core.c 93.4 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/of.h>
28
#include <linux/regmap.h>
29
#include <linux/regulator/of_regulator.h>
30 31 32
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
33
#include <linux/module.h>
34

35 36 37
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

38 39
#include "dummy.h"

M
Mark Brown 已提交
40 41
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 43 44 45 46 47 48 49 50
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

51 52 53
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
54
static bool has_full_constraints;
55
static bool board_wants_dummy_regulator;
56

57 58
static struct dentry *debugfs_root;

59
/*
60 61 62 63 64 65
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
66
	const char *dev_name;   /* The dev_name() for the consumer */
67
	const char *supply;
68
	struct regulator_dev *regulator;
69 70 71 72 73 74 75 76 77 78
};

/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
79
	unsigned int always_on:1;
80 81 82 83 84 85
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
86
	struct dentry *debugfs;
87 88 89
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
90
static int _regulator_disable(struct regulator_dev *rdev);
91 92 93 94 95
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
96 97
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
98 99 100
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
101

102 103 104 105 106 107 108 109 110 111
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
 * retruns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
132
		dev_dbg(dev, "Looking up %s property in node %s failed",
133 134 135 136 137 138
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

139 140 141 142 143 144 145 146 147 148 149
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

150 151 152 153 154 155 156
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
157
		rdev_err(rdev, "no constraints\n");
158 159 160
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
161
		rdev_err(rdev, "operation not allowed\n");
162 163 164 165 166 167 168 169
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

170 171
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
172
			 *min_uV, *max_uV);
173
		return -EINVAL;
174
	}
175 176 177 178

	return 0;
}

179 180 181 182 183 184 185 186 187
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
188 189 190 191 192 193 194
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

195 196 197 198 199 200 201 202 203 204 205 206
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

	if (*min_uV > *max_uV)
		return -EINVAL;

	return 0;
}

207 208 209 210 211 212 213
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
214
		rdev_err(rdev, "no constraints\n");
215 216 217
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
218
		rdev_err(rdev, "operation not allowed\n");
219 220 221 222 223 224 225 226
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

227 228
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
229
			 *min_uA, *max_uA);
230
		return -EINVAL;
231
	}
232 233 234 235 236

	return 0;
}

/* operating mode constraint check */
237
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
238
{
239
	switch (*mode) {
240 241 242 243 244 245
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
246
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
247 248 249
		return -EINVAL;
	}

250
	if (!rdev->constraints) {
251
		rdev_err(rdev, "no constraints\n");
252 253 254
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
255
		rdev_err(rdev, "operation not allowed\n");
256 257
		return -EPERM;
	}
258 259 260 261 262 263 264 265

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
266
	}
267 268

	return -EINVAL;
269 270 271 272 273 274
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
275
		rdev_err(rdev, "no constraints\n");
276 277 278
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
279
		rdev_err(rdev, "operation not allowed\n");
280 281 282 283 284 285 286 287
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
288
	struct regulator_dev *rdev = dev_get_drvdata(dev);
289 290 291 292 293 294 295 296
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
297
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
298 299 300 301

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
302
	struct regulator_dev *rdev = dev_get_drvdata(dev);
303 304 305

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
306
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
307

308 309 310 311 312
static ssize_t regulator_name_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

313
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
314 315
}

D
David Brownell 已提交
316
static ssize_t regulator_print_opmode(char *buf, int mode)
317 318 319 320 321 322 323 324 325 326 327 328 329 330
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
331 332
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
333
{
334
	struct regulator_dev *rdev = dev_get_drvdata(dev);
335

D
David Brownell 已提交
336 337
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
338
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
339 340 341

static ssize_t regulator_print_state(char *buf, int state)
{
342 343 344 345 346 347 348 349
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
350 351 352 353
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
354 355 356 357 358
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
359

360
	return ret;
D
David Brownell 已提交
361
}
362
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
363

D
David Brownell 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
397 398 399
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
400 401 402 403 404 405 406 407
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

408 409 410
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
411
	struct regulator_dev *rdev = dev_get_drvdata(dev);
412 413 414 415 416 417

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
418
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
419 420 421 422

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
423
	struct regulator_dev *rdev = dev_get_drvdata(dev);
424 425 426 427 428 429

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
430
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
431 432 433 434

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
435
	struct regulator_dev *rdev = dev_get_drvdata(dev);
436 437 438 439 440 441

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
442
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
443 444 445 446

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
447
	struct regulator_dev *rdev = dev_get_drvdata(dev);
448 449 450 451 452 453

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
454
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
455 456 457 458

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
459
	struct regulator_dev *rdev = dev_get_drvdata(dev);
460 461 462 463 464
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
465
		uA += regulator->uA_load;
466 467 468
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
469
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
470 471 472 473

static ssize_t regulator_num_users_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
474
	struct regulator_dev *rdev = dev_get_drvdata(dev);
475 476 477 478 479 480
	return sprintf(buf, "%d\n", rdev->use_count);
}

static ssize_t regulator_type_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
481
	struct regulator_dev *rdev = dev_get_drvdata(dev);
482 483 484 485 486 487 488 489 490 491 492 493 494

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
495
	struct regulator_dev *rdev = dev_get_drvdata(dev);
496 497 498

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
499 500
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
501 502 503 504

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
505
	struct regulator_dev *rdev = dev_get_drvdata(dev);
506 507 508

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
509 510
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
511 512 513 514

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
515
	struct regulator_dev *rdev = dev_get_drvdata(dev);
516 517 518

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
519 520
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
521 522 523 524

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
525
	struct regulator_dev *rdev = dev_get_drvdata(dev);
526

D
David Brownell 已提交
527 528
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
529
}
530 531
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
532 533 534 535

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
536
	struct regulator_dev *rdev = dev_get_drvdata(dev);
537

D
David Brownell 已提交
538 539
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
540
}
541 542
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
543 544 545 546

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
547
	struct regulator_dev *rdev = dev_get_drvdata(dev);
548

D
David Brownell 已提交
549 550
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
551
}
552 553
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
554 555 556 557

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
558
	struct regulator_dev *rdev = dev_get_drvdata(dev);
559

D
David Brownell 已提交
560 561
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
562
}
563 564
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
565 566 567 568

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
569
	struct regulator_dev *rdev = dev_get_drvdata(dev);
570

D
David Brownell 已提交
571 572
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
573
}
574 575
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
576 577 578 579

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
580
	struct regulator_dev *rdev = dev_get_drvdata(dev);
581

D
David Brownell 已提交
582 583
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
584
}
585 586 587
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

588

589 590 591 592
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
593
static struct device_attribute regulator_dev_attrs[] = {
594
	__ATTR(name, 0444, regulator_name_show, NULL),
595 596 597 598 599 600 601
	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
	__ATTR(type, 0444, regulator_type_show, NULL),
	__ATTR_NULL,
};

static void regulator_dev_release(struct device *dev)
{
602
	struct regulator_dev *rdev = dev_get_drvdata(dev);
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_attrs = regulator_dev_attrs,
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
622 623 624
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
625
		return;
626 627

	/* get output voltage */
628
	output_uV = _regulator_get_voltage(rdev);
629 630 631 632
	if (output_uV <= 0)
		return;

	/* get input voltage */
633 634
	input_uV = 0;
	if (rdev->supply)
635
		input_uV = regulator_get_voltage(rdev->supply);
636
	if (input_uV <= 0)
637 638 639 640 641 642
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
643
		current_uA += sibling->uA_load;
644 645 646 647 648 649

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
650
	err = regulator_mode_constrain(rdev, &mode);
651 652 653 654 655 656 657 658
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
659 660

	/* If we have no suspend mode configration don't set anything;
661 662
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
663 664
	 */
	if (!rstate->enabled && !rstate->disabled) {
665 666
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
667
			rdev_warn(rdev, "No configuration\n");
668 669 670 671
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
672
		rdev_err(rdev, "invalid configuration\n");
673 674
		return -EINVAL;
	}
675

676
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
677
		ret = rdev->desc->ops->set_suspend_enable(rdev);
678
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
679
		ret = rdev->desc->ops->set_suspend_disable(rdev);
680 681 682
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

683
	if (ret < 0) {
684
		rdev_err(rdev, "failed to enabled/disable\n");
685 686 687 688 689 690
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
691
			rdev_err(rdev, "failed to set voltage\n");
692 693 694 695 696 697 698
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
699
			rdev_err(rdev, "failed to set mode\n");
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
730
	char buf[80] = "";
731 732
	int count = 0;
	int ret;
733

734
	if (constraints->min_uV && constraints->max_uV) {
735
		if (constraints->min_uV == constraints->max_uV)
736 737
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
738
		else
739 740 741 742 743 744 745 746 747 748 749 750
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

751 752 753 754
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

755
	if (constraints->min_uA && constraints->max_uA) {
756
		if (constraints->min_uA == constraints->max_uA)
757 758
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
759
		else
760 761 762 763 764 765 766 767 768
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
769
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
770
	}
771

772 773 774 775 776 777 778 779 780
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

781 782 783
	if (!count)
		sprintf(buf, "no parameters");

M
Mark Brown 已提交
784
	rdev_info(rdev, "%s\n", buf);
785 786 787 788 789

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
790 791
}

792
static int machine_constraints_voltage(struct regulator_dev *rdev,
793
	struct regulation_constraints *constraints)
794
{
795
	struct regulator_ops *ops = rdev->desc->ops;
796 797 798 799
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
800 801 802 803 804 805 806 807 808
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			return ret;
		}
809
	}
810

811 812 813 814 815 816 817 818 819 820 821
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

822 823
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
824
		if (count == 1 && !cmin) {
825
			cmin = 1;
826
			cmax = INT_MAX;
827 828
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
829 830
		}

831 832
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
833
			return 0;
834

835
		/* else require explicit machine-level constraints */
836
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
837
			rdev_err(rdev, "invalid voltage constraints\n");
838
			return -EINVAL;
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
858
			rdev_err(rdev, "unsupportable voltage constraints\n");
859
			return -EINVAL;
860 861 862 863
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
864 865
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
866 867 868
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
869 870
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
871 872 873 874
			constraints->max_uV = max_uV;
		}
	}

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
890
	const struct regulation_constraints *constraints)
891 892 893 894
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

895 896 897 898 899 900
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
901 902
	if (!rdev->constraints)
		return -ENOMEM;
903

904
	ret = machine_constraints_voltage(rdev, rdev->constraints);
905 906 907
	if (ret != 0)
		goto out;

908
	/* do we need to setup our suspend state */
909
	if (rdev->constraints->initial_state) {
910
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
911
		if (ret < 0) {
912
			rdev_err(rdev, "failed to set suspend state\n");
913 914 915
			goto out;
		}
	}
916

917
	if (rdev->constraints->initial_mode) {
918
		if (!ops->set_mode) {
919
			rdev_err(rdev, "no set_mode operation\n");
920 921 922 923
			ret = -EINVAL;
			goto out;
		}

924
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
925
		if (ret < 0) {
926
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
927 928 929 930
			goto out;
		}
	}

931 932 933
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
934 935
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
936 937
		ret = ops->enable(rdev);
		if (ret < 0) {
938
			rdev_err(rdev, "failed to enable\n");
939 940 941 942
			goto out;
		}
	}

943 944 945 946 947 948 949 950
	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
			goto out;
		}
	}

951
	print_constraints(rdev);
952
	return 0;
953
out:
954 955
	kfree(rdev->constraints);
	rdev->constraints = NULL;
956 957 958 959 960
	return ret;
}

/**
 * set_supply - set regulator supply regulator
961 962
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
963 964 965 966 967 968
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
969
		      struct regulator_dev *supply_rdev)
970 971 972
{
	int err;

973 974 975
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
976 977
	if (rdev->supply == NULL) {
		err = -ENOMEM;
978
		return err;
979
	}
980
	supply_rdev->open_count++;
981 982

	return 0;
983 984 985
}

/**
986
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
987
 * @rdev:         regulator source
988
 * @consumer_dev_name: dev_name() string for device supply applies to
989
 * @supply:       symbolic name for supply
990 991 992 993 994 995 996
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
997 998
				      const char *consumer_dev_name,
				      const char *supply)
999 1000
{
	struct regulator_map *node;
1001
	int has_dev;
1002 1003 1004 1005

	if (supply == NULL)
		return -EINVAL;

1006 1007 1008 1009 1010
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1011
	list_for_each_entry(node, &regulator_map_list, list) {
1012 1013 1014 1015
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1016
			continue;
1017 1018
		}

1019 1020 1021
		if (strcmp(node->supply, supply) != 0)
			continue;

1022 1023 1024 1025 1026 1027
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1028 1029 1030
		return -EBUSY;
	}

1031
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1032 1033 1034 1035 1036 1037
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1038 1039 1040 1041 1042 1043
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1044 1045
	}

1046 1047 1048 1049
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1050 1051 1052 1053 1054 1055 1056
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1057
			kfree(node->dev_name);
1058 1059 1060 1061 1062
			kfree(node);
		}
	}
}

1063
#define REG_STR_SIZE	64
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1082 1083
		regulator->dev = dev;

1084
		/* Add a link to the device sysfs entry */
1085 1086 1087
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1088
			goto overflow_err;
1089 1090 1091

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1092
			goto overflow_err;
1093 1094 1095 1096

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1097 1098
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1099
			/* non-fatal */
1100
		}
1101 1102 1103
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1104
			goto overflow_err;
1105 1106 1107 1108
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1109
	if (!regulator->debugfs) {
1110 1111 1112 1113 1114 1115 1116 1117
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1118
	}
1119

1120 1121 1122 1123 1124 1125 1126 1127 1128
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1129 1130 1131 1132 1133 1134 1135 1136 1137
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1138 1139 1140
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
1141
		return rdev->desc->enable_time;
1142 1143 1144
	return rdev->desc->ops->enable_time(rdev);
}

1145
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1146 1147
						  const char *supply,
						  int *ret)
1148 1149 1150
{
	struct regulator_dev *r;
	struct device_node *node;
1151 1152
	struct regulator_map *map;
	const char *devname = NULL;
1153 1154 1155 1156

	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1157
		if (node) {
1158 1159 1160 1161
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1162 1163 1164 1165 1166 1167 1168 1169 1170
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1171 1172 1173
	}

	/* if not found, try doing it non-dt way */
1174 1175 1176
	if (dev)
		devname = dev_name(dev);

1177 1178 1179 1180
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1192 1193 1194
	return NULL;
}

1195 1196 1197
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
					int exclusive)
1198 1199
{
	struct regulator_dev *rdev;
1200
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1201
	const char *devname = NULL;
1202
	int ret;
1203 1204

	if (id == NULL) {
1205
		pr_err("get() with no identifier\n");
1206 1207 1208
		return regulator;
	}

1209 1210 1211
	if (dev)
		devname = dev_name(dev);

1212 1213
	mutex_lock(&regulator_list_mutex);

1214
	rdev = regulator_dev_lookup(dev, id, &ret);
1215 1216 1217
	if (rdev)
		goto found;

1218 1219 1220 1221 1222
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1223 1224 1225 1226 1227 1228 1229 1230
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1231 1232
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1233 1234 1235 1236 1237
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1238 1239 1240 1241
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1252 1253 1254
	if (!try_module_get(rdev->owner))
		goto out;

1255 1256 1257 1258
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1259
		goto out;
1260 1261
	}

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1273
out:
1274
	mutex_unlock(&regulator_list_mutex);
1275

1276 1277
	return regulator;
}
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
1296 1297
EXPORT_SYMBOL_GPL(regulator_get);

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
static void devm_regulator_release(struct device *dev, void *res)
{
	regulator_put(*(struct regulator **)res);
}

/**
 * devm_regulator_get - Resource managed regulator_get()
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Managed regulator_get(). Regulators returned from this function are
 * automatically regulator_put() on driver detach. See regulator_get() for more
 * information.
 */
struct regulator *devm_regulator_get(struct device *dev, const char *id)
{
	struct regulator **ptr, *regulator;

	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	regulator = regulator_get(dev, id);
	if (!IS_ERR(regulator)) {
		*ptr = regulator;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regulator;
}
EXPORT_SYMBOL_GPL(devm_regulator_get);

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 1);
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	mutex_lock(&regulator_list_mutex);
	rdev = regulator->rdev;

1377 1378
	debugfs_remove_recursive(regulator->debugfs);

1379
	/* remove any sysfs entries */
1380
	if (regulator->dev)
1381
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1382
	kfree(regulator->supply_name);
1383 1384 1385
	list_del(&regulator->list);
	kfree(regulator);

1386 1387 1388
	rdev->open_count--;
	rdev->exclusive = 0;

1389 1390 1391 1392 1393
	module_put(rdev->owner);
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
static int devm_regulator_match(struct device *dev, void *res, void *data)
{
	struct regulator **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}
	return *r == data;
}

/**
 * devm_regulator_put - Resource managed regulator_put()
 * @regulator: regulator to free
 *
 * Deallocate a regulator allocated with devm_regulator_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_regulator_put(struct regulator *regulator)
{
	int rc;

1416
	rc = devres_release(regulator->dev, devm_regulator_release,
1417
			    devm_regulator_match, regulator);
1418
	if (rc != 0)
1419
		WARN_ON(rc);
1420 1421 1422
}
EXPORT_SYMBOL_GPL(devm_regulator_put);

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

1438 1439 1440 1441 1442
	if (rdev->ena_gpio) {
		gpio_set_value_cansleep(rdev->ena_gpio,
					!rdev->ena_gpio_invert);
		rdev->ena_gpio_state = 1;
	} else if (rdev->desc->ops->enable) {
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
	}

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

1467 1468 1469
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1470
	int ret;
1471 1472

	/* check voltage and requested load before enabling */
1473 1474 1475
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1476

1477 1478 1479 1480 1481 1482 1483
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1484
			ret = _regulator_do_enable(rdev);
1485 1486 1487
			if (ret < 0)
				return ret;

1488
		} else if (ret < 0) {
1489
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1490 1491
			return ret;
		}
1492
		/* Fallthrough on positive return values - already enabled */
1493 1494
	}

1495 1496 1497
	rdev->use_count++;

	return 0;
1498 1499 1500 1501 1502 1503
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1504 1505 1506 1507
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1508
 * NOTE: the output value can be set by other drivers, boot loader or may be
1509
 * hardwired in the regulator.
1510 1511 1512
 */
int regulator_enable(struct regulator *regulator)
{
1513 1514
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1515

1516 1517 1518
	if (regulator->always_on)
		return 0;

1519 1520 1521 1522 1523 1524
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1525
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1526
	ret = _regulator_enable(rdev);
1527
	mutex_unlock(&rdev->mutex);
1528

1529
	if (ret != 0 && rdev->supply)
1530 1531
		regulator_disable(rdev->supply);

1532 1533 1534 1535
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

	if (rdev->ena_gpio) {
		gpio_set_value_cansleep(rdev->ena_gpio,
					rdev->ena_gpio_invert);
		rdev->ena_gpio_state = 0;

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

	trace_regulator_disable_complete(rdev_get_name(rdev));

	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
			     NULL);
	return 0;
}

1560
/* locks held by regulator_disable() */
1561
static int _regulator_disable(struct regulator_dev *rdev)
1562 1563 1564
{
	int ret = 0;

D
David Brownell 已提交
1565
	if (WARN(rdev->use_count <= 0,
1566
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1567 1568
		return -EIO;

1569
	/* are we the last user and permitted to disable ? */
1570 1571
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1572 1573

		/* we are last user */
1574 1575
		if (_regulator_can_change_status(rdev)) {
			ret = _regulator_do_disable(rdev);
1576
			if (ret < 0) {
1577
				rdev_err(rdev, "failed to disable\n");
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
				return ret;
			}
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1592

1593 1594 1595 1596 1597 1598 1599
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1600 1601 1602
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1603
 *
1604
 * NOTE: this will only disable the regulator output if no other consumer
1605 1606
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1607 1608 1609
 */
int regulator_disable(struct regulator *regulator)
{
1610 1611
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1612

1613 1614 1615
	if (regulator->always_on)
		return 0;

1616
	mutex_lock(&rdev->mutex);
1617
	ret = _regulator_disable(rdev);
1618
	mutex_unlock(&rdev->mutex);
1619

1620 1621
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1622

1623 1624 1625 1626 1627
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1628
static int _regulator_force_disable(struct regulator_dev *rdev)
1629 1630 1631 1632 1633 1634 1635 1636
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1637
			rdev_err(rdev, "failed to force disable\n");
1638 1639 1640
			return ret;
		}
		/* notify other consumers that power has been forced off */
1641 1642
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	}

	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1659
	struct regulator_dev *rdev = regulator->rdev;
1660 1661
	int ret;

1662
	mutex_lock(&rdev->mutex);
1663
	regulator->uA_load = 0;
1664
	ret = _regulator_force_disable(regulator->rdev);
1665
	mutex_unlock(&rdev->mutex);
1666

1667 1668 1669
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
1670

1671 1672 1673 1674
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
1722
	int ret;
1723

1724 1725 1726
	if (regulator->always_on)
		return 0;

1727 1728 1729
	if (!ms)
		return regulator_disable(regulator);

1730 1731 1732 1733
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

1734 1735 1736 1737 1738 1739
	ret = schedule_delayed_work(&rdev->disable_work,
				    msecs_to_jiffies(ms));
	if (ret < 0)
		return ret;
	else
		return 0;
1740 1741 1742
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
/**
 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their is_enabled operation, saving some code.
 */
int regulator_is_enabled_regmap(struct regulator_dev *rdev)
{
	unsigned int val;
	int ret;

	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
	if (ret != 0)
		return ret;

	return (val & rdev->desc->enable_mask) != 0;
}
EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);

/**
 * regulator_enable_regmap - standard enable() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their enable() operation, saving some code.
 */
int regulator_enable_regmap(struct regulator_dev *rdev)
{
	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
				  rdev->desc->enable_mask,
				  rdev->desc->enable_mask);
}
EXPORT_SYMBOL_GPL(regulator_enable_regmap);

/**
 * regulator_disable_regmap - standard disable() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their disable() operation, saving some code.
 */
int regulator_disable_regmap(struct regulator_dev *rdev)
{
	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
				  rdev->desc->enable_mask, 0);
}
EXPORT_SYMBOL_GPL(regulator_disable_regmap);

1798 1799
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1800 1801 1802 1803
	/* A GPIO control always takes precedence */
	if (rdev->ena_gpio)
		return rdev->ena_gpio_state;

1804
	/* If we don't know then assume that the regulator is always on */
1805
	if (!rdev->desc->ops->is_enabled)
1806
		return 1;
1807

1808
	return rdev->desc->ops->is_enabled(rdev);
1809 1810 1811 1812 1813 1814
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
1815 1816 1817 1818 1819 1820 1821
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
1822 1823 1824
 */
int regulator_is_enabled(struct regulator *regulator)
{
1825 1826
	int ret;

1827 1828 1829
	if (regulator->always_on)
		return 1;

1830 1831 1832 1833 1834
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
1835 1836 1837
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
/**
 * regulator_list_voltage_linear - List voltages with simple calculation
 *
 * @rdev: Regulator device
 * @selector: Selector to convert into a voltage
 *
 * Regulators with a simple linear mapping between voltages and
 * selectors can set min_uV and uV_step in the regulator descriptor
 * and then use this function as their list_voltage() operation,
 */
int regulator_list_voltage_linear(struct regulator_dev *rdev,
				  unsigned int selector)
{
	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;

	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
}
EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
/**
 * regulator_list_voltage_table - List voltages with table based mapping
 *
 * @rdev: Regulator device
 * @selector: Selector to convert into a voltage
 *
 * Regulators with table based mapping between voltages and
 * selectors can set volt_table in the regulator descriptor
 * and then use this function as their list_voltage() operation.
 */
int regulator_list_voltage_table(struct regulator_dev *rdev,
				 unsigned int selector)
{
	if (!rdev->desc->volt_table) {
		BUG_ON(!rdev->desc->volt_table);
		return -EINVAL;
	}

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;

	return rdev->desc->volt_table[selector];
}
EXPORT_SYMBOL_GPL(regulator_list_voltage_table);

1899 1900 1901 1902 1903 1904 1905
/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
1906
 * zero if this selector code can't be used on this system, or a
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
1945
	struct regulator_dev *rdev = regulator->rdev;
1946 1947
	int i, voltages, ret;

1948 1949 1950 1951 1952 1953 1954 1955 1956
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
			return (min_uV >= ret && ret <= max_uV);
		else
			return ret;
	}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
1971
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1972

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
/**
 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * vsel_reg and vsel_mask fields in their descriptor and then use this
 * as their get_voltage_vsel operation, saving some code.
 */
int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
{
	unsigned int val;
	int ret;

	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
	if (ret != 0)
		return ret;

	val &= rdev->desc->vsel_mask;
	val >>= ffs(rdev->desc->vsel_mask) - 1;

	return val;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);

/**
 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
 *
 * @rdev: regulator to operate on
 * @sel: Selector to set
 *
 * Regulators that use regmap for their register I/O can set the
 * vsel_reg and vsel_mask fields in their descriptor and then use this
 * as their set_voltage_vsel operation, saving some code.
 */
int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
{
	sel <<= ffs(rdev->desc->vsel_mask) - 1;

	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
				  rdev->desc->vsel_mask, sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
/**
 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
 *
 * @rdev: Regulator to operate on
 * @min_uV: Lower bound for voltage
 * @max_uV: Upper bound for voltage
 *
 * Drivers implementing set_voltage_sel() and list_voltage() can use
 * this as their map_voltage() operation.  It will find a suitable
 * voltage by calling list_voltage() until it gets something in bounds
 * for the requested voltages.
 */
int regulator_map_voltage_iterate(struct regulator_dev *rdev,
				  int min_uV, int max_uV)
{
	int best_val = INT_MAX;
	int selector = 0;
	int i, ret;

	/* Find the smallest voltage that falls within the specified
	 * range.
	 */
	for (i = 0; i < rdev->desc->n_voltages; i++) {
		ret = rdev->desc->ops->list_voltage(rdev, i);
		if (ret < 0)
			continue;

		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
			best_val = ret;
			selector = i;
		}
	}

	if (best_val != INT_MAX)
		return selector;
	else
		return -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
/**
 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
 *
 * @rdev: Regulator to operate on
 * @min_uV: Lower bound for voltage
 * @max_uV: Upper bound for voltage
 *
 * Drivers providing min_uV and uV_step in their regulator_desc can
 * use this as their map_voltage() operation.
 */
int regulator_map_voltage_linear(struct regulator_dev *rdev,
				 int min_uV, int max_uV)
{
	int ret, voltage;

2072 2073 2074 2075 2076 2077 2078 2079
	/* Allow uV_step to be 0 for fixed voltage */
	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
			return 0;
		else
			return -EINVAL;
	}

2080 2081 2082 2083 2084
	if (!rdev->desc->uV_step) {
		BUG_ON(!rdev->desc->uV_step);
		return -EINVAL;
	}

2085 2086 2087
	if (min_uV < rdev->desc->min_uV)
		min_uV = rdev->desc->min_uV;

2088
	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
	if (ret < 0)
		return ret;

	/* Map back into a voltage to verify we're still in bounds */
	voltage = rdev->desc->ops->list_voltage(rdev, ret);
	if (voltage < min_uV || voltage > max_uV)
		return -EINVAL;

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);

2101 2102 2103 2104
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2105
	int delay = 0;
2106
	int best_val = 0;
2107
	unsigned int selector;
2108
	int old_selector = -1;
2109 2110 2111

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2112 2113 2114
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2115 2116 2117 2118
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2119 2120
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2121 2122 2123 2124 2125 2126
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2127 2128 2129
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);
2130 2131 2132 2133 2134 2135 2136 2137 2138

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2139
	} else if (rdev->desc->ops->set_voltage_sel) {
2140
		if (rdev->desc->ops->map_voltage) {
2141 2142
			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
							   max_uV);
2143 2144 2145 2146 2147 2148 2149 2150 2151
		} else {
			if (rdev->desc->ops->list_voltage ==
			    regulator_list_voltage_linear)
				ret = regulator_map_voltage_linear(rdev,
								min_uV, max_uV);
			else
				ret = regulator_map_voltage_iterate(rdev,
								min_uV, max_uV);
		}
2152

2153
		if (ret >= 0) {
2154 2155 2156 2157 2158 2159 2160 2161
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
				ret = rdev->desc->ops->set_voltage_sel(rdev,
								       ret);
			} else {
				ret = -EINVAL;
			}
2162
		}
2163 2164 2165
	} else {
		ret = -EINVAL;
	}
2166

2167
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2168
	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2169
	    rdev->desc->ops->set_voltage_time_sel) {
2170

2171 2172 2173 2174 2175 2176
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2177
		}
2178

2179 2180 2181 2182 2183 2184 2185
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2186 2187
	}

2188 2189 2190
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2191
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2192 2193
				     (void *)data);
	}
2194

2195
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2196 2197 2198 2199

	return ret;
}

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2215
 * Regulator system constraints must be set for this regulator before
2216 2217 2218 2219 2220
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2221
	int ret = 0;
2222 2223 2224

	mutex_lock(&rdev->mutex);

2225 2226 2227 2228 2229 2230 2231
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2232
	/* sanity check */
2233 2234
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2245

2246 2247 2248 2249
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

2250
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2251

2252 2253 2254 2255 2256 2257
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2303
/**
2304 2305
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
2306 2307 2308 2309 2310 2311
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
2312
 * Drivers providing ramp_delay in regulation_constraints can use this as their
2313
 * set_voltage_time_sel() operation.
2314 2315 2316 2317 2318
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
2319
	unsigned int ramp_delay = 0;
2320
	int old_volt, new_volt;
2321 2322 2323 2324 2325 2326 2327

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
2328
		rdev_warn(rdev, "ramp_delay not set\n");
2329
		return 0;
2330
	}
2331

2332 2333 2334
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
2335

2336 2337 2338 2339
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2340
}
2341
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2342

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2390 2391
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2392
	int sel, ret;
2393 2394 2395 2396 2397

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2398
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2399
	} else if (rdev->desc->ops->get_voltage) {
2400
		ret = rdev->desc->ops->get_voltage(rdev);
2401 2402
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
2403
	} else {
2404
		return -EINVAL;
2405
	}
2406

2407 2408
	if (ret < 0)
		return ret;
2409
	return ret - rdev->constraints->uV_offset;
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
 * @min_uA: Minimuum supported current in uA
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2525
	int regulator_curr_mode;
2526 2527 2528 2529 2530 2531 2532 2533 2534

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2535 2536 2537 2538 2539 2540 2541 2542 2543
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2544
	/* constraints check */
2545
	ret = regulator_mode_constrain(rdev, &mode);
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
2616
	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2617 2618
	unsigned int mode;

2619 2620 2621
	if (rdev->supply)
		input_uV = regulator_get_voltage(rdev->supply);

2622 2623
	mutex_lock(&rdev->mutex);

2624 2625 2626 2627
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2628 2629
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2630 2631
	if (ret < 0) {
		ret = 0;
2632
		goto out;
2633
	}
2634 2635 2636 2637

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2638 2639 2640 2641 2642 2643
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2644 2645 2646
	if (!rdev->desc->ops->set_mode)
		goto out;

2647
	/* get output voltage */
2648
	output_uV = _regulator_get_voltage(rdev);
2649
	if (output_uV <= 0) {
2650
		rdev_err(rdev, "invalid output voltage found\n");
2651 2652 2653
		goto out;
	}

2654
	/* No supply? Use constraint voltage */
2655
	if (input_uV <= 0)
2656 2657
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2658
		rdev_err(rdev, "invalid input voltage found\n");
2659 2660 2661 2662 2663
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2664
		total_uA_load += consumer->uA_load;
2665 2666 2667 2668

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2669
	ret = regulator_mode_constrain(rdev, &mode);
2670
	if (ret < 0) {
2671 2672
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2673 2674 2675 2676
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2677
	if (ret < 0) {
2678
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2691
 * @nb: notifier block
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2706
 * @nb: notifier block
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2718 2719 2720
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2721 2722 2723 2724
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
2725
	blocking_notifier_call_chain(&rdev->notifier, event, data);
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2756 2757
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2758 2759 2760 2761 2762 2763 2764 2765
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
2766
	while (--i >= 0)
2767 2768 2769 2770 2771 2772
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
/**
 * devm_regulator_bulk_get - managed get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation with management, the regulators will
 * automatically be freed when the device is unbound.  If any of the
 * regulators cannot be acquired then any regulators that were
 * allocated will be freed before returning to the caller.
 */
int devm_regulator_bulk_get(struct device *dev, int num_consumers,
			    struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = devm_regulator_get(dev,
							   consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		devm_regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);

2819 2820 2821 2822 2823 2824 2825
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
2841
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2842
	int i;
2843
	int ret = 0;
2844

2845 2846 2847 2848 2849 2850 2851
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
2852 2853 2854 2855

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
2856
	for (i = 0; i < num_consumers; i++) {
2857 2858
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
2859
			goto err;
2860
		}
2861 2862 2863 2864 2865
	}

	return 0;

err:
2866 2867 2868
	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
	while (--i >= 0)
		regulator_disable(consumers[i].consumer);
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
2882 2883
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
2884 2885 2886 2887 2888 2889
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
2890
	int ret, r;
2891

2892
	for (i = num_consumers - 1; i >= 0; --i) {
2893 2894 2895 2896 2897 2898 2899 2900
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
2901
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2902 2903 2904 2905 2906 2907
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
2908 2909 2910 2911 2912

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
2973
 * @rdev: regulator source
2974
 * @event: notifier block
2975
 * @data: callback-specific data.
2976 2977 2978
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
2979
 * Note lock must be held by caller.
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3006
	case REGULATOR_MODE_STANDBY:
3007 3008
		return REGULATOR_STATUS_STANDBY;
	default:
3009
		return REGULATOR_STATUS_UNDEFINED;
3010 3011 3012 3013
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
3025
	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3026 3027
	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
	if (ops->is_enabled) {
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
3047 3048 3049 3050 3051
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
3068
	if (ops->set_voltage || ops->set_voltage_sel) {
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

3128 3129 3130
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3131
	if (!rdev->debugfs) {
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
}

3142 3143
/**
 * regulator_register - register regulator
3144
 * @regulator_desc: regulator to register
3145
 * @config: runtime configuration for regulator
3146 3147 3148 3149
 *
 * Called by regulator drivers to register a regulator.
 * Returns 0 on success.
 */
3150 3151
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3152
		   const struct regulator_config *config)
3153
{
3154
	const struct regulation_constraints *constraints = NULL;
3155
	const struct regulator_init_data *init_data;
3156 3157
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
3158
	struct device *dev;
3159
	int ret, i;
3160
	const char *supply = NULL;
3161

3162
	if (regulator_desc == NULL || config == NULL)
3163 3164
		return ERR_PTR(-EINVAL);

3165
	dev = config->dev;
3166
	WARN_ON(!dev);
3167

3168 3169 3170
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3171 3172
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3173 3174
		return ERR_PTR(-EINVAL);

3175 3176 3177
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3178 3179
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3180 3181 3182 3183 3184 3185

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3186 3187 3188 3189
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3190

3191 3192
	init_data = config->init_data;

3193 3194 3195 3196 3197 3198 3199
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3200
	rdev->reg_data = config->driver_data;
3201 3202
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3203 3204 3205 3206
	if (config->regmap)
		rdev->regmap = config->regmap;
	else
		rdev->regmap = dev_get_regmap(dev, NULL);
3207 3208 3209
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3210
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3211

3212
	/* preform any regulator specific init */
3213
	if (init_data && init_data->regulator_init) {
3214
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3215 3216
		if (ret < 0)
			goto clean;
3217 3218 3219
	}

	/* register with sysfs */
3220
	rdev->dev.class = &regulator_class;
3221
	rdev->dev.of_node = config->of_node;
3222
	rdev->dev.parent = dev;
3223 3224
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
3225
	ret = device_register(&rdev->dev);
3226 3227
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3228
		goto clean;
3229
	}
3230 3231 3232

	dev_set_drvdata(&rdev->dev, rdev);

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
	if (config->ena_gpio) {
		ret = gpio_request_one(config->ena_gpio,
				       GPIOF_DIR_OUT | config->ena_gpio_flags,
				       rdev_get_name(rdev));
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
			goto clean;
		}

		rdev->ena_gpio = config->ena_gpio;
		rdev->ena_gpio_invert = config->ena_gpio_invert;

		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
			rdev->ena_gpio_state = 1;

		if (rdev->ena_gpio_invert)
			rdev->ena_gpio_state = !rdev->ena_gpio_state;
	}

3253
	/* set regulator constraints */
3254 3255 3256 3257
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3258 3259 3260
	if (ret < 0)
		goto scrub;

3261 3262 3263 3264 3265
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

3266
	if (init_data && init_data->supply_regulator)
3267 3268 3269 3270 3271
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
3272 3273
		struct regulator_dev *r;

3274
		r = regulator_dev_lookup(dev, supply, &ret);
3275

3276 3277
		if (!r) {
			dev_err(dev, "Failed to find supply %s\n", supply);
3278
			ret = -EPROBE_DEFER;
3279 3280 3281 3282 3283 3284
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
3285 3286

		/* Enable supply if rail is enabled */
3287
		if (_regulator_is_enabled(rdev)) {
3288 3289 3290 3291
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
3292 3293
	}

3294
	/* add consumers devices */
3295 3296 3297 3298
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3299
				init_data->consumer_supplies[i].supply);
3300 3301 3302 3303 3304
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3305
		}
3306
	}
3307 3308

	list_add(&rdev->list, &regulator_list);
3309 3310

	rdev_init_debugfs(rdev);
3311
out:
3312 3313
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
3314

3315 3316 3317
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3318
scrub:
3319 3320
	if (rdev->supply)
		regulator_put(rdev->supply);
3321 3322
	if (rdev->ena_gpio)
		gpio_free(rdev->ena_gpio);
3323
	kfree(rdev->constraints);
D
David Brownell 已提交
3324
	device_unregister(&rdev->dev);
3325 3326 3327 3328
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3329 3330 3331 3332
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3333 3334 3335 3336 3337
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3338
 * @rdev: regulator to unregister
3339 3340 3341 3342 3343 3344 3345 3346
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3347 3348
	if (rdev->supply)
		regulator_put(rdev->supply);
3349
	mutex_lock(&regulator_list_mutex);
3350
	debugfs_remove_recursive(rdev->debugfs);
3351
	flush_work_sync(&rdev->disable_work.work);
3352
	WARN_ON(rdev->open_count);
3353
	unset_regulator_supplies(rdev);
3354
	list_del(&rdev->list);
3355
	kfree(rdev->constraints);
3356 3357
	if (rdev->ena_gpio)
		gpio_free(rdev->ena_gpio);
3358
	device_unregister(&rdev->dev);
3359 3360 3361 3362 3363
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3364
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3387
			rdev_err(rdev, "failed to prepare\n");
3388 3389 3390 3391 3392 3393 3394 3395 3396
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
3423
			if (!_regulator_is_enabled(rdev))
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

3471 3472
/**
 * rdev_get_drvdata - get rdev regulator driver data
3473
 * @rdev: regulator
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3510
 * @rdev: regulator
3511 3512 3513 3514 3515 3516 3517
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
3560
#endif
3561 3562

static const struct file_operations supply_map_fops = {
3563
#ifdef CONFIG_DEBUG_FS
3564 3565 3566
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
3567
};
3568

3569 3570
static int __init regulator_init(void)
{
3571 3572 3573 3574
	int ret;

	ret = class_register(&regulator_class);

3575
	debugfs_root = debugfs_create_dir("regulator", NULL);
3576
	if (!debugfs_root)
3577
		pr_warn("regulator: Failed to create debugfs directory\n");
3578

3579 3580
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
3581

3582 3583 3584
	regulator_dummy_init();

	return ret;
3585 3586 3587 3588
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3589 3590 3591 3592 3593 3594 3595 3596

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

3597 3598 3599 3600 3601 3602 3603 3604 3605
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

3616
		if (!ops->disable || (c && c->always_on))
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
3636
			rdev_info(rdev, "disabling\n");
3637 3638
			ret = ops->disable(rdev);
			if (ret != 0) {
3639
				rdev_err(rdev, "couldn't disable: %d\n", ret);
3640 3641 3642 3643 3644 3645 3646
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
3647
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);