core.c 104.3 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54 55
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
56
static LIST_HEAD(regulator_ena_gpio_list);
57
static LIST_HEAD(regulator_supply_alias_list);
58
static bool has_full_constraints;
59

60 61
static struct dentry *debugfs_root;

62
/*
63 64 65 66 67 68
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
69
	const char *dev_name;   /* The dev_name() for the consumer */
70
	const char *supply;
71
	struct regulator_dev *regulator;
72 73
};

74 75 76 77 78 79 80
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
81
	struct gpio_desc *gpiod;
82 83 84 85 86
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

87 88 89 90 91 92 93 94 95 96 97 98 99
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

100
static int _regulator_is_enabled(struct regulator_dev *rdev);
101
static int _regulator_disable(struct regulator_dev *rdev);
102 103 104
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105
static int _notifier_call_chain(struct regulator_dev *rdev,
106
				  unsigned long event, void *data);
107 108
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
109 110 111
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
112

113 114 115 116 117 118 119 120 121 122
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

123 124
static bool have_full_constraints(void)
{
125
	return has_full_constraints || of_have_populated_dt();
126 127
}

128 129 130 131 132 133
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
134
 * returns the device node corresponding to the regulator if found, else
135 136 137 138 139 140 141 142 143 144 145 146 147
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
148
		dev_dbg(dev, "Looking up %s property in node %s failed",
149 150 151 152 153 154
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

155 156 157 158 159 160 161 162 163 164 165
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

166 167 168 169 170 171 172
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
173
		rdev_err(rdev, "no constraints\n");
174 175 176
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177
		rdev_err(rdev, "operation not allowed\n");
178 179 180 181 182 183 184 185
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

186 187
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188
			 *min_uV, *max_uV);
189
		return -EINVAL;
190
	}
191 192 193 194

	return 0;
}

195 196 197 198 199 200 201 202 203
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 205 206 207 208 209 210
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

211 212 213 214 215 216
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

217
	if (*min_uV > *max_uV) {
218 219
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
220
		return -EINVAL;
221
	}
222 223 224 225

	return 0;
}

226 227 228 229 230 231 232
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
233
		rdev_err(rdev, "no constraints\n");
234 235 236
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237
		rdev_err(rdev, "operation not allowed\n");
238 239 240 241 242 243 244 245
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

246 247
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248
			 *min_uA, *max_uA);
249
		return -EINVAL;
250
	}
251 252 253 254 255

	return 0;
}

/* operating mode constraint check */
256
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257
{
258
	switch (*mode) {
259 260 261 262 263 264
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
265
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
266 267 268
		return -EINVAL;
	}

269
	if (!rdev->constraints) {
270
		rdev_err(rdev, "no constraints\n");
271 272 273
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274
		rdev_err(rdev, "operation not allowed\n");
275 276
		return -EPERM;
	}
277 278 279 280 281 282 283 284

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
285
	}
286 287

	return -EINVAL;
288 289 290 291 292 293
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
294
		rdev_err(rdev, "no constraints\n");
295 296 297
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298
		rdev_err(rdev, "operation not allowed\n");
299 300 301 302 303 304 305 306
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
307
	struct regulator_dev *rdev = dev_get_drvdata(dev);
308 309 310 311 312 313 314 315
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
316
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317 318 319 320

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
321
	struct regulator_dev *rdev = dev_get_drvdata(dev);
322 323 324

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
325
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326

327 328
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
329 330 331
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

332
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
333
}
334
static DEVICE_ATTR_RO(name);
335

D
David Brownell 已提交
336
static ssize_t regulator_print_opmode(char *buf, int mode)
337 338 339 340 341 342 343 344 345 346 347 348 349 350
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
351 352
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
353
{
354
	struct regulator_dev *rdev = dev_get_drvdata(dev);
355

D
David Brownell 已提交
356 357
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
358
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
359 360 361

static ssize_t regulator_print_state(char *buf, int state)
{
362 363 364 365 366 367 368 369
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
370 371 372 373
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
374 375 376 377 378
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
379

380
	return ret;
D
David Brownell 已提交
381
}
382
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
383

D
David Brownell 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
417 418 419
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
420 421 422
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
423 424 425 426 427 428 429 430
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

431 432 433
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
434
	struct regulator_dev *rdev = dev_get_drvdata(dev);
435 436 437 438 439 440

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
441
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442 443 444 445

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
446
	struct regulator_dev *rdev = dev_get_drvdata(dev);
447 448 449 450 451 452

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
453
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454 455 456 457

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
458
	struct regulator_dev *rdev = dev_get_drvdata(dev);
459 460 461 462 463 464

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
465
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466 467 468 469

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
470
	struct regulator_dev *rdev = dev_get_drvdata(dev);
471 472 473 474 475 476

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
477
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478 479 480 481

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
482
	struct regulator_dev *rdev = dev_get_drvdata(dev);
483 484 485 486 487
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
488
		uA += regulator->uA_load;
489 490 491
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
492
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493

494 495
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
496
{
497
	struct regulator_dev *rdev = dev_get_drvdata(dev);
498 499
	return sprintf(buf, "%d\n", rdev->use_count);
}
500
static DEVICE_ATTR_RO(num_users);
501

502 503
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
504
{
505
	struct regulator_dev *rdev = dev_get_drvdata(dev);
506 507 508 509 510 511 512 513 514

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
515
static DEVICE_ATTR_RO(type);
516 517 518 519

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
520
	struct regulator_dev *rdev = dev_get_drvdata(dev);
521 522 523

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
524 525
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
526 527 528 529

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
530
	struct regulator_dev *rdev = dev_get_drvdata(dev);
531 532 533

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
534 535
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
536 537 538 539

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
540
	struct regulator_dev *rdev = dev_get_drvdata(dev);
541 542 543

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
544 545
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
546 547 548 549

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
550
	struct regulator_dev *rdev = dev_get_drvdata(dev);
551

D
David Brownell 已提交
552 553
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
554
}
555 556
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
557 558 559 560

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
561
	struct regulator_dev *rdev = dev_get_drvdata(dev);
562

D
David Brownell 已提交
563 564
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
565
}
566 567
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
568 569 570 571

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
572
	struct regulator_dev *rdev = dev_get_drvdata(dev);
573

D
David Brownell 已提交
574 575
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
576
}
577 578
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
579 580 581 582

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
583
	struct regulator_dev *rdev = dev_get_drvdata(dev);
584

D
David Brownell 已提交
585 586
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
587
}
588 589
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
590 591 592 593

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
594
	struct regulator_dev *rdev = dev_get_drvdata(dev);
595

D
David Brownell 已提交
596 597
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
598
}
599 600
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
601 602 603 604

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
605
	struct regulator_dev *rdev = dev_get_drvdata(dev);
606

D
David Brownell 已提交
607 608
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
609
}
610 611 612
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
634

635 636
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
637
static int drms_uA_update(struct regulator_dev *rdev)
638 639 640 641 642
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

643 644 645 646
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
647
	err = regulator_check_drms(rdev);
648 649 650 651 652 653 654 655
	if (err < 0)
		return 0;

	if (!rdev->desc->ops->get_optimum_mode)
		return 0;

	if (!rdev->desc->ops->set_mode)
		return -EINVAL;
656 657

	/* get output voltage */
658
	output_uV = _regulator_get_voltage(rdev);
659 660 661 662
	if (output_uV <= 0) {
		rdev_err(rdev, "invalid output voltage found\n");
		return -EINVAL;
	}
663 664

	/* get input voltage */
665 666
	input_uV = 0;
	if (rdev->supply)
667
		input_uV = regulator_get_voltage(rdev->supply);
668
	if (input_uV <= 0)
669
		input_uV = rdev->constraints->input_uV;
670 671 672 673
	if (input_uV <= 0) {
		rdev_err(rdev, "invalid input voltage found\n");
		return -EINVAL;
	}
674 675 676

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
677
		current_uA += sibling->uA_load;
678 679 680 681 682 683

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
684
	err = regulator_mode_constrain(rdev, &mode);
685 686 687 688 689 690 691 692 693 694 695
	if (err < 0) {
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 current_uA, input_uV, output_uV);
		return err;
	}

	err = rdev->desc->ops->set_mode(rdev, mode);
	if (err < 0)
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);

	return err;
696 697 698 699 700 701
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
702 703

	/* If we have no suspend mode configration don't set anything;
704 705
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
706 707
	 */
	if (!rstate->enabled && !rstate->disabled) {
708 709
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
710
			rdev_warn(rdev, "No configuration\n");
711 712 713 714
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
715
		rdev_err(rdev, "invalid configuration\n");
716 717
		return -EINVAL;
	}
718

719
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
720
		ret = rdev->desc->ops->set_suspend_enable(rdev);
721
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
722
		ret = rdev->desc->ops->set_suspend_disable(rdev);
723 724 725
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

726
	if (ret < 0) {
727
		rdev_err(rdev, "failed to enabled/disable\n");
728 729 730 731 732 733
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
734
			rdev_err(rdev, "failed to set voltage\n");
735 736 737 738 739 740 741
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
742
			rdev_err(rdev, "failed to set mode\n");
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
773
	char buf[80] = "";
774 775
	int count = 0;
	int ret;
776

777
	if (constraints->min_uV && constraints->max_uV) {
778
		if (constraints->min_uV == constraints->max_uV)
779 780
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
781
		else
782 783 784 785 786 787 788 789 790 791 792 793
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

794 795 796 797
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

798
	if (constraints->min_uA && constraints->max_uA) {
799
		if (constraints->min_uA == constraints->max_uA)
800 801
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
802
		else
803 804 805 806 807 808 809 810 811
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
812
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
813
	}
814

815 816 817 818 819 820 821 822 823
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

824 825 826
	if (!count)
		sprintf(buf, "no parameters");

827
	rdev_dbg(rdev, "%s\n", buf);
828 829 830 831 832

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
833 834
}

835
static int machine_constraints_voltage(struct regulator_dev *rdev,
836
	struct regulation_constraints *constraints)
837
{
838
	const struct regulator_ops *ops = rdev->desc->ops;
839 840 841 842
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
843
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
844 845
		int current_uV = _regulator_get_voltage(rdev);
		if (current_uV < 0) {
846 847 848
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
849 850 851 852 853 854 855 856 857
			return current_uV;
		}
		if (current_uV < rdev->constraints->min_uV ||
		    current_uV > rdev->constraints->max_uV) {
			ret = _regulator_do_set_voltage(
				rdev, rdev->constraints->min_uV,
				rdev->constraints->max_uV);
			if (ret < 0) {
				rdev_err(rdev,
858 859
					"failed to apply %duV constraint(%d)\n",
					rdev->constraints->min_uV, ret);
860 861
				return ret;
			}
862
		}
863
	}
864

865 866 867 868 869 870 871 872 873 874 875
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

876 877
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
878
		if (count == 1 && !cmin) {
879
			cmin = 1;
880
			cmax = INT_MAX;
881 882
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
883 884
		}

885 886
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
887
			return 0;
888

889
		/* else require explicit machine-level constraints */
890
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
891
			rdev_err(rdev, "invalid voltage constraints\n");
892
			return -EINVAL;
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
912 913 914
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
915
			return -EINVAL;
916 917 918 919
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
920 921
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
922 923 924
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
925 926
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
927 928 929 930
			constraints->max_uV = max_uV;
		}
	}

931 932 933
	return 0;
}

934 935 936
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
937
	const struct regulator_ops *ops = rdev->desc->ops;
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

964 965
static int _regulator_do_enable(struct regulator_dev *rdev);

966 967 968 969 970 971 972 973 974 975 976 977
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
978
	const struct regulation_constraints *constraints)
979 980
{
	int ret = 0;
981
	const struct regulator_ops *ops = rdev->desc->ops;
982

983 984 985 986 987 988
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
989 990
	if (!rdev->constraints)
		return -ENOMEM;
991

992
	ret = machine_constraints_voltage(rdev, rdev->constraints);
993 994 995
	if (ret != 0)
		goto out;

996
	ret = machine_constraints_current(rdev, rdev->constraints);
997 998 999
	if (ret != 0)
		goto out;

1000
	/* do we need to setup our suspend state */
1001
	if (rdev->constraints->initial_state) {
1002
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1003
		if (ret < 0) {
1004
			rdev_err(rdev, "failed to set suspend state\n");
1005 1006 1007
			goto out;
		}
	}
1008

1009
	if (rdev->constraints->initial_mode) {
1010
		if (!ops->set_mode) {
1011
			rdev_err(rdev, "no set_mode operation\n");
1012 1013 1014 1015
			ret = -EINVAL;
			goto out;
		}

1016
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1017
		if (ret < 0) {
1018
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1019 1020 1021 1022
			goto out;
		}
	}

1023 1024 1025
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1026 1027 1028
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1029
			rdev_err(rdev, "failed to enable\n");
1030 1031 1032 1033
			goto out;
		}
	}

1034 1035
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1036 1037 1038 1039 1040 1041 1042
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
			goto out;
		}
	}

1043
	print_constraints(rdev);
1044
	return 0;
1045
out:
1046 1047
	kfree(rdev->constraints);
	rdev->constraints = NULL;
1048 1049 1050 1051 1052
	return ret;
}

/**
 * set_supply - set regulator supply regulator
1053 1054
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1055 1056 1057 1058 1059 1060
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1061
		      struct regulator_dev *supply_rdev)
1062 1063 1064
{
	int err;

1065 1066 1067
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1068 1069
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1070
		return err;
1071
	}
1072
	supply_rdev->open_count++;
1073 1074

	return 0;
1075 1076 1077
}

/**
1078
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1079
 * @rdev:         regulator source
1080
 * @consumer_dev_name: dev_name() string for device supply applies to
1081
 * @supply:       symbolic name for supply
1082 1083 1084 1085 1086 1087 1088
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1089 1090
				      const char *consumer_dev_name,
				      const char *supply)
1091 1092
{
	struct regulator_map *node;
1093
	int has_dev;
1094 1095 1096 1097

	if (supply == NULL)
		return -EINVAL;

1098 1099 1100 1101 1102
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1103
	list_for_each_entry(node, &regulator_map_list, list) {
1104 1105 1106 1107
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1108
			continue;
1109 1110
		}

1111 1112 1113
		if (strcmp(node->supply, supply) != 0)
			continue;

1114 1115 1116 1117 1118 1119
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1120 1121 1122
		return -EBUSY;
	}

1123
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1124 1125 1126 1127 1128 1129
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1130 1131 1132 1133 1134 1135
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1136 1137
	}

1138 1139 1140 1141
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1142 1143 1144 1145 1146 1147 1148
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1149
			kfree(node->dev_name);
1150 1151 1152 1153 1154
			kfree(node);
		}
	}
}

1155
#define REG_STR_SIZE	64
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1174 1175
		regulator->dev = dev;

1176
		/* Add a link to the device sysfs entry */
1177 1178 1179
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1180
			goto overflow_err;
1181 1182 1183

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1184
			goto overflow_err;
1185 1186 1187 1188

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1189 1190
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1191
			/* non-fatal */
1192
		}
1193 1194 1195
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1196
			goto overflow_err;
1197 1198 1199 1200
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1201
	if (!regulator->debugfs) {
1202 1203 1204 1205 1206 1207 1208 1209
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1210
	}
1211

1212 1213 1214 1215 1216 1217 1218 1219 1220
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1221 1222 1223 1224 1225 1226 1227 1228 1229
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1230 1231
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1232 1233
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1234
	if (!rdev->desc->ops->enable_time)
1235
		return rdev->desc->enable_time;
1236 1237 1238
	return rdev->desc->ops->enable_time(rdev);
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1265
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1266 1267
						  const char *supply,
						  int *ret)
1268 1269 1270
{
	struct regulator_dev *r;
	struct device_node *node;
1271 1272
	struct regulator_map *map;
	const char *devname = NULL;
1273

1274 1275
	regulator_supply_alias(&dev, &supply);

1276 1277 1278
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1279
		if (node) {
1280 1281 1282 1283
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1284 1285
			*ret = -EPROBE_DEFER;
			return NULL;
1286 1287 1288 1289 1290 1291 1292 1293 1294
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1295 1296 1297
	}

	/* if not found, try doing it non-dt way */
1298 1299 1300
	if (dev)
		devname = dev_name(dev);

1301 1302 1303 1304
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1316 1317 1318
	return NULL;
}

1319 1320
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
1321
					bool exclusive, bool allow_dummy)
1322 1323
{
	struct regulator_dev *rdev;
1324
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1325
	const char *devname = NULL;
1326
	int ret;
1327 1328

	if (id == NULL) {
1329
		pr_err("get() with no identifier\n");
1330
		return ERR_PTR(-EINVAL);
1331 1332
	}

1333 1334 1335
	if (dev)
		devname = dev_name(dev);

1336 1337 1338 1339 1340
	if (have_full_constraints())
		ret = -ENODEV;
	else
		ret = -EPROBE_DEFER;

1341 1342
	mutex_lock(&regulator_list_mutex);

1343
	rdev = regulator_dev_lookup(dev, id, &ret);
1344 1345 1346
	if (rdev)
		goto found;

1347 1348
	regulator = ERR_PTR(ret);

1349 1350 1351 1352
	/*
	 * If we have return value from dev_lookup fail, we do not expect to
	 * succeed, so, quit with appropriate error value
	 */
1353
	if (ret && ret != -ENODEV)
1354 1355
		goto out;

1356 1357 1358
	if (!devname)
		devname = "deviceless";

1359 1360 1361
	/*
	 * Assume that a regulator is physically present and enabled
	 * even if it isn't hooked up and just provide a dummy.
1362
	 */
1363
	if (have_full_constraints() && allow_dummy) {
1364 1365
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1366

1367 1368
		rdev = dummy_regulator_rdev;
		goto found;
1369 1370
	/* Don't log an error when called from regulator_get_optional() */
	} else if (!have_full_constraints() || exclusive) {
1371
		dev_warn(dev, "dummy supplies not allowed\n");
1372 1373
	}

1374 1375 1376 1377
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1388 1389 1390
	if (!try_module_get(rdev->owner))
		goto out;

1391 1392 1393 1394
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1395
		goto out;
1396 1397
	}

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1409
out:
1410
	mutex_unlock(&regulator_list_mutex);
1411

1412 1413
	return regulator;
}
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1430
	return _regulator_get(dev, id, false, true);
1431
}
1432 1433
EXPORT_SYMBOL_GPL(regulator_get);

1434 1435 1436 1437 1438 1439 1440
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1441 1442 1443
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1457
	return _regulator_get(dev, id, true, false);
1458 1459 1460
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1461 1462 1463 1464 1465 1466
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1467
 * or IS_ERR() condition containing errno.
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1483
	return _regulator_get(dev, id, false, false);
1484 1485 1486
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1487
/* regulator_list_mutex lock held by regulator_put() */
1488
static void _regulator_put(struct regulator *regulator)
1489 1490 1491 1492 1493 1494 1495 1496
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	rdev = regulator->rdev;

1497 1498
	debugfs_remove_recursive(regulator->debugfs);

1499
	/* remove any sysfs entries */
1500
	if (regulator->dev)
1501
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1502
	mutex_lock(&rdev->mutex);
1503
	kfree(regulator->supply_name);
1504 1505 1506
	list_del(&regulator->list);
	kfree(regulator);

1507 1508
	rdev->open_count--;
	rdev->exclusive = 0;
1509
	mutex_unlock(&rdev->mutex);
1510

1511
	module_put(rdev->owner);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1526 1527 1528 1529
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1607 1608
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1609
					 struct device *alias_dev,
1610
					 const char *const *alias_id,
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
1648
					    const char *const *id,
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


1659 1660 1661 1662 1663
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
1664
	struct gpio_desc *gpiod;
1665 1666
	int ret;

1667 1668
	gpiod = gpio_to_desc(config->ena_gpio);

1669
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1670
		if (pin->gpiod == gpiod) {
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

1689
	pin->gpiod = gpiod;
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1708
		if (pin->gpiod == rdev->ena_pin->gpiod) {
1709 1710
			if (pin->request_count <= 1) {
				pin->request_count = 0;
1711
				gpiod_put(pin->gpiod);
1712 1713
				list_del(&pin->list);
				kfree(pin);
1714 1715
				rdev->ena_pin = NULL;
				return;
1716 1717 1718 1719 1720 1721 1722
			} else {
				pin->request_count--;
			}
		}
	}
}

1723
/**
1724 1725 1726 1727
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
1741 1742
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
1753 1754
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
1755 1756 1757 1758 1759 1760 1761
			pin->enable_count = 0;
		}
	}

	return 0;
}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

1841 1842 1843 1844
	if (rdev->ena_pin) {
		ret = regulator_ena_gpio_ctrl(rdev, true);
		if (ret < 0)
			return ret;
1845 1846
		rdev->ena_gpio_state = 1;
	} else if (rdev->desc->ops->enable) {
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

1859
	_regulator_enable_delay(delay);
1860 1861 1862 1863 1864 1865

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

1866 1867 1868
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1869
	int ret;
1870 1871

	/* check voltage and requested load before enabling */
1872 1873 1874
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1875

1876 1877 1878 1879 1880 1881 1882
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1883
			ret = _regulator_do_enable(rdev);
1884 1885 1886
			if (ret < 0)
				return ret;

1887
		} else if (ret < 0) {
1888
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1889 1890
			return ret;
		}
1891
		/* Fallthrough on positive return values - already enabled */
1892 1893
	}

1894 1895 1896
	rdev->use_count++;

	return 0;
1897 1898 1899 1900 1901 1902
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1903 1904 1905 1906
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1907
 * NOTE: the output value can be set by other drivers, boot loader or may be
1908
 * hardwired in the regulator.
1909 1910 1911
 */
int regulator_enable(struct regulator *regulator)
{
1912 1913
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1914

1915 1916 1917
	if (regulator->always_on)
		return 0;

1918 1919 1920 1921 1922 1923
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1924
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1925
	ret = _regulator_enable(rdev);
1926
	mutex_unlock(&rdev->mutex);
1927

1928
	if (ret != 0 && rdev->supply)
1929 1930
		regulator_disable(rdev->supply);

1931 1932 1933 1934
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

1935 1936 1937 1938 1939 1940
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

1941 1942 1943 1944
	if (rdev->ena_pin) {
		ret = regulator_ena_gpio_ctrl(rdev, false);
		if (ret < 0)
			return ret;
1945 1946 1947 1948 1949 1950 1951 1952
		rdev->ena_gpio_state = 0;

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

1953 1954 1955 1956 1957 1958
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

1959 1960 1961 1962 1963
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

1964
/* locks held by regulator_disable() */
1965
static int _regulator_disable(struct regulator_dev *rdev)
1966 1967 1968
{
	int ret = 0;

D
David Brownell 已提交
1969
	if (WARN(rdev->use_count <= 0,
1970
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1971 1972
		return -EIO;

1973
	/* are we the last user and permitted to disable ? */
1974 1975
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1976 1977

		/* we are last user */
1978
		if (_regulator_can_change_status(rdev)) {
1979 1980 1981 1982 1983 1984
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

1985
			ret = _regulator_do_disable(rdev);
1986
			if (ret < 0) {
1987
				rdev_err(rdev, "failed to disable\n");
1988 1989 1990
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
1991 1992
				return ret;
			}
1993 1994
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2007

2008 2009 2010 2011 2012 2013 2014
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2015 2016 2017
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2018
 *
2019
 * NOTE: this will only disable the regulator output if no other consumer
2020 2021
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2022 2023 2024
 */
int regulator_disable(struct regulator *regulator)
{
2025 2026
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2027

2028 2029 2030
	if (regulator->always_on)
		return 0;

2031
	mutex_lock(&rdev->mutex);
2032
	ret = _regulator_disable(rdev);
2033
	mutex_unlock(&rdev->mutex);
2034

2035 2036
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2037

2038 2039 2040 2041 2042
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2043
static int _regulator_force_disable(struct regulator_dev *rdev)
2044 2045 2046
{
	int ret = 0;

2047 2048 2049 2050 2051
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2052 2053 2054
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2055 2056
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2057
		return ret;
2058 2059
	}

2060 2061 2062 2063
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2077
	struct regulator_dev *rdev = regulator->rdev;
2078 2079
	int ret;

2080
	mutex_lock(&rdev->mutex);
2081
	regulator->uA_load = 0;
2082
	ret = _regulator_force_disable(regulator->rdev);
2083
	mutex_unlock(&rdev->mutex);
2084

2085 2086 2087
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2088

2089 2090 2091 2092
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
2140
	int ret;
2141

2142 2143 2144
	if (regulator->always_on)
		return 0;

2145 2146 2147
	if (!ms)
		return regulator_disable(regulator);

2148 2149 2150 2151
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

2152 2153 2154
	ret = queue_delayed_work(system_power_efficient_wq,
				 &rdev->disable_work,
				 msecs_to_jiffies(ms));
2155 2156 2157 2158
	if (ret < 0)
		return ret;
	else
		return 0;
2159 2160 2161
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2162 2163
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2164
	/* A GPIO control always takes precedence */
2165
	if (rdev->ena_pin)
2166 2167
		return rdev->ena_gpio_state;

2168
	/* If we don't know then assume that the regulator is always on */
2169
	if (!rdev->desc->ops->is_enabled)
2170
		return 1;
2171

2172
	return rdev->desc->ops->is_enabled(rdev);
2173 2174 2175 2176 2177 2178
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2179 2180 2181 2182 2183 2184 2185
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2186 2187 2188
 */
int regulator_is_enabled(struct regulator *regulator)
{
2189 2190
	int ret;

2191 2192 2193
	if (regulator->always_on)
		return 1;

2194 2195 2196 2197 2198
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2199 2200 2201
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2202 2203 2204 2205 2206
/**
 * regulator_can_change_voltage - check if regulator can change voltage
 * @regulator: regulator source
 *
 * Returns positive if the regulator driver backing the source/client
2207
 * can change its voltage, false otherwise. Useful for detecting fixed
2208 2209 2210 2211 2212 2213 2214 2215
 * or dummy regulators and disabling voltage change logic in the client
 * driver.
 */
int regulator_can_change_voltage(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	if (rdev->constraints &&
2216 2217 2218 2219 2220 2221 2222 2223 2224
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
			return 1;

		if (rdev->desc->continuous_voltage_range &&
		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
		    rdev->constraints->min_uV != rdev->constraints->max_uV)
			return 1;
	}
2225 2226 2227 2228 2229

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_can_change_voltage);

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2242 2243 2244 2245 2246 2247 2248
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

	if (!rdev->supply)
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2259
 * zero if this selector code can't be used on this system, or a
2260 2261 2262 2263
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2264 2265 2266
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;
2267

2268 2269 2270
	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

2271 2272 2273 2274 2275 2276 2277 2278 2279
	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		mutex_lock(&rdev->mutex);
		ret = ops->list_voltage(rdev, selector);
		mutex_unlock(&rdev->mutex);
	} else if (rdev->supply) {
		ret = regulator_list_voltage(rdev->supply, selector);
	} else {
2280
		return -EINVAL;
2281
	}
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2326 2327
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	 *vsel_reg = rdev->desc->vsel_reg;
	 *vsel_mask = rdev->desc->vsel_mask;

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2353 2354
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2392
	struct regulator_dev *rdev = regulator->rdev;
2393 2394
	int i, voltages, ret;

2395 2396 2397 2398
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2399
			return min_uV <= ret && ret <= max_uV;
2400 2401 2402 2403
		else
			return ret;
	}

2404 2405 2406 2407 2408
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2423
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2424

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2474 2475 2476 2477
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2478
	int delay = 0;
2479
	int best_val = 0;
2480
	unsigned int selector;
2481
	int old_selector = -1;
2482 2483 2484

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2485 2486 2487
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2488 2489 2490 2491
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2492 2493
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2494 2495 2496 2497 2498 2499
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2500
	if (rdev->desc->ops->set_voltage) {
2501 2502
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2503 2504 2505 2506 2507 2508 2509 2510 2511

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2512
	} else if (rdev->desc->ops->set_voltage_sel) {
2513
		if (rdev->desc->ops->map_voltage) {
2514 2515
			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
							   max_uV);
2516 2517 2518 2519 2520
		} else {
			if (rdev->desc->ops->list_voltage ==
			    regulator_list_voltage_linear)
				ret = regulator_map_voltage_linear(rdev,
								min_uV, max_uV);
2521 2522 2523 2524
			else if (rdev->desc->ops->list_voltage ==
				 regulator_list_voltage_linear_range)
				ret = regulator_map_voltage_linear_range(rdev,
								min_uV, max_uV);
2525 2526 2527 2528
			else
				ret = regulator_map_voltage_iterate(rdev,
								min_uV, max_uV);
		}
2529

2530
		if (ret >= 0) {
2531 2532 2533
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2534 2535 2536
				if (old_selector == selector)
					ret = 0;
				else
2537 2538
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2539 2540 2541
			} else {
				ret = -EINVAL;
			}
2542
		}
2543 2544 2545
	} else {
		ret = -EINVAL;
	}
2546

2547
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2548 2549
	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
		&& old_selector != selector) {
2550

2551 2552 2553 2554 2555 2556
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2557
		}
2558

2559 2560 2561 2562 2563 2564 2565
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2566 2567
	}

2568 2569 2570
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2571
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2572 2573
				     (void *)data);
	}
2574

2575
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2576 2577 2578 2579

	return ret;
}

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2595
 * Regulator system constraints must be set for this regulator before
2596 2597 2598 2599 2600
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2601
	int ret = 0;
2602
	int old_min_uV, old_max_uV;
2603
	int current_uV;
2604 2605 2606

	mutex_lock(&rdev->mutex);

2607 2608 2609 2610 2611 2612 2613
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
	/* If we're trying to set a range that overlaps the current voltage,
	 * return succesfully even though the regulator does not support
	 * changing the voltage.
	 */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
			regulator->min_uV = min_uV;
			regulator->max_uV = max_uV;
			goto out;
		}
	}

2627
	/* sanity check */
2628 2629
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2630 2631 2632 2633 2634 2635 2636 2637
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2638

2639 2640 2641
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2642 2643
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2644

2645 2646
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2647
		goto out2;
2648

2649
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2650 2651
	if (ret < 0)
		goto out2;
2652

2653 2654 2655
out:
	mutex_unlock(&rdev->mutex);
	return ret;
2656 2657 2658 2659
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
	mutex_unlock(&rdev->mutex);
2660 2661 2662 2663
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
2677 2678
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2709
/**
2710 2711
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
2712 2713 2714 2715 2716 2717
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
2718
 * Drivers providing ramp_delay in regulation_constraints can use this as their
2719
 * set_voltage_time_sel() operation.
2720 2721 2722 2723 2724
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
2725
	unsigned int ramp_delay = 0;
2726
	int old_volt, new_volt;
2727 2728 2729 2730 2731 2732 2733

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
2734
		rdev_warn(rdev, "ramp_delay not set\n");
2735
		return 0;
2736
	}
2737

2738 2739 2740
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
2741

2742 2743 2744 2745
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2746
}
2747
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2748

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2796 2797
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2798
	int sel, ret;
2799 2800 2801 2802 2803

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2804
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2805
	} else if (rdev->desc->ops->get_voltage) {
2806
		ret = rdev->desc->ops->get_voltage(rdev);
2807 2808
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
2809 2810
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
2811 2812
	} else if (rdev->supply) {
		ret = regulator_get_voltage(rdev->supply);
2813
	} else {
2814
		return -EINVAL;
2815
	}
2816

2817 2818
	if (ret < 0)
		return ret;
2819
	return ret - rdev->constraints->uV_offset;
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
2848
 * @min_uA: Minimum supported current in uA
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2935
	int regulator_curr_mode;
2936 2937 2938 2939 2940 2941 2942 2943 2944

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2945 2946 2947 2948 2949 2950 2951 2952 2953
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2954
	/* constraints check */
2955
	ret = regulator_mode_constrain(rdev, &mode);
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
3025
	int ret;
3026

3027 3028
	mutex_lock(&rdev->mutex);
	regulator->uA_load = uA_load;
3029
	ret = drms_uA_update(rdev);
3030
	mutex_unlock(&rdev->mutex);
3031

3032 3033 3034 3035
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

3036 3037 3038 3039
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3040
 * @enable: enable or disable bypass mode
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

	if (rdev->constraints &&
	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

3089 3090 3091
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
3092
 * @nb: notifier block
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
3107
 * @nb: notifier block
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

3119 3120 3121
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
3122
static int _notifier_call_chain(struct regulator_dev *rdev,
3123 3124 3125
				  unsigned long event, void *data)
{
	/* call rdev chain first */
3126
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3157 3158
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3159 3160 3161 3162 3163 3164 3165 3166
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3167
	while (--i >= 0)
3168 3169 3170 3171 3172 3173
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3174 3175 3176 3177 3178 3179 3180
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3196
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3197
	int i;
3198
	int ret = 0;
3199

3200 3201 3202 3203 3204 3205 3206
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3207 3208 3209 3210

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3211
	for (i = 0; i < num_consumers; i++) {
3212 3213
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3214
			goto err;
3215
		}
3216 3217 3218 3219 3220
	}

	return 0;

err:
3221 3222 3223 3224 3225 3226 3227
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3241 3242
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3243 3244 3245 3246 3247 3248
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3249
	int ret, r;
3250

3251
	for (i = num_consumers - 1; i >= 0; --i) {
3252 3253 3254 3255 3256 3257 3258 3259
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3260
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3261 3262 3263 3264 3265 3266
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
3267 3268 3269 3270 3271

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3332
 * @rdev: regulator source
3333
 * @event: notifier block
3334
 * @data: callback-specific data.
3335 3336 3337
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3338
 * Note lock must be held by caller.
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3365
	case REGULATOR_MODE_STANDBY:
3366 3367
		return REGULATOR_STATUS_STANDBY;
	default:
3368
		return REGULATOR_STATUS_UNDEFINED;
3369 3370 3371 3372
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

3400 3401 3402 3403
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
3404 3405
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
3406
{
3407 3408
	struct device *dev = kobj_to_dev(kobj);
	struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3409
	const struct regulator_ops *ops = rdev->desc->ops;
3410 3411 3412 3413 3414 3415 3416
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
3417 3418

	/* some attributes need specific methods to be displayed */
3419 3420 3421 3422 3423 3424 3425
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
3426
	}
3427

3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

3443
	/* some attributes are type-specific */
3444 3445
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3446 3447 3448 3449 3450 3451

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
3452
		return 0;
3453 3454

	/* constraints need specific supporting methods */
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
3490

3491 3492 3493 3494
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	kfree(rdev);
3495 3496
}

3497 3498 3499 3500 3501 3502
static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
};

3503 3504
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3517
	if (!rdev->debugfs) {
3518 3519 3520 3521 3522 3523 3524 3525
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3526 3527
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3528 3529
}

3530 3531
/**
 * regulator_register - register regulator
3532
 * @regulator_desc: regulator to register
3533
 * @cfg: runtime configuration for regulator
3534 3535
 *
 * Called by regulator drivers to register a regulator.
3536 3537
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3538
 */
3539 3540
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3541
		   const struct regulator_config *cfg)
3542
{
3543
	const struct regulation_constraints *constraints = NULL;
3544
	const struct regulator_init_data *init_data;
3545
	struct regulator_config *config = NULL;
3546
	static atomic_t regulator_no = ATOMIC_INIT(-1);
3547
	struct regulator_dev *rdev;
3548
	struct device *dev;
3549
	int ret, i;
3550
	const char *supply = NULL;
3551

3552
	if (regulator_desc == NULL || cfg == NULL)
3553 3554
		return ERR_PTR(-EINVAL);

3555
	dev = cfg->dev;
3556
	WARN_ON(!dev);
3557

3558 3559 3560
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3561 3562
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3563 3564
		return ERR_PTR(-EINVAL);

3565 3566 3567
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3568 3569
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3570 3571 3572 3573 3574 3575

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3576 3577 3578 3579
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3580

3581 3582 3583 3584
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

3595
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3596 3597 3598 3599 3600 3601
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

3602 3603 3604
	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3605
	rdev->reg_data = config->driver_data;
3606 3607
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3608 3609
	if (config->regmap)
		rdev->regmap = config->regmap;
3610
	else if (dev_get_regmap(dev, NULL))
3611
		rdev->regmap = dev_get_regmap(dev, NULL);
3612 3613
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3614 3615 3616
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3617
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3618

3619
	/* preform any regulator specific init */
3620
	if (init_data && init_data->regulator_init) {
3621
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3622 3623
		if (ret < 0)
			goto clean;
3624 3625 3626
	}

	/* register with sysfs */
3627
	rdev->dev.class = &regulator_class;
3628
	rdev->dev.parent = dev;
3629
	dev_set_name(&rdev->dev, "regulator.%lu",
3630
		    (unsigned long) atomic_inc_return(&regulator_no));
3631
	ret = device_register(&rdev->dev);
3632 3633
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3634
		goto clean;
3635
	}
3636 3637 3638

	dev_set_drvdata(&rdev->dev, rdev);

3639 3640
	if ((config->ena_gpio || config->ena_gpio_initialized) &&
	    gpio_is_valid(config->ena_gpio)) {
3641
		ret = regulator_ena_gpio_request(rdev, config);
3642 3643 3644
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
3645
			goto wash;
3646 3647 3648 3649 3650
		}

		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
			rdev->ena_gpio_state = 1;

3651
		if (config->ena_gpio_invert)
3652 3653 3654
			rdev->ena_gpio_state = !rdev->ena_gpio_state;
	}

3655
	/* set regulator constraints */
3656 3657 3658 3659
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3660 3661 3662
	if (ret < 0)
		goto scrub;

3663
	if (init_data && init_data->supply_regulator)
3664 3665 3666 3667 3668
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
3669 3670
		struct regulator_dev *r;

3671
		r = regulator_dev_lookup(dev, supply, &ret);
3672

3673 3674 3675 3676 3677 3678 3679 3680
		if (ret == -ENODEV) {
			/*
			 * No supply was specified for this regulator and
			 * there will never be one.
			 */
			ret = 0;
			goto add_dev;
		} else if (!r) {
3681
			dev_err(dev, "Failed to find supply %s\n", supply);
3682
			ret = -EPROBE_DEFER;
3683 3684 3685 3686 3687 3688
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
3689 3690

		/* Enable supply if rail is enabled */
3691
		if (_regulator_is_enabled(rdev)) {
3692 3693 3694 3695
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
3696 3697
	}

3698
add_dev:
3699
	/* add consumers devices */
3700 3701 3702 3703
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3704
				init_data->consumer_supplies[i].supply);
3705 3706 3707 3708 3709
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3710
		}
3711
	}
3712 3713

	list_add(&rdev->list, &regulator_list);
3714 3715

	rdev_init_debugfs(rdev);
3716
out:
3717
	mutex_unlock(&regulator_list_mutex);
3718
	kfree(config);
3719
	return rdev;
D
David Brownell 已提交
3720

3721 3722 3723
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3724
scrub:
3725
	if (rdev->supply)
3726
		_regulator_put(rdev->supply);
3727
	regulator_ena_gpio_free(rdev);
3728
	kfree(rdev->constraints);
3729
wash:
D
David Brownell 已提交
3730
	device_unregister(&rdev->dev);
3731 3732 3733 3734
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3735 3736 3737 3738
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3739 3740 3741 3742 3743
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3744
 * @rdev: regulator to unregister
3745 3746 3747 3748 3749 3750 3751 3752
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3753 3754 3755
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
3756
		regulator_put(rdev->supply);
3757
	}
3758
	mutex_lock(&regulator_list_mutex);
3759
	debugfs_remove_recursive(rdev->debugfs);
3760
	flush_work(&rdev->disable_work.work);
3761
	WARN_ON(rdev->open_count);
3762
	unset_regulator_supplies(rdev);
3763
	list_del(&rdev->list);
3764
	kfree(rdev->constraints);
3765
	regulator_ena_gpio_free(rdev);
3766
	of_node_put(rdev->dev.of_node);
3767
	device_unregister(&rdev->dev);
3768 3769 3770 3771 3772
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3773
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3796
			rdev_err(rdev, "failed to prepare\n");
3797 3798 3799 3800 3801 3802 3803 3804 3805
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
3820 3821
		if (rdev->use_count > 0  || rdev->constraints->always_on) {
			error = _regulator_do_enable(rdev);
3822 3823 3824
			if (error)
				ret = error;
		} else {
3825
			if (!have_full_constraints())
3826
				goto unlock;
3827
			if (!_regulator_is_enabled(rdev))
3828 3829
				goto unlock;

3830
			error = _regulator_do_disable(rdev);
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3859 3860
/**
 * rdev_get_drvdata - get rdev regulator driver data
3861
 * @rdev: regulator
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3898
 * @rdev: regulator
3899 3900 3901 3902 3903 3904 3905
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
3948
#endif
3949 3950

static const struct file_operations supply_map_fops = {
3951
#ifdef CONFIG_DEBUG_FS
3952 3953 3954
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
3955
};
3956

3957 3958
static int __init regulator_init(void)
{
3959 3960 3961 3962
	int ret;

	ret = class_register(&regulator_class);

3963
	debugfs_root = debugfs_create_dir("regulator", NULL);
3964
	if (!debugfs_root)
3965
		pr_warn("regulator: Failed to create debugfs directory\n");
3966

3967 3968
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
3969

3970 3971 3972
	regulator_dummy_init();

	return ret;
3973 3974 3975 3976
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3977 3978 3979 3980

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
3981
	const struct regulator_ops *ops;
3982 3983 3984
	struct regulation_constraints *c;
	int enabled, ret;

3985 3986 3987 3988 3989 3990 3991 3992 3993
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

3994 3995 3996
	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
3997 3998 3999
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
4000 4001 4002 4003 4004
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

4005
		if (c && c->always_on)
4006 4007
			continue;

4008 4009 4010
		if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
			continue;

4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

4025
		if (have_full_constraints()) {
4026 4027
			/* We log since this may kill the system if it
			 * goes wrong. */
4028
			rdev_info(rdev, "disabling\n");
4029
			ret = _regulator_do_disable(rdev);
4030
			if (ret != 0)
4031
				rdev_err(rdev, "couldn't disable: %d\n", ret);
4032 4033 4034 4035 4036 4037
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
4038
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
4049
late_initcall_sync(regulator_init_complete);