max_uV)
1098 1099
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1100
		else
1101 1102 1103 1104
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1105 1106 1107 1108
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1109
		ret = regulator_get_voltage_rdev(rdev);
1110
		if (ret > 0)
1111 1112
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1113 1114
	}

1115
	if (constraints->uV_offset)
1116 1117
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1118

1119
	if (constraints->min_uA && constraints->max_uA) {
1120
		if (constraints->min_uA == constraints->max_uA)
1121 1122
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1123
		else
1124 1125 1126 1127
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1128 1129 1130 1131 1132 1133
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1134 1135
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1136
	}
1137

1138
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1139
		count += scnprintf(buf + count, len - count, "fast ");
1140
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1141
		count += scnprintf(buf + count, len - count, "normal ");
1142
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1143
		count += scnprintf(buf + count, len - count, "idle ");
1144
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1145
		count += scnprintf(buf + count, len - count, "standby ");
1146

1147
	if (!count)
1148 1149 1150 1151 1152 1153
		count = scnprintf(buf, len, "no parameters");
	else
		--count;

	count += scnprintf(buf + count, len - count, ", %s",
		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1154

1155
	rdev_dbg(rdev, "%s\n", buf);
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
}
#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
static inline void print_constraints_debug(struct regulator_dev *rdev) {}
#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;

	print_constraints_debug(rdev);
1166 1167

	if ((constraints->min_uV != constraints->max_uV) &&
1168
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1169 1170
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1171 1172
}

1173
static int machine_constraints_voltage(struct regulator_dev *rdev,
1174
	struct regulation_constraints *constraints)
1175
{
1176
	const struct regulator_ops *ops = rdev->desc->ops;
1177 1178 1179 1180
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1181 1182
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1183
		int current_uV = regulator_get_voltage_rdev(rdev);
1184 1185

		if (current_uV == -ENOTRECOVERABLE) {
1186
			/* This regulator can't be read and must be initialized */
1187 1188 1189 1190 1191 1192
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1193
			current_uV = regulator_get_voltage_rdev(rdev);
1194 1195
		}

1196
		if (current_uV < 0) {
1197 1198 1199 1200
			if (current_uV != -EPROBE_DEFER)
				rdev_err(rdev,
					 "failed to get the current voltage: %pe\n",
					 ERR_PTR(current_uV));
1201 1202
			return current_uV;
		}
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1223 1224
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1225
			ret = _regulator_do_set_voltage(
1226
				rdev, target_min, target_max);
1227 1228
			if (ret < 0) {
				rdev_err(rdev,
1229 1230
					"failed to apply %d-%duV constraint: %pe\n",
					target_min, target_max, ERR_PTR(ret));
1231 1232
				return ret;
			}
1233
		}
1234
	}
1235

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1247
		/* it's safe to autoconfigure fixed-voltage supplies
1248 1249
		 * and the constraints are used by list_voltage.
		 */
1250
		if (count == 1 && !cmin) {
1251
			cmin = 1;
1252
			cmax = INT_MAX;
1253 1254
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1255 1256
		}

1257 1258
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1259
			return 0;
1260

1261
		/* else require explicit machine-level constraints */
1262
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1263
			rdev_err(rdev, "invalid voltage constraints\n");
1264
			return -EINVAL;
1265 1266
		}

1267 1268 1269 1270
		/* no need to loop voltages if range is continuous */
		if (rdev->desc->continuous_voltage_range)
			return 0;

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1288 1289 1290
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1291
			return -EINVAL;
1292 1293 1294 1295
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1296 1297
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1298 1299 1300
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1301 1302
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1303 1304 1305 1306
			constraints->max_uV = max_uV;
		}
	}

1307 1308 1309
	return 0;
}

1310 1311 1312
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1313
	const struct regulator_ops *ops = rdev->desc->ops;
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1340 1341
static int _regulator_do_enable(struct regulator_dev *rdev);

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
static int notif_set_limit(struct regulator_dev *rdev,
			   int (*set)(struct regulator_dev *, int, int, bool),
			   int limit, int severity)
{
	bool enable;

	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
		enable = false;
		limit = 0;
	} else {
		enable = true;
	}

	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
		limit = 0;

	return set(rdev, limit, severity, enable);
}

static int handle_notify_limits(struct regulator_dev *rdev,
			int (*set)(struct regulator_dev *, int, int, bool),
			struct notification_limit *limits)
{
	int ret = 0;

	if (!set)
		return -EOPNOTSUPP;

	if (limits->prot)
		ret = notif_set_limit(rdev, set, limits->prot,
				      REGULATOR_SEVERITY_PROT);
	if (ret)
		return ret;

	if (limits->err)
		ret = notif_set_limit(rdev, set, limits->err,
				      REGULATOR_SEVERITY_ERR);
	if (ret)
		return ret;

	if (limits->warn)
		ret = notif_set_limit(rdev, set, limits->warn,
				      REGULATOR_SEVERITY_WARN);

	return ret;
}
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
1398
static int set_machine_constraints(struct regulator_dev *rdev)
1399 1400
{
	int ret = 0;
1401
	const struct regulator_ops *ops = rdev->desc->ops;
1402

1403
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1404
	if (ret != 0)
1405
		return ret;
1406

1407
	ret = machine_constraints_current(rdev, rdev->constraints);
1408
	if (ret != 0)
1409
		return ret;
1410

1411 1412 1413 1414
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
1415
			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416
			return ret;
1417 1418 1419
		}
	}

1420
	/* do we need to setup our suspend state */
1421
	if (rdev->constraints->initial_state) {
1422
		ret = suspend_set_initial_state(rdev);
1423
		if (ret < 0) {
1424
			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425
			return ret;
1426 1427
		}
	}
1428

1429
	if (rdev->constraints->initial_mode) {
1430
		if (!ops->set_mode) {
1431
			rdev_err(rdev, "no set_mode operation\n");
1432
			return -EINVAL;
1433 1434
		}

1435
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436
		if (ret < 0) {
1437
			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438
			return ret;
1439
		}
1440 1441 1442 1443 1444 1445
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1446 1447
	}

1448 1449
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1450 1451
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
1452
			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453
			return ret;
1454 1455 1456
		}
	}

S
Stephen Boyd 已提交
1457 1458 1459
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
1460
			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461
			return ret;
S
Stephen Boyd 已提交
1462 1463 1464
		}
	}

S
Stephen Boyd 已提交
1465 1466 1467
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
1468
			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469
			return ret;
S
Stephen Boyd 已提交
1470 1471 1472
		}
	}

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	/*
	 * Existing logic does not warn if over_current_protection is given as
	 * a constraint but driver does not support that. I think we should
	 * warn about this type of issues as it is possible someone changes
	 * PMIC on board to another type - and the another PMIC's driver does
	 * not support setting protection. Board composer may happily believe
	 * the DT limits are respected - especially if the new PMIC HW also
	 * supports protection but the driver does not. I won't change the logic
	 * without hearing more experienced opinion on this though.
	 *
	 * If warning is seen as a good idea then we can merge handling the
	 * over-curret protection and detection and get rid of this special
	 * handling.
	 */
1487 1488
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
1489 1490 1491 1492 1493
		int lim = rdev->constraints->over_curr_limits.prot;

		ret = ops->set_over_current_protection(rdev, lim,
						       REGULATOR_SEVERITY_PROT,
						       true);
1494
		if (ret < 0) {
1495 1496
			rdev_err(rdev, "failed to set over current protection: %pe\n",
				 ERR_PTR(ret));
1497
			return ret;
1498 1499 1500
		}
	}

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	if (rdev->constraints->over_current_detection)
		ret = handle_notify_limits(rdev,
					   ops->set_over_current_protection,
					   &rdev->constraints->over_curr_limits);
	if (ret) {
		if (ret != -EOPNOTSUPP) {
			rdev_err(rdev, "failed to set over current limits: %pe\n",
				 ERR_PTR(ret));
			return ret;
		}
		rdev_warn(rdev,
			  "IC does not support requested over-current limits\n");
	}

	if (rdev->constraints->over_voltage_detection)
		ret = handle_notify_limits(rdev,
					   ops->set_over_voltage_protection,
					   &rdev->constraints->over_voltage_limits);
	if (ret) {
		if (ret != -EOPNOTSUPP) {
			rdev_err(rdev, "failed to set over voltage limits %pe\n",
				 ERR_PTR(ret));
			return ret;
		}
		rdev_warn(rdev,
			  "IC does not support requested over voltage limits\n");
	}

	if (rdev->constraints->under_voltage_detection)
		ret = handle_notify_limits(rdev,
					   ops->set_under_voltage_protection,
					   &rdev->constraints->under_voltage_limits);
	if (ret) {
		if (ret != -EOPNOTSUPP) {
			rdev_err(rdev, "failed to set under voltage limits %pe\n",
				 ERR_PTR(ret));
			return ret;
		}
		rdev_warn(rdev,
			  "IC does not support requested under voltage limits\n");
	}

	if (rdev->constraints->over_temp_detection)
		ret = handle_notify_limits(rdev,
					   ops->set_thermal_protection,
					   &rdev->constraints->temp_limits);
	if (ret) {
		if (ret != -EOPNOTSUPP) {
			rdev_err(rdev, "failed to set temperature limits %pe\n",
				 ERR_PTR(ret));
			return ret;
		}
		rdev_warn(rdev,
			  "IC does not support requested temperature limits\n");
	}

1557 1558 1559 1560 1561 1562
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
1563
			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1564 1565 1566 1567
			return ret;
		}
	}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	/*
	 * If there is no mechanism for controlling the regulator then
	 * flag it as always_on so we don't end up duplicating checks
	 * for this so much.  Note that we could control the state of
	 * a supply to control the output on a regulator that has no
	 * direct control.
	 */
	if (!rdev->ena_pin && !ops->enable) {
		if (rdev->supply_name && !rdev->supply)
			return -EPROBE_DEFER;

		if (rdev->supply)
			rdev->constraints->always_on =
				rdev->supply->rdev->constraints->always_on;
		else
			rdev->constraints->always_on = true;
	}

1586 1587 1588
	if (rdev->desc->off_on_delay)
		rdev->last_off = ktime_get();

1589 1590 1591 1592
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1593 1594 1595 1596 1597 1598
		/* If we want to enable this regulator, make sure that we know
		 * the supplying regulator.
		 */
		if (rdev->supply_name && !rdev->supply)
			return -EPROBE_DEFER;

1599 1600 1601 1602 1603 1604 1605 1606 1607
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1608 1609
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1610
			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1611 1612
			return ret;
		}
1613 1614 1615

		if (rdev->constraints->always_on)
			rdev->use_count++;
1616 1617
	}

1618
	print_constraints(rdev);
1619
	return 0;
1620 1621 1622 1623
}

/**
 * set_supply - set regulator supply regulator
1624 1625
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1626 1627 1628 1629 1630 1631
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1632
		      struct regulator_dev *supply_rdev)
1633 1634 1635
{
	int err;

1636
	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1637

1638 1639 1640
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1641
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1642 1643
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1644
		return err;
1645
	}
1646
	supply_rdev->open_count++;
1647 1648

	return 0;
1649 1650 1651
}

/**
1652
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1653
 * @rdev:         regulator source
1654
 * @consumer_dev_name: dev_name() string for device supply applies to
1655
 * @supply:       symbolic name for supply
1656 1657 1658 1659 1660 1661 1662
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1663 1664
				      const char *consumer_dev_name,
				      const char *supply)
1665
{
1666
	struct regulator_map *node, *new_node;
1667
	int has_dev;
1668 1669 1670 1671

	if (supply == NULL)
		return -EINVAL;

1672 1673 1674 1675 1676
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
	if (new_node == NULL)
		return -ENOMEM;

	new_node->regulator = rdev;
	new_node->supply = supply;

	if (has_dev) {
		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (new_node->dev_name == NULL) {
			kfree(new_node);
			return -ENOMEM;
		}
	}

	mutex_lock(&regulator_list_mutex);
1693
	list_for_each_entry(node, &regulator_map_list, list) {
1694 1695 1696 1697
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1698
			continue;
1699 1700
		}

1701 1702 1703
		if (strcmp(node->supply, supply) != 0)
			continue;

1704 1705 1706 1707 1708 1709
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1710
		goto fail;
1711 1712
	}

1713 1714
	list_add(&new_node->list, &regulator_map_list);
	mutex_unlock(&regulator_list_mutex);
1715

1716
	return 0;
1717 1718 1719 1720 1721 1722

fail:
	mutex_unlock(&regulator_list_mutex);
	kfree(new_node->dev_name);
	kfree(new_node);
	return -EBUSY;
1723 1724
}

1725 1726 1727 1728 1729 1730 1731
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1732
			kfree(node->dev_name);
1733 1734 1735 1736 1737
			kfree(node);
		}
	}
}

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1787
#define REG_STR_SIZE	64
1788 1789 1790 1791 1792 1793

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
1794
	int err = 0;
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

	if (dev) {
		char buf[REG_STR_SIZE];
		int size;

		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			return NULL;

		supply_name = kstrdup(buf, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	} else {
		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	}
1813 1814

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1815 1816
	if (regulator == NULL) {
		kfree(supply_name);
1817
		return NULL;
1818
	}
1819 1820

	regulator->rdev = rdev;
1821 1822 1823
	regulator->supply_name = supply_name;

	regulator_lock(rdev);
1824
	list_add(&regulator->list, &rdev->consumer_list);
1825
	regulator_unlock(rdev);
1826 1827

	if (dev) {
1828 1829
		regulator->dev = dev;

1830
		/* Add a link to the device sysfs entry */
1831
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1832
					       supply_name);
1833
		if (err) {
1834 1835
			rdev_dbg(rdev, "could not add device link %s: %pe\n",
				  dev->kobj.name, ERR_PTR(err));
1836
			/* non-fatal */
1837
		}
1838 1839
	}

1840 1841
	if (err != -EEXIST)
		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1842
	if (!regulator->debugfs) {
1843
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1844 1845 1846 1847
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1848
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1849
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1850
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1851 1852 1853
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1854
	}
1855

1856 1857 1858 1859 1860
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1861
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1862 1863 1864
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1865 1866 1867
	return regulator;
}

1868 1869
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1870 1871
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1872 1873 1874
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1875 1876
}

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1925 1926 1927 1928 1929
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1930
 */
1931
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1932
						  const char *supply)
1933
{
1934
	struct regulator_dev *r = NULL;
1935
	struct device_node *node;
1936 1937
	struct regulator_map *map;
	const char *devname = NULL;
1938

1939 1940
	regulator_supply_alias(&dev, &supply);

1941 1942 1943
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1944
		if (node) {
1945 1946 1947
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1948

1949
			/*
1950 1951
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1952
			 */
1953
			return ERR_PTR(-EPROBE_DEFER);
1954
		}
1955 1956 1957
	}

	/* if not found, try doing it non-dt way */
1958 1959 1960
	if (dev)
		devname = dev_name(dev);

1961
	mutex_lock(&regulator_list_mutex);
1962 1963 1964 1965 1966 1967
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1968 1969
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1970 1971
			r = map->regulator;
			break;
1972
		}
1973
	}
1974
	mutex_unlock(&regulator_list_mutex);
1975

1976 1977 1978 1979
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1980 1981 1982 1983
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1984 1985
}

1986 1987 1988 1989
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
1990
	int ret = 0;
1991

1992
	/* No supply to resolve? */
1993 1994 1995
	if (!rdev->supply_name)
		return 0;

1996
	/* Supply already resolved? (fast-path without locking contention) */
1997 1998 1999
	if (rdev->supply)
		return 0;

2000 2001 2002 2003
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

2004 2005
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
2006
			goto out;
2007

2008 2009
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
2010
			get_device(&r->dev);
2011 2012 2013
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
2014 2015
			ret = -EPROBE_DEFER;
			goto out;
2016
		}
2017 2018
	}

2019 2020 2021
	if (r == rdev) {
		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
			rdev->desc->name, rdev->supply_name);
2022 2023 2024 2025
		if (!have_full_constraints()) {
			ret = -EINVAL;
			goto out;
		}
2026 2027
		r = dummy_regulator_rdev;
		get_device(&r->dev);
2028 2029
	}

2030 2031 2032 2033 2034 2035 2036 2037 2038
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
2039 2040
			ret = -EPROBE_DEFER;
			goto out;
2041 2042 2043
		}
	}

2044 2045
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
2046 2047
	if (ret < 0) {
		put_device(&r->dev);
2048
		goto out;
2049
	}
2050

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	/*
	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
	 * between rdev->supply null check and setting rdev->supply in
	 * set_supply() from concurrent tasks.
	 */
	regulator_lock(rdev);

	/* Supply just resolved by a concurrent task? */
	if (rdev->supply) {
		regulator_unlock(rdev);
		put_device(&r->dev);
		goto out;
	}

2065
	ret = set_supply(rdev, r);
2066
	if (ret < 0) {
2067
		regulator_unlock(rdev);
2068
		put_device(&r->dev);
2069
		goto out;
2070
	}
2071

2072 2073
	regulator_unlock(rdev);

2074 2075 2076 2077 2078 2079
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
2080
		ret = regulator_enable(rdev->supply);
2081
		if (ret < 0) {
2082
			_regulator_put(rdev->supply);
2083
			rdev->supply = NULL;
2084
			goto out;
2085
		}
2086 2087
	}

2088 2089
out:
	return ret;
2090 2091
}

2092
/* Internal regulator request function */
2093 2094
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
2095 2096
{
	struct regulator_dev *rdev;
2097
	struct regulator *regulator;
2098
	struct device_link *link;
2099
	int ret;
2100

2101 2102 2103 2104 2105
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

2106
	if (id == NULL) {
2107
		pr_err("get() with no identifier\n");
2108
		return ERR_PTR(-EINVAL);
2109 2110
	}

2111
	rdev = regulator_dev_lookup(dev, id);
2112 2113
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
2114

2115 2116 2117 2118 2119 2120
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
2121

2122 2123 2124 2125 2126
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
2127

2128 2129 2130 2131 2132 2133 2134
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
2135
			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2136 2137 2138
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
2139

2140 2141 2142
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
2143
			fallthrough;
2144

2145 2146 2147
		default:
			return ERR_PTR(-ENODEV);
		}
2148 2149
	}

2150 2151
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
2152 2153
		put_device(&rdev->dev);
		return regulator;
2154 2155
	}

2156
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2157
		regulator = ERR_PTR(-EBUSY);
2158 2159
		put_device(&rdev->dev);
		return regulator;
2160 2161
	}

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

2172 2173 2174
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
2175 2176
		put_device(&rdev->dev);
		return regulator;
2177 2178
	}

2179
	if (!try_module_get(rdev->owner)) {
2180
		regulator = ERR_PTR(-EPROBE_DEFER);
2181 2182 2183
		put_device(&rdev->dev);
		return regulator;
	}
2184

2185 2186 2187 2188
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
W
Wen Yang 已提交
2189
		put_device(&rdev->dev);
2190
		return regulator;
2191 2192
	}

2193
	rdev->open_count++;
2194
	if (get_type == EXCLUSIVE_GET) {
2195 2196 2197
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
2198
		if (ret > 0) {
2199
			rdev->use_count = 1;
2200 2201
			regulator->enable_count = 1;
		} else {
2202
			rdev->use_count = 0;
2203 2204
			regulator->enable_count = 0;
		}
2205 2206
	}

2207 2208 2209
	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
	if (!IS_ERR_OR_NULL(link))
		regulator->device_link = true;
2210

2211 2212
	return regulator;
}
2213 2214 2215 2216 2217 2218 2219 2220 2221

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
2222
 * Use of supply names configured via set_consumer_device_supply() is
2223 2224 2225 2226 2227 2228
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
2229
	return _regulator_get(dev, id, NORMAL_GET);
2230
}
2231 2232
EXPORT_SYMBOL_GPL(regulator_get);

2233 2234 2235 2236 2237 2238 2239
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
2240 2241 2242
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
2243 2244 2245 2246 2247 2248
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
2249
 * Use of supply names configured via set_consumer_device_supply() is
2250 2251 2252 2253 2254 2255
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2256
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2257 2258 2259
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2260 2261 2262 2263 2264 2265
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2266
 * or IS_ERR() condition containing errno.
2267 2268 2269 2270 2271 2272 2273 2274
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
2275
 * Use of supply names configured via set_consumer_device_supply() is
2276 2277 2278 2279 2280 2281
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2282
	return _regulator_get(dev, id, OPTIONAL_GET);
2283 2284 2285
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2286
static void destroy_regulator(struct regulator *regulator)
2287
{
2288
	struct regulator_dev *rdev = regulator->rdev;
2289

2290 2291
	debugfs_remove_recursive(regulator->debugfs);

2292
	if (regulator->dev) {
2293 2294
		if (regulator->device_link)
			device_link_remove(regulator->dev, &rdev->dev);
2295 2296

		/* remove any sysfs entries */
2297
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2298 2299
	}

2300
	regulator_lock(rdev);
2301 2302
	list_del(&regulator->list);

2303 2304
	rdev->open_count--;
	rdev->exclusive = 0;
2305
	regulator_unlock(rdev);
2306

2307
	kfree_const(regulator->supply_name);
2308
	kfree(regulator);
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
}

/* regulator_list_mutex lock held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (IS_ERR_OR_NULL(regulator))
		return;

	lockdep_assert_held_once(&regulator_list_mutex);

	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

	rdev = regulator->rdev;

	destroy_regulator(regulator);
2327

2328
	module_put(rdev->owner);
W
Wen Yang 已提交
2329
	put_device(&rdev->dev);
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2344 2345 2346 2347
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2425 2426
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2427
					 struct device *alias_dev,
2428
					 const char *const *alias_id,
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2466
					    const char *const *id,
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2477 2478 2479 2480
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
2481
	struct regulator_enable_gpio *pin, *new_pin;
2482
	struct gpio_desc *gpiod;
2483

2484
	gpiod = config->ena_gpiod;
2485 2486 2487
	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);

	mutex_lock(&regulator_list_mutex);
2488

2489
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2490
		if (pin->gpiod == gpiod) {
2491
			rdev_dbg(rdev, "GPIO is already used\n");
2492 2493 2494 2495
			goto update_ena_gpio_to_rdev;
		}
	}

2496 2497
	if (new_pin == NULL) {
		mutex_unlock(&regulator_list_mutex);
2498
		return -ENOMEM;
2499 2500 2501 2502
	}

	pin = new_pin;
	new_pin = NULL;
2503

2504
	pin->gpiod = gpiod;
2505 2506 2507 2508 2509
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
2510 2511 2512 2513

	mutex_unlock(&regulator_list_mutex);
	kfree(new_pin);

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
		if (pin != rdev->ena_pin)
			continue;

		if (--pin->request_count)
			break;

		gpiod_put(pin->gpiod);
		list_del(&pin->list);
		kfree(pin);
		break;
2536
	}
2537 2538

	rdev->ena_pin = NULL;
2539 2540
}

2541
/**
2542 2543 2544 2545
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2559
			gpiod_set_value_cansleep(pin->gpiod, 1);
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2570
			gpiod_set_value_cansleep(pin->gpiod, 0);
2571 2572 2573 2574 2575 2576 2577
			pin->enable_count = 0;
		}
	}

	return 0;
}

2578
/**
2579
 * _regulator_delay_helper - a delay helper function
2580 2581 2582 2583
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2584
 *     Documentation/timers/timers-howto.rst
2585
 *
2586
 * The assumption here is that these regulator operations will never used in
2587 2588
 * atomic context and therefore sleeping functions can be used.
 */
2589
static void _regulator_delay_helper(unsigned int delay)
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
/**
 * _regulator_check_status_enabled
 *
 * A helper function to check if the regulator status can be interpreted
 * as 'regulator is enabled'.
 * @rdev: the regulator device to check
 *
 * Return:
 * * 1			- if status shows regulator is in enabled state
 * * 0			- if not enabled state
 * * Error Value	- as received from ops->get_status()
 */
static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
{
	int ret = rdev->desc->ops->get_status(rdev);

	if (ret < 0) {
		rdev_info(rdev, "get_status returned error: %d\n", ret);
		return ret;
	}

	switch (ret) {
	case REGULATOR_STATUS_OFF:
	case REGULATOR_STATUS_ERROR:
	case REGULATOR_STATUS_UNDEFINED:
		return 0;
	default:
		return 1;
	}
}

2648 2649 2650 2651 2652 2653 2654 2655 2656
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
2657
		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2658 2659 2660 2661 2662
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2663
	if (rdev->desc->off_on_delay && rdev->last_off) {
2664 2665 2666
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
2667 2668 2669 2670
		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
		s64 remaining = ktime_us_delta(end, ktime_get());

		if (remaining > 0)
2671
			_regulator_delay_helper(remaining);
2672 2673
	}

2674
	if (rdev->ena_pin) {
2675 2676 2677 2678 2679 2680
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2681
	} else if (rdev->desc->ops->enable) {
2682 2683 2684 2685 2686 2687 2688 2689 2690
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
2691 2692
	 * together.
	 */
2693 2694
	trace_regulator_enable_delay(rdev_get_name(rdev));

2695 2696 2697
	/* If poll_enabled_time is set, poll upto the delay calculated
	 * above, delaying poll_enabled_time uS to check if the regulator
	 * actually got enabled.
2698 2699
	 * If the regulator isn't enabled after our delay helper has expired,
	 * return -ETIMEDOUT.
2700 2701 2702 2703 2704
	 */
	if (rdev->desc->poll_enabled_time) {
		unsigned int time_remaining = delay;

		while (time_remaining > 0) {
2705
			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723

			if (rdev->desc->ops->get_status) {
				ret = _regulator_check_status_enabled(rdev);
				if (ret < 0)
					return ret;
				else if (ret)
					break;
			} else if (rdev->desc->ops->is_enabled(rdev))
				break;

			time_remaining -= rdev->desc->poll_enabled_time;
		}

		if (time_remaining <= 0) {
			rdev_err(rdev, "Enabled check timed out\n");
			return -ETIMEDOUT;
		}
	} else {
2724
		_regulator_delay_helper(delay);
2725
	}
2726 2727 2728 2729 2730 2731

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2791
/* locks held by regulator_enable() */
2792
static int _regulator_enable(struct regulator *regulator)
2793
{
2794
	struct regulator_dev *rdev = regulator->rdev;
2795
	int ret;
2796

2797 2798
	lockdep_assert_held_once(&rdev->mutex.base);

2799
	if (rdev->use_count == 0 && rdev->supply) {
2800
		ret = _regulator_enable(rdev->supply);
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2811

2812 2813 2814
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2815

2816
	if (rdev->use_count == 0) {
2817 2818 2819 2820
		/*
		 * The regulator may already be enabled if it's not switchable
		 * or was left on
		 */
2821 2822
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2823
			if (!regulator_ops_is_valid(rdev,
2824 2825
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2826
				goto err_consumer_disable;
2827
			}
2828

2829
			ret = _regulator_do_enable(rdev);
2830
			if (ret < 0)
2831
				goto err_consumer_disable;
2832

2833 2834
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2835
		} else if (ret < 0) {
2836
			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2837
			goto err_consumer_disable;
2838
		}
2839
		/* Fallthrough on positive return values - already enabled */
2840 2841
	}

2842 2843 2844
	rdev->use_count++;

	return 0;
2845

2846 2847 2848
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2849
err_disable_supply:
2850
	if (rdev->use_count == 0 && rdev->supply)
2851
		_regulator_disable(rdev->supply);
2852 2853

	return ret;
2854 2855 2856 2857 2858 2859
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2860 2861 2862 2863
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2864
 * NOTE: the output value can be set by other drivers, boot loader or may be
2865
 * hardwired in the regulator.
2866 2867 2868
 */
int regulator_enable(struct regulator *regulator)
{
2869
	struct regulator_dev *rdev = regulator->rdev;
2870
	struct ww_acquire_ctx ww_ctx;
2871
	int ret;
2872

2873
	regulator_lock_dependent(rdev, &ww_ctx);
2874
	ret = _regulator_enable(regulator);
2875
	regulator_unlock_dependent(rdev, &ww_ctx);
2876

2877 2878 2879 2880
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2881 2882 2883 2884 2885 2886
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2887
	if (rdev->ena_pin) {
2888 2889 2890 2891 2892 2893
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2894 2895 2896 2897 2898 2899 2900

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2901
	if (rdev->desc->off_on_delay)
2902
		rdev->last_off = ktime_get();
2903

2904 2905 2906 2907 2908
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2909
/* locks held by regulator_disable() */
2910
static int _regulator_disable(struct regulator *regulator)
2911
{
2912
	struct regulator_dev *rdev = regulator->rdev;
2913 2914
	int ret = 0;

2915
	lockdep_assert_held_once(&rdev->mutex.base);
2916

D
David Brownell 已提交
2917
	if (WARN(rdev->use_count <= 0,
2918
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2919 2920
		return -EIO;

2921
	/* are we the last user and permitted to disable ? */
2922 2923
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2924 2925

		/* we are last user */
2926
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2927 2928 2929 2930 2931 2932
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2933
			ret = _regulator_do_disable(rdev);
2934
			if (ret < 0) {
2935
				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2936 2937 2938
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2939 2940
				return ret;
			}
2941 2942
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2943 2944 2945 2946 2947 2948
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2949

2950 2951 2952
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2953 2954 2955
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2956
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2957
		ret = _regulator_disable(rdev->supply);
2958

2959 2960 2961 2962 2963 2964 2965
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2966 2967 2968
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2969
 *
2970
 * NOTE: this will only disable the regulator output if no other consumer
2971 2972
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2973 2974 2975
 */
int regulator_disable(struct regulator *regulator)
{
2976
	struct regulator_dev *rdev = regulator->rdev;
2977
	struct ww_acquire_ctx ww_ctx;
2978
	int ret;
2979

2980
	regulator_lock_dependent(rdev, &ww_ctx);
2981
	ret = _regulator_disable(regulator);
2982
	regulator_unlock_dependent(rdev, &ww_ctx);
2983

2984 2985 2986 2987 2988
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2989
static int _regulator_force_disable(struct regulator_dev *rdev)
2990 2991 2992
{
	int ret = 0;

2993
	lockdep_assert_held_once(&rdev->mutex.base);
2994

2995 2996 2997 2998 2999
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

3000 3001
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
3002
		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3003 3004
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3005
		return ret;
3006 3007
	}

3008 3009 3010 3011
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
3025
	struct regulator_dev *rdev = regulator->rdev;
3026
	struct ww_acquire_ctx ww_ctx;
3027 3028
	int ret;

3029
	regulator_lock_dependent(rdev, &ww_ctx);
3030

3031
	ret = _regulator_force_disable(regulator->rdev);
3032

3033 3034
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3035 3036 3037 3038 3039 3040

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

3041 3042
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
3043

3044
	regulator_unlock_dependent(rdev, &ww_ctx);
3045

3046 3047 3048 3049
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

3050 3051 3052 3053
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
3054
	struct ww_acquire_ctx ww_ctx;
3055
	int count, i, ret;
3056 3057
	struct regulator *regulator;
	int total_count = 0;
3058

3059
	regulator_lock_dependent(rdev, &ww_ctx);
3060

3061 3062 3063 3064 3065 3066 3067 3068
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
3081 3082
				rdev_err(rdev, "Deferred disable failed: %pe\n",
					 ERR_PTR(ret));
3083
		}
3084
	}
3085
	WARN_ON(!total_count);
3086

3087 3088 3089 3090
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
3091 3092 3093 3094 3095
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
3096
 * @ms: milliseconds until the regulator is disabled
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

3109 3110 3111
	if (!ms)
		return regulator_disable(regulator);

3112
	regulator_lock(rdev);
3113
	regulator->deferred_disables++;
3114 3115
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
3116
	regulator_unlock(rdev);
3117

3118
	return 0;
3119 3120 3121
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

3122 3123
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
3124
	/* A GPIO control always takes precedence */
3125
	if (rdev->ena_pin)
3126 3127
		return rdev->ena_gpio_state;

3128
	/* If we don't know then assume that the regulator is always on */
3129
	if (!rdev->desc->ops->is_enabled)
3130
		return 1;
3131

3132
	return rdev->desc->ops->is_enabled(rdev);
3133 3134
}

3135 3136
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
3147 3148
		if (selector < rdev->desc->linear_min_sel)
			return 0;
3149
		if (lock)
3150
			regulator_lock(rdev);
3151 3152
		ret = ops->list_voltage(rdev, selector);
		if (lock)
3153
			regulator_unlock(rdev);
3154
	} else if (rdev->is_switch && rdev->supply) {
3155 3156
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

3171 3172 3173 3174
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
3175 3176 3177 3178 3179 3180 3181
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
3182 3183 3184
 */
int regulator_is_enabled(struct regulator *regulator)
{
3185 3186
	int ret;

3187 3188 3189
	if (regulator->always_on)
		return 1;

3190
	regulator_lock(regulator->rdev);
3191
	ret = _regulator_is_enabled(regulator->rdev);
3192
	regulator_unlock(regulator->rdev);
3193 3194

	return ret;
3195 3196 3197
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

3210 3211 3212
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

3213
	if (!rdev->is_switch || !rdev->supply)
3214 3215 3216
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
3227
 * zero if this selector code can't be used on this system, or a
3228 3229 3230 3231
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
3232
	return _regulator_list_voltage(regulator->rdev, selector, 1);
3233 3234 3235
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
3268 3269
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3270 3271 3272 3273

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

3274 3275
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
3276

3277
	return 0;
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3295 3296
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3297 3298 3299

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
3300 3301
	if (selector < rdev->desc->linear_min_sel)
		return 0;
3302 3303 3304 3305 3306 3307 3308
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3324 3325 3326 3327 3328 3329 3330
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3331
 * Returns a boolean.
3332 3333 3334 3335
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3336
	struct regulator_dev *rdev = regulator->rdev;
3337 3338
	int i, voltages, ret;

3339
	/* If we can't change voltage check the current voltage */
3340
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3341 3342
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3343
			return min_uV <= ret && ret <= max_uV;
3344 3345 3346 3347
		else
			return ret;
	}

3348 3349 3350 3351 3352
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3353 3354
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3355
		return 0;
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3367
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3368

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3383 3384 3385 3386 3387
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3388 3389 3390
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3391 3392 3393 3394 3395 3396 3397
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3398
	data.old_uV = regulator_get_voltage_rdev(rdev);
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3422
	data.old_uV = regulator_get_voltage_rdev(rdev);
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3500 3501 3502 3503 3504 3505 3506 3507 3508
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3509 3510
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3511 3512 3513 3514 3515 3516
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3517

3518
	if (ramp_delay == 0)
3519 3520 3521 3522 3523
		return 0;

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3524 3525 3526 3527
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3528
	int delay = 0;
3529
	int best_val = 0;
3530
	unsigned int selector;
3531
	int old_selector = -1;
3532
	const struct regulator_ops *ops = rdev->desc->ops;
3533
	int old_uV = regulator_get_voltage_rdev(rdev);
3534 3535 3536

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3537 3538 3539
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3540 3541 3542 3543
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3544
	if (_regulator_is_enabled(rdev) &&
3545 3546
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3547 3548 3549 3550
		if (old_selector < 0)
			return old_selector;
	}

3551
	if (ops->set_voltage) {
3552 3553
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3554 3555

		if (ret >= 0) {
3556 3557 3558
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3559
			else
3560
				best_val = regulator_get_voltage_rdev(rdev);
3561 3562
		}

3563
	} else if (ops->set_voltage_sel) {
3564
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3565
		if (ret >= 0) {
3566
			best_val = ops->list_voltage(rdev, ret);
3567 3568
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3569 3570
				if (old_selector == selector)
					ret = 0;
3571 3572 3573
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3574
				else
3575 3576
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3577 3578 3579
			} else {
				ret = -EINVAL;
			}
3580
		}
3581 3582 3583
	} else {
		ret = -EINVAL;
	}
3584

3585 3586
	if (ret)
		goto out;
3587

3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3605
		}
3606
	}
3607

3608
	if (delay < 0) {
3609
		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3610
		delay = 0;
3611 3612
	}

3613
	/* Insert any necessary delays */
3614
	_regulator_delay_helper(delay);
3615

3616
	if (best_val >= 0) {
3617 3618
		unsigned long data = best_val;

3619
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3620 3621
				     (void *)data);
	}
3622

3623
out:
3624
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3625 3626 3627 3628

	return ret;
}

3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3655
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3656 3657
					  int min_uV, int max_uV,
					  suspend_state_t state)
3658 3659
{
	struct regulator_dev *rdev = regulator->rdev;
3660
	struct regulator_voltage *voltage = &regulator->voltage[state];
3661
	int ret = 0;
3662
	int old_min_uV, old_max_uV;
3663
	int current_uV;
3664

3665 3666 3667 3668
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3669
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3670 3671
		goto out;

3672
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3673
	 * return successfully even though the regulator does not support
3674 3675
	 * changing the voltage.
	 */
3676
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3677
		current_uV = regulator_get_voltage_rdev(rdev);
3678
		if (min_uV <= current_uV && current_uV <= max_uV) {
3679 3680
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3681 3682 3683 3684
			goto out;
		}
	}

3685
	/* sanity check */
3686 3687
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3688 3689 3690 3691 3692 3693 3694 3695
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3696

3697
	/* restore original values in case of error */
3698 3699 3700 3701
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3702

3703 3704
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3705 3706 3707 3708
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3709

3710 3711 3712 3713
out:
	return ret;
}

3714 3715
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3716 3717 3718 3719 3720
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3721 3722 3723
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3724 3725
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3726 3727 3728 3729 3730 3731
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3732
			goto out;
3733 3734
		}

M
Mark Brown 已提交
3735
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3736 3737
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3738
			goto out;
3739 3740 3741 3742
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3743
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3744 3745
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3746
			goto out;
3747 3748 3749 3750 3751 3752 3753
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3754
				best_supply_uV, INT_MAX, state);
3755
		if (ret) {
3756 3757
			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
				ERR_PTR(ret));
3758
			goto out;
3759 3760 3761
		}
	}

3762 3763 3764 3765 3766
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3767
	if (ret < 0)
3768
		goto out;
3769

3770 3771
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3772
				best_supply_uV, INT_MAX, state);
3773
		if (ret)
3774 3775
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
				 ERR_PTR(ret));
3776 3777 3778 3779
		/* No need to fail here */
		ret = 0;
	}

3780
out:
3781
	return ret;
3782
}
3783
EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3784

3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3795
		*current_uV = regulator_get_voltage_rdev(rdev);
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3827
	int i, ret, max_spread;
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3861
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3872

3873 3874 3875 3876 3877 3878 3879 3880
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3881 3882
	max_spread = constraints->max_spread[0];

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3900
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3938 3939 3940 3941
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3942
			ret = regulator_get_voltage_rdev(rdev);
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

3958 3959
int regulator_do_balance_voltage(struct regulator_dev *rdev,
				 suspend_state_t state, bool skip_coupled)
3960 3961 3962 3963 3964 3965
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3966 3967
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3968 3969

	c_rdevs = c_desc->coupled_rdevs;
3970
	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3997
			if (test_bit(i, &c_rdev_done))
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
4025

4026 4027
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
4028

4029 4030 4031
		if (ret < 0)
			goto out;

4032 4033
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
4034 4035 4036 4037

	} while (n_coupled > 1);

out:
4038 4039 4040
	return ret;
}

4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_coupler *coupler = c_desc->coupler;
	bool skip_coupled = false;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		skip_coupled = true;

	if (c_desc->n_resolved < c_desc->n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);

	return regulator_do_balance_voltage(rdev, state, skip_coupled);
}

4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
4087 4088
	struct ww_acquire_ctx ww_ctx;
	int ret;
4089

4090
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4091

4092 4093
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
4094

4095
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4096

4097 4098 4099 4100
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

4113
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
4167 4168
	struct ww_acquire_ctx ww_ctx;
	int ret;
4169 4170 4171 4172 4173

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

4174
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4175 4176 4177 4178

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

4179
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4180 4181 4182 4183 4184

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
4198 4199
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
4200 4201 4202 4203 4204
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

4205 4206 4207 4208 4209
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

4210
	/* Currently requires operations to do this */
4211
	if (!ops->list_voltage || !rdev->desc->n_voltages)
4212 4213 4214 4215
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
4216 4217 4218
		if (i < rdev->desc->linear_min_sel)
			continue;

4219 4220 4221
		if (old_sel >= 0 && new_sel >= 0)
			break;

4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

4240
/**
4241 4242
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
4243 4244 4245 4246 4247 4248
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
4249
 * Drivers providing ramp_delay in regulation_constraints can use this as their
4250
 * set_voltage_time_sel() operation.
4251 4252 4253 4254 4255
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
4256
	int old_volt, new_volt;
4257

4258 4259 4260
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
4261

4262 4263 4264
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

4265 4266 4267 4268 4269
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4270
}
4271
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4272

4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
{
	int ret;

	regulator_lock(rdev);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* balance only, if regulator is coupled */
	if (rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
	else
		ret = -EOPNOTSUPP;

out:
	regulator_unlock(rdev);
	return ret;
}

4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
4307
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4308 4309
	int ret, min_uV, max_uV;

4310 4311 4312
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
		return 0;

4313
	regulator_lock(rdev);
4314 4315 4316 4317 4318 4319 4320 4321

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
4322
	if (!voltage->min_uV && !voltage->max_uV) {
4323 4324 4325 4326
		ret = -EINVAL;
		goto out;
	}

4327 4328
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
4329 4330 4331 4332 4333 4334

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

4335
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4336 4337 4338
	if (ret < 0)
		goto out;

4339 4340 4341 4342 4343
	/* balance only, if regulator is coupled */
	if (rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
	else
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4344 4345

out:
4346
	regulator_unlock(rdev);
4347 4348 4349 4350
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

4351
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4352
{
4353
	int sel, ret;
4354 4355 4356 4357 4358 4359 4360 4361
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
4362 4363 4364 4365 4366
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
4367

4368
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4369 4370
		}
	}
4371 4372 4373 4374 4375

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4376
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4377
	} else if (rdev->desc->ops->get_voltage) {
4378
		ret = rdev->desc->ops->get_voltage(rdev);
4379 4380
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4381 4382
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4383
	} else if (rdev->supply) {
4384
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4385 4386
	} else if (rdev->supply_name) {
		return -EPROBE_DEFER;
4387
	} else {
4388
		return -EINVAL;
4389
	}
4390

4391 4392
	if (ret < 0)
		return ret;
4393
	return ret - rdev->constraints->uV_offset;
4394
}
4395
EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4408
	struct ww_acquire_ctx ww_ctx;
4409 4410
	int ret;

4411
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4412
	ret = regulator_get_voltage_rdev(regulator->rdev);
4413
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4414 4415 4416 4417 4418 4419 4420 4421

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4422
 * @min_uA: Minimum supported current in uA
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4441
	regulator_lock(rdev);
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4456
	regulator_unlock(rdev);
4457 4458 4459 4460
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4461 4462 4463 4464 4465 4466 4467 4468 4469
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4470 4471 4472 4473
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4474
	regulator_lock(rdev);
4475
	ret = _regulator_get_current_limit_unlocked(rdev);
4476
	regulator_unlock(rdev);
4477

4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4511
	int regulator_curr_mode;
4512

4513
	regulator_lock(rdev);
4514 4515 4516 4517 4518 4519 4520

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4521 4522 4523 4524 4525 4526 4527 4528 4529
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4530
	/* constraints check */
4531
	ret = regulator_mode_constrain(rdev, &mode);
4532 4533 4534 4535 4536
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4537
	regulator_unlock(rdev);
4538 4539 4540 4541
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4542 4543 4544 4545 4546 4547 4548 4549 4550
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4551 4552 4553 4554
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4555
	regulator_lock(rdev);
4556
	ret = _regulator_get_mode_unlocked(rdev);
4557
	regulator_unlock(rdev);
4558

4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
{
	int ret = 0;

	if (rdev->use_cached_err) {
		spin_lock(&rdev->err_lock);
		ret = rdev->cached_err;
		spin_unlock(&rdev->err_lock);
	}
	return ret;
}

4586 4587 4588
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
4589
	int cached_flags, ret = 0;
4590

4591
	regulator_lock(rdev);
4592

4593 4594 4595 4596 4597
	cached_flags = rdev_get_cached_err_flags(rdev);

	if (rdev->desc->ops->get_error_flags)
		ret = rdev->desc->ops->get_error_flags(rdev, flags);
	else if (!rdev->use_cached_err)
4598 4599
		ret = -EINVAL;

4600 4601
	*flags |= cached_flags;

4602
	regulator_unlock(rdev);
4603

4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4621
/**
4622
 * regulator_set_load - set regulator load
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4645 4646 4647 4648 4649 4650 4651 4652
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4653
 * On error a negative errno is returned.
4654
 */
4655
int regulator_set_load(struct regulator *regulator, int uA_load)
4656 4657
{
	struct regulator_dev *rdev = regulator->rdev;
4658 4659
	int old_uA_load;
	int ret = 0;
4660

4661
	regulator_lock(rdev);
4662
	old_uA_load = regulator->uA_load;
4663
	regulator->uA_load = uA_load;
4664 4665 4666 4667 4668
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4669
	regulator_unlock(rdev);
4670

4671 4672
	return ret;
}
4673
EXPORT_SYMBOL_GPL(regulator_set_load);
4674

4675 4676 4677 4678
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4679
 * @enable: enable or disable bypass mode
4680 4681 4682 4683 4684 4685 4686 4687 4688
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
4689
	const char *name = rdev_get_name(rdev);
4690 4691 4692 4693 4694
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4695
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4696 4697
		return 0;

4698
	regulator_lock(rdev);
4699 4700 4701 4702 4703

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
4704 4705
			trace_regulator_bypass_enable(name);

4706 4707 4708
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
4709 4710
			else
				trace_regulator_bypass_enable_complete(name);
4711 4712 4713 4714 4715 4716
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
4717 4718
			trace_regulator_bypass_disable(name);

4719 4720 4721
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
4722 4723
			else
				trace_regulator_bypass_disable_complete(name);
4724 4725 4726 4727 4728 4729
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4730
	regulator_unlock(rdev);
4731 4732 4733 4734 4735

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4736 4737 4738
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4739
 * @nb: notifier block
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4754
 * @nb: notifier block
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4766 4767 4768
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4769
static int _notifier_call_chain(struct regulator_dev *rdev,
4770 4771 4772
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4773
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4800 4801
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4802
		if (IS_ERR(consumers[i].consumer)) {
4803 4804 4805
			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
					    "Failed to get supply '%s'",
					    consumers[i].supply);
4806
			consumers[i].consumer = NULL;
4807 4808
			goto err;
		}
4809 4810 4811 4812 4813 4814 4815 4816 4817

		if (consumers[i].init_load_uA > 0) {
			ret = regulator_set_load(consumers[i].consumer,
						 consumers[i].init_load_uA);
			if (ret) {
				i++;
				goto err;
			}
		}
4818 4819 4820 4821 4822
	}

	return 0;

err:
4823
	while (--i >= 0)
4824 4825 4826 4827 4828 4829
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4830 4831 4832 4833 4834 4835 4836
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4852
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4853
	int i;
4854
	int ret = 0;
4855

4856
	for (i = 0; i < num_consumers; i++) {
4857 4858
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4859
	}
4860 4861 4862 4863

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4864
	for (i = 0; i < num_consumers; i++) {
4865 4866
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4867
			goto err;
4868
		}
4869 4870 4871 4872 4873
	}

	return 0;

err:
4874 4875
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
4876 4877
			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
			       ERR_PTR(consumers[i].ret));
4878 4879 4880
		else
			regulator_disable(consumers[i].consumer);
	}
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4894 4895
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4896 4897 4898 4899 4900 4901
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4902
	int ret, r;
4903

4904
	for (i = num_consumers - 1; i >= 0; --i) {
4905 4906 4907 4908 4909 4910 4911 4912
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4913
	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4914 4915 4916
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4917 4918
			pr_err("Failed to re-enable %s: %pe\n",
			       consumers[i].supply, ERR_PTR(r));
4919
	}
4920 4921 4922 4923 4924

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4943
	int ret = 0;
4944

4945
	for (i = 0; i < num_consumers; i++) {
4946 4947 4948
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4949 4950
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4951 4952 4953 4954 4955 4956 4957
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4981
 * @rdev: regulator source
4982
 * @event: notifier block
4983
 * @data: callback-specific data.
4984 4985
 *
 * Called by regulator drivers to notify clients a regulator event has
4986
 * occurred.
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
5013
	case REGULATOR_MODE_STANDBY:
5014 5015
		return REGULATOR_STATUS_STANDBY;
	default:
5016
		return REGULATOR_STATUS_UNDEFINED;
5017 5018 5019 5020
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
5036 5037 5038 5039 5040 5041 5042 5043 5044
	&dev_attr_under_voltage.attr,
	&dev_attr_over_current.attr,
	&dev_attr_regulation_out.attr,
	&dev_attr_fail.attr,
	&dev_attr_over_temp.attr,
	&dev_attr_under_voltage_warn.attr,
	&dev_attr_over_current_warn.attr,
	&dev_attr_over_voltage_warn.attr,
	&dev_attr_over_temp_warn.attr,
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

5057 5058 5059 5060
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
5061 5062
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
5063
{
5064
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
5065
	struct regulator_dev *rdev = dev_to_rdev(dev);
5066
	const struct regulator_ops *ops = rdev->desc->ops;
5067 5068 5069 5070 5071 5072 5073
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
5074 5075

	/* some attributes need specific methods to be displayed */
5076 5077 5078 5079 5080 5081 5082
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
5083
	}
5084

5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
	if (attr == &dev_attr_under_voltage.attr ||
	    attr == &dev_attr_over_current.attr ||
	    attr == &dev_attr_regulation_out.attr ||
	    attr == &dev_attr_fail.attr ||
	    attr == &dev_attr_over_temp.attr ||
	    attr == &dev_attr_under_voltage_warn.attr ||
	    attr == &dev_attr_over_current_warn.attr ||
	    attr == &dev_attr_over_voltage_warn.attr ||
	    attr == &dev_attr_over_temp_warn.attr)
		return ops->get_error_flags ? mode : 0;

5111
	/* constraints need specific supporting methods */
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
5147

5148 5149 5150
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
5151 5152 5153

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
5154
	kfree(rdev);
5155 5156
}

5157 5158
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5171
	if (!rdev->debugfs) {
5172 5173 5174 5175 5176 5177 5178 5179
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
5180 5181
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
5182 5183
}

5184 5185
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
5186 5187 5188 5189 5190 5191
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
5192 5193
}

5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

5245
static void regulator_resolve_coupling(struct regulator_dev *rdev)
5246
{
5247
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

5260 5261
		if (!c_rdev)
			continue;
5262

5263 5264 5265 5266 5267 5268
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

5269 5270
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
5271

5272 5273
		regulator_resolve_coupling(c_rdev);
	}
5274 5275
}

5276
static void regulator_remove_coupling(struct regulator_dev *rdev)
5277
{
5278
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5279 5280 5281 5282
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
5283
	int err;
5284

5285
	n_coupled = c_desc->n_coupled;
5286

5287 5288
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
5289

5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
5313 5314 5315 5316

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
5317 5318
			rdev_err(rdev, "failed to detach from coupler: %pe\n",
				 ERR_PTR(err));
5319 5320 5321 5322
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
5323 5324
}

5325
static int regulator_init_coupling(struct regulator_dev *rdev)
5326
{
5327
	struct regulator_dev **coupled;
5328
	int err, n_phandles;
5329 5330 5331 5332 5333 5334

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

5335 5336
	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
	if (!coupled)
5337
		return -ENOMEM;
5338

5339 5340
	rdev->coupling_desc.coupled_rdevs = coupled;

5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

5353
	if (!of_check_coupling_data(rdev))
5354 5355
		return -EPERM;

5356
	mutex_lock(&regulator_list_mutex);
5357
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5358 5359
	mutex_unlock(&regulator_list_mutex);

5360 5361
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
5362
		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5363
		return err;
5364 5365
	}

5366 5367 5368 5369 5370 5371 5372 5373 5374
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5375
		return -EPERM;
5376
	}
5377

5378 5379 5380 5381 5382 5383
	if (!rdev->constraints->always_on) {
		rdev_err(rdev,
			 "Coupling of a non always-on regulator is unimplemented\n");
		return -ENOTSUPP;
	}

5384 5385 5386
	return 0;
}

5387 5388 5389 5390
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

5391 5392
/**
 * regulator_register - register regulator
5393
 * @regulator_desc: regulator to register
5394
 * @cfg: runtime configuration for regulator
5395 5396
 *
 * Called by regulator drivers to register a regulator.
5397 5398
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
5399
 */
5400 5401
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
5402
		   const struct regulator_config *cfg)
5403
{
5404
	const struct regulator_init_data *init_data;
5405
	struct regulator_config *config = NULL;
5406
	static atomic_t regulator_no = ATOMIC_INIT(-1);
5407
	struct regulator_dev *rdev;
5408 5409
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
5410
	struct device *dev;
5411
	int ret, i;
5412
	bool resolved_early = false;
5413

5414
	if (cfg == NULL)
5415
		return ERR_PTR(-EINVAL);
5416 5417 5418 5419 5420 5421
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5422

5423
	dev = cfg->dev;
5424
	WARN_ON(!dev);
5425

5426 5427 5428 5429
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5430

5431
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5432 5433 5434 5435
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5436

5437 5438 5439
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5440 5441
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5442 5443 5444 5445

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5446 5447
		ret = -EINVAL;
		goto rinse;
5448
	}
5449 5450
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5451 5452
		ret = -EINVAL;
		goto rinse;
5453
	}
5454

5455
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5456 5457 5458 5459
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5460
	device_initialize(&rdev->dev);
5461
	spin_lock_init(&rdev->err_lock);
5462

5463 5464 5465 5466 5467 5468
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
5469
		ret = -ENOMEM;
5470
		goto clean;
5471 5472
	}

5473
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5474
					       &rdev->dev.of_node);
5475 5476 5477 5478 5479 5480 5481 5482

	/*
	 * Sometimes not all resources are probed already so we need to take
	 * that into account. This happens most the time if the ena_gpiod comes
	 * from a gpio extender or something else.
	 */
	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
		ret = -EPROBE_DEFER;
5483
		goto clean;
5484 5485
	}

5486 5487 5488 5489 5490
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5491
	 * a descriptor, we definitely got one from parsing the device
5492 5493 5494 5495
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5496 5497 5498 5499 5500
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5501
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5502
	rdev->reg_data = config->driver_data;
5503 5504
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5505 5506
	if (config->regmap)
		rdev->regmap = config->regmap;
5507
	else if (dev_get_regmap(dev, NULL))
5508
		rdev->regmap = dev_get_regmap(dev, NULL);
5509 5510
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5511 5512 5513
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5514
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5515

5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
	if (init_data && init_data->supply_regulator)
		rdev->supply_name = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		rdev->supply_name = regulator_desc->supply_name;

	/* register with sysfs */
	rdev->dev.class = &regulator_class;
	rdev->dev.parent = dev;
	dev_set_name(&rdev->dev, "regulator.%lu",
		    (unsigned long) atomic_inc_return(&regulator_no));
	dev_set_drvdata(&rdev->dev, rdev);

5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
	/* set regulator constraints */
	if (init_data)
		rdev->constraints = kmemdup(&init_data->constraints,
					    sizeof(*rdev->constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
					    GFP_KERNEL);
	if (!rdev->constraints) {
		ret = -ENOMEM;
5538
		goto wash;
5539 5540 5541
	}

	if ((rdev->supply_name && !rdev->supply) &&
5542 5543
		(rdev->constraints->always_on ||
		 rdev->constraints->boot_on)) {
5544 5545 5546 5547
		ret = regulator_resolve_supply(rdev);
		if (ret)
			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
					 ERR_PTR(ret));
5548 5549

		resolved_early = true;
5550 5551 5552
	}

	/* perform any regulator specific init */
5553
	if (init_data && init_data->regulator_init) {
5554
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5555
		if (ret < 0)
5556
			goto wash;
5557 5558
	}

5559
	if (config->ena_gpiod) {
5560 5561
		ret = regulator_ena_gpio_request(rdev, config);
		if (ret != 0) {
5562 5563
			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
				 ERR_PTR(ret));
5564
			goto wash;
5565
		}
5566 5567 5568
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5569 5570
	}

5571
	ret = set_machine_constraints(rdev);
5572
	if (ret == -EPROBE_DEFER && !resolved_early) {
5573
		/* Regulator might be in bypass mode and so needs its supply
5574 5575
		 * to set the constraints
		 */
5576 5577
		/* FIXME: this currently triggers a chicken-and-egg problem
		 * when creating -SUPPLY symlink in sysfs to a regulator
5578 5579
		 * that is just being created
		 */
5580 5581
		rdev_dbg(rdev, "will resolve supply early: %s\n",
			 rdev->supply_name);
5582 5583
		ret = regulator_resolve_supply(rdev);
		if (!ret)
5584
			ret = set_machine_constraints(rdev);
5585 5586 5587 5588
		else
			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
				 ERR_PTR(ret));
	}
5589 5590 5591
	if (ret < 0)
		goto wash;

5592 5593
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
5594 5595
		goto wash;

5596
	/* add consumers devices */
5597 5598 5599 5600
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5601
				init_data->consumer_supplies[i].supply);
5602 5603 5604 5605 5606
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5607
		}
5608
	}
5609

5610 5611 5612 5613 5614
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5615 5616
	ret = device_add(&rdev->dev);
	if (ret != 0)
5617 5618
		goto unset_supplies;

5619
	rdev_init_debugfs(rdev);
5620

5621 5622 5623 5624 5625
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5626 5627 5628
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5629
	kfree(config);
5630
	return rdev;
D
David Brownell 已提交
5631

5632
unset_supplies:
5633
	mutex_lock(&regulator_list_mutex);
5634
	unset_regulator_supplies(rdev);
5635
	regulator_remove_coupling(rdev);
5636
	mutex_unlock(&regulator_list_mutex);
5637
wash:
5638
	kfree(rdev->coupling_desc.coupled_rdevs);
5639
	mutex_lock(&regulator_list_mutex);
5640
	regulator_ena_gpio_free(rdev);
5641
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5642
clean:
5643 5644
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
5645
	kfree(config);
5646
	put_device(&rdev->dev);
5647 5648 5649
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5650
	return ERR_PTR(ret);
5651 5652 5653 5654 5655
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5656
 * @rdev: regulator to unregister
5657 5658 5659 5660 5661 5662 5663 5664
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5665 5666 5667
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5668
		regulator_put(rdev->supply);
5669
	}
5670

5671 5672
	flush_work(&rdev->disable_work.work);

5673
	mutex_lock(&regulator_list_mutex);
5674

5675
	debugfs_remove_recursive(rdev->debugfs);
5676
	WARN_ON(rdev->open_count);
5677
	regulator_remove_coupling(rdev);
5678
	unset_regulator_supplies(rdev);
5679
	list_del(&rdev->list);
5680
	regulator_ena_gpio_free(rdev);
5681
	device_unregister(&rdev->dev);
5682 5683

	mutex_unlock(&regulator_list_mutex);
5684 5685 5686
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5687
#ifdef CONFIG_SUSPEND
5688
/**
5689
 * regulator_suspend - prepare regulators for system wide suspend
5690
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5691 5692 5693
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5694
static int regulator_suspend(struct device *dev)
5695
{
5696
	struct regulator_dev *rdev = dev_to_rdev(dev);
5697
	suspend_state_t state = pm_suspend_target_state;
5698
	int ret;
5699 5700 5701 5702 5703
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev, state);
	if (!rstate)
		return 0;
5704 5705

	regulator_lock(rdev);
5706
	ret = __suspend_set_state(rdev, rstate);
5707
	regulator_unlock(rdev);
5708

5709
	return ret;
5710
}
5711

5712
static int regulator_resume(struct device *dev)
5713
{
5714
	suspend_state_t state = pm_suspend_target_state;
5715
	struct regulator_dev *rdev = dev_to_rdev(dev);
5716
	struct regulator_state *rstate;
5717
	int ret = 0;
5718

5719
	rstate = regulator_get_suspend_state(rdev, state);
5720
	if (rstate == NULL)
5721
		return 0;
5722

5723 5724 5725 5726
	/* Avoid grabbing the lock if we don't need to */
	if (!rdev->desc->ops->resume)
		return 0;

5727
	regulator_lock(rdev);
5728

5729 5730
	if (rstate->enabled == ENABLE_IN_SUSPEND ||
	    rstate->enabled == DISABLE_IN_SUSPEND)
5731
		ret = rdev->desc->ops->resume(rdev);
5732

5733
	regulator_unlock(rdev);
5734

5735
	return ret;
5736
}
5737 5738
#else /* !CONFIG_SUSPEND */

5739 5740
#define regulator_suspend	NULL
#define regulator_resume	NULL
5741 5742 5743 5744 5745

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5746 5747
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5748 5749 5750
};
#endif

M
Mark Brown 已提交
5751
struct class regulator_class = {
5752 5753 5754 5755 5756 5757 5758
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5776 5777
/**
 * rdev_get_drvdata - get rdev regulator driver data
5778
 * @rdev: regulator
5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
5814
 * rdev_get_id - get regulator ID
5815
 * @rdev: regulator
5816 5817 5818 5819 5820 5821 5822
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5823 5824 5825 5826 5827 5828
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5829 5830 5831 5832 5833 5834
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5835 5836 5837 5838 5839 5840
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5841
#ifdef CONFIG_DEBUG_FS
5842
static int supply_map_show(struct seq_file *sf, void *data)
5843 5844 5845 5846
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5847 5848 5849
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5850 5851
	}

5852 5853
	return 0;
}
5854
DEFINE_SHOW_ATTRIBUTE(supply_map);
5855

5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5878 5879 5880 5881 5882 5883
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5884
	struct summary_data summary_data;
5885
	unsigned int opmode;
5886 5887 5888 5889

	if (!rdev)
		return;

5890
	opmode = _regulator_get_mode_unlocked(rdev);
5891
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5892 5893
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5894
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5895
		   regulator_opmode_to_str(opmode));
5896

5897
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5898 5899
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5918
		if (consumer->dev && consumer->dev->class == &regulator_class)
5919 5920 5921 5922
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5923
			   30 - (level + 1) * 3,
5924
			   consumer->supply_name ? consumer->supply_name :
5925
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5926 5927 5928

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5929 5930
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5931
				   consumer->uA_load / 1000,
5932 5933
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5934 5935
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5936 5937 5938 5939 5940 5941 5942 5943
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5944 5945 5946
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5947

5948 5949
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5987 5988

	regulator_unlock(rdev);
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

6019 6020
	mutex_lock(&regulator_list_mutex);

6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
6047 6048

	mutex_unlock(&regulator_list_mutex);
6049 6050
}

6051
static int regulator_summary_show_roots(struct device *dev, void *data)
6052
{
6053 6054
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
6055

6056 6057
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
6058

6059 6060
	return 0;
}
6061

6062 6063
static int regulator_summary_show(struct seq_file *s, void *data)
{
6064 6065
	struct ww_acquire_ctx ww_ctx;

6066 6067
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6068

6069 6070
	regulator_summary_lock(&ww_ctx);

6071 6072
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
6073

6074 6075
	regulator_summary_unlock(&ww_ctx);

6076 6077
	return 0;
}
6078 6079
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
6080

6081 6082
static int __init regulator_init(void)
{
6083 6084 6085 6086
	int ret;

	ret = class_register(&regulator_class);

6087
	debugfs_root = debugfs_create_dir("regulator", NULL);
6088
	if (!debugfs_root)
6089
		pr_warn("regulator: Failed to create debugfs directory\n");
6090

6091
#ifdef CONFIG_DEBUG_FS
6092 6093
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
6094

6095
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6096
			    NULL, &regulator_summary_fops);
6097
#endif
6098 6099
	regulator_dummy_init();

6100 6101
	regulator_coupler_register(&generic_regulator_coupler);

6102
	return ret;
6103 6104 6105 6106
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
6107

6108
static int regulator_late_cleanup(struct device *dev, void *data)
6109
{
6110 6111
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct regulation_constraints *c = rdev->constraints;
6112
	int ret;
6113

6114 6115 6116
	if (c && c->always_on)
		return 0;

6117
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6118 6119
		return 0;

6120
	regulator_lock(rdev);
6121 6122 6123 6124

	if (rdev->use_count)
		goto unlock;

6125 6126
	/* If reading the status failed, assume that it's off. */
	if (_regulator_is_enabled(rdev) <= 0)
6127 6128 6129 6130
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
6131 6132
		 * wrong.
		 */
6133 6134 6135
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
6136
			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6137 6138 6139 6140 6141 6142 6143 6144 6145 6146
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
6147
	regulator_unlock(rdev);
6148 6149 6150 6151

	return 0;
}

6152
static void regulator_init_complete_work_function(struct work_struct *work)
6153
{
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

6164
	/* If we have a full configuration then disable any regulators
6165 6166 6167
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
6168
	 */
6169 6170
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
}

static DECLARE_DELAYED_WORK(regulator_init_complete_work,
			    regulator_init_complete_work_function);

static int __init regulator_init_complete(void)
{
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

	/*
6188 6189 6190 6191 6192 6193 6194 6195 6196
	 * We punt completion for an arbitrary amount of time since
	 * systems like distros will load many drivers from userspace
	 * so consumers might not always be ready yet, this is
	 * particularly an issue with laptops where this might bounce
	 * the display off then on.  Ideally we'd get a notification
	 * from userspace when this happens but we don't so just wait
	 * a bit and hope we waited long enough.  It'd be better if
	 * we'd only do this on systems that need it, and a kernel
	 * command line option might be useful.
6197
	 */
6198 6199
	schedule_delayed_work(&regulator_init_complete_work,
			      msecs_to_jiffies(30000));
6200 6201 6202

	return 0;
}
6203
late_initcall_sync(regulator_init_complete);