core.c 142.9 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
55 56
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
57
static LIST_HEAD(regulator_ena_gpio_list);
58
static LIST_HEAD(regulator_supply_alias_list);
59
static bool has_full_constraints;
60

61 62
static struct dentry *debugfs_root;

63
/*
64 65 66 67 68 69
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
70
	const char *dev_name;   /* The dev_name() for the consumer */
71
	const char *supply;
72
	struct regulator_dev *regulator;
73 74
};

75 76 77 78 79 80 81
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
82
	struct gpio_desc *gpiod;
83 84 85 86
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

87 88 89 90 91 92 93 94 95 96 97 98 99
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

100
static int _regulator_is_enabled(struct regulator_dev *rdev);
101
static int _regulator_disable(struct regulator *regulator);
102 103 104
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105
static int _notifier_call_chain(struct regulator_dev *rdev,
106
				  unsigned long event, void *data);
107 108
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
109 110
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
111 112 113
static int regulator_set_voltage_rdev(struct regulator_dev *rdev,
				      int min_uV, int max_uV,
				      suspend_state_t state);
114 115 116
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
117
static void _regulator_put(struct regulator *regulator);
118

119 120 121 122 123 124 125 126 127 128
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

129 130
static bool have_full_constraints(void)
{
131
	return has_full_constraints || of_have_populated_dt();
132 133
}

134 135 136 137 138 139 140 141 142 143 144 145 146
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

147 148 149 150 151 152 153 154
static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
{
	if (rdev && rdev->supply)
		return rdev->supply->rdev;

	return NULL;
}

155 156 157
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
158
 * @ww_ctx:		w/w mutex acquire context
159 160 161 162 163 164 165
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
166 167
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
168
{
169 170 171 172 173 174 175
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
176
			rdev->ref_cnt++;
177 178 179 180 181 182 183
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
184
		}
185 186
	} else {
		lock = true;
187 188
	}

189 190 191 192 193 194 195 196
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
197 198
}

199 200 201 202 203 204 205 206 207 208 209
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
void regulator_lock(struct regulator_dev *rdev)
210
{
211
	regulator_lock_nested(rdev, NULL);
212
}
213
EXPORT_SYMBOL_GPL(regulator_lock);
214 215 216 217 218 219 220 221

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
222
void regulator_unlock(struct regulator_dev *rdev)
223
{
224
	mutex_lock(&regulator_nesting_mutex);
225

226 227 228
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
229
	}
230 231 232 233

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
234
}
235
EXPORT_SYMBOL_GPL(regulator_unlock);
236

237
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
238
{
239 240 241 242 243
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
244

245 246 247 248 249 250 251
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

252 253
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
254
{
255
	struct regulator_dev *c_rdev;
256
	int i;
257

258 259
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
260 261 262 263

		if (!c_rdev)
			continue;

264
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
265 266 267
			regulator_unlock_recursive(
					c_rdev->supply->rdev,
					c_rdev->coupling_desc.n_coupled);
268

269 270
		regulator_unlock(c_rdev);
	}
271 272
}

273 274 275 276
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
277
{
278
	struct regulator_dev *c_rdev;
279
	int i, err;
280

281 282
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
283

284 285
		if (!c_rdev)
			continue;
286

287 288 289 290 291 292 293
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
294

295 296 297 298 299 300 301
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

302
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
303 304 305 306 307 308 309 310
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
311 312
		}
	}
313 314 315 316 317 318 319

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
320 321
}

322
/**
323 324 325 326 327
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
328
 * Unlock all regulators related with rdev by coupling or supplying.
329
 */
330 331
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
332
{
333 334
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
335 336 337
}

/**
338 339
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
340
 * @ww_ctx:			w/w mutex acquire context
341 342
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
343
 * all regulators related with rdev by coupling or supplying.
344
 */
345 346
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
347
{
348 349 350
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
351

352
	mutex_lock(&regulator_list_mutex);
353

354
	ww_acquire_init(ww_ctx, &regulator_ww_class);
355

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
376 377
}

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
			if (regnode)
				return regnode;
		} else {
			return regnode;
		}
	}
	return NULL;
}

409 410 411 412 413 414
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
415
 * returns the device node corresponding to the regulator if found, else
416 417 418 419 420 421 422 423 424 425 426 427 428
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
429 430 431 432
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

433 434
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
435 436 437 438 439
		return NULL;
	}
	return regnode;
}

440 441 442 443 444 445
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

446
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
447
		rdev_err(rdev, "voltage operation not allowed\n");
448 449 450 451 452 453 454 455
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

456 457
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
458
			 *min_uV, *max_uV);
459
		return -EINVAL;
460
	}
461 462 463 464

	return 0;
}

465 466 467 468 469 470
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

471 472 473 474
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
475 476
				     int *min_uV, int *max_uV,
				     suspend_state_t state)
477 478
{
	struct regulator *regulator;
479
	struct regulator_voltage *voltage;
480 481

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
482
		voltage = &regulator->voltage[state];
483 484 485 486
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
487
		if (!voltage->min_uV && !voltage->max_uV)
488 489
			continue;

490 491 492 493
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
494 495
	}

496
	if (*min_uV > *max_uV) {
497 498
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
499
		return -EINVAL;
500
	}
501 502 503 504

	return 0;
}

505 506 507 508 509 510
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

511
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
512
		rdev_err(rdev, "current operation not allowed\n");
513 514 515 516 517 518 519 520
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

521 522
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
523
			 *min_uA, *max_uA);
524
		return -EINVAL;
525
	}
526 527 528 529 530

	return 0;
}

/* operating mode constraint check */
531 532
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
533
{
534
	switch (*mode) {
535 536 537 538 539 540
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
541
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
542 543 544
		return -EINVAL;
	}

545
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
546
		rdev_err(rdev, "mode operation not allowed\n");
547 548
		return -EPERM;
	}
549 550 551 552 553 554 555 556

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
557
	}
558 559

	return -EINVAL;
560 561
}

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

580 581 582
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
583
	struct regulator_dev *rdev = dev_get_drvdata(dev);
584 585
	ssize_t ret;

586
	regulator_lock(rdev);
587
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
588
	regulator_unlock(rdev);
589 590 591

	return ret;
}
592
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
593 594 595 596

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
597
	struct regulator_dev *rdev = dev_get_drvdata(dev);
598 599 600

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
601
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
602

603 604
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
605 606 607
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

608
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
609
}
610
static DEVICE_ATTR_RO(name);
611

612
static const char *regulator_opmode_to_str(int mode)
613 614 615
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
616
		return "fast";
617
	case REGULATOR_MODE_NORMAL:
618
		return "normal";
619
	case REGULATOR_MODE_IDLE:
620
		return "idle";
621
	case REGULATOR_MODE_STANDBY:
622
		return "standby";
623
	}
624 625 626 627 628 629
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
630 631
}

D
David Brownell 已提交
632 633
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
634
{
635
	struct regulator_dev *rdev = dev_get_drvdata(dev);
636

D
David Brownell 已提交
637 638
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
639
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
640 641 642

static ssize_t regulator_print_state(char *buf, int state)
{
643 644 645 646 647 648 649 650
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
651 652 653 654
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
655 656
	ssize_t ret;

657
	regulator_lock(rdev);
658
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
659
	regulator_unlock(rdev);
D
David Brownell 已提交
660

661
	return ret;
D
David Brownell 已提交
662
}
663
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
664

D
David Brownell 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
698 699 700
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
701 702 703
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
704 705 706 707 708 709 710 711
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

712 713 714
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
715
	struct regulator_dev *rdev = dev_get_drvdata(dev);
716 717 718 719 720 721

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
722
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
723 724 725 726

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
727
	struct regulator_dev *rdev = dev_get_drvdata(dev);
728 729 730 731 732 733

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
734
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
735 736 737 738

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
739
	struct regulator_dev *rdev = dev_get_drvdata(dev);
740 741 742 743 744 745

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
746
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
747 748 749 750

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
751
	struct regulator_dev *rdev = dev_get_drvdata(dev);
752 753 754 755 756 757

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
758
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
759 760 761 762

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
763
	struct regulator_dev *rdev = dev_get_drvdata(dev);
764 765 766
	struct regulator *regulator;
	int uA = 0;

767
	regulator_lock(rdev);
768 769 770 771
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
772
	regulator_unlock(rdev);
773 774
	return sprintf(buf, "%d\n", uA);
}
775
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
776

777 778
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
779
{
780
	struct regulator_dev *rdev = dev_get_drvdata(dev);
781 782
	return sprintf(buf, "%d\n", rdev->use_count);
}
783
static DEVICE_ATTR_RO(num_users);
784

785 786
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
787
{
788
	struct regulator_dev *rdev = dev_get_drvdata(dev);
789 790 791 792 793 794 795 796 797

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
798
static DEVICE_ATTR_RO(type);
799 800 801 802

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
803
	struct regulator_dev *rdev = dev_get_drvdata(dev);
804 805 806

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
807 808
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
809 810 811 812

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
813
	struct regulator_dev *rdev = dev_get_drvdata(dev);
814 815 816

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
817 818
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
819 820 821 822

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
823
	struct regulator_dev *rdev = dev_get_drvdata(dev);
824 825 826

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
827 828
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
829 830 831 832

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
833
	struct regulator_dev *rdev = dev_get_drvdata(dev);
834

D
David Brownell 已提交
835 836
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
837
}
838 839
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
840 841 842 843

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
844
	struct regulator_dev *rdev = dev_get_drvdata(dev);
845

D
David Brownell 已提交
846 847
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
848
}
849 850
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
851 852 853 854

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
855
	struct regulator_dev *rdev = dev_get_drvdata(dev);
856

D
David Brownell 已提交
857 858
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
859
}
860 861
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
862 863 864 865

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
866
	struct regulator_dev *rdev = dev_get_drvdata(dev);
867

D
David Brownell 已提交
868 869
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
870
}
871 872
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
873 874 875 876

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
877
	struct regulator_dev *rdev = dev_get_drvdata(dev);
878

D
David Brownell 已提交
879 880
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
881
}
882 883
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
884 885 886 887

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
888
	struct regulator_dev *rdev = dev_get_drvdata(dev);
889

D
David Brownell 已提交
890 891
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
892
}
893 894 895
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
917

918 919
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
920
static int drms_uA_update(struct regulator_dev *rdev)
921 922 923 924 925
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

926
	lockdep_assert_held_once(&rdev->mutex.base);
927

928 929 930 931
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
932
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
933 934
		return 0;

935 936
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
937 938
		return 0;

939 940
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
941
		return -EINVAL;
942 943

	/* calc total requested load */
944 945 946 947
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
948

949 950
	current_uA += rdev->constraints->system_load;

951 952 953 954 955 956
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
		/* get output voltage */
		output_uV = _regulator_get_voltage(rdev);
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

975 976 977 978 979 980 981 982 983 984 985
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
986

987 988 989
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
990 991 992
	}

	return err;
993 994 995
}

static int suspend_set_state(struct regulator_dev *rdev,
996
				    suspend_state_t state)
997 998
{
	int ret = 0;
999 1000 1001 1002
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
1003
		return 0;
1004

1005
	/* If we have no suspend mode configuration don't set anything;
1006 1007
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
1008
	 */
1009 1010
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
1011 1012
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
1013
			rdev_warn(rdev, "No configuration\n");
1014 1015 1016
		return 0;
	}

1017 1018
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1019
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1020 1021
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1022
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1023 1024 1025
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1026
	if (ret < 0) {
1027
		rdev_err(rdev, "failed to enabled/disable\n");
1028 1029 1030 1031 1032 1033
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1034
			rdev_err(rdev, "failed to set voltage\n");
1035 1036 1037 1038 1039 1040 1041
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1042
			rdev_err(rdev, "failed to set mode\n");
1043 1044 1045 1046
			return ret;
		}
	}

1047
	return ret;
1048 1049 1050 1051 1052
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
1053
	char buf[160] = "";
1054
	size_t len = sizeof(buf) - 1;
1055 1056
	int count = 0;
	int ret;
1057

1058
	if (constraints->min_uV && constraints->max_uV) {
1059
		if (constraints->min_uV == constraints->max_uV)
1060 1061
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1062
		else
1063 1064 1065 1066
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1067 1068 1069 1070 1071 1072
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
1073 1074
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1075 1076
	}

1077
	if (constraints->uV_offset)
1078 1079
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1080

1081
	if (constraints->min_uA && constraints->max_uA) {
1082
		if (constraints->min_uA == constraints->max_uA)
1083 1084
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1085
		else
1086 1087 1088 1089
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1090 1091 1092 1093 1094 1095
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1096 1097
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1098
	}
1099

1100
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1101
		count += scnprintf(buf + count, len - count, "fast ");
1102
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1103
		count += scnprintf(buf + count, len - count, "normal ");
1104
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1105
		count += scnprintf(buf + count, len - count, "idle ");
1106
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1107
		count += scnprintf(buf + count, len - count, "standby");
1108

1109
	if (!count)
1110
		scnprintf(buf, len, "no parameters");
1111

1112
	rdev_dbg(rdev, "%s\n", buf);
1113 1114

	if ((constraints->min_uV != constraints->max_uV) &&
1115
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1116 1117
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1118 1119
}

1120
static int machine_constraints_voltage(struct regulator_dev *rdev,
1121
	struct regulation_constraints *constraints)
1122
{
1123
	const struct regulator_ops *ops = rdev->desc->ops;
1124 1125 1126 1127
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1128 1129
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1130
		int current_uV = _regulator_get_voltage(rdev);
1131 1132

		if (current_uV == -ENOTRECOVERABLE) {
1133
			/* This regulator can't be read and must be initialized */
1134 1135 1136 1137 1138 1139 1140 1141 1142
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
			current_uV = _regulator_get_voltage(rdev);
		}

1143
		if (current_uV < 0) {
1144 1145 1146
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
1147 1148
			return current_uV;
		}
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1169 1170
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1171
			ret = _regulator_do_set_voltage(
1172
				rdev, target_min, target_max);
1173 1174
			if (ret < 0) {
				rdev_err(rdev,
1175 1176
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1177 1178
				return ret;
			}
1179
		}
1180
	}
1181

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1193 1194
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1195
		if (count == 1 && !cmin) {
1196
			cmin = 1;
1197
			cmax = INT_MAX;
1198 1199
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1200 1201
		}

1202 1203
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1204
			return 0;
1205

1206
		/* else require explicit machine-level constraints */
1207
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1208
			rdev_err(rdev, "invalid voltage constraints\n");
1209
			return -EINVAL;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1229 1230 1231
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1232
			return -EINVAL;
1233 1234 1235 1236
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1237 1238
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1239 1240 1241
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1242 1243
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1244 1245 1246 1247
			constraints->max_uV = max_uV;
		}
	}

1248 1249 1250
	return 0;
}

1251 1252 1253
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1254
	const struct regulator_ops *ops = rdev->desc->ops;
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1281 1282
static int _regulator_do_enable(struct regulator_dev *rdev);

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1295
	const struct regulation_constraints *constraints)
1296 1297
{
	int ret = 0;
1298
	const struct regulator_ops *ops = rdev->desc->ops;
1299

1300 1301 1302 1303 1304 1305
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1306 1307
	if (!rdev->constraints)
		return -ENOMEM;
1308

1309
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1310
	if (ret != 0)
1311
		return ret;
1312

1313
	ret = machine_constraints_current(rdev, rdev->constraints);
1314
	if (ret != 0)
1315
		return ret;
1316

1317 1318 1319 1320 1321
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1322
			return ret;
1323 1324 1325
		}
	}

1326
	/* do we need to setup our suspend state */
1327
	if (rdev->constraints->initial_state) {
1328
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1329
		if (ret < 0) {
1330
			rdev_err(rdev, "failed to set suspend state\n");
1331
			return ret;
1332 1333
		}
	}
1334

1335
	if (rdev->constraints->initial_mode) {
1336
		if (!ops->set_mode) {
1337
			rdev_err(rdev, "no set_mode operation\n");
1338
			return -EINVAL;
1339 1340
		}

1341
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1342
		if (ret < 0) {
1343
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1344
			return ret;
1345
		}
1346 1347 1348 1349 1350 1351
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1352 1353
	}

1354 1355
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1356 1357 1358
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1359
			return ret;
1360 1361 1362
		}
	}

S
Stephen Boyd 已提交
1363 1364 1365 1366
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1367
			return ret;
S
Stephen Boyd 已提交
1368 1369 1370
		}
	}

S
Stephen Boyd 已提交
1371 1372 1373 1374
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1375
			return ret;
S
Stephen Boyd 已提交
1376 1377 1378
		}
	}

1379 1380 1381 1382 1383
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1384
			return ret;
1385 1386 1387
		}
	}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1399 1400 1401 1402
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1403 1404 1405 1406 1407 1408 1409 1410 1411
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1412 1413 1414 1415 1416
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
			rdev_err(rdev, "failed to enable\n");
			return ret;
		}
1417
		rdev->use_count++;
1418 1419
	}

1420
	print_constraints(rdev);
1421
	return 0;
1422 1423 1424 1425
}

/**
 * set_supply - set regulator supply regulator
1426 1427
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1428 1429 1430 1431 1432 1433
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1434
		      struct regulator_dev *supply_rdev)
1435 1436 1437
{
	int err;

1438 1439
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1440 1441 1442
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1443
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1444 1445
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1446
		return err;
1447
	}
1448
	supply_rdev->open_count++;
1449 1450

	return 0;
1451 1452 1453
}

/**
1454
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1455
 * @rdev:         regulator source
1456
 * @consumer_dev_name: dev_name() string for device supply applies to
1457
 * @supply:       symbolic name for supply
1458 1459 1460 1461 1462 1463 1464
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1465 1466
				      const char *consumer_dev_name,
				      const char *supply)
1467 1468
{
	struct regulator_map *node;
1469
	int has_dev;
1470 1471 1472 1473

	if (supply == NULL)
		return -EINVAL;

1474 1475 1476 1477 1478
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1479
	list_for_each_entry(node, &regulator_map_list, list) {
1480 1481 1482 1483
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1484
			continue;
1485 1486
		}

1487 1488 1489
		if (strcmp(node->supply, supply) != 0)
			continue;

1490 1491 1492 1493 1494 1495
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1496 1497 1498
		return -EBUSY;
	}

1499
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1500 1501 1502 1503 1504 1505
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1506 1507 1508 1509 1510 1511
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1512 1513
	}

1514 1515 1516 1517
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1518 1519 1520 1521 1522 1523 1524
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1525
			kfree(node->dev_name);
1526 1527 1528 1529 1530
			kfree(node);
		}
	}
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1580
#define REG_STR_SIZE	64
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

1594
	regulator_lock(rdev);
1595 1596 1597 1598
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1599 1600
		regulator->dev = dev;

1601
		/* Add a link to the device sysfs entry */
1602 1603
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1604
		if (size >= REG_STR_SIZE)
1605
			goto overflow_err;
1606 1607 1608

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1609
			goto overflow_err;
1610

1611
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1612 1613
					buf);
		if (err) {
1614
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1615
				  dev->kobj.name, err);
1616
			/* non-fatal */
1617
		}
1618
	} else {
1619
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1620
		if (regulator->supply_name == NULL)
1621
			goto overflow_err;
1622 1623 1624 1625
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1626
	if (!regulator->debugfs) {
1627
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1628 1629 1630 1631
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1632
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1633
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1634
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1635 1636 1637
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1638
	}
1639

1640 1641 1642 1643 1644
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1645
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1646 1647 1648
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1649
	regulator_unlock(rdev);
1650 1651 1652 1653
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
1654
	regulator_unlock(rdev);
1655 1656 1657
	return NULL;
}

1658 1659
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1660 1661
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1662
	if (!rdev->desc->ops->enable_time)
1663
		return rdev->desc->enable_time;
1664 1665 1666
	return rdev->desc->ops->enable_time(rdev);
}

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1715 1716 1717 1718 1719
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1720
 */
1721
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1722
						  const char *supply)
1723
{
1724
	struct regulator_dev *r = NULL;
1725
	struct device_node *node;
1726 1727
	struct regulator_map *map;
	const char *devname = NULL;
1728

1729 1730
	regulator_supply_alias(&dev, &supply);

1731 1732 1733
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1734
		if (node) {
1735 1736 1737
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1738

1739
			/*
1740 1741
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1742
			 */
1743
			return ERR_PTR(-EPROBE_DEFER);
1744
		}
1745 1746 1747
	}

	/* if not found, try doing it non-dt way */
1748 1749 1750
	if (dev)
		devname = dev_name(dev);

1751
	mutex_lock(&regulator_list_mutex);
1752 1753 1754 1755 1756 1757
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1758 1759
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1760 1761
			r = map->regulator;
			break;
1762
		}
1763
	}
1764
	mutex_unlock(&regulator_list_mutex);
1765

1766 1767 1768 1769
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1770 1771 1772 1773
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1774 1775
}

1776 1777 1778 1779 1780 1781
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

1782
	/* No supply to resolve? */
1783 1784 1785 1786 1787 1788 1789
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1790 1791 1792 1793
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1794 1795 1796 1797
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1798 1799
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1800
			get_device(&r->dev);
1801 1802 1803 1804 1805
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1806 1807
	}

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1821 1822
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1823 1824
	if (ret < 0) {
		put_device(&r->dev);
1825
		return ret;
1826
	}
1827 1828

	ret = set_supply(rdev, r);
1829 1830
	if (ret < 0) {
		put_device(&r->dev);
1831
		return ret;
1832
	}
1833

1834 1835 1836 1837 1838 1839
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1840
		ret = regulator_enable(rdev->supply);
1841
		if (ret < 0) {
1842
			_regulator_put(rdev->supply);
1843
			rdev->supply = NULL;
1844
			return ret;
1845
		}
1846 1847 1848 1849 1850
	}

	return 0;
}

1851
/* Internal regulator request function */
1852 1853
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1854 1855
{
	struct regulator_dev *rdev;
1856
	struct regulator *regulator;
1857
	const char *devname = dev ? dev_name(dev) : "deviceless";
1858
	int ret;
1859

1860 1861 1862 1863 1864
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1865
	if (id == NULL) {
1866
		pr_err("get() with no identifier\n");
1867
		return ERR_PTR(-EINVAL);
1868 1869
	}

1870
	rdev = regulator_dev_lookup(dev, id);
1871 1872
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1873

1874 1875 1876 1877 1878 1879
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1880

1881 1882 1883 1884 1885
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1886

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1900

1901 1902 1903 1904
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1905

1906 1907 1908
		default:
			return ERR_PTR(-ENODEV);
		}
1909 1910
	}

1911 1912
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1913 1914
		put_device(&rdev->dev);
		return regulator;
1915 1916
	}

1917
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1918
		regulator = ERR_PTR(-EBUSY);
1919 1920
		put_device(&rdev->dev);
		return regulator;
1921 1922
	}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1933 1934 1935
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1936 1937
		put_device(&rdev->dev);
		return regulator;
1938 1939
	}

1940
	if (!try_module_get(rdev->owner)) {
1941
		regulator = ERR_PTR(-EPROBE_DEFER);
1942 1943 1944
		put_device(&rdev->dev);
		return regulator;
	}
1945

1946 1947 1948
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1949
		put_device(&rdev->dev);
1950
		module_put(rdev->owner);
1951
		return regulator;
1952 1953
	}

1954
	rdev->open_count++;
1955
	if (get_type == EXCLUSIVE_GET) {
1956 1957 1958 1959 1960 1961 1962 1963 1964
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1965 1966
	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);

1967 1968
	return regulator;
}
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1985
	return _regulator_get(dev, id, NORMAL_GET);
1986
}
1987 1988
EXPORT_SYMBOL_GPL(regulator_get);

1989 1990 1991 1992 1993 1994 1995
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1996 1997 1998
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2012
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2013 2014 2015
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2016 2017 2018 2019 2020 2021
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2022
 * or IS_ERR() condition containing errno.
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2038
	return _regulator_get(dev, id, OPTIONAL_GET);
2039 2040 2041
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2042
/* regulator_list_mutex lock held by regulator_put() */
2043
static void _regulator_put(struct regulator *regulator)
2044 2045 2046
{
	struct regulator_dev *rdev;

2047
	if (IS_ERR_OR_NULL(regulator))
2048 2049
		return;

2050 2051
	lockdep_assert_held_once(&regulator_list_mutex);

2052 2053 2054
	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

2055 2056
	rdev = regulator->rdev;

2057 2058
	debugfs_remove_recursive(regulator->debugfs);

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
	if (regulator->dev) {
		int count = 0;
		struct regulator *r;

		list_for_each_entry(r, &rdev->consumer_list, list)
			if (r->dev == regulator->dev)
				count++;

		if (count == 1)
			device_link_remove(regulator->dev, &rdev->dev);

		/* remove any sysfs entries */
2071
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2072 2073
	}

2074
	regulator_lock(rdev);
2075 2076
	list_del(&regulator->list);

2077 2078
	rdev->open_count--;
	rdev->exclusive = 0;
2079
	put_device(&rdev->dev);
2080
	regulator_unlock(rdev);
2081

2082
	kfree_const(regulator->supply_name);
2083 2084
	kfree(regulator);

2085
	module_put(rdev->owner);
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2100 2101 2102 2103
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2181 2182
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2183
					 struct device *alias_dev,
2184
					 const char *const *alias_id,
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2222
					    const char *const *id,
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2233 2234 2235 2236 2237
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
2238
	struct gpio_desc *gpiod;
2239 2240
	int ret;

2241 2242 2243 2244
	if (config->ena_gpiod)
		gpiod = config->ena_gpiod;
	else
		gpiod = gpio_to_desc(config->ena_gpio);
2245

2246
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2247
		if (pin->gpiod == gpiod) {
2248 2249 2250 2251 2252 2253
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

2254 2255 2256 2257 2258 2259 2260
	if (!config->ena_gpiod) {
		ret = gpio_request_one(config->ena_gpio,
				       GPIOF_DIR_OUT | config->ena_gpio_flags,
				       rdev_get_name(rdev));
		if (ret)
			return ret;
	}
2261 2262 2263

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
2264 2265
		if (!config->ena_gpiod)
			gpio_free(config->ena_gpio);
2266 2267 2268
		return -ENOMEM;
	}

2269
	pin->gpiod = gpiod;
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2287
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2288 2289
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2290
				gpiod_put(pin->gpiod);
2291 2292
				list_del(&pin->list);
				kfree(pin);
2293 2294
				rdev->ena_pin = NULL;
				return;
2295 2296 2297 2298 2299 2300 2301
			} else {
				pin->request_count--;
			}
		}
	}
}

2302
/**
2303 2304 2305 2306
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2320
			gpiod_set_value_cansleep(pin->gpiod, 1);
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2331
			gpiod_set_value_cansleep(pin->gpiod, 0);
2332 2333 2334 2335 2336 2337 2338
			pin->enable_count = 0;
		}
	}

	return 0;
}

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
2408
			 * detected and we get a penalty of
2409 2410 2411 2412 2413 2414 2415 2416 2417
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2418
	if (rdev->ena_pin) {
2419 2420 2421 2422 2423 2424
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2425
	} else if (rdev->desc->ops->enable) {
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2438
	_regulator_enable_delay(delay);
2439 2440 2441 2442 2443 2444

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2504
/* locks held by regulator_enable() */
2505
static int _regulator_enable(struct regulator *regulator)
2506
{
2507
	struct regulator_dev *rdev = regulator->rdev;
2508
	int ret;
2509

2510 2511
	lockdep_assert_held_once(&rdev->mutex.base);

2512
	if (rdev->use_count == 0 && rdev->supply) {
2513
		ret = _regulator_enable(rdev->supply);
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2524

2525 2526 2527
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2528

2529 2530 2531 2532
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2533
			if (!regulator_ops_is_valid(rdev,
2534 2535
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2536
				goto err_consumer_disable;
2537
			}
2538

2539
			ret = _regulator_do_enable(rdev);
2540
			if (ret < 0)
2541
				goto err_consumer_disable;
2542

2543 2544
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2545
		} else if (ret < 0) {
2546
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2547
			goto err_consumer_disable;
2548
		}
2549
		/* Fallthrough on positive return values - already enabled */
2550 2551
	}

2552 2553 2554
	rdev->use_count++;

	return 0;
2555

2556 2557 2558
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2559
err_disable_supply:
2560
	if (rdev->use_count == 0 && rdev->supply)
2561
		_regulator_disable(rdev->supply);
2562 2563

	return ret;
2564 2565 2566 2567 2568 2569
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2570 2571 2572 2573
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2574
 * NOTE: the output value can be set by other drivers, boot loader or may be
2575
 * hardwired in the regulator.
2576 2577 2578
 */
int regulator_enable(struct regulator *regulator)
{
2579
	struct regulator_dev *rdev = regulator->rdev;
2580
	struct ww_acquire_ctx ww_ctx;
2581
	int ret;
2582

2583
	regulator_lock_dependent(rdev, &ww_ctx);
2584
	ret = _regulator_enable(regulator);
2585
	regulator_unlock_dependent(rdev, &ww_ctx);
2586

2587 2588 2589 2590
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2591 2592 2593 2594 2595 2596
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2597
	if (rdev->ena_pin) {
2598 2599 2600 2601 2602 2603
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2604 2605 2606 2607 2608 2609 2610

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2611 2612 2613 2614 2615 2616
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2617 2618 2619 2620 2621
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2622
/* locks held by regulator_disable() */
2623
static int _regulator_disable(struct regulator *regulator)
2624
{
2625
	struct regulator_dev *rdev = regulator->rdev;
2626 2627
	int ret = 0;

2628
	lockdep_assert_held_once(&rdev->mutex.base);
2629

D
David Brownell 已提交
2630
	if (WARN(rdev->use_count <= 0,
2631
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2632 2633
		return -EIO;

2634
	/* are we the last user and permitted to disable ? */
2635 2636
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2637 2638

		/* we are last user */
2639
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2640 2641 2642 2643 2644 2645
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2646
			ret = _regulator_do_disable(rdev);
2647
			if (ret < 0) {
2648
				rdev_err(rdev, "failed to disable\n");
2649 2650 2651
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2652 2653
				return ret;
			}
2654 2655
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2656 2657 2658 2659 2660 2661
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2662

2663 2664 2665
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2666 2667 2668
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2669
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2670
		ret = _regulator_disable(rdev->supply);
2671

2672 2673 2674 2675 2676 2677 2678
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2679 2680 2681
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2682
 *
2683
 * NOTE: this will only disable the regulator output if no other consumer
2684 2685
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2686 2687 2688
 */
int regulator_disable(struct regulator *regulator)
{
2689
	struct regulator_dev *rdev = regulator->rdev;
2690
	struct ww_acquire_ctx ww_ctx;
2691
	int ret;
2692

2693
	regulator_lock_dependent(rdev, &ww_ctx);
2694
	ret = _regulator_disable(regulator);
2695
	regulator_unlock_dependent(rdev, &ww_ctx);
2696

2697 2698 2699 2700 2701
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2702
static int _regulator_force_disable(struct regulator_dev *rdev)
2703 2704 2705
{
	int ret = 0;

2706
	lockdep_assert_held_once(&rdev->mutex.base);
2707

2708 2709 2710 2711 2712
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2713 2714 2715
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2716 2717
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2718
		return ret;
2719 2720
	}

2721 2722 2723 2724
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2738
	struct regulator_dev *rdev = regulator->rdev;
2739
	struct ww_acquire_ctx ww_ctx;
2740 2741
	int ret;

2742
	regulator_lock_dependent(rdev, &ww_ctx);
2743

2744
	ret = _regulator_force_disable(regulator->rdev);
2745

2746 2747
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2748 2749 2750 2751 2752 2753

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2754 2755
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2756

2757
	regulator_unlock_dependent(rdev, &ww_ctx);
2758

2759 2760 2761 2762
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2763 2764 2765 2766
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2767
	struct ww_acquire_ctx ww_ctx;
2768
	int count, i, ret;
2769 2770
	struct regulator *regulator;
	int total_count = 0;
2771

2772
	regulator_lock_dependent(rdev, &ww_ctx);
2773

2774 2775 2776 2777 2778 2779 2780 2781
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
		}
2796
	}
2797
	WARN_ON(!total_count);
2798

2799 2800 2801 2802
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2803 2804 2805 2806 2807
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2808
 * @ms: milliseconds until the regulator is disabled
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2821 2822 2823
	if (!ms)
		return regulator_disable(regulator);

2824
	regulator_lock(rdev);
2825
	regulator->deferred_disables++;
2826 2827
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2828
	regulator_unlock(rdev);
2829

2830
	return 0;
2831 2832 2833
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2834 2835
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2836
	/* A GPIO control always takes precedence */
2837
	if (rdev->ena_pin)
2838 2839
		return rdev->ena_gpio_state;

2840
	/* If we don't know then assume that the regulator is always on */
2841
	if (!rdev->desc->ops->is_enabled)
2842
		return 1;
2843

2844
	return rdev->desc->ops->is_enabled(rdev);
2845 2846
}

2847 2848
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2860
			regulator_lock(rdev);
2861 2862
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2863
			regulator_unlock(rdev);
2864
	} else if (rdev->is_switch && rdev->supply) {
2865 2866
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2881 2882 2883 2884
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2885 2886 2887 2888 2889 2890 2891
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2892 2893 2894
 */
int regulator_is_enabled(struct regulator *regulator)
{
2895 2896
	int ret;

2897 2898 2899
	if (regulator->always_on)
		return 1;

2900
	regulator_lock(regulator->rdev);
2901
	ret = _regulator_is_enabled(regulator->rdev);
2902
	regulator_unlock(regulator->rdev);
2903 2904

	return ret;
2905 2906 2907
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2920 2921 2922
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2923
	if (!rdev->is_switch || !rdev->supply)
2924 2925 2926
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2937
 * zero if this selector code can't be used on this system, or a
2938 2939 2940 2941
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2942
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2943 2944 2945
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2978 2979
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2980 2981 2982 2983

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2984 2985
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3005 3006
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3044
	struct regulator_dev *rdev = regulator->rdev;
3045 3046
	int i, voltages, ret;

3047
	/* If we can't change voltage check the current voltage */
3048
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3049 3050
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3051
			return min_uV <= ret && ret <= max_uV;
3052 3053 3054 3055
		else
			return ret;
	}

3056 3057 3058 3059 3060
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3075
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3076

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3091 3092 3093 3094 3095
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3096 3097 3098
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3148 3149 3150 3151 3152 3153 3154 3155 3156
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3157 3158
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3159 3160 3161 3162 3163 3164
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3165 3166

	if (ramp_delay == 0) {
3167
		rdev_dbg(rdev, "ramp_delay not set\n");
3168 3169 3170 3171 3172 3173
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3174 3175 3176 3177
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3178
	int delay = 0;
3179
	int best_val = 0;
3180
	unsigned int selector;
3181
	int old_selector = -1;
3182
	const struct regulator_ops *ops = rdev->desc->ops;
3183
	int old_uV = _regulator_get_voltage(rdev);
3184 3185 3186

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3187 3188 3189
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3190 3191 3192 3193
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3194
	if (_regulator_is_enabled(rdev) &&
3195 3196
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3197 3198 3199 3200
		if (old_selector < 0)
			return old_selector;
	}

3201
	if (ops->set_voltage) {
3202 3203
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3204 3205

		if (ret >= 0) {
3206 3207 3208
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3209 3210 3211 3212
			else
				best_val = _regulator_get_voltage(rdev);
		}

3213
	} else if (ops->set_voltage_sel) {
3214
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3215
		if (ret >= 0) {
3216
			best_val = ops->list_voltage(rdev, ret);
3217 3218
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3219 3220 3221
				if (old_selector == selector)
					ret = 0;
				else
3222 3223
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3224 3225 3226
			} else {
				ret = -EINVAL;
			}
3227
		}
3228 3229 3230
	} else {
		ret = -EINVAL;
	}
3231

3232 3233
	if (ret)
		goto out;
3234

3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3252
		}
3253
	}
3254

3255 3256 3257
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3258 3259
	}

3260 3261 3262 3263 3264 3265
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3266 3267
	}

3268
	if (best_val >= 0) {
3269 3270
		unsigned long data = best_val;

3271
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3272 3273
				     (void *)data);
	}
3274

3275
out:
3276
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3277 3278 3279 3280

	return ret;
}

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3307
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3308 3309
					  int min_uV, int max_uV,
					  suspend_state_t state)
3310 3311
{
	struct regulator_dev *rdev = regulator->rdev;
3312
	struct regulator_voltage *voltage = &regulator->voltage[state];
3313
	int ret = 0;
3314
	int old_min_uV, old_max_uV;
3315
	int current_uV;
3316

3317 3318 3319 3320
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3321
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3322 3323
		goto out;

3324
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3325
	 * return successfully even though the regulator does not support
3326 3327
	 * changing the voltage.
	 */
3328
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3329 3330
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
3331 3332
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3333 3334 3335 3336
			goto out;
		}
	}

3337
	/* sanity check */
3338 3339
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3340 3341 3342 3343 3344 3345 3346 3347
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3348

3349
	/* restore original values in case of error */
3350 3351 3352 3353
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3354

3355 3356
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3357
	if (ret < 0)
3358
		goto out2;
3359

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
out:
	return 0;
out2:
	voltage->min_uV = old_min_uV;
	voltage->max_uV = old_max_uV;

	return ret;
}

static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
				      int max_uV, suspend_state_t state)
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3376 3377 3378
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3379 3380
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3381 3382 3383 3384 3385 3386
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3387
			goto out;
3388 3389
		}

M
Mark Brown 已提交
3390
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3391 3392
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3393
			goto out;
3394 3395 3396 3397 3398 3399 3400
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3401
			goto out;
3402 3403 3404 3405 3406 3407 3408
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3409
				best_supply_uV, INT_MAX, state);
3410 3411 3412
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3413
			goto out;
3414 3415 3416
		}
	}

3417 3418 3419 3420 3421
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3422
	if (ret < 0)
3423
		goto out;
3424

3425 3426
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3427
				best_supply_uV, INT_MAX, state);
3428 3429 3430 3431 3432 3433 3434
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3435
out:
3436
	return ret;
3437 3438
}

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
		*current_uV = _regulator_get_voltage(rdev);

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int max_spread = constraints->max_spread;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
	int i, ret;
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3516
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3527

3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

		tmp_act = _regulator_get_voltage(c_rdevs[i]);
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
			ret = _regulator_get_voltage(rdev);
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	bool best_c_rdev_done, c_rdev_done[MAX_COUPLED];
	unsigned int delta, best_delta;

	c_rdevs = c_desc->coupled_rdevs;
	n_coupled = c_desc->n_coupled;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		n_coupled = 1;

	if (c_desc->n_resolved < n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	for (i = 0; i < n_coupled; i++)
		c_rdev_done[i] = false;

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

			if (c_rdev_done[i])
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3692

3693 3694
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3695

3696 3697 3698 3699 3700 3701 3702 3703
		if (ret < 0)
			goto out;

		c_rdev_done[best_c_rdev] = best_c_rdev_done;

	} while (n_coupled > 1);

out:
3704 3705 3706
	return ret;
}

3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3727 3728
	struct ww_acquire_ctx ww_ctx;
	int ret;
3729

3730
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3731

3732 3733
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3734

3735
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3736

3737 3738 3739 3740
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3753
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3807 3808
	struct ww_acquire_ctx ww_ctx;
	int ret;
3809 3810 3811 3812 3813

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3814
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3815 3816 3817 3818

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3819
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3820 3821 3822 3823 3824

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3838 3839
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3840 3841 3842 3843 3844
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3845 3846 3847 3848 3849
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3850
	/* Currently requires operations to do this */
3851
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3874
/**
3875 3876
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3877 3878 3879 3880 3881 3882
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3883
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3884
 * set_voltage_time_sel() operation.
3885 3886 3887 3888 3889
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3890
	int old_volt, new_volt;
3891

3892 3893 3894
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3895

3896 3897 3898
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3899 3900 3901 3902 3903
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3904
}
3905
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3906

3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
3918
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3919 3920
	int ret, min_uV, max_uV;

3921
	regulator_lock(rdev);
3922 3923 3924 3925 3926 3927 3928 3929

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
3930
	if (!voltage->min_uV && !voltage->max_uV) {
3931 3932 3933 3934
		ret = -EINVAL;
		goto out;
	}

3935 3936
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
3937 3938 3939 3940 3941 3942

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

3943
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3944 3945 3946 3947 3948 3949
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
3950
	regulator_unlock(rdev);
3951 3952 3953 3954
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3955 3956
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3957
	int sel, ret;
3958 3959 3960 3961 3962 3963 3964 3965
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3966 3967 3968 3969 3970
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
3971 3972 3973 3974

			return _regulator_get_voltage(rdev->supply->rdev);
		}
	}
3975 3976 3977 3978 3979

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3980
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3981
	} else if (rdev->desc->ops->get_voltage) {
3982
		ret = rdev->desc->ops->get_voltage(rdev);
3983 3984
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3985 3986
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3987
	} else if (rdev->supply) {
3988
		ret = _regulator_get_voltage(rdev->supply->rdev);
3989
	} else {
3990
		return -EINVAL;
3991
	}
3992

3993 3994
	if (ret < 0)
		return ret;
3995
	return ret - rdev->constraints->uV_offset;
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4009
	struct ww_acquire_ctx ww_ctx;
4010 4011
	int ret;

4012
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4013
	ret = _regulator_get_voltage(regulator->rdev);
4014
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4015 4016 4017 4018 4019 4020 4021 4022

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4023
 * @min_uA: Minimum supported current in uA
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4042
	regulator_lock(rdev);
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4057
	regulator_unlock(rdev);
4058 4059 4060 4061
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4062 4063 4064 4065 4066 4067 4068 4069 4070
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4071 4072 4073 4074
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4075
	regulator_lock(rdev);
4076
	ret = _regulator_get_current_limit_unlocked(rdev);
4077
	regulator_unlock(rdev);
4078

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4112
	int regulator_curr_mode;
4113

4114
	regulator_lock(rdev);
4115 4116 4117 4118 4119 4120 4121

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4122 4123 4124 4125 4126 4127 4128 4129 4130
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4131
	/* constraints check */
4132
	ret = regulator_mode_constrain(rdev, &mode);
4133 4134 4135 4136 4137
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4138
	regulator_unlock(rdev);
4139 4140 4141 4142
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4143 4144 4145 4146 4147 4148 4149 4150 4151
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4152 4153 4154 4155
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4156
	regulator_lock(rdev);
4157
	ret = _regulator_get_mode_unlocked(rdev);
4158
	regulator_unlock(rdev);
4159

4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4175 4176 4177 4178 4179
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4180
	regulator_lock(rdev);
4181 4182 4183 4184 4185 4186 4187 4188 4189

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4190
	regulator_unlock(rdev);
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4208
/**
4209
 * regulator_set_load - set regulator load
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4232 4233 4234 4235 4236 4237 4238 4239
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4240
 * On error a negative errno is returned.
4241
 */
4242
int regulator_set_load(struct regulator *regulator, int uA_load)
4243 4244
{
	struct regulator_dev *rdev = regulator->rdev;
4245 4246
	int old_uA_load;
	int ret = 0;
4247

4248
	regulator_lock(rdev);
4249
	old_uA_load = regulator->uA_load;
4250
	regulator->uA_load = uA_load;
4251 4252 4253 4254 4255
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4256
	regulator_unlock(rdev);
4257

4258 4259
	return ret;
}
4260
EXPORT_SYMBOL_GPL(regulator_set_load);
4261

4262 4263 4264 4265
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4266
 * @enable: enable or disable bypass mode
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4281
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4282 4283
		return 0;

4284
	regulator_lock(rdev);
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4308
	regulator_unlock(rdev);
4309 4310 4311 4312 4313

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4314 4315 4316
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4317
 * @nb: notifier block
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4332
 * @nb: notifier block
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4344 4345 4346
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4347
static int _notifier_call_chain(struct regulator_dev *rdev,
4348 4349 4350
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4351
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4378 4379
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4380 4381
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
4382 4383
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
4384 4385 4386 4387 4388 4389 4390 4391
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4392
	while (--i >= 0)
4393 4394 4395 4396 4397 4398
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4399 4400 4401 4402 4403 4404 4405
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4421
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4422
	int i;
4423
	int ret = 0;
4424

4425
	for (i = 0; i < num_consumers; i++) {
4426 4427
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4428
	}
4429 4430 4431 4432

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4433
	for (i = 0; i < num_consumers; i++) {
4434 4435
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4436
			goto err;
4437
		}
4438 4439 4440 4441 4442
	}

	return 0;

err:
4443 4444 4445 4446 4447 4448 4449
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4463 4464
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4465 4466 4467 4468 4469 4470
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4471
	int ret, r;
4472

4473
	for (i = num_consumers - 1; i >= 0; --i) {
4474 4475 4476 4477 4478 4479 4480 4481
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4482
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4483 4484 4485
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4486
			pr_err("Failed to re-enable %s: %d\n",
4487 4488
			       consumers[i].supply, r);
	}
4489 4490 4491 4492 4493

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4512
	int ret = 0;
4513

4514
	for (i = 0; i < num_consumers; i++) {
4515 4516 4517
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4518 4519
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4520 4521 4522 4523 4524 4525 4526
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4550
 * @rdev: regulator source
4551
 * @event: notifier block
4552
 * @data: callback-specific data.
4553 4554 4555
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4556
 * Note lock must be held by caller.
4557 4558 4559 4560
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4561
	lockdep_assert_held_once(&rdev->mutex.base);
4562

4563 4564 4565 4566 4567 4568
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4585
	case REGULATOR_MODE_STANDBY:
4586 4587
		return REGULATOR_STATUS_STANDBY;
	default:
4588
		return REGULATOR_STATUS_UNDEFINED;
4589 4590 4591 4592
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4620 4621 4622 4623
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4624 4625
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4626
{
4627
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4628
	struct regulator_dev *rdev = dev_to_rdev(dev);
4629
	const struct regulator_ops *ops = rdev->desc->ops;
4630 4631 4632 4633 4634 4635 4636
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4637 4638

	/* some attributes need specific methods to be displayed */
4639 4640 4641 4642 4643 4644 4645
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4646
	}
4647

4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4663
	/* constraints need specific supporting methods */
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4699

4700 4701 4702
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4703 4704 4705

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4706
	kfree(rdev);
4707 4708
}

4709 4710
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4723
	if (!rdev->debugfs) {
4724 4725 4726 4727 4728 4729 4730 4731
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4732 4733
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4734 4735
}

4736 4737
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4738 4739 4740 4741 4742 4743
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4744 4745
}

4746
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4760 4761
		if (!c_rdev)
			continue;
4762

4763
		regulator_lock(c_rdev);
4764

4765 4766
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
4767

4768
		regulator_unlock(c_rdev);
4769

4770 4771
		regulator_resolve_coupling(c_rdev);
	}
4772 4773
}

4774
static void regulator_remove_coupling(struct regulator_dev *rdev)
4775
{
4776 4777 4778 4779
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
4780

4781
	n_coupled = c_desc->n_coupled;
4782

4783 4784
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
4785

4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
4809 4810
}

4811
static int regulator_init_coupling(struct regulator_dev *rdev)
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
{
	int n_phandles;

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

	if (n_phandles + 1 > MAX_COUPLED) {
		rdev_err(rdev, "too many regulators coupled\n");
		return -EPERM;
	}

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

	/* regulator, which can't change its voltage, can't be coupled */
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
		rdev_err(rdev, "voltage operation not allowed\n");
		return -EPERM;
	}

	if (rdev->constraints->max_spread <= 0) {
		rdev_err(rdev, "wrong max_spread value\n");
		return -EPERM;
	}

	if (!of_check_coupling_data(rdev))
		return -EPERM;

	return 0;
}

4854 4855
/**
 * regulator_register - register regulator
4856
 * @regulator_desc: regulator to register
4857
 * @cfg: runtime configuration for regulator
4858 4859
 *
 * Called by regulator drivers to register a regulator.
4860 4861
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
4862
 */
4863 4864
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
4865
		   const struct regulator_config *cfg)
4866
{
4867
	const struct regulation_constraints *constraints = NULL;
4868
	const struct regulator_init_data *init_data;
4869
	struct regulator_config *config = NULL;
4870
	static atomic_t regulator_no = ATOMIC_INIT(-1);
4871
	struct regulator_dev *rdev;
4872 4873
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
4874
	struct device *dev;
4875
	int ret, i;
4876

4877
	if (cfg == NULL)
4878
		return ERR_PTR(-EINVAL);
4879 4880 4881 4882 4883 4884
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
4885

4886
	dev = cfg->dev;
4887
	WARN_ON(!dev);
4888

4889 4890 4891 4892
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
4893

4894
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
4895 4896 4897 4898
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
4899

4900 4901 4902
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
4903 4904
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
4905 4906 4907 4908

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
4909 4910
		ret = -EINVAL;
		goto rinse;
4911
	}
4912 4913
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
4914 4915
		ret = -EINVAL;
		goto rinse;
4916
	}
4917

4918
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4919 4920 4921 4922
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
4923

4924 4925 4926 4927 4928 4929 4930
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
4931 4932
		ret = -ENOMEM;
		goto rinse;
4933 4934
	}

4935
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4936
					       &rdev->dev.of_node);
4937 4938 4939 4940 4941
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
4942
	 * a descriptor, we definitely got one from parsing the device
4943 4944 4945 4946
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
4947 4948 4949 4950 4951
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

4952
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
4953
	rdev->reg_data = config->driver_data;
4954 4955
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
4956 4957
	if (config->regmap)
		rdev->regmap = config->regmap;
4958
	else if (dev_get_regmap(dev, NULL))
4959
		rdev->regmap = dev_get_regmap(dev, NULL);
4960 4961
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4962 4963 4964
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4965
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4966

4967
	/* preform any regulator specific init */
4968
	if (init_data && init_data->regulator_init) {
4969
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
4970 4971
		if (ret < 0)
			goto clean;
4972 4973
	}

4974 4975 4976
	if (config->ena_gpiod ||
	    ((config->ena_gpio || config->ena_gpio_initialized) &&
	     gpio_is_valid(config->ena_gpio))) {
4977
		mutex_lock(&regulator_list_mutex);
4978
		ret = regulator_ena_gpio_request(rdev, config);
4979
		mutex_unlock(&regulator_list_mutex);
4980 4981 4982
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
4983
			goto clean;
4984
		}
4985 4986 4987
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
4988 4989
	}

4990
	/* register with sysfs */
4991
	rdev->dev.class = &regulator_class;
4992
	rdev->dev.parent = dev;
4993
	dev_set_name(&rdev->dev, "regulator.%lu",
4994
		    (unsigned long) atomic_inc_return(&regulator_no));
4995

4996
	/* set regulator constraints */
4997 4998 4999 5000
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
5001
		rdev->supply_name = init_data->supply_regulator;
5002
	else if (regulator_desc->supply_name)
5003
		rdev->supply_name = regulator_desc->supply_name;
5004

5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

5017 5018
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
5019 5020
		goto wash;

5021
	/* add consumers devices */
5022
	if (init_data) {
5023
		mutex_lock(&regulator_list_mutex);
5024 5025 5026
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5027
				init_data->consumer_supplies[i].supply);
5028
			if (ret < 0) {
5029
				mutex_unlock(&regulator_list_mutex);
5030 5031 5032 5033
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5034
		}
5035
		mutex_unlock(&regulator_list_mutex);
5036
	}
5037

5038 5039 5040 5041 5042
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5043
	dev_set_drvdata(&rdev->dev, rdev);
5044 5045 5046 5047 5048 5049
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

5050
	rdev_init_debugfs(rdev);
5051

5052 5053 5054 5055 5056
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5057 5058 5059
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5060
	kfree(config);
5061
	return rdev;
D
David Brownell 已提交
5062

5063
unset_supplies:
5064
	mutex_lock(&regulator_list_mutex);
5065
	unset_regulator_supplies(rdev);
5066
	mutex_unlock(&regulator_list_mutex);
5067
wash:
5068
	kfree(rdev->constraints);
5069
	mutex_lock(&regulator_list_mutex);
5070
	regulator_ena_gpio_free(rdev);
5071
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5072
clean:
5073 5074
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
D
David Brownell 已提交
5075
	kfree(rdev);
5076
	kfree(config);
5077 5078 5079
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5080
	return ERR_PTR(ret);
5081 5082 5083 5084 5085
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5086
 * @rdev: regulator to unregister
5087 5088 5089 5090 5091 5092 5093 5094
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5095 5096 5097
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5098
		regulator_put(rdev->supply);
5099
	}
5100

5101
	mutex_lock(&regulator_list_mutex);
5102

5103
	debugfs_remove_recursive(rdev->debugfs);
5104
	flush_work(&rdev->disable_work.work);
5105
	WARN_ON(rdev->open_count);
5106
	regulator_remove_coupling(rdev);
5107
	unset_regulator_supplies(rdev);
5108
	list_del(&rdev->list);
5109
	regulator_ena_gpio_free(rdev);
5110
	device_unregister(&rdev->dev);
5111 5112

	mutex_unlock(&regulator_list_mutex);
5113 5114 5115
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5116
#ifdef CONFIG_SUSPEND
5117
/**
5118
 * regulator_suspend - prepare regulators for system wide suspend
5119
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5120 5121 5122
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5123
static int regulator_suspend(struct device *dev)
5124
{
5125
	struct regulator_dev *rdev = dev_to_rdev(dev);
5126
	suspend_state_t state = pm_suspend_target_state;
5127 5128 5129 5130 5131
	int ret;

	regulator_lock(rdev);
	ret = suspend_set_state(rdev, state);
	regulator_unlock(rdev);
5132

5133
	return ret;
5134
}
5135

5136
static int regulator_resume(struct device *dev)
5137
{
5138
	suspend_state_t state = pm_suspend_target_state;
5139
	struct regulator_dev *rdev = dev_to_rdev(dev);
5140
	struct regulator_state *rstate;
5141
	int ret = 0;
5142

5143
	rstate = regulator_get_suspend_state(rdev, state);
5144
	if (rstate == NULL)
5145
		return 0;
5146

5147
	regulator_lock(rdev);
5148

5149
	if (rdev->desc->ops->resume &&
5150 5151
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
5152
		ret = rdev->desc->ops->resume(rdev);
5153

5154
	regulator_unlock(rdev);
5155

5156
	return ret;
5157
}
5158 5159
#else /* !CONFIG_SUSPEND */

5160 5161
#define regulator_suspend	NULL
#define regulator_resume	NULL
5162 5163 5164 5165 5166

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5167 5168
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5169 5170 5171
};
#endif

M
Mark Brown 已提交
5172
struct class regulator_class = {
5173 5174 5175 5176 5177 5178 5179
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5197 5198
/**
 * rdev_get_drvdata - get rdev regulator driver data
5199
 * @rdev: regulator
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5236
 * @rdev: regulator
5237 5238 5239 5240 5241 5242 5243
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5244 5245 5246 5247 5248 5249
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5250 5251 5252 5253 5254 5255
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5256 5257 5258 5259 5260 5261
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5262
#ifdef CONFIG_DEBUG_FS
5263
static int supply_map_show(struct seq_file *sf, void *data)
5264 5265 5266 5267
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5268 5269 5270
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5271 5272
	}

5273 5274
	return 0;
}
5275
DEFINE_SHOW_ATTRIBUTE(supply_map);
5276

5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5299 5300 5301 5302 5303 5304
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5305
	struct summary_data summary_data;
5306
	unsigned int opmode;
5307 5308 5309 5310

	if (!rdev)
		return;

5311
	opmode = _regulator_get_mode_unlocked(rdev);
5312
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5313 5314
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5315
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5316
		   regulator_opmode_to_str(opmode));
5317

5318
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
5319 5320
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5339
		if (consumer->dev && consumer->dev->class == &regulator_class)
5340 5341 5342 5343
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5344 5345
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5346 5347 5348

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5349 5350
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5351
				   consumer->uA_load / 1000,
5352 5353
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5354 5355
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5356 5357 5358 5359 5360 5361 5362 5363
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5364 5365 5366
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5367

5368 5369
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5407 5408

	regulator_unlock(rdev);
5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5439 5440
	mutex_lock(&regulator_list_mutex);

5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5467 5468

	mutex_unlock(&regulator_list_mutex);
5469 5470
}

5471
static int regulator_summary_show_roots(struct device *dev, void *data)
5472
{
5473 5474
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5475

5476 5477
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5478

5479 5480
	return 0;
}
5481

5482 5483
static int regulator_summary_show(struct seq_file *s, void *data)
{
5484 5485
	struct ww_acquire_ctx ww_ctx;

5486 5487
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5488

5489 5490
	regulator_summary_lock(&ww_ctx);

5491 5492
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5493

5494 5495
	regulator_summary_unlock(&ww_ctx);

5496 5497
	return 0;
}
5498 5499
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5500

5501 5502
static int __init regulator_init(void)
{
5503 5504 5505 5506
	int ret;

	ret = class_register(&regulator_class);

5507
	debugfs_root = debugfs_create_dir("regulator", NULL);
5508
	if (!debugfs_root)
5509
		pr_warn("regulator: Failed to create debugfs directory\n");
5510

5511
#ifdef CONFIG_DEBUG_FS
5512 5513
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5514

5515
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5516
			    NULL, &regulator_summary_fops);
5517
#endif
5518 5519 5520
	regulator_dummy_init();

	return ret;
5521 5522 5523 5524
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5525

5526
static int __init regulator_late_cleanup(struct device *dev, void *data)
5527
{
5528 5529 5530
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5531 5532
	int enabled, ret;

5533 5534 5535
	if (c && c->always_on)
		return 0;

5536
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5537 5538
		return 0;

5539
	regulator_lock(rdev);
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5570
	regulator_unlock(rdev);
5571 5572 5573 5574 5575 5576

	return 0;
}

static int __init regulator_init_complete(void)
{
5577 5578 5579 5580 5581 5582 5583 5584 5585
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5596
	/* If we have a full configuration then disable any regulators
5597 5598 5599
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5600
	 */
5601 5602
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5603 5604 5605

	return 0;
}
5606
late_initcall_sync(regulator_init_complete);