core.c 132.3 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
55
static LIST_HEAD(regulator_ena_gpio_list);
56
static LIST_HEAD(regulator_supply_alias_list);
57
static bool has_full_constraints;
58

59 60
static struct dentry *debugfs_root;

61
/*
62 63 64 65 66 67
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
68
	const char *dev_name;   /* The dev_name() for the consumer */
69
	const char *supply;
70
	struct regulator_dev *regulator;
71 72
};

73 74 75 76 77 78 79
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
80
	struct gpio_desc *gpiod;
81 82 83 84 85
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

99
static int _regulator_is_enabled(struct regulator_dev *rdev);
100
static int _regulator_disable(struct regulator_dev *rdev);
101 102 103
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104
static int _notifier_call_chain(struct regulator_dev *rdev,
105
				  unsigned long event, void *data);
106 107
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
108 109
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
110 111 112
static int regulator_set_voltage_rdev(struct regulator_dev *rdev,
				      int min_uV, int max_uV,
				      suspend_state_t state);
113 114 115
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
116
static void _regulator_put(struct regulator *regulator);
117

118 119 120 121 122 123 124 125 126 127
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

128 129
static bool have_full_constraints(void)
{
130
	return has_full_constraints || of_have_populated_dt();
131 132
}

133 134 135 136 137 138 139 140 141 142 143 144 145
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

146 147 148 149 150 151 152 153
static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
{
	if (rdev && rdev->supply)
		return rdev->supply->rdev;

	return NULL;
}

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
 * @subclass:		mutex subclass used for lockdep
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
static void regulator_lock_nested(struct regulator_dev *rdev,
				  unsigned int subclass)
{
	if (!mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current) {
			rdev->ref_cnt++;
			return;
		}
		mutex_lock_nested(&rdev->mutex, subclass);
	}

	rdev->ref_cnt = 1;
	rdev->mutex_owner = current;
}

static inline void regulator_lock(struct regulator_dev *rdev)
{
	regulator_lock_nested(rdev, 0);
}

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
static void regulator_unlock(struct regulator_dev *rdev)
{
	if (rdev->ref_cnt != 0) {
		rdev->ref_cnt--;

		if (!rdev->ref_cnt) {
			rdev->mutex_owner = NULL;
			mutex_unlock(&rdev->mutex);
		}
	}
}

204 205
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    unsigned int subclass)
206
{
207
	struct regulator_dev *c_rdev;
208
	int i;
209

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];

		if (!c_rdev)
			continue;

		regulator_lock_nested(c_rdev, subclass++);

		if (c_rdev->supply)
			subclass =
				regulator_lock_recursive(c_rdev->supply->rdev,
							 subclass);
	}

	return subclass;
225 226 227
}

/**
228 229 230 231 232
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 *
 * Unlock all regulators related with rdev by coupling or suppling.
233
 */
234
static void regulator_unlock_dependent(struct regulator_dev *rdev)
235
{
236 237
	struct regulator_dev *c_rdev;
	int i;
238

239 240
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
241

242 243
		if (!c_rdev)
			continue;
244

245 246 247 248
		regulator_unlock(c_rdev);

		if (c_rdev->supply)
			regulator_unlock_dependent(c_rdev->supply->rdev);
249 250 251
	}
}

252 253 254 255 256 257 258 259 260 261 262 263
/**
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
 * all regulators related with rdev by coupling or suppling.
 */
static inline void regulator_lock_dependent(struct regulator_dev *rdev)
{
	regulator_lock_recursive(rdev, 0);
}

264 265 266 267 268 269
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
270
 * returns the device node corresponding to the regulator if found, else
271 272 273 274 275 276 277 278 279 280 281 282 283
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
284 285
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
286 287 288 289 290
		return NULL;
	}
	return regnode;
}

291 292 293 294 295 296
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

297
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
298
		rdev_err(rdev, "voltage operation not allowed\n");
299 300 301 302 303 304 305 306
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

307 308
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
309
			 *min_uV, *max_uV);
310
		return -EINVAL;
311
	}
312 313 314 315

	return 0;
}

316 317 318 319 320 321
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

322 323 324 325
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
326 327
				     int *min_uV, int *max_uV,
				     suspend_state_t state)
328 329
{
	struct regulator *regulator;
330
	struct regulator_voltage *voltage;
331 332

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
333
		voltage = &regulator->voltage[state];
334 335 336 337
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
338
		if (!voltage->min_uV && !voltage->max_uV)
339 340
			continue;

341 342 343 344
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
345 346
	}

347
	if (*min_uV > *max_uV) {
348 349
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
350
		return -EINVAL;
351
	}
352 353 354 355

	return 0;
}

356 357 358 359 360 361
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

362
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
363
		rdev_err(rdev, "current operation not allowed\n");
364 365 366 367 368 369 370 371
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

372 373
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
374
			 *min_uA, *max_uA);
375
		return -EINVAL;
376
	}
377 378 379 380 381

	return 0;
}

/* operating mode constraint check */
382 383
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
384
{
385
	switch (*mode) {
386 387 388 389 390 391
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
392
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
393 394 395
		return -EINVAL;
	}

396
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
397
		rdev_err(rdev, "mode operation not allowed\n");
398 399
		return -EPERM;
	}
400 401 402 403 404 405 406 407

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
408
	}
409 410

	return -EINVAL;
411 412
}

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

431 432 433
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
434
	struct regulator_dev *rdev = dev_get_drvdata(dev);
435 436
	ssize_t ret;

437
	regulator_lock(rdev);
438
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
439
	regulator_unlock(rdev);
440 441 442

	return ret;
}
443
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
444 445 446 447

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
448
	struct regulator_dev *rdev = dev_get_drvdata(dev);
449 450 451

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
452
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
453

454 455
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
456 457 458
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

459
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
460
}
461
static DEVICE_ATTR_RO(name);
462

463
static const char *regulator_opmode_to_str(int mode)
464 465 466
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
467
		return "fast";
468
	case REGULATOR_MODE_NORMAL:
469
		return "normal";
470
	case REGULATOR_MODE_IDLE:
471
		return "idle";
472
	case REGULATOR_MODE_STANDBY:
473
		return "standby";
474
	}
475 476 477 478 479 480
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
481 482
}

D
David Brownell 已提交
483 484
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
485
{
486
	struct regulator_dev *rdev = dev_get_drvdata(dev);
487

D
David Brownell 已提交
488 489
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
490
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
491 492 493

static ssize_t regulator_print_state(char *buf, int state)
{
494 495 496 497 498 499 500 501
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
502 503 504 505
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
506 507
	ssize_t ret;

508
	regulator_lock(rdev);
509
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
510
	regulator_unlock(rdev);
D
David Brownell 已提交
511

512
	return ret;
D
David Brownell 已提交
513
}
514
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
515

D
David Brownell 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
549 550 551
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
552 553 554
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
555 556 557 558 559 560 561 562
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

563 564 565
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
566
	struct regulator_dev *rdev = dev_get_drvdata(dev);
567 568 569 570 571 572

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
573
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
574 575 576 577

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
578
	struct regulator_dev *rdev = dev_get_drvdata(dev);
579 580 581 582 583 584

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
585
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
586 587 588 589

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
590
	struct regulator_dev *rdev = dev_get_drvdata(dev);
591 592 593 594 595 596

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
597
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
598 599 600 601

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
602
	struct regulator_dev *rdev = dev_get_drvdata(dev);
603 604 605 606 607 608

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
609
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
610 611 612 613

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
614
	struct regulator_dev *rdev = dev_get_drvdata(dev);
615 616 617
	struct regulator *regulator;
	int uA = 0;

618
	regulator_lock(rdev);
619
	list_for_each_entry(regulator, &rdev->consumer_list, list)
620
		uA += regulator->uA_load;
621
	regulator_unlock(rdev);
622 623
	return sprintf(buf, "%d\n", uA);
}
624
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
625

626 627
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
628
{
629
	struct regulator_dev *rdev = dev_get_drvdata(dev);
630 631
	return sprintf(buf, "%d\n", rdev->use_count);
}
632
static DEVICE_ATTR_RO(num_users);
633

634 635
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
636
{
637
	struct regulator_dev *rdev = dev_get_drvdata(dev);
638 639 640 641 642 643 644 645 646

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
647
static DEVICE_ATTR_RO(type);
648 649 650 651

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
652
	struct regulator_dev *rdev = dev_get_drvdata(dev);
653 654 655

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
656 657
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
658 659 660 661

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
662
	struct regulator_dev *rdev = dev_get_drvdata(dev);
663 664 665

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
666 667
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
668 669 670 671

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
672
	struct regulator_dev *rdev = dev_get_drvdata(dev);
673 674 675

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
676 677
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
678 679 680 681

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
682
	struct regulator_dev *rdev = dev_get_drvdata(dev);
683

D
David Brownell 已提交
684 685
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
686
}
687 688
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
689 690 691 692

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
693
	struct regulator_dev *rdev = dev_get_drvdata(dev);
694

D
David Brownell 已提交
695 696
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
697
}
698 699
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
700 701 702 703

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
704
	struct regulator_dev *rdev = dev_get_drvdata(dev);
705

D
David Brownell 已提交
706 707
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
708
}
709 710
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
711 712 713 714

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
715
	struct regulator_dev *rdev = dev_get_drvdata(dev);
716

D
David Brownell 已提交
717 718
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
719
}
720 721
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
722 723 724 725

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
726
	struct regulator_dev *rdev = dev_get_drvdata(dev);
727

D
David Brownell 已提交
728 729
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
730
}
731 732
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
733 734 735 736

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
737
	struct regulator_dev *rdev = dev_get_drvdata(dev);
738

D
David Brownell 已提交
739 740
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
741
}
742 743 744
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
766

767 768
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
769
static int drms_uA_update(struct regulator_dev *rdev)
770 771 772 773 774
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

775 776
	lockdep_assert_held_once(&rdev->mutex);

777 778 779 780
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
781
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
782 783
		return 0;

784 785
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
786 787
		return 0;

788 789
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
790
		return -EINVAL;
791 792 793

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
794
		current_uA += sibling->uA_load;
795

796 797
	current_uA += rdev->constraints->system_load;

798 799 800 801 802 803
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
		/* get output voltage */
		output_uV = _regulator_get_voltage(rdev);
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

822 823 824 825 826 827 828 829 830 831 832
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
833

834 835 836
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
837 838 839
	}

	return err;
840 841 842
}

static int suspend_set_state(struct regulator_dev *rdev,
843
				    suspend_state_t state)
844 845
{
	int ret = 0;
846 847 848 849
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
850
		return 0;
851 852

	/* If we have no suspend mode configration don't set anything;
853 854
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
855
	 */
856 857
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
858 859
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
860
			rdev_warn(rdev, "No configuration\n");
861 862 863
		return 0;
	}

864 865
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
866
		ret = rdev->desc->ops->set_suspend_enable(rdev);
867 868
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
869
		ret = rdev->desc->ops->set_suspend_disable(rdev);
870 871 872
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

873
	if (ret < 0) {
874
		rdev_err(rdev, "failed to enabled/disable\n");
875 876 877 878 879 880
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
881
			rdev_err(rdev, "failed to set voltage\n");
882 883 884 885 886 887 888
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
889
			rdev_err(rdev, "failed to set mode\n");
890 891 892 893
			return ret;
		}
	}

894
	return ret;
895 896 897 898 899
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
900
	char buf[160] = "";
901
	size_t len = sizeof(buf) - 1;
902 903
	int count = 0;
	int ret;
904

905
	if (constraints->min_uV && constraints->max_uV) {
906
		if (constraints->min_uV == constraints->max_uV)
907 908
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
909
		else
910 911 912 913
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
914 915 916 917 918 919
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
920 921
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
922 923
	}

924
	if (constraints->uV_offset)
925 926
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
927

928
	if (constraints->min_uA && constraints->max_uA) {
929
		if (constraints->min_uA == constraints->max_uA)
930 931
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
932
		else
933 934 935 936
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
937 938 939 940 941 942
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
943 944
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
945
	}
946

947
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
948
		count += scnprintf(buf + count, len - count, "fast ");
949
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
950
		count += scnprintf(buf + count, len - count, "normal ");
951
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
952
		count += scnprintf(buf + count, len - count, "idle ");
953
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
954
		count += scnprintf(buf + count, len - count, "standby");
955

956
	if (!count)
957
		scnprintf(buf, len, "no parameters");
958

959
	rdev_dbg(rdev, "%s\n", buf);
960 961

	if ((constraints->min_uV != constraints->max_uV) &&
962
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
963 964
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
965 966
}

967
static int machine_constraints_voltage(struct regulator_dev *rdev,
968
	struct regulation_constraints *constraints)
969
{
970
	const struct regulator_ops *ops = rdev->desc->ops;
971 972 973 974
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
975 976
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
977
		int current_uV = _regulator_get_voltage(rdev);
978 979 980 981 982 983 984 985 986 987 988 989

		if (current_uV == -ENOTRECOVERABLE) {
			/* This regulator can't be read and must be initted */
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
			current_uV = _regulator_get_voltage(rdev);
		}

990
		if (current_uV < 0) {
991 992 993
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
994 995
			return current_uV;
		}
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1016 1017
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1018
			ret = _regulator_do_set_voltage(
1019
				rdev, target_min, target_max);
1020 1021
			if (ret < 0) {
				rdev_err(rdev,
1022 1023
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1024 1025
				return ret;
			}
1026
		}
1027
	}
1028

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1040 1041
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1042
		if (count == 1 && !cmin) {
1043
			cmin = 1;
1044
			cmax = INT_MAX;
1045 1046
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1047 1048
		}

1049 1050
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1051
			return 0;
1052

1053
		/* else require explicit machine-level constraints */
1054
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1055
			rdev_err(rdev, "invalid voltage constraints\n");
1056
			return -EINVAL;
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1076 1077 1078
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1079
			return -EINVAL;
1080 1081 1082 1083
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1084 1085
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1086 1087 1088
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1089 1090
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1091 1092 1093 1094
			constraints->max_uV = max_uV;
		}
	}

1095 1096 1097
	return 0;
}

1098 1099 1100
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1101
	const struct regulator_ops *ops = rdev->desc->ops;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1128 1129
static int _regulator_do_enable(struct regulator_dev *rdev);

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1142
	const struct regulation_constraints *constraints)
1143 1144
{
	int ret = 0;
1145
	const struct regulator_ops *ops = rdev->desc->ops;
1146

1147 1148 1149 1150 1151 1152
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1153 1154
	if (!rdev->constraints)
		return -ENOMEM;
1155

1156
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1157
	if (ret != 0)
1158
		return ret;
1159

1160
	ret = machine_constraints_current(rdev, rdev->constraints);
1161
	if (ret != 0)
1162
		return ret;
1163

1164 1165 1166 1167 1168
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1169
			return ret;
1170 1171 1172
		}
	}

1173
	/* do we need to setup our suspend state */
1174
	if (rdev->constraints->initial_state) {
1175
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1176
		if (ret < 0) {
1177
			rdev_err(rdev, "failed to set suspend state\n");
1178
			return ret;
1179 1180
		}
	}
1181

1182
	if (rdev->constraints->initial_mode) {
1183
		if (!ops->set_mode) {
1184
			rdev_err(rdev, "no set_mode operation\n");
1185
			return -EINVAL;
1186 1187
		}

1188
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1189
		if (ret < 0) {
1190
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1191
			return ret;
1192 1193 1194
		}
	}

1195 1196 1197
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1198 1199 1200
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1201
			rdev_err(rdev, "failed to enable\n");
1202
			return ret;
1203 1204 1205
		}
	}

1206 1207
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1208 1209 1210
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1211
			return ret;
1212 1213 1214
		}
	}

S
Stephen Boyd 已提交
1215 1216 1217 1218
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1219
			return ret;
S
Stephen Boyd 已提交
1220 1221 1222
		}
	}

S
Stephen Boyd 已提交
1223 1224 1225 1226
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1227
			return ret;
S
Stephen Boyd 已提交
1228 1229 1230
		}
	}

1231 1232 1233 1234 1235
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1236
			return ret;
1237 1238 1239
		}
	}

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1251
	print_constraints(rdev);
1252
	return 0;
1253 1254 1255 1256
}

/**
 * set_supply - set regulator supply regulator
1257 1258
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1259 1260 1261 1262 1263 1264
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1265
		      struct regulator_dev *supply_rdev)
1266 1267 1268
{
	int err;

1269 1270
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1271 1272 1273
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1274
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1275 1276
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1277
		return err;
1278
	}
1279
	supply_rdev->open_count++;
1280 1281

	return 0;
1282 1283 1284
}

/**
1285
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1286
 * @rdev:         regulator source
1287
 * @consumer_dev_name: dev_name() string for device supply applies to
1288
 * @supply:       symbolic name for supply
1289 1290 1291 1292 1293 1294 1295
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1296 1297
				      const char *consumer_dev_name,
				      const char *supply)
1298 1299
{
	struct regulator_map *node;
1300
	int has_dev;
1301 1302 1303 1304

	if (supply == NULL)
		return -EINVAL;

1305 1306 1307 1308 1309
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1310
	list_for_each_entry(node, &regulator_map_list, list) {
1311 1312 1313 1314
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1315
			continue;
1316 1317
		}

1318 1319 1320
		if (strcmp(node->supply, supply) != 0)
			continue;

1321 1322 1323 1324 1325 1326
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1327 1328 1329
		return -EBUSY;
	}

1330
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1331 1332 1333 1334 1335 1336
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1337 1338 1339 1340 1341 1342
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1343 1344
	}

1345 1346 1347 1348
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1349 1350 1351 1352 1353 1354 1355
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1356
			kfree(node->dev_name);
1357 1358 1359 1360 1361
			kfree(node);
		}
	}
}

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1411
#define REG_STR_SIZE	64
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

1425
	regulator_lock(rdev);
1426 1427 1428 1429
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1430 1431
		regulator->dev = dev;

1432
		/* Add a link to the device sysfs entry */
1433 1434
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1435
		if (size >= REG_STR_SIZE)
1436
			goto overflow_err;
1437 1438 1439

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1440
			goto overflow_err;
1441

1442
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1443 1444
					buf);
		if (err) {
1445
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1446
				  dev->kobj.name, err);
1447
			/* non-fatal */
1448
		}
1449
	} else {
1450
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1451
		if (regulator->supply_name == NULL)
1452
			goto overflow_err;
1453 1454 1455 1456
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1457
	if (!regulator->debugfs) {
1458
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1459 1460 1461 1462
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1463
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1464
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1465
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1466 1467 1468
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1469
	}
1470

1471 1472 1473 1474 1475
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1476
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1477 1478 1479
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1480
	regulator_unlock(rdev);
1481 1482 1483 1484
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
1485
	regulator_unlock(rdev);
1486 1487 1488
	return NULL;
}

1489 1490
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1491 1492
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1493
	if (!rdev->desc->ops->enable_time)
1494
		return rdev->desc->enable_time;
1495 1496 1497
	return rdev->desc->ops->enable_time(rdev);
}

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1546 1547 1548 1549 1550
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1551
 */
1552
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1553
						  const char *supply)
1554
{
1555
	struct regulator_dev *r = NULL;
1556
	struct device_node *node;
1557 1558
	struct regulator_map *map;
	const char *devname = NULL;
1559

1560 1561
	regulator_supply_alias(&dev, &supply);

1562 1563 1564
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1565
		if (node) {
1566 1567 1568
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1569

1570
			/*
1571 1572
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1573
			 */
1574
			return ERR_PTR(-EPROBE_DEFER);
1575
		}
1576 1577 1578
	}

	/* if not found, try doing it non-dt way */
1579 1580 1581
	if (dev)
		devname = dev_name(dev);

1582
	mutex_lock(&regulator_list_mutex);
1583 1584 1585 1586 1587 1588
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1589 1590
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1591 1592
			r = map->regulator;
			break;
1593
		}
1594
	}
1595
	mutex_unlock(&regulator_list_mutex);
1596

1597 1598 1599 1600
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1601 1602 1603 1604
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1605 1606
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1621 1622 1623 1624
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1625 1626 1627 1628
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1629 1630
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1631
			get_device(&r->dev);
1632 1633 1634 1635 1636
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1637 1638
	}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1652 1653
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1654 1655
	if (ret < 0) {
		put_device(&r->dev);
1656
		return ret;
1657
	}
1658 1659

	ret = set_supply(rdev, r);
1660 1661
	if (ret < 0) {
		put_device(&r->dev);
1662
		return ret;
1663
	}
1664 1665

	/* Cascade always-on state to supply */
1666
	if (_regulator_is_enabled(rdev)) {
1667
		ret = regulator_enable(rdev->supply);
1668
		if (ret < 0) {
1669
			_regulator_put(rdev->supply);
1670
			rdev->supply = NULL;
1671
			return ret;
1672
		}
1673 1674 1675 1676 1677
	}

	return 0;
}

1678
/* Internal regulator request function */
1679 1680
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1681 1682
{
	struct regulator_dev *rdev;
1683
	struct regulator *regulator;
1684
	const char *devname = dev ? dev_name(dev) : "deviceless";
1685
	int ret;
1686

1687 1688 1689 1690 1691
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1692
	if (id == NULL) {
1693
		pr_err("get() with no identifier\n");
1694
		return ERR_PTR(-EINVAL);
1695 1696
	}

1697
	rdev = regulator_dev_lookup(dev, id);
1698 1699
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1700

1701 1702 1703 1704 1705 1706
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1707

1708 1709 1710 1711 1712
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1713

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1727

1728 1729 1730 1731
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1732

1733 1734 1735
		default:
			return ERR_PTR(-ENODEV);
		}
1736 1737
	}

1738 1739
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1740 1741
		put_device(&rdev->dev);
		return regulator;
1742 1743
	}

1744
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1745
		regulator = ERR_PTR(-EBUSY);
1746 1747
		put_device(&rdev->dev);
		return regulator;
1748 1749
	}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1760 1761 1762
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1763 1764
		put_device(&rdev->dev);
		return regulator;
1765 1766
	}

1767
	if (!try_module_get(rdev->owner)) {
1768
		regulator = ERR_PTR(-EPROBE_DEFER);
1769 1770 1771
		put_device(&rdev->dev);
		return regulator;
	}
1772

1773 1774 1775
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1776
		put_device(&rdev->dev);
1777
		module_put(rdev->owner);
1778
		return regulator;
1779 1780
	}

1781
	rdev->open_count++;
1782
	if (get_type == EXCLUSIVE_GET) {
1783 1784 1785 1786 1787 1788 1789 1790 1791
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1792 1793
	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);

1794 1795
	return regulator;
}
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1812
	return _regulator_get(dev, id, NORMAL_GET);
1813
}
1814 1815
EXPORT_SYMBOL_GPL(regulator_get);

1816 1817 1818 1819 1820 1821 1822
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1823 1824 1825
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1839
	return _regulator_get(dev, id, EXCLUSIVE_GET);
1840 1841 1842
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1843 1844 1845 1846 1847 1848
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1849
 * or IS_ERR() condition containing errno.
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1865
	return _regulator_get(dev, id, OPTIONAL_GET);
1866 1867 1868
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1869
/* regulator_list_mutex lock held by regulator_put() */
1870
static void _regulator_put(struct regulator *regulator)
1871 1872 1873
{
	struct regulator_dev *rdev;

1874
	if (IS_ERR_OR_NULL(regulator))
1875 1876
		return;

1877 1878
	lockdep_assert_held_once(&regulator_list_mutex);

1879 1880
	rdev = regulator->rdev;

1881 1882
	debugfs_remove_recursive(regulator->debugfs);

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	if (regulator->dev) {
		int count = 0;
		struct regulator *r;

		list_for_each_entry(r, &rdev->consumer_list, list)
			if (r->dev == regulator->dev)
				count++;

		if (count == 1)
			device_link_remove(regulator->dev, &rdev->dev);

		/* remove any sysfs entries */
1895
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1896 1897
	}

1898
	regulator_lock(rdev);
1899 1900
	list_del(&regulator->list);

1901 1902
	rdev->open_count--;
	rdev->exclusive = 0;
1903
	put_device(&rdev->dev);
1904
	regulator_unlock(rdev);
1905

1906
	kfree_const(regulator->supply_name);
1907 1908
	kfree(regulator);

1909
	module_put(rdev->owner);
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1924 1925 1926 1927
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2005 2006
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2007
					 struct device *alias_dev,
2008
					 const char *const *alias_id,
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2046
					    const char *const *id,
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2057 2058 2059 2060 2061
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
2062
	struct gpio_desc *gpiod;
2063 2064
	int ret;

2065 2066 2067 2068
	if (config->ena_gpiod)
		gpiod = config->ena_gpiod;
	else
		gpiod = gpio_to_desc(config->ena_gpio);
2069

2070
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2071
		if (pin->gpiod == gpiod) {
2072 2073 2074 2075 2076 2077
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

2078 2079 2080 2081 2082 2083 2084
	if (!config->ena_gpiod) {
		ret = gpio_request_one(config->ena_gpio,
				       GPIOF_DIR_OUT | config->ena_gpio_flags,
				       rdev_get_name(rdev));
		if (ret)
			return ret;
	}
2085 2086 2087

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
2088 2089
		if (!config->ena_gpiod)
			gpio_free(config->ena_gpio);
2090 2091 2092
		return -ENOMEM;
	}

2093
	pin->gpiod = gpiod;
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2112
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2113 2114
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2115
				gpiod_put(pin->gpiod);
2116 2117
				list_del(&pin->list);
				kfree(pin);
2118 2119
				rdev->ena_pin = NULL;
				return;
2120 2121 2122 2123 2124 2125 2126
			} else {
				pin->request_count--;
			}
		}
	}
}

2127
/**
2128 2129 2130 2131
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2145 2146
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2157 2158
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
2159 2160 2161 2162 2163 2164 2165
			pin->enable_count = 0;
		}
	}

	return 0;
}

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2245
	if (rdev->ena_pin) {
2246 2247 2248 2249 2250 2251
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2252
	} else if (rdev->desc->ops->enable) {
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2265
	_regulator_enable_delay(delay);
2266 2267 2268 2269 2270 2271

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2272 2273 2274
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
2275
	int ret;
2276

2277 2278
	lockdep_assert_held_once(&rdev->mutex);

2279
	/* check voltage and requested load before enabling */
2280
	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2281
		drms_uA_update(rdev);
2282

2283 2284 2285 2286
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2287 2288
			if (!regulator_ops_is_valid(rdev,
					REGULATOR_CHANGE_STATUS))
2289 2290
				return -EPERM;

2291
			ret = _regulator_do_enable(rdev);
2292 2293 2294
			if (ret < 0)
				return ret;

2295 2296
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2297
		} else if (ret < 0) {
2298
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2299 2300
			return ret;
		}
2301
		/* Fallthrough on positive return values - already enabled */
2302 2303
	}

2304 2305 2306
	rdev->use_count++;

	return 0;
2307 2308 2309 2310 2311 2312
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2313 2314 2315 2316
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2317
 * NOTE: the output value can be set by other drivers, boot loader or may be
2318
 * hardwired in the regulator.
2319 2320 2321
 */
int regulator_enable(struct regulator *regulator)
{
2322 2323
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2324

2325 2326 2327
	if (regulator->always_on)
		return 0;

2328 2329 2330 2331 2332 2333
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

2334 2335 2336 2337 2338 2339 2340
	regulator_lock_dependent(rdev);
	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret != 0)
			goto unlock;
	}
D
David Brownell 已提交
2341
	ret = _regulator_enable(rdev);
2342 2343
unlock:
	regulator_unlock_dependent(rdev);
2344

2345
	if (ret != 0 && rdev->supply)
2346 2347
		regulator_disable(rdev->supply);

2348 2349 2350 2351
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2352 2353 2354 2355 2356 2357
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2358
	if (rdev->ena_pin) {
2359 2360 2361 2362 2363 2364
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2365 2366 2367 2368 2369 2370 2371

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2372 2373 2374 2375 2376 2377
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2378 2379 2380 2381 2382
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2383
/* locks held by regulator_disable() */
2384
static int _regulator_disable(struct regulator_dev *rdev)
2385 2386 2387
{
	int ret = 0;

2388 2389
	lockdep_assert_held_once(&rdev->mutex);

D
David Brownell 已提交
2390
	if (WARN(rdev->use_count <= 0,
2391
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2392 2393
		return -EIO;

2394
	/* are we the last user and permitted to disable ? */
2395 2396
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2397 2398

		/* we are last user */
2399
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2400 2401 2402 2403 2404 2405
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2406
			ret = _regulator_do_disable(rdev);
2407
			if (ret < 0) {
2408
				rdev_err(rdev, "failed to disable\n");
2409 2410 2411
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2412 2413
				return ret;
			}
2414 2415
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2416 2417 2418 2419
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
2420
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2421 2422 2423 2424
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2425

2426 2427 2428 2429 2430 2431 2432
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2433 2434 2435
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2436
 *
2437
 * NOTE: this will only disable the regulator output if no other consumer
2438 2439
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2440 2441 2442
 */
int regulator_disable(struct regulator *regulator)
{
2443 2444
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2445

2446 2447 2448
	if (regulator->always_on)
		return 0;

2449
	regulator_lock_dependent(rdev);
2450
	ret = _regulator_disable(rdev);
2451 2452 2453
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
	regulator_unlock_dependent(rdev);
2454

2455 2456
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2457

2458 2459 2460 2461 2462
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2463
static int _regulator_force_disable(struct regulator_dev *rdev)
2464 2465 2466
{
	int ret = 0;

2467 2468
	lockdep_assert_held_once(&rdev->mutex);

2469 2470 2471 2472 2473
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2474 2475 2476
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2477 2478
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2479
		return ret;
2480 2481
	}

2482 2483 2484 2485
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2499
	struct regulator_dev *rdev = regulator->rdev;
2500 2501
	int ret;

2502
	regulator_lock_dependent(rdev);
2503
	regulator->uA_load = 0;
2504
	ret = _regulator_force_disable(regulator->rdev);
2505 2506 2507
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
	regulator_unlock_dependent(rdev);
2508

2509 2510 2511
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2512

2513 2514 2515 2516
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2517 2518 2519 2520 2521 2522
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

2523
	regulator_lock(rdev);
2524 2525 2526 2527 2528 2529

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

2530 2531 2532 2533 2534 2535 2536 2537
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2538 2539 2540 2541 2542 2543
	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

2544
	regulator_unlock(rdev);
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2573 2574 2575
	if (regulator->always_on)
		return 0;

2576 2577 2578
	if (!ms)
		return regulator_disable(regulator);

2579
	regulator_lock(rdev);
2580
	rdev->deferred_disables++;
2581 2582
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2583
	regulator_unlock(rdev);
2584

2585
	return 0;
2586 2587 2588
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2589 2590
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2591
	/* A GPIO control always takes precedence */
2592
	if (rdev->ena_pin)
2593 2594
		return rdev->ena_gpio_state;

2595
	/* If we don't know then assume that the regulator is always on */
2596
	if (!rdev->desc->ops->is_enabled)
2597
		return 1;
2598

2599
	return rdev->desc->ops->is_enabled(rdev);
2600 2601
}

2602 2603
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2615
			regulator_lock(rdev);
2616 2617
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2618
			regulator_unlock(rdev);
2619
	} else if (rdev->is_switch && rdev->supply) {
2620 2621
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2636 2637 2638 2639
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2640 2641 2642 2643 2644 2645 2646
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2647 2648 2649
 */
int regulator_is_enabled(struct regulator *regulator)
{
2650 2651
	int ret;

2652 2653 2654
	if (regulator->always_on)
		return 1;

2655
	regulator_lock_dependent(regulator->rdev);
2656
	ret = _regulator_is_enabled(regulator->rdev);
2657
	regulator_unlock_dependent(regulator->rdev);
2658 2659

	return ret;
2660 2661 2662
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2675 2676 2677
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2678
	if (!rdev->is_switch || !rdev->supply)
2679 2680 2681
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2692
 * zero if this selector code can't be used on this system, or a
2693 2694 2695 2696
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2697
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2698 2699 2700
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2733 2734
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2735 2736 2737 2738

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2739 2740
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2760 2761
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2799
	struct regulator_dev *rdev = regulator->rdev;
2800 2801
	int i, voltages, ret;

2802
	/* If we can't change voltage check the current voltage */
2803
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2804 2805
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2806
			return min_uV <= ret && ret <= max_uV;
2807 2808 2809 2810
		else
			return ret;
	}

2811 2812 2813 2814 2815
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2830
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2831

2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

2846 2847 2848 2849 2850
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

2851 2852 2853
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2903 2904 2905 2906 2907 2908 2909 2910 2911
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
2912 2913
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
2914 2915 2916 2917 2918 2919
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
2920 2921

	if (ramp_delay == 0) {
2922
		rdev_dbg(rdev, "ramp_delay not set\n");
2923 2924 2925 2926 2927 2928
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

2929 2930 2931 2932
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2933
	int delay = 0;
2934
	int best_val = 0;
2935
	unsigned int selector;
2936
	int old_selector = -1;
2937
	const struct regulator_ops *ops = rdev->desc->ops;
2938
	int old_uV = _regulator_get_voltage(rdev);
2939 2940 2941

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2942 2943 2944
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2945 2946 2947 2948
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2949
	if (_regulator_is_enabled(rdev) &&
2950 2951
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
2952 2953 2954 2955
		if (old_selector < 0)
			return old_selector;
	}

2956
	if (ops->set_voltage) {
2957 2958
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2959 2960

		if (ret >= 0) {
2961 2962 2963
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
2964 2965 2966 2967
			else
				best_val = _regulator_get_voltage(rdev);
		}

2968
	} else if (ops->set_voltage_sel) {
2969
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2970
		if (ret >= 0) {
2971
			best_val = ops->list_voltage(rdev, ret);
2972 2973
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2974 2975 2976
				if (old_selector == selector)
					ret = 0;
				else
2977 2978
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2979 2980 2981
			} else {
				ret = -EINVAL;
			}
2982
		}
2983 2984 2985
	} else {
		ret = -EINVAL;
	}
2986

2987 2988
	if (ret)
		goto out;
2989

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3007
		}
3008
	}
3009

3010 3011 3012
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3013 3014
	}

3015 3016 3017 3018 3019 3020
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3021 3022
	}

3023
	if (best_val >= 0) {
3024 3025
		unsigned long data = best_val;

3026
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3027 3028
				     (void *)data);
	}
3029

3030
out:
3031
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3032 3033 3034 3035

	return ret;
}

3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3062
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3063 3064
					  int min_uV, int max_uV,
					  suspend_state_t state)
3065 3066
{
	struct regulator_dev *rdev = regulator->rdev;
3067
	struct regulator_voltage *voltage = &regulator->voltage[state];
3068
	int ret = 0;
3069
	int old_min_uV, old_max_uV;
3070
	int current_uV;
3071

3072 3073 3074 3075
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3076
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3077 3078
		goto out;

3079
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3080
	 * return successfully even though the regulator does not support
3081 3082
	 * changing the voltage.
	 */
3083
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3084 3085
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
3086 3087
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3088 3089 3090 3091
			goto out;
		}
	}

3092
	/* sanity check */
3093 3094
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3095 3096 3097 3098 3099 3100 3101 3102
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3103

3104
	/* restore original values in case of error */
3105 3106 3107 3108
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3109

3110 3111
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3112
	if (ret < 0)
3113
		goto out2;
3114

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
out:
	return 0;
out2:
	voltage->min_uV = old_min_uV;
	voltage->max_uV = old_max_uV;

	return ret;
}

static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
				      int max_uV, suspend_state_t state)
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3131 3132 3133
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3134 3135
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3136 3137 3138 3139 3140 3141
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3142
			goto out;
3143 3144
		}

M
Mark Brown 已提交
3145
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3146 3147
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3148
			goto out;
3149 3150 3151 3152 3153 3154 3155
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3156
			goto out;
3157 3158 3159 3160 3161 3162 3163
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3164
				best_supply_uV, INT_MAX, state);
3165 3166 3167
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3168
			goto out;
3169 3170 3171
		}
	}

3172 3173 3174 3175 3176
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3177
	if (ret < 0)
3178
		goto out;
3179

3180 3181
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3182
				best_supply_uV, INT_MAX, state);
3183 3184 3185 3186 3187 3188 3189
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3190
out:
3191 3192 3193
	return ret;
}

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
		*current_uV = _regulator_get_voltage(rdev);

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int max_spread = constraints->max_spread;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
	int i, ret;
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

		lockdep_assert_held_once(&c_rdevs[i]->mutex);

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;

		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

		tmp_act = _regulator_get_voltage(c_rdevs[i]);
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
			ret = _regulator_get_voltage(rdev);
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	bool best_c_rdev_done, c_rdev_done[MAX_COUPLED];
	unsigned int delta, best_delta;

	c_rdevs = c_desc->coupled_rdevs;
	n_coupled = c_desc->n_coupled;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		n_coupled = 1;

	if (c_desc->n_resolved < n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	for (i = 0; i < n_coupled; i++)
		c_rdev_done[i] = false;

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

			if (c_rdev_done[i])
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3447

3448 3449
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3450

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
		if (ret < 0)
			goto out;

		c_rdev_done[best_c_rdev] = best_c_rdev_done;

	} while (n_coupled > 1);

out:
	return ret;
}

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	int ret = 0;

3484
	regulator_lock_dependent(regulator->rdev);
3485

3486 3487
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3488

3489
	regulator_unlock_dependent(regulator->rdev);
3490

3491 3492 3493 3494
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3507
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
	int ret = 0;

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3567
	regulator_lock_dependent(regulator->rdev);
3568 3569 3570 3571

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3572
	regulator_unlock_dependent(regulator->rdev);
3573 3574 3575 3576 3577

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3591 3592
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3593 3594 3595 3596 3597
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3598 3599 3600 3601 3602
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3603
	/* Currently requires operations to do this */
3604
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3627
/**
3628 3629
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3630 3631 3632 3633 3634 3635
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3636
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3637
 * set_voltage_time_sel() operation.
3638 3639 3640 3641 3642
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3643
	int old_volt, new_volt;
3644

3645 3646 3647
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3648

3649 3650 3651
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3652 3653 3654 3655 3656
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3657
}
3658
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3659

3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
3671
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3672 3673
	int ret, min_uV, max_uV;

3674
	regulator_lock(rdev);
3675 3676 3677 3678 3679 3680 3681 3682

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
3683
	if (!voltage->min_uV && !voltage->max_uV) {
3684 3685 3686 3687
		ret = -EINVAL;
		goto out;
	}

3688 3689
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
3690 3691 3692 3693 3694 3695

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

3696
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3697 3698 3699 3700 3701 3702
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
3703
	regulator_unlock(rdev);
3704 3705 3706 3707
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3708 3709
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3710
	int sel, ret;
3711 3712 3713 3714 3715 3716 3717 3718
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3719 3720 3721 3722 3723
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
3724 3725 3726 3727

			return _regulator_get_voltage(rdev->supply->rdev);
		}
	}
3728 3729 3730 3731 3732

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3733
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3734
	} else if (rdev->desc->ops->get_voltage) {
3735
		ret = rdev->desc->ops->get_voltage(rdev);
3736 3737
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3738 3739
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3740
	} else if (rdev->supply) {
3741
		ret = _regulator_get_voltage(rdev->supply->rdev);
3742
	} else {
3743
		return -EINVAL;
3744
	}
3745

3746 3747
	if (ret < 0)
		return ret;
3748
	return ret - rdev->constraints->uV_offset;
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

3764
	regulator_lock_dependent(regulator->rdev);
3765 3766 3767

	ret = _regulator_get_voltage(regulator->rdev);

3768
	regulator_unlock_dependent(regulator->rdev);
3769 3770 3771 3772 3773 3774 3775 3776

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
3777
 * @min_uA: Minimum supported current in uA
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

3796
	regulator_lock(rdev);
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
3811
	regulator_unlock(rdev);
3812 3813 3814 3815
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

3816 3817 3818 3819 3820 3821 3822 3823 3824
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

3825 3826 3827 3828
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

3829
	regulator_lock(rdev);
3830
	ret = _regulator_get_current_limit_unlocked(rdev);
3831
	regulator_unlock(rdev);
3832

3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
3866
	int regulator_curr_mode;
3867

3868
	regulator_lock(rdev);
3869 3870 3871 3872 3873 3874 3875

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

3876 3877 3878 3879 3880 3881 3882 3883 3884
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

3885
	/* constraints check */
3886
	ret = regulator_mode_constrain(rdev, &mode);
3887 3888 3889 3890 3891
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
3892
	regulator_unlock(rdev);
3893 3894 3895 3896
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

3897 3898 3899 3900 3901 3902 3903 3904 3905
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

3906 3907 3908 3909
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

3910
	regulator_lock(rdev);
3911
	ret = _regulator_get_mode_unlocked(rdev);
3912
	regulator_unlock(rdev);
3913

3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

3929 3930 3931 3932 3933
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

3934
	regulator_lock(rdev);
3935 3936 3937 3938 3939 3940 3941 3942 3943

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
3944
	regulator_unlock(rdev);
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

3962
/**
3963
 * regulator_set_load - set regulator load
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
3986
 * On error a negative errno is returned.
3987
 */
3988
int regulator_set_load(struct regulator *regulator, int uA_load)
3989 3990
{
	struct regulator_dev *rdev = regulator->rdev;
3991
	int ret;
3992

3993
	regulator_lock(rdev);
3994
	regulator->uA_load = uA_load;
3995
	ret = drms_uA_update(rdev);
3996
	regulator_unlock(rdev);
3997

3998 3999
	return ret;
}
4000
EXPORT_SYMBOL_GPL(regulator_set_load);
4001

4002 4003 4004 4005
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4006
 * @enable: enable or disable bypass mode
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4021
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4022 4023
		return 0;

4024
	regulator_lock(rdev);
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4048
	regulator_unlock(rdev);
4049 4050 4051 4052 4053

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4054 4055 4056
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4057
 * @nb: notifier block
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4072
 * @nb: notifier block
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4084 4085 4086
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4087
static int _notifier_call_chain(struct regulator_dev *rdev,
4088 4089 4090
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4091
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4118 4119
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4120 4121
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
4122 4123
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
4124 4125 4126 4127 4128 4129 4130 4131
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4132
	while (--i >= 0)
4133 4134 4135 4136 4137 4138
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4139 4140 4141 4142 4143 4144 4145
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4161
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4162
	int i;
4163
	int ret = 0;
4164

4165 4166 4167 4168 4169 4170 4171
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
4172 4173 4174 4175

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4176
	for (i = 0; i < num_consumers; i++) {
4177 4178
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4179
			goto err;
4180
		}
4181 4182 4183 4184 4185
	}

	return 0;

err:
4186 4187 4188 4189 4190 4191 4192
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4206 4207
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4208 4209 4210 4211 4212 4213
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4214
	int ret, r;
4215

4216
	for (i = num_consumers - 1; i >= 0; --i) {
4217 4218 4219 4220 4221 4222 4223 4224
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4225
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4226 4227 4228
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4229
			pr_err("Failed to re-enable %s: %d\n",
4230 4231
			       consumers[i].supply, r);
	}
4232 4233 4234 4235 4236

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4255
	int ret = 0;
4256

4257
	for (i = 0; i < num_consumers; i++) {
4258 4259 4260
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4261 4262
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4263 4264 4265 4266 4267 4268 4269
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4293
 * @rdev: regulator source
4294
 * @event: notifier block
4295
 * @data: callback-specific data.
4296 4297 4298
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4299
 * Note lock must be held by caller.
4300 4301 4302 4303
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4304 4305
	lockdep_assert_held_once(&rdev->mutex);

4306 4307 4308 4309 4310 4311
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4328
	case REGULATOR_MODE_STANDBY:
4329 4330
		return REGULATOR_STATUS_STANDBY;
	default:
4331
		return REGULATOR_STATUS_UNDEFINED;
4332 4333 4334 4335
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4363 4364 4365 4366
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4367 4368
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4369
{
4370
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4371
	struct regulator_dev *rdev = dev_to_rdev(dev);
4372
	const struct regulator_ops *ops = rdev->desc->ops;
4373 4374 4375 4376 4377 4378 4379
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4380 4381

	/* some attributes need specific methods to be displayed */
4382 4383 4384 4385 4386 4387 4388
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4389
	}
4390

4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4406
	/* some attributes are type-specific */
4407 4408
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
4409 4410

	/* constraints need specific supporting methods */
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4446

4447 4448 4449
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4450 4451 4452

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4453
	kfree(rdev);
4454 4455
}

4456 4457
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4470
	if (!rdev->debugfs) {
4471 4472 4473 4474 4475 4476 4477 4478
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4479 4480
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4481 4482
}

4483 4484
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4485 4486 4487 4488 4489 4490
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4491 4492
}

4493
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4507 4508
		if (!c_rdev)
			continue;
4509

4510
		regulator_lock(c_rdev);
4511

4512 4513
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
4514

4515
		regulator_unlock(c_rdev);
4516

4517 4518
		regulator_resolve_coupling(c_rdev);
	}
4519 4520
}

4521
static int regulator_init_coupling(struct regulator_dev *rdev)
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
{
	int n_phandles;

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

	if (n_phandles + 1 > MAX_COUPLED) {
		rdev_err(rdev, "too many regulators coupled\n");
		return -EPERM;
	}

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

	/* regulator, which can't change its voltage, can't be coupled */
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
		rdev_err(rdev, "voltage operation not allowed\n");
		return -EPERM;
	}

	if (rdev->constraints->max_spread <= 0) {
		rdev_err(rdev, "wrong max_spread value\n");
		return -EPERM;
	}

	if (!of_check_coupling_data(rdev))
		return -EPERM;

	return 0;
}

4564 4565
/**
 * regulator_register - register regulator
4566
 * @regulator_desc: regulator to register
4567
 * @cfg: runtime configuration for regulator
4568 4569
 *
 * Called by regulator drivers to register a regulator.
4570 4571
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
4572
 */
4573 4574
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
4575
		   const struct regulator_config *cfg)
4576
{
4577
	const struct regulation_constraints *constraints = NULL;
4578
	const struct regulator_init_data *init_data;
4579
	struct regulator_config *config = NULL;
4580
	static atomic_t regulator_no = ATOMIC_INIT(-1);
4581
	struct regulator_dev *rdev;
4582
	struct device *dev;
4583
	int ret, i;
4584

4585
	if (regulator_desc == NULL || cfg == NULL)
4586 4587
		return ERR_PTR(-EINVAL);

4588
	dev = cfg->dev;
4589
	WARN_ON(!dev);
4590

4591 4592 4593
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

4594 4595
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
4596 4597
		return ERR_PTR(-EINVAL);

4598 4599 4600
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
4601 4602
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
4603 4604 4605 4606 4607 4608

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
4609 4610 4611 4612
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
4613

4614 4615 4616 4617
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

4628
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4629 4630 4631 4632 4633 4634
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

4635
	mutex_init(&rdev->mutex);
4636
	rdev->reg_data = config->driver_data;
4637 4638
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
4639 4640
	if (config->regmap)
		rdev->regmap = config->regmap;
4641
	else if (dev_get_regmap(dev, NULL))
4642
		rdev->regmap = dev_get_regmap(dev, NULL);
4643 4644
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4645 4646 4647
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4648
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4649

4650
	/* preform any regulator specific init */
4651
	if (init_data && init_data->regulator_init) {
4652
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
4653 4654
		if (ret < 0)
			goto clean;
4655 4656
	}

4657 4658 4659
	if (config->ena_gpiod ||
	    ((config->ena_gpio || config->ena_gpio_initialized) &&
	     gpio_is_valid(config->ena_gpio))) {
4660
		mutex_lock(&regulator_list_mutex);
4661
		ret = regulator_ena_gpio_request(rdev, config);
4662
		mutex_unlock(&regulator_list_mutex);
4663 4664 4665
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
4666
			goto clean;
4667 4668 4669
		}
	}

4670
	/* register with sysfs */
4671
	rdev->dev.class = &regulator_class;
4672
	rdev->dev.parent = dev;
4673
	dev_set_name(&rdev->dev, "regulator.%lu",
4674
		    (unsigned long) atomic_inc_return(&regulator_no));
4675

4676
	/* set regulator constraints */
4677 4678 4679 4680
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
4681
		rdev->supply_name = init_data->supply_regulator;
4682
	else if (regulator_desc->supply_name)
4683
		rdev->supply_name = regulator_desc->supply_name;
4684

4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

4697 4698
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
4699 4700
		goto wash;

4701
	/* add consumers devices */
4702
	if (init_data) {
4703
		mutex_lock(&regulator_list_mutex);
4704 4705 4706
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
4707
				init_data->consumer_supplies[i].supply);
4708
			if (ret < 0) {
4709
				mutex_unlock(&regulator_list_mutex);
4710 4711 4712 4713
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
4714
		}
4715
		mutex_unlock(&regulator_list_mutex);
4716
	}
4717

4718 4719 4720 4721 4722
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

4723
	dev_set_drvdata(&rdev->dev, rdev);
4724 4725 4726 4727 4728 4729
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

4730
	rdev_init_debugfs(rdev);
4731

4732 4733 4734 4735 4736
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

4737 4738 4739
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
4740
	kfree(config);
4741
	return rdev;
D
David Brownell 已提交
4742

4743
unset_supplies:
4744
	mutex_lock(&regulator_list_mutex);
4745
	unset_regulator_supplies(rdev);
4746
	mutex_unlock(&regulator_list_mutex);
4747
wash:
4748
	kfree(rdev->constraints);
4749
	mutex_lock(&regulator_list_mutex);
4750
	regulator_ena_gpio_free(rdev);
4751
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
4752 4753
clean:
	kfree(rdev);
4754 4755
	kfree(config);
	return ERR_PTR(ret);
4756 4757 4758 4759 4760
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
4761
 * @rdev: regulator to unregister
4762 4763 4764 4765 4766 4767 4768 4769
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

4770 4771 4772
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
4773
		regulator_put(rdev->supply);
4774
	}
4775
	mutex_lock(&regulator_list_mutex);
4776
	debugfs_remove_recursive(rdev->debugfs);
4777
	flush_work(&rdev->disable_work.work);
4778
	WARN_ON(rdev->open_count);
4779
	unset_regulator_supplies(rdev);
4780
	list_del(&rdev->list);
4781
	regulator_ena_gpio_free(rdev);
4782
	mutex_unlock(&regulator_list_mutex);
4783
	device_unregister(&rdev->dev);
4784 4785 4786
}
EXPORT_SYMBOL_GPL(regulator_unregister);

4787
#ifdef CONFIG_SUSPEND
4788
/**
4789
 * regulator_suspend - prepare regulators for system wide suspend
4790
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
4791 4792 4793
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
4794
static int regulator_suspend(struct device *dev)
4795
{
4796
	struct regulator_dev *rdev = dev_to_rdev(dev);
4797
	suspend_state_t state = pm_suspend_target_state;
4798 4799 4800 4801 4802
	int ret;

	regulator_lock(rdev);
	ret = suspend_set_state(rdev, state);
	regulator_unlock(rdev);
4803

4804
	return ret;
4805
}
4806

4807
static int regulator_resume(struct device *dev)
4808
{
4809
	suspend_state_t state = pm_suspend_target_state;
4810
	struct regulator_dev *rdev = dev_to_rdev(dev);
4811
	struct regulator_state *rstate;
4812
	int ret = 0;
4813

4814
	rstate = regulator_get_suspend_state(rdev, state);
4815
	if (rstate == NULL)
4816
		return 0;
4817

4818
	regulator_lock(rdev);
4819

4820
	if (rdev->desc->ops->resume &&
4821 4822
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
4823
		ret = rdev->desc->ops->resume(rdev);
4824

4825
	regulator_unlock(rdev);
4826

4827
	return ret;
4828
}
4829 4830
#else /* !CONFIG_SUSPEND */

4831 4832
#define regulator_suspend	NULL
#define regulator_resume	NULL
4833 4834 4835 4836 4837

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4838 4839
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
4840 4841 4842
};
#endif

M
Mark Brown 已提交
4843
struct class regulator_class = {
4844 4845 4846 4847 4848 4849 4850
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

4868 4869
/**
 * rdev_get_drvdata - get rdev regulator driver data
4870
 * @rdev: regulator
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
4907
 * @rdev: regulator
4908 4909 4910 4911 4912 4913 4914
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

4927
#ifdef CONFIG_DEBUG_FS
4928
static int supply_map_show(struct seq_file *sf, void *data)
4929 4930 4931 4932
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
4933 4934 4935
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
4936 4937
	}

4938 4939
	return 0;
}
4940

4941 4942 4943
static int supply_map_open(struct inode *inode, struct file *file)
{
	return single_open(file, supply_map_show, inode->i_private);
4944
}
4945
#endif
4946 4947

static const struct file_operations supply_map_fops = {
4948
#ifdef CONFIG_DEBUG_FS
4949 4950 4951 4952
	.open = supply_map_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
4953
#endif
4954
};
4955

4956
#ifdef CONFIG_DEBUG_FS
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

4979 4980 4981 4982 4983 4984
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
4985
	struct summary_data summary_data;
4986
	unsigned int opmode;
4987 4988 4989 4990

	if (!rdev)
		return;

4991 4992 4993
	regulator_lock_nested(rdev, level);

	opmode = _regulator_get_mode_unlocked(rdev);
4994
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
4995 4996
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
4997
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
4998
		   regulator_opmode_to_str(opmode));
4999

5000
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
5001 5002
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5021
		if (consumer->dev && consumer->dev->class == &regulator_class)
5022 5023 5024 5025
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5026 5027
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5028 5029 5030

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5031 5032
			seq_printf(s, "%37dmA %5dmV %5dmV",
				   consumer->uA_load / 1000,
5033 5034
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5035 5036 5037 5038 5039 5040 5041 5042
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5043 5044 5045
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5046

5047 5048
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5049 5050

	regulator_unlock(rdev);
5051 5052
}

5053
static int regulator_summary_show_roots(struct device *dev, void *data)
5054
{
5055 5056
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5057

5058 5059
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5060

5061 5062
	return 0;
}
5063

5064 5065
static int regulator_summary_show(struct seq_file *s, void *data)
{
5066 5067
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5068

5069 5070
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089

	return 0;
}

static int regulator_summary_open(struct inode *inode, struct file *file)
{
	return single_open(file, regulator_summary_show, inode->i_private);
}
#endif

static const struct file_operations regulator_summary_fops = {
#ifdef CONFIG_DEBUG_FS
	.open		= regulator_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
#endif
};

5090 5091
static int __init regulator_init(void)
{
5092 5093 5094 5095
	int ret;

	ret = class_register(&regulator_class);

5096
	debugfs_root = debugfs_create_dir("regulator", NULL);
5097
	if (!debugfs_root)
5098
		pr_warn("regulator: Failed to create debugfs directory\n");
5099

5100 5101
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5102

5103
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5104
			    NULL, &regulator_summary_fops);
5105

5106 5107 5108
	regulator_dummy_init();

	return ret;
5109 5110 5111 5112
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5113

5114
static int __init regulator_late_cleanup(struct device *dev, void *data)
5115
{
5116 5117 5118
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5119 5120
	int enabled, ret;

5121 5122 5123
	if (c && c->always_on)
		return 0;

5124
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5125 5126
		return 0;

5127
	regulator_lock(rdev);
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5158
	regulator_unlock(rdev);
5159 5160 5161 5162 5163 5164

	return 0;
}

static int __init regulator_init_complete(void)
{
5165 5166 5167 5168 5169 5170 5171 5172 5173
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5184
	/* If we have a full configuration then disable any regulators
5185 5186 5187
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5188
	 */
5189 5190
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5191 5192 5193

	return 0;
}
5194
late_initcall_sync(regulator_init_complete);