core.c 108.5 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54 55
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
56
static LIST_HEAD(regulator_ena_gpio_list);
57
static LIST_HEAD(regulator_supply_alias_list);
58
static bool has_full_constraints;
59

60 61
static struct dentry *debugfs_root;

62
/*
63 64 65 66 67 68
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
69
	const char *dev_name;   /* The dev_name() for the consumer */
70
	const char *supply;
71
	struct regulator_dev *regulator;
72 73
};

74 75 76 77 78 79 80
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
81
	struct gpio_desc *gpiod;
82 83 84 85 86
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

87 88 89 90 91 92 93 94 95 96 97 98 99
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

100
static int _regulator_is_enabled(struct regulator_dev *rdev);
101
static int _regulator_disable(struct regulator_dev *rdev);
102 103 104
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105
static int _notifier_call_chain(struct regulator_dev *rdev,
106
				  unsigned long event, void *data);
107 108
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
109 110 111
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
112

113 114 115 116 117 118 119 120 121 122
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

123 124
static bool have_full_constraints(void)
{
125
	return has_full_constraints || of_have_populated_dt();
126 127
}

128 129 130 131 132 133
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
134
 * returns the device node corresponding to the regulator if found, else
135 136 137 138 139 140 141 142 143 144 145 146 147
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
148
		dev_dbg(dev, "Looking up %s property in node %s failed",
149 150 151 152 153 154
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

155 156 157 158 159 160 161 162 163 164 165
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

166 167 168 169 170 171 172
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
173
		rdev_err(rdev, "no constraints\n");
174 175 176
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177
		rdev_err(rdev, "operation not allowed\n");
178 179 180 181 182 183 184 185
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

186 187
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188
			 *min_uV, *max_uV);
189
		return -EINVAL;
190
	}
191 192 193 194

	return 0;
}

195 196 197 198 199 200 201 202 203
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 205 206 207 208 209 210
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

211 212 213 214 215 216
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

217
	if (*min_uV > *max_uV) {
218 219
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
220
		return -EINVAL;
221
	}
222 223 224 225

	return 0;
}

226 227 228 229 230 231 232
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
233
		rdev_err(rdev, "no constraints\n");
234 235 236
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237
		rdev_err(rdev, "operation not allowed\n");
238 239 240 241 242 243 244 245
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

246 247
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248
			 *min_uA, *max_uA);
249
		return -EINVAL;
250
	}
251 252 253 254 255

	return 0;
}

/* operating mode constraint check */
256
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257
{
258
	switch (*mode) {
259 260 261 262 263 264
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
265
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
266 267 268
		return -EINVAL;
	}

269
	if (!rdev->constraints) {
270
		rdev_err(rdev, "no constraints\n");
271 272 273
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274
		rdev_err(rdev, "operation not allowed\n");
275 276
		return -EPERM;
	}
277 278 279 280 281 282 283 284

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
285
	}
286 287

	return -EINVAL;
288 289 290 291 292 293
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
294
		rdev_err(rdev, "no constraints\n");
295 296 297
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298
		rdev_err(rdev, "operation not allowed\n");
299 300 301 302 303 304 305 306
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
307
	struct regulator_dev *rdev = dev_get_drvdata(dev);
308 309 310 311 312 313 314 315
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
316
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317 318 319 320

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
321
	struct regulator_dev *rdev = dev_get_drvdata(dev);
322 323 324

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
325
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326

327 328
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
329 330 331
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

332
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
333
}
334
static DEVICE_ATTR_RO(name);
335

D
David Brownell 已提交
336
static ssize_t regulator_print_opmode(char *buf, int mode)
337 338 339 340 341 342 343 344 345 346 347 348 349 350
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
351 352
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
353
{
354
	struct regulator_dev *rdev = dev_get_drvdata(dev);
355

D
David Brownell 已提交
356 357
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
358
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
359 360 361

static ssize_t regulator_print_state(char *buf, int state)
{
362 363 364 365 366 367 368 369
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
370 371 372 373
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
374 375 376 377 378
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
379

380
	return ret;
D
David Brownell 已提交
381
}
382
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
383

D
David Brownell 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
417 418 419
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
420 421 422
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
423 424 425 426 427 428 429 430
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

431 432 433
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
434
	struct regulator_dev *rdev = dev_get_drvdata(dev);
435 436 437 438 439 440

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
441
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442 443 444 445

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
446
	struct regulator_dev *rdev = dev_get_drvdata(dev);
447 448 449 450 451 452

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
453
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454 455 456 457

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
458
	struct regulator_dev *rdev = dev_get_drvdata(dev);
459 460 461 462 463 464

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
465
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466 467 468 469

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
470
	struct regulator_dev *rdev = dev_get_drvdata(dev);
471 472 473 474 475 476

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
477
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478 479 480 481

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
482
	struct regulator_dev *rdev = dev_get_drvdata(dev);
483 484 485 486 487
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
488
		uA += regulator->uA_load;
489 490 491
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
492
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493

494 495
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
496
{
497
	struct regulator_dev *rdev = dev_get_drvdata(dev);
498 499
	return sprintf(buf, "%d\n", rdev->use_count);
}
500
static DEVICE_ATTR_RO(num_users);
501

502 503
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
504
{
505
	struct regulator_dev *rdev = dev_get_drvdata(dev);
506 507 508 509 510 511 512 513 514

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
515
static DEVICE_ATTR_RO(type);
516 517 518 519

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
520
	struct regulator_dev *rdev = dev_get_drvdata(dev);
521 522 523

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
524 525
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
526 527 528 529

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
530
	struct regulator_dev *rdev = dev_get_drvdata(dev);
531 532 533

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
534 535
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
536 537 538 539

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
540
	struct regulator_dev *rdev = dev_get_drvdata(dev);
541 542 543

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
544 545
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
546 547 548 549

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
550
	struct regulator_dev *rdev = dev_get_drvdata(dev);
551

D
David Brownell 已提交
552 553
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
554
}
555 556
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
557 558 559 560

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
561
	struct regulator_dev *rdev = dev_get_drvdata(dev);
562

D
David Brownell 已提交
563 564
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
565
}
566 567
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
568 569 570 571

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
572
	struct regulator_dev *rdev = dev_get_drvdata(dev);
573

D
David Brownell 已提交
574 575
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
576
}
577 578
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
579 580 581 582

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
583
	struct regulator_dev *rdev = dev_get_drvdata(dev);
584

D
David Brownell 已提交
585 586
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
587
}
588 589
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
590 591 592 593

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
594
	struct regulator_dev *rdev = dev_get_drvdata(dev);
595

D
David Brownell 已提交
596 597
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
598
}
599 600
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
601 602 603 604

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
605
	struct regulator_dev *rdev = dev_get_drvdata(dev);
606

D
David Brownell 已提交
607 608
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
609
}
610 611 612
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
634

635 636
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
637
static int drms_uA_update(struct regulator_dev *rdev)
638 639 640 641 642
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

643 644
	lockdep_assert_held_once(&rdev->mutex);

645 646 647 648
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
649
	err = regulator_check_drms(rdev);
650 651 652
	if (err < 0)
		return 0;

653 654
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
655 656
		return 0;

657 658
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
659
		return -EINVAL;
660 661

	/* get output voltage */
662
	output_uV = _regulator_get_voltage(rdev);
663 664 665 666
	if (output_uV <= 0) {
		rdev_err(rdev, "invalid output voltage found\n");
		return -EINVAL;
	}
667 668

	/* get input voltage */
669 670
	input_uV = 0;
	if (rdev->supply)
671
		input_uV = regulator_get_voltage(rdev->supply);
672
	if (input_uV <= 0)
673
		input_uV = rdev->constraints->input_uV;
674 675 676 677
	if (input_uV <= 0) {
		rdev_err(rdev, "invalid input voltage found\n");
		return -EINVAL;
	}
678 679 680

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
681
		current_uA += sibling->uA_load;
682

683 684
	current_uA += rdev->constraints->system_load;

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
702

703 704 705
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
706 707 708
	}

	return err;
709 710 711 712 713 714
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
715 716

	/* If we have no suspend mode configration don't set anything;
717 718
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
719 720
	 */
	if (!rstate->enabled && !rstate->disabled) {
721 722
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
723
			rdev_warn(rdev, "No configuration\n");
724 725 726 727
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
728
		rdev_err(rdev, "invalid configuration\n");
729 730
		return -EINVAL;
	}
731

732
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
733
		ret = rdev->desc->ops->set_suspend_enable(rdev);
734
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
735
		ret = rdev->desc->ops->set_suspend_disable(rdev);
736 737 738
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

739
	if (ret < 0) {
740
		rdev_err(rdev, "failed to enabled/disable\n");
741 742 743 744 745 746
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
747
			rdev_err(rdev, "failed to set voltage\n");
748 749 750 751 752 753 754
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
755
			rdev_err(rdev, "failed to set mode\n");
756 757 758 759 760 761 762 763 764
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
765 766
	lockdep_assert_held_once(&rdev->mutex);

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
788
	char buf[160] = "";
789
	size_t len = sizeof(buf) - 1;
790 791
	int count = 0;
	int ret;
792

793
	if (constraints->min_uV && constraints->max_uV) {
794
		if (constraints->min_uV == constraints->max_uV)
795 796
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
797
		else
798 799 800 801
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
802 803 804 805 806 807
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
808 809
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
810 811
	}

812
	if (constraints->uV_offset)
813 814
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
815

816
	if (constraints->min_uA && constraints->max_uA) {
817
		if (constraints->min_uA == constraints->max_uA)
818 819
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
820
		else
821 822 823 824
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
825 826 827 828 829 830
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
831 832
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
833
	}
834

835
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
836
		count += scnprintf(buf + count, len - count, "fast ");
837
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
838
		count += scnprintf(buf + count, len - count, "normal ");
839
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
840
		count += scnprintf(buf + count, len - count, "idle ");
841
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
842
		count += scnprintf(buf + count, len - count, "standby");
843

844
	if (!count)
845
		scnprintf(buf, len, "no parameters");
846

847
	rdev_dbg(rdev, "%s\n", buf);
848 849 850 851 852

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
853 854
}

855
static int machine_constraints_voltage(struct regulator_dev *rdev,
856
	struct regulation_constraints *constraints)
857
{
858
	const struct regulator_ops *ops = rdev->desc->ops;
859 860 861 862
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
863
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
864 865
		int current_uV = _regulator_get_voltage(rdev);
		if (current_uV < 0) {
866 867 868
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
869 870 871 872 873 874 875 876 877
			return current_uV;
		}
		if (current_uV < rdev->constraints->min_uV ||
		    current_uV > rdev->constraints->max_uV) {
			ret = _regulator_do_set_voltage(
				rdev, rdev->constraints->min_uV,
				rdev->constraints->max_uV);
			if (ret < 0) {
				rdev_err(rdev,
878 879
					"failed to apply %duV constraint(%d)\n",
					rdev->constraints->min_uV, ret);
880 881
				return ret;
			}
882
		}
883
	}
884

885 886 887 888 889 890 891 892 893 894 895
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

896 897
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
898
		if (count == 1 && !cmin) {
899
			cmin = 1;
900
			cmax = INT_MAX;
901 902
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
903 904
		}

905 906
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
907
			return 0;
908

909
		/* else require explicit machine-level constraints */
910
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
911
			rdev_err(rdev, "invalid voltage constraints\n");
912
			return -EINVAL;
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
932 933 934
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
935
			return -EINVAL;
936 937 938 939
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
940 941
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
942 943 944
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
945 946
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
947 948 949 950
			constraints->max_uV = max_uV;
		}
	}

951 952 953
	return 0;
}

954 955 956
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
957
	const struct regulator_ops *ops = rdev->desc->ops;
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

984 985
static int _regulator_do_enable(struct regulator_dev *rdev);

986 987 988 989 990 991 992 993 994 995 996 997
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
998
	const struct regulation_constraints *constraints)
999 1000
{
	int ret = 0;
1001
	const struct regulator_ops *ops = rdev->desc->ops;
1002

1003 1004 1005 1006 1007 1008
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1009 1010
	if (!rdev->constraints)
		return -ENOMEM;
1011

1012
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1013 1014 1015
	if (ret != 0)
		goto out;

1016
	ret = machine_constraints_current(rdev, rdev->constraints);
1017 1018 1019
	if (ret != 0)
		goto out;

1020 1021 1022 1023 1024 1025 1026 1027 1028
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
			goto out;
		}
	}

1029
	/* do we need to setup our suspend state */
1030
	if (rdev->constraints->initial_state) {
1031
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1032
		if (ret < 0) {
1033
			rdev_err(rdev, "failed to set suspend state\n");
1034 1035 1036
			goto out;
		}
	}
1037

1038
	if (rdev->constraints->initial_mode) {
1039
		if (!ops->set_mode) {
1040
			rdev_err(rdev, "no set_mode operation\n");
1041 1042 1043 1044
			ret = -EINVAL;
			goto out;
		}

1045
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1046
		if (ret < 0) {
1047
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1048 1049 1050 1051
			goto out;
		}
	}

1052 1053 1054
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1055 1056 1057
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1058
			rdev_err(rdev, "failed to enable\n");
1059 1060 1061 1062
			goto out;
		}
	}

1063 1064
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1065 1066 1067 1068 1069 1070 1071
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
			goto out;
		}
	}

S
Stephen Boyd 已提交
1072 1073 1074 1075 1076 1077 1078 1079
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
			goto out;
		}
	}

S
Stephen Boyd 已提交
1080 1081 1082 1083 1084 1085 1086 1087
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
			goto out;
		}
	}

1088
	print_constraints(rdev);
1089
	return 0;
1090
out:
1091 1092
	kfree(rdev->constraints);
	rdev->constraints = NULL;
1093 1094 1095 1096 1097
	return ret;
}

/**
 * set_supply - set regulator supply regulator
1098 1099
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1100 1101 1102 1103 1104 1105
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1106
		      struct regulator_dev *supply_rdev)
1107 1108 1109
{
	int err;

1110 1111 1112
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1113 1114
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1115
		return err;
1116
	}
1117
	supply_rdev->open_count++;
1118 1119

	return 0;
1120 1121 1122
}

/**
1123
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1124
 * @rdev:         regulator source
1125
 * @consumer_dev_name: dev_name() string for device supply applies to
1126
 * @supply:       symbolic name for supply
1127 1128 1129 1130 1131 1132 1133
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1134 1135
				      const char *consumer_dev_name,
				      const char *supply)
1136 1137
{
	struct regulator_map *node;
1138
	int has_dev;
1139 1140 1141 1142

	if (supply == NULL)
		return -EINVAL;

1143 1144 1145 1146 1147
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1148
	list_for_each_entry(node, &regulator_map_list, list) {
1149 1150 1151 1152
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1153
			continue;
1154 1155
		}

1156 1157 1158
		if (strcmp(node->supply, supply) != 0)
			continue;

1159 1160 1161 1162 1163 1164
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1165 1166 1167
		return -EBUSY;
	}

1168
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1169 1170 1171 1172 1173 1174
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1175 1176 1177 1178 1179 1180
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1181 1182
	}

1183 1184 1185 1186
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1187 1188 1189 1190 1191 1192 1193
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1194
			kfree(node->dev_name);
1195 1196 1197 1198 1199
			kfree(node);
		}
	}
}

1200
#define REG_STR_SIZE	64
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1219 1220
		regulator->dev = dev;

1221
		/* Add a link to the device sysfs entry */
1222 1223 1224
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1225
			goto overflow_err;
1226 1227 1228

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1229
			goto overflow_err;
1230

1231
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1232 1233
					buf);
		if (err) {
1234
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1235
				  dev->kobj.name, err);
1236
			/* non-fatal */
1237
		}
1238 1239 1240
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1241
			goto overflow_err;
1242 1243 1244 1245
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1246
	if (!regulator->debugfs) {
1247 1248 1249 1250 1251 1252 1253 1254
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1255
	}
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1266 1267 1268 1269 1270 1271 1272 1273 1274
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1275 1276
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1277 1278
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1279
	if (!rdev->desc->ops->enable_time)
1280
		return rdev->desc->enable_time;
1281 1282 1283
	return rdev->desc->ops->enable_time(rdev);
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1310
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1311 1312
						  const char *supply,
						  int *ret)
1313 1314 1315
{
	struct regulator_dev *r;
	struct device_node *node;
1316 1317
	struct regulator_map *map;
	const char *devname = NULL;
1318

1319 1320
	regulator_supply_alias(&dev, &supply);

1321 1322 1323
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1324
		if (node) {
1325 1326 1327 1328
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1329 1330
			*ret = -EPROBE_DEFER;
			return NULL;
1331 1332 1333 1334 1335 1336 1337 1338 1339
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1340 1341 1342
	}

	/* if not found, try doing it non-dt way */
1343 1344 1345
	if (dev)
		devname = dev_name(dev);

1346 1347 1348 1349
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1361 1362 1363
	return NULL;
}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
	if (ret == -ENODEV) {
		/*
		 * No supply was specified for this regulator and
		 * there will never be one.
		 */
		return 0;
	}

	if (!r) {
		dev_err(dev, "Failed to resolve %s-supply for %s\n",
			rdev->supply_name, rdev->desc->name);
		return -EPROBE_DEFER;
	}

	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
	if (ret < 0)
		return ret;

	ret = set_supply(rdev, r);
	if (ret < 0)
		return ret;

	/* Cascade always-on state to supply */
	if (_regulator_is_enabled(rdev)) {
		ret = regulator_enable(rdev->supply);
		if (ret < 0)
			return ret;
	}

	return 0;
}

1412 1413
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
1414
					bool exclusive, bool allow_dummy)
1415 1416
{
	struct regulator_dev *rdev;
1417
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1418
	const char *devname = NULL;
1419
	int ret;
1420 1421

	if (id == NULL) {
1422
		pr_err("get() with no identifier\n");
1423
		return ERR_PTR(-EINVAL);
1424 1425
	}

1426 1427 1428
	if (dev)
		devname = dev_name(dev);

1429 1430 1431 1432 1433
	if (have_full_constraints())
		ret = -ENODEV;
	else
		ret = -EPROBE_DEFER;

1434 1435
	mutex_lock(&regulator_list_mutex);

1436
	rdev = regulator_dev_lookup(dev, id, &ret);
1437 1438 1439
	if (rdev)
		goto found;

1440 1441
	regulator = ERR_PTR(ret);

1442 1443 1444 1445
	/*
	 * If we have return value from dev_lookup fail, we do not expect to
	 * succeed, so, quit with appropriate error value
	 */
1446
	if (ret && ret != -ENODEV)
1447 1448
		goto out;

1449 1450 1451
	if (!devname)
		devname = "deviceless";

1452 1453 1454
	/*
	 * Assume that a regulator is physically present and enabled
	 * even if it isn't hooked up and just provide a dummy.
1455
	 */
1456
	if (have_full_constraints() && allow_dummy) {
1457 1458
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1459

1460 1461
		rdev = dummy_regulator_rdev;
		goto found;
1462 1463
	/* Don't log an error when called from regulator_get_optional() */
	} else if (!have_full_constraints() || exclusive) {
1464
		dev_warn(dev, "dummy supplies not allowed\n");
1465 1466
	}

1467 1468 1469 1470
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1481 1482 1483 1484 1485 1486
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
		goto out;
	}

1487 1488 1489
	if (!try_module_get(rdev->owner))
		goto out;

1490 1491 1492 1493
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1494
		goto out;
1495 1496
	}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1508
out:
1509
	mutex_unlock(&regulator_list_mutex);
1510

1511 1512
	return regulator;
}
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1529
	return _regulator_get(dev, id, false, true);
1530
}
1531 1532
EXPORT_SYMBOL_GPL(regulator_get);

1533 1534 1535 1536 1537 1538 1539
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1540 1541 1542
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1556
	return _regulator_get(dev, id, true, false);
1557 1558 1559
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1560 1561 1562 1563 1564 1565
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1566
 * or IS_ERR() condition containing errno.
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1582
	return _regulator_get(dev, id, false, false);
1583 1584 1585
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1586
/* regulator_list_mutex lock held by regulator_put() */
1587
static void _regulator_put(struct regulator *regulator)
1588 1589 1590 1591 1592 1593
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

1594 1595
	lockdep_assert_held_once(&regulator_list_mutex);

1596 1597
	rdev = regulator->rdev;

1598 1599
	debugfs_remove_recursive(regulator->debugfs);

1600
	/* remove any sysfs entries */
1601
	if (regulator->dev)
1602
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1603
	mutex_lock(&rdev->mutex);
1604 1605
	list_del(&regulator->list);

1606 1607
	rdev->open_count--;
	rdev->exclusive = 0;
1608
	mutex_unlock(&rdev->mutex);
1609

1610 1611 1612
	kfree(regulator->supply_name);
	kfree(regulator);

1613
	module_put(rdev->owner);
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1628 1629 1630 1631
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1709 1710
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1711
					 struct device *alias_dev,
1712
					 const char *const *alias_id,
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
1750
					    const char *const *id,
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


1761 1762 1763 1764 1765
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
1766
	struct gpio_desc *gpiod;
1767 1768
	int ret;

1769 1770
	gpiod = gpio_to_desc(config->ena_gpio);

1771
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1772
		if (pin->gpiod == gpiod) {
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

1791
	pin->gpiod = gpiod;
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1810
		if (pin->gpiod == rdev->ena_pin->gpiod) {
1811 1812
			if (pin->request_count <= 1) {
				pin->request_count = 0;
1813
				gpiod_put(pin->gpiod);
1814 1815
				list_del(&pin->list);
				kfree(pin);
1816 1817
				rdev->ena_pin = NULL;
				return;
1818 1819 1820 1821 1822 1823 1824
			} else {
				pin->request_count--;
			}
		}
	}
}

1825
/**
1826 1827 1828 1829
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
1843 1844
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
1855 1856
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
1857 1858 1859 1860 1861 1862 1863
			pin->enable_count = 0;
		}
	}

	return 0;
}

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

1943
	if (rdev->ena_pin) {
1944 1945 1946 1947 1948 1949
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
1950
	} else if (rdev->desc->ops->enable) {
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

1963
	_regulator_enable_delay(delay);
1964 1965 1966 1967 1968 1969

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

1970 1971 1972
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1973
	int ret;
1974

1975 1976
	lockdep_assert_held_once(&rdev->mutex);

1977
	/* check voltage and requested load before enabling */
1978 1979 1980
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1981

1982 1983 1984 1985 1986 1987 1988
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1989
			ret = _regulator_do_enable(rdev);
1990 1991 1992
			if (ret < 0)
				return ret;

1993
		} else if (ret < 0) {
1994
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1995 1996
			return ret;
		}
1997
		/* Fallthrough on positive return values - already enabled */
1998 1999
	}

2000 2001 2002
	rdev->use_count++;

	return 0;
2003 2004 2005 2006 2007 2008
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2009 2010 2011 2012
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2013
 * NOTE: the output value can be set by other drivers, boot loader or may be
2014
 * hardwired in the regulator.
2015 2016 2017
 */
int regulator_enable(struct regulator *regulator)
{
2018 2019
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2020

2021 2022 2023
	if (regulator->always_on)
		return 0;

2024 2025 2026 2027 2028 2029
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

2030
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
2031
	ret = _regulator_enable(rdev);
2032
	mutex_unlock(&rdev->mutex);
2033

2034
	if (ret != 0 && rdev->supply)
2035 2036
		regulator_disable(rdev->supply);

2037 2038 2039 2040
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2041 2042 2043 2044 2045 2046
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2047
	if (rdev->ena_pin) {
2048 2049 2050 2051 2052 2053
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2054 2055 2056 2057 2058 2059 2060

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2061 2062 2063 2064 2065 2066
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2067 2068 2069 2070 2071
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2072
/* locks held by regulator_disable() */
2073
static int _regulator_disable(struct regulator_dev *rdev)
2074 2075 2076
{
	int ret = 0;

2077 2078
	lockdep_assert_held_once(&rdev->mutex);

D
David Brownell 已提交
2079
	if (WARN(rdev->use_count <= 0,
2080
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2081 2082
		return -EIO;

2083
	/* are we the last user and permitted to disable ? */
2084 2085
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2086 2087

		/* we are last user */
2088
		if (_regulator_can_change_status(rdev)) {
2089 2090 2091 2092 2093 2094
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2095
			ret = _regulator_do_disable(rdev);
2096
			if (ret < 0) {
2097
				rdev_err(rdev, "failed to disable\n");
2098 2099 2100
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2101 2102
				return ret;
			}
2103 2104
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2117

2118 2119 2120 2121 2122 2123 2124
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2125 2126 2127
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2128
 *
2129
 * NOTE: this will only disable the regulator output if no other consumer
2130 2131
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2132 2133 2134
 */
int regulator_disable(struct regulator *regulator)
{
2135 2136
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2137

2138 2139 2140
	if (regulator->always_on)
		return 0;

2141
	mutex_lock(&rdev->mutex);
2142
	ret = _regulator_disable(rdev);
2143
	mutex_unlock(&rdev->mutex);
2144

2145 2146
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2147

2148 2149 2150 2151 2152
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2153
static int _regulator_force_disable(struct regulator_dev *rdev)
2154 2155 2156
{
	int ret = 0;

2157 2158
	lockdep_assert_held_once(&rdev->mutex);

2159 2160 2161 2162 2163
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2164 2165 2166
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2167 2168
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2169
		return ret;
2170 2171
	}

2172 2173 2174 2175
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2189
	struct regulator_dev *rdev = regulator->rdev;
2190 2191
	int ret;

2192
	mutex_lock(&rdev->mutex);
2193
	regulator->uA_load = 0;
2194
	ret = _regulator_force_disable(regulator->rdev);
2195
	mutex_unlock(&rdev->mutex);
2196

2197 2198 2199
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2200

2201 2202 2203 2204
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
2252
	int ret;
2253

2254 2255 2256
	if (regulator->always_on)
		return 0;

2257 2258 2259
	if (!ms)
		return regulator_disable(regulator);

2260 2261 2262 2263
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

2264 2265 2266
	ret = queue_delayed_work(system_power_efficient_wq,
				 &rdev->disable_work,
				 msecs_to_jiffies(ms));
2267 2268 2269 2270
	if (ret < 0)
		return ret;
	else
		return 0;
2271 2272 2273
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2274 2275
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2276
	/* A GPIO control always takes precedence */
2277
	if (rdev->ena_pin)
2278 2279
		return rdev->ena_gpio_state;

2280
	/* If we don't know then assume that the regulator is always on */
2281
	if (!rdev->desc->ops->is_enabled)
2282
		return 1;
2283

2284
	return rdev->desc->ops->is_enabled(rdev);
2285 2286 2287 2288 2289 2290
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2291 2292 2293 2294 2295 2296 2297
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2298 2299 2300
 */
int regulator_is_enabled(struct regulator *regulator)
{
2301 2302
	int ret;

2303 2304 2305
	if (regulator->always_on)
		return 1;

2306 2307 2308 2309 2310
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2311 2312 2313
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2314 2315 2316 2317 2318
/**
 * regulator_can_change_voltage - check if regulator can change voltage
 * @regulator: regulator source
 *
 * Returns positive if the regulator driver backing the source/client
2319
 * can change its voltage, false otherwise. Useful for detecting fixed
2320 2321 2322 2323 2324 2325 2326 2327
 * or dummy regulators and disabling voltage change logic in the client
 * driver.
 */
int regulator_can_change_voltage(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	if (rdev->constraints &&
2328 2329 2330 2331 2332 2333 2334 2335 2336
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
			return 1;

		if (rdev->desc->continuous_voltage_range &&
		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
		    rdev->constraints->min_uV != rdev->constraints->max_uV)
			return 1;
	}
2337 2338 2339 2340 2341

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_can_change_voltage);

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2354 2355 2356 2357 2358 2359 2360
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

	if (!rdev->supply)
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2371
 * zero if this selector code can't be used on this system, or a
2372 2373 2374 2375
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2376 2377 2378
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;
2379

2380 2381 2382
	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

2383 2384 2385 2386 2387 2388 2389 2390 2391
	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		mutex_lock(&rdev->mutex);
		ret = ops->list_voltage(rdev, selector);
		mutex_unlock(&rdev->mutex);
	} else if (rdev->supply) {
		ret = regulator_list_voltage(rdev->supply, selector);
	} else {
2392
		return -EINVAL;
2393
	}
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2438 2439
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	 *vsel_reg = rdev->desc->vsel_reg;
	 *vsel_mask = rdev->desc->vsel_mask;

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2465 2466
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2504
	struct regulator_dev *rdev = regulator->rdev;
2505 2506
	int i, voltages, ret;

2507 2508 2509 2510
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2511
			return min_uV <= ret && ret <= max_uV;
2512 2513 2514 2515
		else
			return ret;
	}

2516 2517 2518 2519 2520
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2535
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2536

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2586 2587 2588 2589
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2590
	int delay = 0;
2591
	int best_val = 0;
2592
	unsigned int selector;
2593
	int old_selector = -1;
2594 2595 2596

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2597 2598 2599
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2600 2601 2602 2603
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2604 2605
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2606 2607 2608 2609 2610 2611
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2612
	if (rdev->desc->ops->set_voltage) {
2613 2614
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2615 2616 2617 2618 2619 2620 2621 2622 2623

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2624
	} else if (rdev->desc->ops->set_voltage_sel) {
2625
		if (rdev->desc->ops->map_voltage) {
2626 2627
			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
							   max_uV);
2628 2629 2630 2631 2632
		} else {
			if (rdev->desc->ops->list_voltage ==
			    regulator_list_voltage_linear)
				ret = regulator_map_voltage_linear(rdev,
								min_uV, max_uV);
2633 2634 2635 2636
			else if (rdev->desc->ops->list_voltage ==
				 regulator_list_voltage_linear_range)
				ret = regulator_map_voltage_linear_range(rdev,
								min_uV, max_uV);
2637 2638 2639 2640
			else
				ret = regulator_map_voltage_iterate(rdev,
								min_uV, max_uV);
		}
2641

2642
		if (ret >= 0) {
2643 2644 2645
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2646 2647 2648
				if (old_selector == selector)
					ret = 0;
				else
2649 2650
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2651 2652 2653
			} else {
				ret = -EINVAL;
			}
2654
		}
2655 2656 2657
	} else {
		ret = -EINVAL;
	}
2658

2659
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2660 2661
	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
		&& old_selector != selector) {
2662

2663 2664 2665 2666 2667 2668
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2669
		}
2670

2671 2672 2673 2674 2675 2676 2677
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2678 2679
	}

2680 2681 2682
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2683
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2684 2685
				     (void *)data);
	}
2686

2687
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2688 2689 2690 2691

	return ret;
}

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2707
 * Regulator system constraints must be set for this regulator before
2708 2709 2710 2711 2712
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2713
	int ret = 0;
2714
	int old_min_uV, old_max_uV;
2715
	int current_uV;
2716 2717 2718

	mutex_lock(&rdev->mutex);

2719 2720 2721 2722 2723 2724 2725
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	/* If we're trying to set a range that overlaps the current voltage,
	 * return succesfully even though the regulator does not support
	 * changing the voltage.
	 */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
			regulator->min_uV = min_uV;
			regulator->max_uV = max_uV;
			goto out;
		}
	}

2739
	/* sanity check */
2740 2741
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2742 2743 2744 2745 2746 2747 2748 2749
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2750

2751 2752 2753
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2754 2755
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2756

2757 2758
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2759
		goto out2;
2760

2761
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2762 2763
	if (ret < 0)
		goto out2;
2764

2765 2766 2767
out:
	mutex_unlock(&rdev->mutex);
	return ret;
2768 2769 2770 2771
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
	mutex_unlock(&rdev->mutex);
2772 2773 2774 2775
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
2789 2790
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2821
/**
2822 2823
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
2824 2825 2826 2827 2828 2829
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
2830
 * Drivers providing ramp_delay in regulation_constraints can use this as their
2831
 * set_voltage_time_sel() operation.
2832 2833 2834 2835 2836
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
2837
	unsigned int ramp_delay = 0;
2838
	int old_volt, new_volt;
2839 2840 2841 2842 2843 2844 2845

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
2846
		rdev_warn(rdev, "ramp_delay not set\n");
2847
		return 0;
2848
	}
2849

2850 2851 2852
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
2853

2854 2855 2856 2857
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2858
}
2859
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2860

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2908 2909
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2910
	int sel, ret;
2911 2912 2913 2914 2915

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2916
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2917
	} else if (rdev->desc->ops->get_voltage) {
2918
		ret = rdev->desc->ops->get_voltage(rdev);
2919 2920
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
2921 2922
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
2923 2924
	} else if (rdev->supply) {
		ret = regulator_get_voltage(rdev->supply);
2925
	} else {
2926
		return -EINVAL;
2927
	}
2928

2929 2930
	if (ret < 0)
		return ret;
2931
	return ret - rdev->constraints->uV_offset;
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
2960
 * @min_uA: Minimum supported current in uA
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
3047
	int regulator_curr_mode;
3048 3049 3050 3051 3052 3053 3054 3055 3056

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

3057 3058 3059 3060 3061 3062 3063 3064 3065
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

3066
	/* constraints check */
3067
	ret = regulator_mode_constrain(rdev, &mode);
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
3109
 * regulator_set_load - set regulator load
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
3132
 * On error a negative errno is returned.
3133
 */
3134
int regulator_set_load(struct regulator *regulator, int uA_load)
3135 3136
{
	struct regulator_dev *rdev = regulator->rdev;
3137
	int ret;
3138

3139 3140
	mutex_lock(&rdev->mutex);
	regulator->uA_load = uA_load;
3141
	ret = drms_uA_update(rdev);
3142
	mutex_unlock(&rdev->mutex);
3143

3144 3145
	return ret;
}
3146
EXPORT_SYMBOL_GPL(regulator_set_load);
3147

3148 3149 3150 3151
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3152
 * @enable: enable or disable bypass mode
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

	if (rdev->constraints &&
	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

3201 3202 3203
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
3204
 * @nb: notifier block
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
3219
 * @nb: notifier block
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

3231 3232 3233
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
3234
static int _notifier_call_chain(struct regulator_dev *rdev,
3235 3236 3237
				  unsigned long event, void *data)
{
	/* call rdev chain first */
3238
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3269 3270
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3271 3272 3273 3274 3275 3276 3277 3278
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3279
	while (--i >= 0)
3280 3281 3282 3283 3284 3285
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3286 3287 3288 3289 3290 3291 3292
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3308
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3309
	int i;
3310
	int ret = 0;
3311

3312 3313 3314 3315 3316 3317 3318
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3319 3320 3321 3322

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3323
	for (i = 0; i < num_consumers; i++) {
3324 3325
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3326
			goto err;
3327
		}
3328 3329 3330 3331 3332
	}

	return 0;

err:
3333 3334 3335 3336 3337 3338 3339
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3353 3354
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3355 3356 3357 3358 3359 3360
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3361
	int ret, r;
3362

3363
	for (i = num_consumers - 1; i >= 0; --i) {
3364 3365 3366 3367 3368 3369 3370 3371
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3372
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3373 3374 3375 3376 3377 3378
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
3379 3380 3381 3382 3383

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3444
 * @rdev: regulator source
3445
 * @event: notifier block
3446
 * @data: callback-specific data.
3447 3448 3449
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3450
 * Note lock must be held by caller.
3451 3452 3453 3454
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
3455 3456
	lockdep_assert_held_once(&rdev->mutex);

3457 3458 3459 3460 3461 3462
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3479
	case REGULATOR_MODE_STANDBY:
3480 3481
		return REGULATOR_STATUS_STANDBY;
	default:
3482
		return REGULATOR_STATUS_UNDEFINED;
3483 3484 3485 3486
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

3514 3515 3516 3517
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
3518 3519
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
3520
{
3521 3522
	struct device *dev = kobj_to_dev(kobj);
	struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3523
	const struct regulator_ops *ops = rdev->desc->ops;
3524 3525 3526 3527 3528 3529 3530
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
3531 3532

	/* some attributes need specific methods to be displayed */
3533 3534 3535 3536 3537 3538 3539
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
3540
	}
3541

3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

3557
	/* some attributes are type-specific */
3558 3559
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3560 3561

	/* constraints need specific supporting methods */
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
3597

3598 3599 3600 3601
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	kfree(rdev);
3602 3603
}

3604 3605 3606 3607 3608 3609
static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
};

3610 3611
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3624
	if (!rdev->debugfs) {
3625 3626 3627 3628 3629 3630 3631 3632
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3633 3634
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3635 3636
}

3637 3638
/**
 * regulator_register - register regulator
3639
 * @regulator_desc: regulator to register
3640
 * @cfg: runtime configuration for regulator
3641 3642
 *
 * Called by regulator drivers to register a regulator.
3643 3644
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3645
 */
3646 3647
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3648
		   const struct regulator_config *cfg)
3649
{
3650
	const struct regulation_constraints *constraints = NULL;
3651
	const struct regulator_init_data *init_data;
3652
	struct regulator_config *config = NULL;
3653
	static atomic_t regulator_no = ATOMIC_INIT(-1);
3654
	struct regulator_dev *rdev;
3655
	struct device *dev;
3656
	int ret, i;
3657

3658
	if (regulator_desc == NULL || cfg == NULL)
3659 3660
		return ERR_PTR(-EINVAL);

3661
	dev = cfg->dev;
3662
	WARN_ON(!dev);
3663

3664 3665 3666
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3667 3668
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3669 3670
		return ERR_PTR(-EINVAL);

3671 3672 3673
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3674 3675
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3676 3677 3678 3679 3680 3681

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3682 3683 3684 3685
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3686

3687 3688 3689 3690
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

3701
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3702 3703 3704 3705 3706 3707
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

3708 3709 3710
	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3711
	rdev->reg_data = config->driver_data;
3712 3713
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3714 3715
	if (config->regmap)
		rdev->regmap = config->regmap;
3716
	else if (dev_get_regmap(dev, NULL))
3717
		rdev->regmap = dev_get_regmap(dev, NULL);
3718 3719
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3720 3721 3722
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3723
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3724

3725
	/* preform any regulator specific init */
3726
	if (init_data && init_data->regulator_init) {
3727
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3728 3729
		if (ret < 0)
			goto clean;
3730 3731 3732
	}

	/* register with sysfs */
3733
	rdev->dev.class = &regulator_class;
3734
	rdev->dev.parent = dev;
3735
	dev_set_name(&rdev->dev, "regulator.%lu",
3736
		    (unsigned long) atomic_inc_return(&regulator_no));
3737
	ret = device_register(&rdev->dev);
3738 3739
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3740
		goto clean;
3741
	}
3742 3743 3744

	dev_set_drvdata(&rdev->dev, rdev);

3745 3746
	if ((config->ena_gpio || config->ena_gpio_initialized) &&
	    gpio_is_valid(config->ena_gpio)) {
3747
		ret = regulator_ena_gpio_request(rdev, config);
3748 3749 3750
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
3751
			goto wash;
3752 3753 3754
		}
	}

3755
	/* set regulator constraints */
3756 3757 3758 3759
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3760 3761 3762
	if (ret < 0)
		goto scrub;

3763
	if (init_data && init_data->supply_regulator)
3764
		rdev->supply_name = init_data->supply_regulator;
3765
	else if (regulator_desc->supply_name)
3766
		rdev->supply_name = regulator_desc->supply_name;
3767

3768
	/* add consumers devices */
3769 3770 3771 3772
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3773
				init_data->consumer_supplies[i].supply);
3774 3775 3776 3777 3778
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3779
		}
3780
	}
3781 3782

	list_add(&rdev->list, &regulator_list);
3783 3784

	rdev_init_debugfs(rdev);
3785
out:
3786
	mutex_unlock(&regulator_list_mutex);
3787
	kfree(config);
3788
	return rdev;
D
David Brownell 已提交
3789

3790 3791 3792
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3793
scrub:
3794
	regulator_ena_gpio_free(rdev);
3795
	kfree(rdev->constraints);
3796
wash:
D
David Brownell 已提交
3797
	device_unregister(&rdev->dev);
3798 3799 3800 3801
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3802 3803 3804 3805
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3806 3807 3808 3809 3810
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3811
 * @rdev: regulator to unregister
3812 3813 3814 3815 3816 3817 3818 3819
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3820 3821 3822
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
3823
		regulator_put(rdev->supply);
3824
	}
3825
	mutex_lock(&regulator_list_mutex);
3826
	debugfs_remove_recursive(rdev->debugfs);
3827
	flush_work(&rdev->disable_work.work);
3828
	WARN_ON(rdev->open_count);
3829
	unset_regulator_supplies(rdev);
3830
	list_del(&rdev->list);
3831
	mutex_unlock(&regulator_list_mutex);
3832
	kfree(rdev->constraints);
3833
	regulator_ena_gpio_free(rdev);
3834
	of_node_put(rdev->dev.of_node);
3835
	device_unregister(&rdev->dev);
3836 3837 3838 3839
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3840
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3863
			rdev_err(rdev, "failed to prepare\n");
3864 3865 3866 3867 3868 3869 3870 3871 3872
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
3887
		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3888 3889 3890 3891 3892
			if (!_regulator_is_enabled(rdev)) {
				error = _regulator_do_enable(rdev);
				if (error)
					ret = error;
			}
3893
		} else {
3894
			if (!have_full_constraints())
3895
				goto unlock;
3896
			if (!_regulator_is_enabled(rdev))
3897 3898
				goto unlock;

3899
			error = _regulator_do_disable(rdev);
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3928 3929
/**
 * rdev_get_drvdata - get rdev regulator driver data
3930
 * @rdev: regulator
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3967
 * @rdev: regulator
3968 3969 3970 3971 3972 3973 3974
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
4017
#endif
4018 4019

static const struct file_operations supply_map_fops = {
4020
#ifdef CONFIG_DEBUG_FS
4021 4022 4023
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
4024
};
4025

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
#ifdef CONFIG_DEBUG_FS
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct list_head *list = s->private;
	struct regulator_dev *child;
	struct regulation_constraints *c;
	struct regulator *consumer;

	if (!rdev)
		return;

	seq_printf(s, "%*s%-*s %3d %4d %6d ",
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
		   rdev->use_count, rdev->open_count, rdev->bypass_count);

4044 4045
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
		if (consumer->dev->class == &regulator_class)
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
			   30 - (level + 1) * 3, dev_name(consumer->dev));

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
4073
			seq_printf(s, "%37dmV %5dmV",
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
				   consumer->min_uV / 1000,
				   consumer->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

	list_for_each_entry(child, list, list) {
		/* handle only non-root regulators supplied by current rdev */
		if (!child->supply || child->supply->rdev != rdev)
			continue;

		regulator_summary_show_subtree(s, child, level + 1);
	}
}

static int regulator_summary_show(struct seq_file *s, void *data)
{
	struct list_head *list = s->private;
	struct regulator_dev *rdev;

4098 4099
	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
	seq_puts(s, "-------------------------------------------------------------------------------\n");
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129

	mutex_lock(&regulator_list_mutex);

	list_for_each_entry(rdev, list, list) {
		if (rdev->supply)
			continue;

		regulator_summary_show_subtree(s, rdev, 0);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static int regulator_summary_open(struct inode *inode, struct file *file)
{
	return single_open(file, regulator_summary_show, inode->i_private);
}
#endif

static const struct file_operations regulator_summary_fops = {
#ifdef CONFIG_DEBUG_FS
	.open		= regulator_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
#endif
};

4130 4131
static int __init regulator_init(void)
{
4132 4133 4134 4135
	int ret;

	ret = class_register(&regulator_class);

4136
	debugfs_root = debugfs_create_dir("regulator", NULL);
4137
	if (!debugfs_root)
4138
		pr_warn("regulator: Failed to create debugfs directory\n");
4139

4140 4141
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
4142

4143 4144 4145
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
			    &regulator_list, &regulator_summary_fops);

4146 4147 4148
	regulator_dummy_init();

	return ret;
4149 4150 4151 4152
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
4153 4154 4155 4156

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
4157
	const struct regulator_ops *ops;
4158 4159 4160
	struct regulation_constraints *c;
	int enabled, ret;

4161 4162 4163 4164 4165 4166 4167 4168 4169
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

4170 4171 4172
	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
4173 4174 4175
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
4176 4177 4178 4179 4180
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

4181
		if (c && c->always_on)
4182 4183
			continue;

4184 4185 4186
		if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
			continue;

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

4201
		if (have_full_constraints()) {
4202 4203
			/* We log since this may kill the system if it
			 * goes wrong. */
4204
			rdev_info(rdev, "disabling\n");
4205
			ret = _regulator_do_disable(rdev);
4206
			if (ret != 0)
4207
				rdev_err(rdev, "couldn't disable: %d\n", ret);
4208 4209 4210 4211 4212 4213
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
4214
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
4225
late_initcall_sync(regulator_init_complete);