core.c 109.1 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54 55
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
56
static LIST_HEAD(regulator_ena_gpio_list);
57
static LIST_HEAD(regulator_supply_alias_list);
58
static bool has_full_constraints;
59

60 61
static struct dentry *debugfs_root;

62
/*
63 64 65 66 67 68
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
69
	const char *dev_name;   /* The dev_name() for the consumer */
70
	const char *supply;
71
	struct regulator_dev *regulator;
72 73
};

74 75 76 77 78 79 80
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
81
	struct gpio_desc *gpiod;
82 83 84 85 86
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

87 88 89 90 91 92 93 94 95 96 97 98 99
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

100
static int _regulator_is_enabled(struct regulator_dev *rdev);
101
static int _regulator_disable(struct regulator_dev *rdev);
102 103 104
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105
static int _notifier_call_chain(struct regulator_dev *rdev,
106
				  unsigned long event, void *data);
107 108
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
109 110 111
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
112
static void _regulator_put(struct regulator *regulator);
113

114 115 116 117
static struct regulator_dev *dev_to_rdev(struct device *dev)
{
	return container_of(dev, struct regulator_dev, dev);
}
118

119 120 121 122 123 124 125 126 127 128
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

129 130
static bool have_full_constraints(void)
{
131
	return has_full_constraints || of_have_populated_dt();
132 133
}

134 135 136 137 138 139
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
140
 * returns the device node corresponding to the regulator if found, else
141 142 143 144 145 146 147 148 149 150 151 152 153
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
154
		dev_dbg(dev, "Looking up %s property in node %s failed",
155 156 157 158 159 160
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

161 162 163 164 165 166 167 168 169 170 171
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

172 173 174 175 176 177 178
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
179
		rdev_err(rdev, "no constraints\n");
180 181 182
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
183
		rdev_err(rdev, "operation not allowed\n");
184 185 186 187 188 189 190 191
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

192 193
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
194
			 *min_uV, *max_uV);
195
		return -EINVAL;
196
	}
197 198 199 200

	return 0;
}

201 202 203 204 205 206 207 208 209
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
210 211 212 213 214 215 216
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

217 218 219 220 221 222
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

223
	if (*min_uV > *max_uV) {
224 225
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
226
		return -EINVAL;
227
	}
228 229 230 231

	return 0;
}

232 233 234 235 236 237 238
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
239
		rdev_err(rdev, "no constraints\n");
240 241 242
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
243
		rdev_err(rdev, "operation not allowed\n");
244 245 246 247 248 249 250 251
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

252 253
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
254
			 *min_uA, *max_uA);
255
		return -EINVAL;
256
	}
257 258 259 260 261

	return 0;
}

/* operating mode constraint check */
262
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
263
{
264
	switch (*mode) {
265 266 267 268 269 270
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
271
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
272 273 274
		return -EINVAL;
	}

275
	if (!rdev->constraints) {
276
		rdev_err(rdev, "no constraints\n");
277 278 279
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
280
		rdev_err(rdev, "operation not allowed\n");
281 282
		return -EPERM;
	}
283 284 285 286 287 288 289 290

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
291
	}
292 293

	return -EINVAL;
294 295 296 297 298 299
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
300
		rdev_err(rdev, "no constraints\n");
301 302 303
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
304
		rdev_dbg(rdev, "operation not allowed\n");
305 306 307 308 309 310 311 312
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
313
	struct regulator_dev *rdev = dev_get_drvdata(dev);
314 315 316 317 318 319 320 321
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
322
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
323 324 325 326

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
327
	struct regulator_dev *rdev = dev_get_drvdata(dev);
328 329 330

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
331
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
332

333 334
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
335 336 337
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

338
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
339
}
340
static DEVICE_ATTR_RO(name);
341

D
David Brownell 已提交
342
static ssize_t regulator_print_opmode(char *buf, int mode)
343 344 345 346 347 348 349 350 351 352 353 354 355 356
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
357 358
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
359
{
360
	struct regulator_dev *rdev = dev_get_drvdata(dev);
361

D
David Brownell 已提交
362 363
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
364
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
365 366 367

static ssize_t regulator_print_state(char *buf, int state)
{
368 369 370 371 372 373 374 375
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
376 377 378 379
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
380 381 382 383 384
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
385

386
	return ret;
D
David Brownell 已提交
387
}
388
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
389

D
David Brownell 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
423 424 425
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
426 427 428
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
429 430 431 432 433 434 435 436
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

437 438 439
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
440
	struct regulator_dev *rdev = dev_get_drvdata(dev);
441 442 443 444 445 446

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
447
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
448 449 450 451

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
452
	struct regulator_dev *rdev = dev_get_drvdata(dev);
453 454 455 456 457 458

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
459
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
460 461 462 463

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
464
	struct regulator_dev *rdev = dev_get_drvdata(dev);
465 466 467 468 469 470

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
471
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
472 473 474 475

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
476
	struct regulator_dev *rdev = dev_get_drvdata(dev);
477 478 479 480 481 482

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
483
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
484 485 486 487

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
488
	struct regulator_dev *rdev = dev_get_drvdata(dev);
489 490 491 492 493
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
494
		uA += regulator->uA_load;
495 496 497
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
498
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
499

500 501
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
502
{
503
	struct regulator_dev *rdev = dev_get_drvdata(dev);
504 505
	return sprintf(buf, "%d\n", rdev->use_count);
}
506
static DEVICE_ATTR_RO(num_users);
507

508 509
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
510
{
511
	struct regulator_dev *rdev = dev_get_drvdata(dev);
512 513 514 515 516 517 518 519 520

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
521
static DEVICE_ATTR_RO(type);
522 523 524 525

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
526
	struct regulator_dev *rdev = dev_get_drvdata(dev);
527 528 529

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
530 531
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
532 533 534 535

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
536
	struct regulator_dev *rdev = dev_get_drvdata(dev);
537 538 539

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
540 541
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
542 543 544 545

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
546
	struct regulator_dev *rdev = dev_get_drvdata(dev);
547 548 549

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
550 551
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
552 553 554 555

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
556
	struct regulator_dev *rdev = dev_get_drvdata(dev);
557

D
David Brownell 已提交
558 559
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
560
}
561 562
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
563 564 565 566

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
567
	struct regulator_dev *rdev = dev_get_drvdata(dev);
568

D
David Brownell 已提交
569 570
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
571
}
572 573
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
574 575 576 577

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
578
	struct regulator_dev *rdev = dev_get_drvdata(dev);
579

D
David Brownell 已提交
580 581
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
582
}
583 584
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
585 586 587 588

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
589
	struct regulator_dev *rdev = dev_get_drvdata(dev);
590

D
David Brownell 已提交
591 592
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
593
}
594 595
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
596 597 598 599

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
600
	struct regulator_dev *rdev = dev_get_drvdata(dev);
601

D
David Brownell 已提交
602 603
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
604
}
605 606
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
607 608 609 610

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
611
	struct regulator_dev *rdev = dev_get_drvdata(dev);
612

D
David Brownell 已提交
613 614
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
615
}
616 617 618
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
640

641 642
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
643
static int drms_uA_update(struct regulator_dev *rdev)
644 645 646 647 648
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

649 650
	lockdep_assert_held_once(&rdev->mutex);

651 652 653 654
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
655
	err = regulator_check_drms(rdev);
656 657 658
	if (err < 0)
		return 0;

659 660
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
661 662
		return 0;

663 664
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
665
		return -EINVAL;
666 667

	/* get output voltage */
668
	output_uV = _regulator_get_voltage(rdev);
669 670 671 672
	if (output_uV <= 0) {
		rdev_err(rdev, "invalid output voltage found\n");
		return -EINVAL;
	}
673 674

	/* get input voltage */
675 676
	input_uV = 0;
	if (rdev->supply)
677
		input_uV = regulator_get_voltage(rdev->supply);
678
	if (input_uV <= 0)
679
		input_uV = rdev->constraints->input_uV;
680 681 682 683
	if (input_uV <= 0) {
		rdev_err(rdev, "invalid input voltage found\n");
		return -EINVAL;
	}
684 685 686

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
687
		current_uA += sibling->uA_load;
688

689 690
	current_uA += rdev->constraints->system_load;

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
708

709 710 711
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
712 713 714
	}

	return err;
715 716 717 718 719 720
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
721 722

	/* If we have no suspend mode configration don't set anything;
723 724
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
725 726
	 */
	if (!rstate->enabled && !rstate->disabled) {
727 728
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
729
			rdev_warn(rdev, "No configuration\n");
730 731 732 733
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
734
		rdev_err(rdev, "invalid configuration\n");
735 736
		return -EINVAL;
	}
737

738
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
739
		ret = rdev->desc->ops->set_suspend_enable(rdev);
740
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
741
		ret = rdev->desc->ops->set_suspend_disable(rdev);
742 743 744
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

745
	if (ret < 0) {
746
		rdev_err(rdev, "failed to enabled/disable\n");
747 748 749 750 751 752
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
753
			rdev_err(rdev, "failed to set voltage\n");
754 755 756 757 758 759 760
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
761
			rdev_err(rdev, "failed to set mode\n");
762 763 764 765 766 767 768 769 770
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
771 772
	lockdep_assert_held_once(&rdev->mutex);

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
794
	char buf[160] = "";
795
	size_t len = sizeof(buf) - 1;
796 797
	int count = 0;
	int ret;
798

799
	if (constraints->min_uV && constraints->max_uV) {
800
		if (constraints->min_uV == constraints->max_uV)
801 802
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
803
		else
804 805 806 807
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
808 809 810 811 812 813
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
814 815
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
816 817
	}

818
	if (constraints->uV_offset)
819 820
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
821

822
	if (constraints->min_uA && constraints->max_uA) {
823
		if (constraints->min_uA == constraints->max_uA)
824 825
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
826
		else
827 828 829 830
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
831 832 833 834 835 836
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
837 838
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
839
	}
840

841
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
842
		count += scnprintf(buf + count, len - count, "fast ");
843
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
844
		count += scnprintf(buf + count, len - count, "normal ");
845
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
846
		count += scnprintf(buf + count, len - count, "idle ");
847
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
848
		count += scnprintf(buf + count, len - count, "standby");
849

850
	if (!count)
851
		scnprintf(buf, len, "no parameters");
852

853
	rdev_dbg(rdev, "%s\n", buf);
854 855 856 857 858

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
859 860
}

861
static int machine_constraints_voltage(struct regulator_dev *rdev,
862
	struct regulation_constraints *constraints)
863
{
864
	const struct regulator_ops *ops = rdev->desc->ops;
865 866 867 868
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
869
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
870 871
		int current_uV = _regulator_get_voltage(rdev);
		if (current_uV < 0) {
872 873 874
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
875 876 877 878 879 880 881 882 883
			return current_uV;
		}
		if (current_uV < rdev->constraints->min_uV ||
		    current_uV > rdev->constraints->max_uV) {
			ret = _regulator_do_set_voltage(
				rdev, rdev->constraints->min_uV,
				rdev->constraints->max_uV);
			if (ret < 0) {
				rdev_err(rdev,
884 885
					"failed to apply %duV constraint(%d)\n",
					rdev->constraints->min_uV, ret);
886 887
				return ret;
			}
888
		}
889
	}
890

891 892 893 894 895 896 897 898 899 900 901
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

902 903
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
904
		if (count == 1 && !cmin) {
905
			cmin = 1;
906
			cmax = INT_MAX;
907 908
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
909 910
		}

911 912
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
913
			return 0;
914

915
		/* else require explicit machine-level constraints */
916
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
917
			rdev_err(rdev, "invalid voltage constraints\n");
918
			return -EINVAL;
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
938 939 940
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
941
			return -EINVAL;
942 943 944 945
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
946 947
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
948 949 950
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
951 952
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
953 954 955 956
			constraints->max_uV = max_uV;
		}
	}

957 958 959
	return 0;
}

960 961 962
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
963
	const struct regulator_ops *ops = rdev->desc->ops;
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

990 991
static int _regulator_do_enable(struct regulator_dev *rdev);

992 993 994 995 996 997 998 999 1000 1001 1002 1003
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1004
	const struct regulation_constraints *constraints)
1005 1006
{
	int ret = 0;
1007
	const struct regulator_ops *ops = rdev->desc->ops;
1008

1009 1010 1011 1012 1013 1014
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1015 1016
	if (!rdev->constraints)
		return -ENOMEM;
1017

1018
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1019 1020 1021
	if (ret != 0)
		goto out;

1022
	ret = machine_constraints_current(rdev, rdev->constraints);
1023 1024 1025
	if (ret != 0)
		goto out;

1026 1027 1028 1029 1030 1031 1032 1033 1034
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
			goto out;
		}
	}

1035
	/* do we need to setup our suspend state */
1036
	if (rdev->constraints->initial_state) {
1037
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1038
		if (ret < 0) {
1039
			rdev_err(rdev, "failed to set suspend state\n");
1040 1041 1042
			goto out;
		}
	}
1043

1044
	if (rdev->constraints->initial_mode) {
1045
		if (!ops->set_mode) {
1046
			rdev_err(rdev, "no set_mode operation\n");
1047 1048 1049 1050
			ret = -EINVAL;
			goto out;
		}

1051
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1052
		if (ret < 0) {
1053
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1054 1055 1056 1057
			goto out;
		}
	}

1058 1059 1060
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1061 1062 1063
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1064
			rdev_err(rdev, "failed to enable\n");
1065 1066 1067 1068
			goto out;
		}
	}

1069 1070
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1071 1072 1073 1074 1075 1076 1077
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
			goto out;
		}
	}

S
Stephen Boyd 已提交
1078 1079 1080 1081 1082 1083 1084 1085
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
			goto out;
		}
	}

S
Stephen Boyd 已提交
1086 1087 1088 1089 1090 1091 1092 1093
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
			goto out;
		}
	}

1094 1095 1096 1097 1098 1099 1100 1101 1102
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
			goto out;
		}
	}

1103
	print_constraints(rdev);
1104
	return 0;
1105
out:
1106 1107
	kfree(rdev->constraints);
	rdev->constraints = NULL;
1108 1109 1110 1111 1112
	return ret;
}

/**
 * set_supply - set regulator supply regulator
1113 1114
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1115 1116 1117 1118 1119 1120
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1121
		      struct regulator_dev *supply_rdev)
1122 1123 1124
{
	int err;

1125 1126
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1127 1128 1129
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1130
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1131 1132
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1133
		return err;
1134
	}
1135
	supply_rdev->open_count++;
1136 1137

	return 0;
1138 1139 1140
}

/**
1141
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1142
 * @rdev:         regulator source
1143
 * @consumer_dev_name: dev_name() string for device supply applies to
1144
 * @supply:       symbolic name for supply
1145 1146 1147 1148 1149 1150 1151
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1152 1153
				      const char *consumer_dev_name,
				      const char *supply)
1154 1155
{
	struct regulator_map *node;
1156
	int has_dev;
1157 1158 1159 1160

	if (supply == NULL)
		return -EINVAL;

1161 1162 1163 1164 1165
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1166
	list_for_each_entry(node, &regulator_map_list, list) {
1167 1168 1169 1170
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1171
			continue;
1172 1173
		}

1174 1175 1176
		if (strcmp(node->supply, supply) != 0)
			continue;

1177 1178 1179 1180 1181 1182
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1183 1184 1185
		return -EBUSY;
	}

1186
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1187 1188 1189 1190 1191 1192
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1193 1194 1195 1196 1197 1198
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1199 1200
	}

1201 1202 1203 1204
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1205 1206 1207 1208 1209 1210 1211
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1212
			kfree(node->dev_name);
1213 1214 1215 1216 1217
			kfree(node);
		}
	}
}

1218
#define REG_STR_SIZE	64
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1237 1238
		regulator->dev = dev;

1239
		/* Add a link to the device sysfs entry */
1240 1241 1242
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1243
			goto overflow_err;
1244 1245 1246

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1247
			goto overflow_err;
1248

1249
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1250 1251
					buf);
		if (err) {
1252
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1253
				  dev->kobj.name, err);
1254
			/* non-fatal */
1255
		}
1256 1257 1258
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1259
			goto overflow_err;
1260 1261 1262 1263
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1264
	if (!regulator->debugfs) {
1265
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1266 1267 1268 1269 1270 1271 1272
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1273
	}
1274

1275 1276 1277 1278 1279 1280 1281 1282 1283
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1284 1285 1286 1287 1288 1289 1290 1291 1292
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1293 1294
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1295 1296
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1297
	if (!rdev->desc->ops->enable_time)
1298
		return rdev->desc->enable_time;
1299 1300 1301
	return rdev->desc->ops->enable_time(rdev);
}

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1328
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1329 1330
						  const char *supply,
						  int *ret)
1331 1332 1333
{
	struct regulator_dev *r;
	struct device_node *node;
1334 1335
	struct regulator_map *map;
	const char *devname = NULL;
1336

1337 1338
	regulator_supply_alias(&dev, &supply);

1339 1340 1341
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1342
		if (node) {
1343 1344 1345 1346
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1347 1348
			*ret = -EPROBE_DEFER;
			return NULL;
1349 1350 1351 1352 1353 1354 1355 1356 1357
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1358 1359 1360
	}

	/* if not found, try doing it non-dt way */
1361 1362 1363
	if (dev)
		devname = dev_name(dev);

1364 1365 1366 1367
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1379 1380 1381
	return NULL;
}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
	if (!r) {
1398 1399 1400 1401 1402 1403 1404 1405
		if (ret == -ENODEV) {
			/*
			 * No supply was specified for this regulator and
			 * there will never be one.
			 */
			return 0;
		}

1406 1407 1408 1409 1410 1411 1412
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	}

	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
	if (ret < 0)
		return ret;

	ret = set_supply(rdev, r);
	if (ret < 0)
		return ret;

	/* Cascade always-on state to supply */
1425
	if (_regulator_is_enabled(rdev) && rdev->supply) {
1426
		ret = regulator_enable(rdev->supply);
1427
		if (ret < 0) {
1428
			_regulator_put(rdev->supply);
1429
			return ret;
1430
		}
1431 1432 1433 1434 1435
	}

	return 0;
}

1436 1437
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
1438
					bool exclusive, bool allow_dummy)
1439 1440
{
	struct regulator_dev *rdev;
1441
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1442
	const char *devname = NULL;
1443
	int ret;
1444 1445

	if (id == NULL) {
1446
		pr_err("get() with no identifier\n");
1447
		return ERR_PTR(-EINVAL);
1448 1449
	}

1450 1451 1452
	if (dev)
		devname = dev_name(dev);

1453 1454 1455 1456 1457
	if (have_full_constraints())
		ret = -ENODEV;
	else
		ret = -EPROBE_DEFER;

1458 1459
	mutex_lock(&regulator_list_mutex);

1460
	rdev = regulator_dev_lookup(dev, id, &ret);
1461 1462 1463
	if (rdev)
		goto found;

1464 1465
	regulator = ERR_PTR(ret);

1466 1467 1468 1469
	/*
	 * If we have return value from dev_lookup fail, we do not expect to
	 * succeed, so, quit with appropriate error value
	 */
1470
	if (ret && ret != -ENODEV)
1471 1472
		goto out;

1473 1474 1475
	if (!devname)
		devname = "deviceless";

1476 1477 1478
	/*
	 * Assume that a regulator is physically present and enabled
	 * even if it isn't hooked up and just provide a dummy.
1479
	 */
1480
	if (have_full_constraints() && allow_dummy) {
1481 1482
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1483

1484 1485
		rdev = dummy_regulator_rdev;
		goto found;
1486 1487
	/* Don't log an error when called from regulator_get_optional() */
	} else if (!have_full_constraints() || exclusive) {
1488
		dev_warn(dev, "dummy supplies not allowed\n");
1489 1490
	}

1491 1492 1493 1494
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1505 1506 1507 1508 1509 1510
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
		goto out;
	}

1511 1512 1513
	if (!try_module_get(rdev->owner))
		goto out;

1514 1515 1516 1517
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1518
		goto out;
1519 1520
	}

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1532
out:
1533
	mutex_unlock(&regulator_list_mutex);
1534

1535 1536
	return regulator;
}
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1553
	return _regulator_get(dev, id, false, true);
1554
}
1555 1556
EXPORT_SYMBOL_GPL(regulator_get);

1557 1558 1559 1560 1561 1562 1563
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1564 1565 1566
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1580
	return _regulator_get(dev, id, true, false);
1581 1582 1583
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1584 1585 1586 1587 1588 1589
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1590
 * or IS_ERR() condition containing errno.
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1606
	return _regulator_get(dev, id, false, false);
1607 1608 1609
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1610
/* regulator_list_mutex lock held by regulator_put() */
1611
static void _regulator_put(struct regulator *regulator)
1612 1613 1614
{
	struct regulator_dev *rdev;

1615
	if (IS_ERR_OR_NULL(regulator))
1616 1617
		return;

1618 1619
	lockdep_assert_held_once(&regulator_list_mutex);

1620 1621
	rdev = regulator->rdev;

1622 1623
	debugfs_remove_recursive(regulator->debugfs);

1624
	/* remove any sysfs entries */
1625
	if (regulator->dev)
1626
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1627
	mutex_lock(&rdev->mutex);
1628 1629
	list_del(&regulator->list);

1630 1631
	rdev->open_count--;
	rdev->exclusive = 0;
1632
	mutex_unlock(&rdev->mutex);
1633

1634 1635 1636
	kfree(regulator->supply_name);
	kfree(regulator);

1637
	module_put(rdev->owner);
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1652 1653 1654 1655
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1733 1734
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1735
					 struct device *alias_dev,
1736
					 const char *const *alias_id,
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
1774
					    const char *const *id,
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


1785 1786 1787 1788 1789
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
1790
	struct gpio_desc *gpiod;
1791 1792
	int ret;

1793 1794
	gpiod = gpio_to_desc(config->ena_gpio);

1795
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1796
		if (pin->gpiod == gpiod) {
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

1815
	pin->gpiod = gpiod;
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1834
		if (pin->gpiod == rdev->ena_pin->gpiod) {
1835 1836
			if (pin->request_count <= 1) {
				pin->request_count = 0;
1837
				gpiod_put(pin->gpiod);
1838 1839
				list_del(&pin->list);
				kfree(pin);
1840 1841
				rdev->ena_pin = NULL;
				return;
1842 1843 1844 1845 1846 1847 1848
			} else {
				pin->request_count--;
			}
		}
	}
}

1849
/**
1850 1851 1852 1853
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
1867 1868
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
1879 1880
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
1881 1882 1883 1884 1885 1886 1887
			pin->enable_count = 0;
		}
	}

	return 0;
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

1967
	if (rdev->ena_pin) {
1968 1969 1970 1971 1972 1973
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
1974
	} else if (rdev->desc->ops->enable) {
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

1987
	_regulator_enable_delay(delay);
1988 1989 1990 1991 1992 1993

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

1994 1995 1996
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1997
	int ret;
1998

1999 2000
	lockdep_assert_held_once(&rdev->mutex);

2001
	/* check voltage and requested load before enabling */
2002 2003 2004
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
2005

2006 2007 2008 2009 2010 2011 2012
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

2013
			ret = _regulator_do_enable(rdev);
2014 2015 2016
			if (ret < 0)
				return ret;

2017
		} else if (ret < 0) {
2018
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2019 2020
			return ret;
		}
2021
		/* Fallthrough on positive return values - already enabled */
2022 2023
	}

2024 2025 2026
	rdev->use_count++;

	return 0;
2027 2028 2029 2030 2031 2032
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2033 2034 2035 2036
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2037
 * NOTE: the output value can be set by other drivers, boot loader or may be
2038
 * hardwired in the regulator.
2039 2040 2041
 */
int regulator_enable(struct regulator *regulator)
{
2042 2043
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2044

2045 2046 2047
	if (regulator->always_on)
		return 0;

2048 2049 2050 2051 2052 2053
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

2054
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
2055
	ret = _regulator_enable(rdev);
2056
	mutex_unlock(&rdev->mutex);
2057

2058
	if (ret != 0 && rdev->supply)
2059 2060
		regulator_disable(rdev->supply);

2061 2062 2063 2064
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2065 2066 2067 2068 2069 2070
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2071
	if (rdev->ena_pin) {
2072 2073 2074 2075 2076 2077
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2078 2079 2080 2081 2082 2083 2084

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2085 2086 2087 2088 2089 2090
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2091 2092 2093 2094 2095
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2096
/* locks held by regulator_disable() */
2097
static int _regulator_disable(struct regulator_dev *rdev)
2098 2099 2100
{
	int ret = 0;

2101 2102
	lockdep_assert_held_once(&rdev->mutex);

D
David Brownell 已提交
2103
	if (WARN(rdev->use_count <= 0,
2104
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2105 2106
		return -EIO;

2107
	/* are we the last user and permitted to disable ? */
2108 2109
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2110 2111

		/* we are last user */
2112
		if (_regulator_can_change_status(rdev)) {
2113 2114 2115 2116 2117 2118
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2119
			ret = _regulator_do_disable(rdev);
2120
			if (ret < 0) {
2121
				rdev_err(rdev, "failed to disable\n");
2122 2123 2124
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2125 2126
				return ret;
			}
2127 2128
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2141

2142 2143 2144 2145 2146 2147 2148
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2149 2150 2151
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2152
 *
2153
 * NOTE: this will only disable the regulator output if no other consumer
2154 2155
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2156 2157 2158
 */
int regulator_disable(struct regulator *regulator)
{
2159 2160
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2161

2162 2163 2164
	if (regulator->always_on)
		return 0;

2165
	mutex_lock(&rdev->mutex);
2166
	ret = _regulator_disable(rdev);
2167
	mutex_unlock(&rdev->mutex);
2168

2169 2170
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2171

2172 2173 2174 2175 2176
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2177
static int _regulator_force_disable(struct regulator_dev *rdev)
2178 2179 2180
{
	int ret = 0;

2181 2182
	lockdep_assert_held_once(&rdev->mutex);

2183 2184 2185 2186 2187
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2188 2189 2190
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2191 2192
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2193
		return ret;
2194 2195
	}

2196 2197 2198 2199
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2213
	struct regulator_dev *rdev = regulator->rdev;
2214 2215
	int ret;

2216
	mutex_lock(&rdev->mutex);
2217
	regulator->uA_load = 0;
2218
	ret = _regulator_force_disable(regulator->rdev);
2219
	mutex_unlock(&rdev->mutex);
2220

2221 2222 2223
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2224

2225 2226 2227 2228
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
2276
	int ret;
2277

2278 2279 2280
	if (regulator->always_on)
		return 0;

2281 2282 2283
	if (!ms)
		return regulator_disable(regulator);

2284 2285 2286 2287
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

2288 2289 2290
	ret = queue_delayed_work(system_power_efficient_wq,
				 &rdev->disable_work,
				 msecs_to_jiffies(ms));
2291 2292 2293 2294
	if (ret < 0)
		return ret;
	else
		return 0;
2295 2296 2297
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2298 2299
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2300
	/* A GPIO control always takes precedence */
2301
	if (rdev->ena_pin)
2302 2303
		return rdev->ena_gpio_state;

2304
	/* If we don't know then assume that the regulator is always on */
2305
	if (!rdev->desc->ops->is_enabled)
2306
		return 1;
2307

2308
	return rdev->desc->ops->is_enabled(rdev);
2309 2310 2311 2312 2313 2314
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2315 2316 2317 2318 2319 2320 2321
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2322 2323 2324
 */
int regulator_is_enabled(struct regulator *regulator)
{
2325 2326
	int ret;

2327 2328 2329
	if (regulator->always_on)
		return 1;

2330 2331 2332 2333 2334
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2335 2336 2337
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2338 2339 2340 2341 2342
/**
 * regulator_can_change_voltage - check if regulator can change voltage
 * @regulator: regulator source
 *
 * Returns positive if the regulator driver backing the source/client
2343
 * can change its voltage, false otherwise. Useful for detecting fixed
2344 2345 2346 2347 2348 2349 2350 2351
 * or dummy regulators and disabling voltage change logic in the client
 * driver.
 */
int regulator_can_change_voltage(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	if (rdev->constraints &&
2352 2353 2354 2355 2356 2357 2358 2359 2360
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
			return 1;

		if (rdev->desc->continuous_voltage_range &&
		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
		    rdev->constraints->min_uV != rdev->constraints->max_uV)
			return 1;
	}
2361 2362 2363 2364 2365

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_can_change_voltage);

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2378 2379 2380 2381 2382 2383 2384
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

	if (!rdev->supply)
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2395
 * zero if this selector code can't be used on this system, or a
2396 2397 2398 2399
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2400 2401 2402
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;
2403

2404 2405 2406
	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

2407 2408 2409 2410 2411 2412 2413 2414 2415
	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		mutex_lock(&rdev->mutex);
		ret = ops->list_voltage(rdev, selector);
		mutex_unlock(&rdev->mutex);
	} else if (rdev->supply) {
		ret = regulator_list_voltage(rdev->supply, selector);
	} else {
2416
		return -EINVAL;
2417
	}
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2462 2463
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	 *vsel_reg = rdev->desc->vsel_reg;
	 *vsel_mask = rdev->desc->vsel_mask;

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2489 2490
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2528
	struct regulator_dev *rdev = regulator->rdev;
2529 2530
	int i, voltages, ret;

2531 2532 2533 2534
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2535
			return min_uV <= ret && ret <= max_uV;
2536 2537 2538 2539
		else
			return ret;
	}

2540 2541 2542 2543 2544
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2559
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2560

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2610 2611 2612 2613
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2614
	int delay = 0;
2615
	int best_val = 0;
2616
	unsigned int selector;
2617
	int old_selector = -1;
2618 2619 2620

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2621 2622 2623
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2624 2625 2626 2627
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2628 2629
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2630 2631 2632 2633 2634 2635
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2636
	if (rdev->desc->ops->set_voltage) {
2637 2638
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2639 2640 2641 2642 2643 2644 2645 2646 2647

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2648
	} else if (rdev->desc->ops->set_voltage_sel) {
2649
		if (rdev->desc->ops->map_voltage) {
2650 2651
			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
							   max_uV);
2652 2653 2654 2655 2656
		} else {
			if (rdev->desc->ops->list_voltage ==
			    regulator_list_voltage_linear)
				ret = regulator_map_voltage_linear(rdev,
								min_uV, max_uV);
2657 2658 2659 2660
			else if (rdev->desc->ops->list_voltage ==
				 regulator_list_voltage_linear_range)
				ret = regulator_map_voltage_linear_range(rdev,
								min_uV, max_uV);
2661 2662 2663 2664
			else
				ret = regulator_map_voltage_iterate(rdev,
								min_uV, max_uV);
		}
2665

2666
		if (ret >= 0) {
2667 2668 2669
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2670 2671 2672
				if (old_selector == selector)
					ret = 0;
				else
2673 2674
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2675 2676 2677
			} else {
				ret = -EINVAL;
			}
2678
		}
2679 2680 2681
	} else {
		ret = -EINVAL;
	}
2682

2683
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2684 2685
	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
		&& old_selector != selector) {
2686

2687 2688 2689 2690 2691 2692
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2693
		}
2694

2695 2696 2697 2698 2699 2700 2701
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2702 2703
	}

2704 2705 2706
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2707
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2708 2709
				     (void *)data);
	}
2710

2711
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2712 2713 2714 2715

	return ret;
}

2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2731
 * Regulator system constraints must be set for this regulator before
2732 2733 2734 2735 2736
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2737
	int ret = 0;
2738
	int old_min_uV, old_max_uV;
2739
	int current_uV;
2740 2741 2742

	mutex_lock(&rdev->mutex);

2743 2744 2745 2746 2747 2748 2749
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2750
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
2751
	 * return successfully even though the regulator does not support
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
	 * changing the voltage.
	 */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
			regulator->min_uV = min_uV;
			regulator->max_uV = max_uV;
			goto out;
		}
	}

2763
	/* sanity check */
2764 2765
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2766 2767 2768 2769 2770 2771 2772 2773
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2774

2775 2776 2777
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2778 2779
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2780

2781 2782
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2783
		goto out2;
2784

2785
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2786 2787
	if (ret < 0)
		goto out2;
2788

2789 2790 2791
out:
	mutex_unlock(&rdev->mutex);
	return ret;
2792 2793 2794 2795
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
	mutex_unlock(&rdev->mutex);
2796 2797 2798 2799
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
2813 2814
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2845
/**
2846 2847
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
2848 2849 2850 2851 2852 2853
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
2854
 * Drivers providing ramp_delay in regulation_constraints can use this as their
2855
 * set_voltage_time_sel() operation.
2856 2857 2858 2859 2860
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
2861
	unsigned int ramp_delay = 0;
2862
	int old_volt, new_volt;
2863 2864 2865 2866 2867 2868 2869

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
2870
		rdev_warn(rdev, "ramp_delay not set\n");
2871
		return 0;
2872
	}
2873

2874 2875 2876
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
2877

2878 2879 2880 2881
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2882
}
2883
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2884

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2932 2933
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2934
	int sel, ret;
2935 2936 2937 2938 2939

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2940
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2941
	} else if (rdev->desc->ops->get_voltage) {
2942
		ret = rdev->desc->ops->get_voltage(rdev);
2943 2944
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
2945 2946
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
2947 2948
	} else if (rdev->supply) {
		ret = regulator_get_voltage(rdev->supply);
2949
	} else {
2950
		return -EINVAL;
2951
	}
2952

2953 2954
	if (ret < 0)
		return ret;
2955
	return ret - rdev->constraints->uV_offset;
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
2984
 * @min_uA: Minimum supported current in uA
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
3071
	int regulator_curr_mode;
3072 3073 3074 3075 3076 3077 3078 3079 3080

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

3081 3082 3083 3084 3085 3086 3087 3088 3089
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

3090
	/* constraints check */
3091
	ret = regulator_mode_constrain(rdev, &mode);
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
3133
 * regulator_set_load - set regulator load
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
3156
 * On error a negative errno is returned.
3157
 */
3158
int regulator_set_load(struct regulator *regulator, int uA_load)
3159 3160
{
	struct regulator_dev *rdev = regulator->rdev;
3161
	int ret;
3162

3163 3164
	mutex_lock(&rdev->mutex);
	regulator->uA_load = uA_load;
3165
	ret = drms_uA_update(rdev);
3166
	mutex_unlock(&rdev->mutex);
3167

3168 3169
	return ret;
}
3170
EXPORT_SYMBOL_GPL(regulator_set_load);
3171

3172 3173 3174 3175
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3176
 * @enable: enable or disable bypass mode
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

	if (rdev->constraints &&
	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

3225 3226 3227
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
3228
 * @nb: notifier block
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
3243
 * @nb: notifier block
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

3255 3256 3257
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
3258
static int _notifier_call_chain(struct regulator_dev *rdev,
3259 3260 3261
				  unsigned long event, void *data)
{
	/* call rdev chain first */
3262
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3293 3294
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3295 3296 3297 3298 3299 3300 3301 3302
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3303
	while (--i >= 0)
3304 3305 3306 3307 3308 3309
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3310 3311 3312 3313 3314 3315 3316
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3332
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3333
	int i;
3334
	int ret = 0;
3335

3336 3337 3338 3339 3340 3341 3342
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3343 3344 3345 3346

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3347
	for (i = 0; i < num_consumers; i++) {
3348 3349
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3350
			goto err;
3351
		}
3352 3353 3354 3355 3356
	}

	return 0;

err:
3357 3358 3359 3360 3361 3362 3363
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3377 3378
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3379 3380 3381 3382 3383 3384
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3385
	int ret, r;
3386

3387
	for (i = num_consumers - 1; i >= 0; --i) {
3388 3389 3390 3391 3392 3393 3394 3395
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3396
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3397 3398 3399 3400 3401 3402
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
3403 3404 3405 3406 3407

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3468
 * @rdev: regulator source
3469
 * @event: notifier block
3470
 * @data: callback-specific data.
3471 3472 3473
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3474
 * Note lock must be held by caller.
3475 3476 3477 3478
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
3479 3480
	lockdep_assert_held_once(&rdev->mutex);

3481 3482 3483 3484 3485 3486
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3503
	case REGULATOR_MODE_STANDBY:
3504 3505
		return REGULATOR_STATUS_STANDBY;
	default:
3506
		return REGULATOR_STATUS_UNDEFINED;
3507 3508 3509 3510
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

3538 3539 3540 3541
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
3542 3543
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
3544
{
3545 3546
	struct device *dev = kobj_to_dev(kobj);
	struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3547
	const struct regulator_ops *ops = rdev->desc->ops;
3548 3549 3550 3551 3552 3553 3554
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
3555 3556

	/* some attributes need specific methods to be displayed */
3557 3558 3559 3560 3561 3562 3563
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
3564
	}
3565

3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

3581
	/* some attributes are type-specific */
3582 3583
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3584 3585

	/* constraints need specific supporting methods */
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
3621

3622 3623 3624
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
3625 3626 3627

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
3628
	kfree(rdev);
3629 3630
}

3631 3632 3633 3634 3635 3636
static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
};

3637 3638
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3651
	if (!rdev->debugfs) {
3652 3653 3654 3655 3656 3657 3658 3659
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3660 3661
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3662 3663
}

3664 3665
/**
 * regulator_register - register regulator
3666
 * @regulator_desc: regulator to register
3667
 * @cfg: runtime configuration for regulator
3668 3669
 *
 * Called by regulator drivers to register a regulator.
3670 3671
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3672
 */
3673 3674
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3675
		   const struct regulator_config *cfg)
3676
{
3677
	const struct regulation_constraints *constraints = NULL;
3678
	const struct regulator_init_data *init_data;
3679
	struct regulator_config *config = NULL;
3680
	static atomic_t regulator_no = ATOMIC_INIT(-1);
3681
	struct regulator_dev *rdev;
3682
	struct device *dev;
3683
	int ret, i;
3684

3685
	if (regulator_desc == NULL || cfg == NULL)
3686 3687
		return ERR_PTR(-EINVAL);

3688
	dev = cfg->dev;
3689
	WARN_ON(!dev);
3690

3691 3692 3693
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3694 3695
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3696 3697
		return ERR_PTR(-EINVAL);

3698 3699 3700
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3701 3702
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3703 3704 3705 3706 3707 3708

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3709 3710 3711 3712
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3713

3714 3715 3716 3717
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

3728
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3729 3730 3731 3732 3733 3734
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

3735 3736 3737
	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3738
	rdev->reg_data = config->driver_data;
3739 3740
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3741 3742
	if (config->regmap)
		rdev->regmap = config->regmap;
3743
	else if (dev_get_regmap(dev, NULL))
3744
		rdev->regmap = dev_get_regmap(dev, NULL);
3745 3746
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3747 3748 3749
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3750
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3751

3752
	/* preform any regulator specific init */
3753
	if (init_data && init_data->regulator_init) {
3754
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3755 3756
		if (ret < 0)
			goto clean;
3757 3758 3759
	}

	/* register with sysfs */
3760
	rdev->dev.class = &regulator_class;
3761
	rdev->dev.parent = dev;
3762
	dev_set_name(&rdev->dev, "regulator.%lu",
3763
		    (unsigned long) atomic_inc_return(&regulator_no));
3764
	ret = device_register(&rdev->dev);
3765 3766
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3767
		goto clean;
3768
	}
3769 3770 3771

	dev_set_drvdata(&rdev->dev, rdev);

3772 3773
	if ((config->ena_gpio || config->ena_gpio_initialized) &&
	    gpio_is_valid(config->ena_gpio)) {
3774
		ret = regulator_ena_gpio_request(rdev, config);
3775 3776 3777
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
3778
			goto wash;
3779 3780 3781
		}
	}

3782
	/* set regulator constraints */
3783 3784 3785 3786
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3787 3788 3789
	if (ret < 0)
		goto scrub;

3790
	if (init_data && init_data->supply_regulator)
3791
		rdev->supply_name = init_data->supply_regulator;
3792
	else if (regulator_desc->supply_name)
3793
		rdev->supply_name = regulator_desc->supply_name;
3794

3795
	/* add consumers devices */
3796 3797 3798 3799
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3800
				init_data->consumer_supplies[i].supply);
3801 3802 3803 3804 3805
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3806
		}
3807
	}
3808 3809

	list_add(&rdev->list, &regulator_list);
3810 3811

	rdev_init_debugfs(rdev);
3812
out:
3813
	mutex_unlock(&regulator_list_mutex);
3814
	kfree(config);
3815
	return rdev;
D
David Brownell 已提交
3816

3817 3818 3819
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3820
scrub:
3821
	regulator_ena_gpio_free(rdev);
3822
	kfree(rdev->constraints);
3823
wash:
D
David Brownell 已提交
3824
	device_unregister(&rdev->dev);
3825 3826 3827 3828
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3829 3830 3831 3832
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3833 3834 3835 3836 3837
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3838
 * @rdev: regulator to unregister
3839 3840 3841 3842 3843 3844 3845 3846
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3847 3848 3849
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
3850
		regulator_put(rdev->supply);
3851
	}
3852
	mutex_lock(&regulator_list_mutex);
3853
	debugfs_remove_recursive(rdev->debugfs);
3854
	flush_work(&rdev->disable_work.work);
3855
	WARN_ON(rdev->open_count);
3856
	unset_regulator_supplies(rdev);
3857
	list_del(&rdev->list);
3858
	mutex_unlock(&regulator_list_mutex);
3859
	regulator_ena_gpio_free(rdev);
3860
	device_unregister(&rdev->dev);
3861 3862 3863 3864
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3865
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3888
			rdev_err(rdev, "failed to prepare\n");
3889 3890 3891 3892 3893 3894 3895 3896 3897
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
3912
		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3913 3914 3915 3916 3917
			if (!_regulator_is_enabled(rdev)) {
				error = _regulator_do_enable(rdev);
				if (error)
					ret = error;
			}
3918
		} else {
3919
			if (!have_full_constraints())
3920
				goto unlock;
3921
			if (!_regulator_is_enabled(rdev))
3922 3923
				goto unlock;

3924
			error = _regulator_do_disable(rdev);
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3953 3954
/**
 * rdev_get_drvdata - get rdev regulator driver data
3955
 * @rdev: regulator
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3992
 * @rdev: regulator
3993 3994 3995 3996 3997 3998 3999
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
4042
#endif
4043 4044

static const struct file_operations supply_map_fops = {
4045
#ifdef CONFIG_DEBUG_FS
4046 4047 4048
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
4049
};
4050

4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
#ifdef CONFIG_DEBUG_FS
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct list_head *list = s->private;
	struct regulator_dev *child;
	struct regulation_constraints *c;
	struct regulator *consumer;

	if (!rdev)
		return;

	seq_printf(s, "%*s%-*s %3d %4d %6d ",
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
		   rdev->use_count, rdev->open_count, rdev->bypass_count);

4069 4070
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
		if (consumer->dev->class == &regulator_class)
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
			   30 - (level + 1) * 3, dev_name(consumer->dev));

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
4098
			seq_printf(s, "%37dmV %5dmV",
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
				   consumer->min_uV / 1000,
				   consumer->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

	list_for_each_entry(child, list, list) {
		/* handle only non-root regulators supplied by current rdev */
		if (!child->supply || child->supply->rdev != rdev)
			continue;

		regulator_summary_show_subtree(s, child, level + 1);
	}
}

static int regulator_summary_show(struct seq_file *s, void *data)
{
	struct list_head *list = s->private;
	struct regulator_dev *rdev;

4123 4124
	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
	seq_puts(s, "-------------------------------------------------------------------------------\n");
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154

	mutex_lock(&regulator_list_mutex);

	list_for_each_entry(rdev, list, list) {
		if (rdev->supply)
			continue;

		regulator_summary_show_subtree(s, rdev, 0);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static int regulator_summary_open(struct inode *inode, struct file *file)
{
	return single_open(file, regulator_summary_show, inode->i_private);
}
#endif

static const struct file_operations regulator_summary_fops = {
#ifdef CONFIG_DEBUG_FS
	.open		= regulator_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
#endif
};

4155 4156
static int __init regulator_init(void)
{
4157 4158 4159 4160
	int ret;

	ret = class_register(&regulator_class);

4161
	debugfs_root = debugfs_create_dir("regulator", NULL);
4162
	if (!debugfs_root)
4163
		pr_warn("regulator: Failed to create debugfs directory\n");
4164

4165 4166
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
4167

4168 4169 4170
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
			    &regulator_list, &regulator_summary_fops);

4171 4172 4173
	regulator_dummy_init();

	return ret;
4174 4175 4176 4177
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
4178

4179
static int __init regulator_late_cleanup(struct device *dev, void *data)
4180
{
4181 4182 4183
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
4184 4185
	int enabled, ret;

4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
	if (c && c->always_on)
		return 0;

	if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
	mutex_unlock(&rdev->mutex);

	return 0;
}

static int __init regulator_init_complete(void)
{
4230 4231 4232 4233 4234 4235 4236 4237 4238
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

4239
	/* If we have a full configuration then disable any regulators
4240 4241 4242
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
4243
	 */
4244 4245
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
4246 4247 4248

	return 0;
}
4249
late_initcall_sync(regulator_init_complete);