core.c 108.2 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54 55
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
56
static LIST_HEAD(regulator_ena_gpio_list);
57
static LIST_HEAD(regulator_supply_alias_list);
58
static bool has_full_constraints;
59

60 61
static struct dentry *debugfs_root;

62
/*
63 64 65 66 67 68
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
69
	const char *dev_name;   /* The dev_name() for the consumer */
70
	const char *supply;
71
	struct regulator_dev *regulator;
72 73
};

74 75 76 77 78 79 80
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
81
	struct gpio_desc *gpiod;
82 83 84 85 86
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

87 88 89 90 91 92 93 94 95 96 97 98 99
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

100
static int _regulator_is_enabled(struct regulator_dev *rdev);
101
static int _regulator_disable(struct regulator_dev *rdev);
102 103 104
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105
static int _notifier_call_chain(struct regulator_dev *rdev,
106
				  unsigned long event, void *data);
107 108
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
109 110 111
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
112

113 114 115 116 117 118 119 120 121 122
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

123 124
static bool have_full_constraints(void)
{
125
	return has_full_constraints || of_have_populated_dt();
126 127
}

128 129 130 131 132 133
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
134
 * returns the device node corresponding to the regulator if found, else
135 136 137 138 139 140 141 142 143 144 145 146 147
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
148
		dev_dbg(dev, "Looking up %s property in node %s failed",
149 150 151 152 153 154
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

155 156 157 158 159 160 161 162 163 164 165
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

166 167 168 169 170 171 172
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
173
		rdev_err(rdev, "no constraints\n");
174 175 176
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177
		rdev_err(rdev, "operation not allowed\n");
178 179 180 181 182 183 184 185
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

186 187
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188
			 *min_uV, *max_uV);
189
		return -EINVAL;
190
	}
191 192 193 194

	return 0;
}

195 196 197 198 199 200 201 202 203
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 205 206 207 208 209 210
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

211 212 213 214 215 216
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

217
	if (*min_uV > *max_uV) {
218 219
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
220
		return -EINVAL;
221
	}
222 223 224 225

	return 0;
}

226 227 228 229 230 231 232
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
233
		rdev_err(rdev, "no constraints\n");
234 235 236
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237
		rdev_err(rdev, "operation not allowed\n");
238 239 240 241 242 243 244 245
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

246 247
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248
			 *min_uA, *max_uA);
249
		return -EINVAL;
250
	}
251 252 253 254 255

	return 0;
}

/* operating mode constraint check */
256
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257
{
258
	switch (*mode) {
259 260 261 262 263 264
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
265
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
266 267 268
		return -EINVAL;
	}

269
	if (!rdev->constraints) {
270
		rdev_err(rdev, "no constraints\n");
271 272 273
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274
		rdev_err(rdev, "operation not allowed\n");
275 276
		return -EPERM;
	}
277 278 279 280 281 282 283 284

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
285
	}
286 287

	return -EINVAL;
288 289 290 291 292 293
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
294
		rdev_err(rdev, "no constraints\n");
295 296 297
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298
		rdev_err(rdev, "operation not allowed\n");
299 300 301 302 303 304 305 306
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
307
	struct regulator_dev *rdev = dev_get_drvdata(dev);
308 309 310 311 312 313 314 315
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
316
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317 318 319 320

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
321
	struct regulator_dev *rdev = dev_get_drvdata(dev);
322 323 324

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
325
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326

327 328
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
329 330 331
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

332
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
333
}
334
static DEVICE_ATTR_RO(name);
335

D
David Brownell 已提交
336
static ssize_t regulator_print_opmode(char *buf, int mode)
337 338 339 340 341 342 343 344 345 346 347 348 349 350
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
351 352
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
353
{
354
	struct regulator_dev *rdev = dev_get_drvdata(dev);
355

D
David Brownell 已提交
356 357
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
358
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
359 360 361

static ssize_t regulator_print_state(char *buf, int state)
{
362 363 364 365 366 367 368 369
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
370 371 372 373
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
374 375 376 377 378
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
379

380
	return ret;
D
David Brownell 已提交
381
}
382
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
383

D
David Brownell 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
417 418 419
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
420 421 422
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
423 424 425 426 427 428 429 430
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

431 432 433
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
434
	struct regulator_dev *rdev = dev_get_drvdata(dev);
435 436 437 438 439 440

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
441
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442 443 444 445

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
446
	struct regulator_dev *rdev = dev_get_drvdata(dev);
447 448 449 450 451 452

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
453
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454 455 456 457

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
458
	struct regulator_dev *rdev = dev_get_drvdata(dev);
459 460 461 462 463 464

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
465
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466 467 468 469

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
470
	struct regulator_dev *rdev = dev_get_drvdata(dev);
471 472 473 474 475 476

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
477
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478 479 480 481

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
482
	struct regulator_dev *rdev = dev_get_drvdata(dev);
483 484 485 486 487
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
488
		uA += regulator->uA_load;
489 490 491
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
492
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493

494 495
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
496
{
497
	struct regulator_dev *rdev = dev_get_drvdata(dev);
498 499
	return sprintf(buf, "%d\n", rdev->use_count);
}
500
static DEVICE_ATTR_RO(num_users);
501

502 503
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
504
{
505
	struct regulator_dev *rdev = dev_get_drvdata(dev);
506 507 508 509 510 511 512 513 514

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
515
static DEVICE_ATTR_RO(type);
516 517 518 519

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
520
	struct regulator_dev *rdev = dev_get_drvdata(dev);
521 522 523

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
524 525
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
526 527 528 529

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
530
	struct regulator_dev *rdev = dev_get_drvdata(dev);
531 532 533

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
534 535
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
536 537 538 539

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
540
	struct regulator_dev *rdev = dev_get_drvdata(dev);
541 542 543

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
544 545
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
546 547 548 549

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
550
	struct regulator_dev *rdev = dev_get_drvdata(dev);
551

D
David Brownell 已提交
552 553
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
554
}
555 556
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
557 558 559 560

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
561
	struct regulator_dev *rdev = dev_get_drvdata(dev);
562

D
David Brownell 已提交
563 564
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
565
}
566 567
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
568 569 570 571

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
572
	struct regulator_dev *rdev = dev_get_drvdata(dev);
573

D
David Brownell 已提交
574 575
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
576
}
577 578
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
579 580 581 582

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
583
	struct regulator_dev *rdev = dev_get_drvdata(dev);
584

D
David Brownell 已提交
585 586
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
587
}
588 589
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
590 591 592 593

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
594
	struct regulator_dev *rdev = dev_get_drvdata(dev);
595

D
David Brownell 已提交
596 597
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
598
}
599 600
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
601 602 603 604

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
605
	struct regulator_dev *rdev = dev_get_drvdata(dev);
606

D
David Brownell 已提交
607 608
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
609
}
610 611 612
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
634

635 636
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
637
static int drms_uA_update(struct regulator_dev *rdev)
638 639 640 641 642
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

643 644 645 646
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
647
	err = regulator_check_drms(rdev);
648 649 650
	if (err < 0)
		return 0;

651 652
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
653 654
		return 0;

655 656
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
657
		return -EINVAL;
658 659

	/* get output voltage */
660
	output_uV = _regulator_get_voltage(rdev);
661 662 663 664
	if (output_uV <= 0) {
		rdev_err(rdev, "invalid output voltage found\n");
		return -EINVAL;
	}
665 666

	/* get input voltage */
667 668
	input_uV = 0;
	if (rdev->supply)
669
		input_uV = regulator_get_voltage(rdev->supply);
670
	if (input_uV <= 0)
671
		input_uV = rdev->constraints->input_uV;
672 673 674 675
	if (input_uV <= 0) {
		rdev_err(rdev, "invalid input voltage found\n");
		return -EINVAL;
	}
676 677 678

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
679
		current_uA += sibling->uA_load;
680

681 682
	current_uA += rdev->constraints->system_load;

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
700

701 702 703
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
704 705 706
	}

	return err;
707 708 709 710 711 712
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
713 714

	/* If we have no suspend mode configration don't set anything;
715 716
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
717 718
	 */
	if (!rstate->enabled && !rstate->disabled) {
719 720
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
721
			rdev_warn(rdev, "No configuration\n");
722 723 724 725
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
726
		rdev_err(rdev, "invalid configuration\n");
727 728
		return -EINVAL;
	}
729

730
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
731
		ret = rdev->desc->ops->set_suspend_enable(rdev);
732
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
733
		ret = rdev->desc->ops->set_suspend_disable(rdev);
734 735 736
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

737
	if (ret < 0) {
738
		rdev_err(rdev, "failed to enabled/disable\n");
739 740 741 742 743 744
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
745
			rdev_err(rdev, "failed to set voltage\n");
746 747 748 749 750 751 752
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
753
			rdev_err(rdev, "failed to set mode\n");
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
784
	char buf[160] = "";
785
	size_t len = sizeof(buf) - 1;
786 787
	int count = 0;
	int ret;
788

789
	if (constraints->min_uV && constraints->max_uV) {
790
		if (constraints->min_uV == constraints->max_uV)
791 792
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
793
		else
794 795 796 797
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
798 799 800 801 802 803
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
804 805
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
806 807
	}

808
	if (constraints->uV_offset)
809 810
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
811

812
	if (constraints->min_uA && constraints->max_uA) {
813
		if (constraints->min_uA == constraints->max_uA)
814 815
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
816
		else
817 818 819 820
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
821 822 823 824 825 826
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
827 828
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
829
	}
830

831
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
832
		count += scnprintf(buf + count, len - count, "fast ");
833
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
834
		count += scnprintf(buf + count, len - count, "normal ");
835
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
836
		count += scnprintf(buf + count, len - count, "idle ");
837
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
838
		count += scnprintf(buf + count, len - count, "standby");
839

840
	if (!count)
841
		scnprintf(buf, len, "no parameters");
842

843
	rdev_dbg(rdev, "%s\n", buf);
844 845 846 847 848

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
849 850
}

851
static int machine_constraints_voltage(struct regulator_dev *rdev,
852
	struct regulation_constraints *constraints)
853
{
854
	const struct regulator_ops *ops = rdev->desc->ops;
855 856 857 858
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
859
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
860 861
		int current_uV = _regulator_get_voltage(rdev);
		if (current_uV < 0) {
862 863 864
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
865 866 867 868 869 870 871 872 873
			return current_uV;
		}
		if (current_uV < rdev->constraints->min_uV ||
		    current_uV > rdev->constraints->max_uV) {
			ret = _regulator_do_set_voltage(
				rdev, rdev->constraints->min_uV,
				rdev->constraints->max_uV);
			if (ret < 0) {
				rdev_err(rdev,
874 875
					"failed to apply %duV constraint(%d)\n",
					rdev->constraints->min_uV, ret);
876 877
				return ret;
			}
878
		}
879
	}
880

881 882 883 884 885 886 887 888 889 890 891
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

892 893
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
894
		if (count == 1 && !cmin) {
895
			cmin = 1;
896
			cmax = INT_MAX;
897 898
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
899 900
		}

901 902
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
903
			return 0;
904

905
		/* else require explicit machine-level constraints */
906
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
907
			rdev_err(rdev, "invalid voltage constraints\n");
908
			return -EINVAL;
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
928 929 930
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
931
			return -EINVAL;
932 933 934 935
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
936 937
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
938 939 940
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
941 942
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
943 944 945 946
			constraints->max_uV = max_uV;
		}
	}

947 948 949
	return 0;
}

950 951 952
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
953
	const struct regulator_ops *ops = rdev->desc->ops;
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

980 981
static int _regulator_do_enable(struct regulator_dev *rdev);

982 983 984 985 986 987 988 989 990 991 992 993
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
994
	const struct regulation_constraints *constraints)
995 996
{
	int ret = 0;
997
	const struct regulator_ops *ops = rdev->desc->ops;
998

999 1000 1001 1002 1003 1004
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1005 1006
	if (!rdev->constraints)
		return -ENOMEM;
1007

1008
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1009 1010 1011
	if (ret != 0)
		goto out;

1012
	ret = machine_constraints_current(rdev, rdev->constraints);
1013 1014 1015
	if (ret != 0)
		goto out;

1016 1017 1018 1019 1020 1021 1022 1023 1024
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
			goto out;
		}
	}

1025
	/* do we need to setup our suspend state */
1026
	if (rdev->constraints->initial_state) {
1027
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1028
		if (ret < 0) {
1029
			rdev_err(rdev, "failed to set suspend state\n");
1030 1031 1032
			goto out;
		}
	}
1033

1034
	if (rdev->constraints->initial_mode) {
1035
		if (!ops->set_mode) {
1036
			rdev_err(rdev, "no set_mode operation\n");
1037 1038 1039 1040
			ret = -EINVAL;
			goto out;
		}

1041
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1042
		if (ret < 0) {
1043
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1044 1045 1046 1047
			goto out;
		}
	}

1048 1049 1050
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1051 1052 1053
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1054
			rdev_err(rdev, "failed to enable\n");
1055 1056 1057 1058
			goto out;
		}
	}

1059 1060
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1061 1062 1063 1064 1065 1066 1067
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
			goto out;
		}
	}

S
Stephen Boyd 已提交
1068 1069 1070 1071 1072 1073 1074 1075
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
			goto out;
		}
	}

S
Stephen Boyd 已提交
1076 1077 1078 1079 1080 1081 1082 1083
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
			goto out;
		}
	}

1084
	print_constraints(rdev);
1085
	return 0;
1086
out:
1087 1088
	kfree(rdev->constraints);
	rdev->constraints = NULL;
1089 1090 1091 1092 1093
	return ret;
}

/**
 * set_supply - set regulator supply regulator
1094 1095
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1096 1097 1098 1099 1100 1101
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1102
		      struct regulator_dev *supply_rdev)
1103 1104 1105
{
	int err;

1106 1107 1108
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1109 1110
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1111
		return err;
1112
	}
1113
	supply_rdev->open_count++;
1114 1115

	return 0;
1116 1117 1118
}

/**
1119
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1120
 * @rdev:         regulator source
1121
 * @consumer_dev_name: dev_name() string for device supply applies to
1122
 * @supply:       symbolic name for supply
1123 1124 1125 1126 1127 1128 1129
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1130 1131
				      const char *consumer_dev_name,
				      const char *supply)
1132 1133
{
	struct regulator_map *node;
1134
	int has_dev;
1135 1136 1137 1138

	if (supply == NULL)
		return -EINVAL;

1139 1140 1141 1142 1143
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1144
	list_for_each_entry(node, &regulator_map_list, list) {
1145 1146 1147 1148
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1149
			continue;
1150 1151
		}

1152 1153 1154
		if (strcmp(node->supply, supply) != 0)
			continue;

1155 1156 1157 1158 1159 1160
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1161 1162 1163
		return -EBUSY;
	}

1164
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1165 1166 1167 1168 1169 1170
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1171 1172 1173 1174 1175 1176
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1177 1178
	}

1179 1180 1181 1182
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1183 1184 1185 1186 1187 1188 1189
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1190
			kfree(node->dev_name);
1191 1192 1193 1194 1195
			kfree(node);
		}
	}
}

1196
#define REG_STR_SIZE	64
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1215 1216
		regulator->dev = dev;

1217
		/* Add a link to the device sysfs entry */
1218 1219 1220
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1221
			goto overflow_err;
1222 1223 1224

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1225
			goto overflow_err;
1226

1227
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1228 1229
					buf);
		if (err) {
1230
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1231
				  dev->kobj.name, err);
1232
			/* non-fatal */
1233
		}
1234 1235 1236
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1237
			goto overflow_err;
1238 1239 1240 1241
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1242
	if (!regulator->debugfs) {
1243 1244 1245 1246 1247 1248 1249 1250
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1251
	}
1252

1253 1254 1255 1256 1257 1258 1259 1260 1261
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1262 1263 1264 1265 1266 1267 1268 1269 1270
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1271 1272
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1273 1274
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1275
	if (!rdev->desc->ops->enable_time)
1276
		return rdev->desc->enable_time;
1277 1278 1279
	return rdev->desc->ops->enable_time(rdev);
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1306
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1307 1308
						  const char *supply,
						  int *ret)
1309 1310 1311
{
	struct regulator_dev *r;
	struct device_node *node;
1312 1313
	struct regulator_map *map;
	const char *devname = NULL;
1314

1315 1316
	regulator_supply_alias(&dev, &supply);

1317 1318 1319
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1320
		if (node) {
1321 1322 1323 1324
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1325 1326
			*ret = -EPROBE_DEFER;
			return NULL;
1327 1328 1329 1330 1331 1332 1333 1334 1335
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1336 1337 1338
	}

	/* if not found, try doing it non-dt way */
1339 1340 1341
	if (dev)
		devname = dev_name(dev);

1342 1343 1344 1345
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1357 1358 1359
	return NULL;
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
	if (ret == -ENODEV) {
		/*
		 * No supply was specified for this regulator and
		 * there will never be one.
		 */
		return 0;
	}

	if (!r) {
		dev_err(dev, "Failed to resolve %s-supply for %s\n",
			rdev->supply_name, rdev->desc->name);
		return -EPROBE_DEFER;
	}

	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
	if (ret < 0)
		return ret;

	ret = set_supply(rdev, r);
	if (ret < 0)
		return ret;

	/* Cascade always-on state to supply */
	if (_regulator_is_enabled(rdev)) {
		ret = regulator_enable(rdev->supply);
		if (ret < 0)
			return ret;
	}

	return 0;
}

1408 1409
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
1410
					bool exclusive, bool allow_dummy)
1411 1412
{
	struct regulator_dev *rdev;
1413
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1414
	const char *devname = NULL;
1415
	int ret;
1416 1417

	if (id == NULL) {
1418
		pr_err("get() with no identifier\n");
1419
		return ERR_PTR(-EINVAL);
1420 1421
	}

1422 1423 1424
	if (dev)
		devname = dev_name(dev);

1425 1426 1427 1428 1429
	if (have_full_constraints())
		ret = -ENODEV;
	else
		ret = -EPROBE_DEFER;

1430 1431
	mutex_lock(&regulator_list_mutex);

1432
	rdev = regulator_dev_lookup(dev, id, &ret);
1433 1434 1435
	if (rdev)
		goto found;

1436 1437
	regulator = ERR_PTR(ret);

1438 1439 1440 1441
	/*
	 * If we have return value from dev_lookup fail, we do not expect to
	 * succeed, so, quit with appropriate error value
	 */
1442
	if (ret && ret != -ENODEV)
1443 1444
		goto out;

1445 1446 1447
	if (!devname)
		devname = "deviceless";

1448 1449 1450
	/*
	 * Assume that a regulator is physically present and enabled
	 * even if it isn't hooked up and just provide a dummy.
1451
	 */
1452
	if (have_full_constraints() && allow_dummy) {
1453 1454
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1455

1456 1457
		rdev = dummy_regulator_rdev;
		goto found;
1458 1459
	/* Don't log an error when called from regulator_get_optional() */
	} else if (!have_full_constraints() || exclusive) {
1460
		dev_warn(dev, "dummy supplies not allowed\n");
1461 1462
	}

1463 1464 1465 1466
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1477 1478 1479 1480 1481 1482
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
		goto out;
	}

1483 1484 1485
	if (!try_module_get(rdev->owner))
		goto out;

1486 1487 1488 1489
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1490
		goto out;
1491 1492
	}

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1504
out:
1505
	mutex_unlock(&regulator_list_mutex);
1506

1507 1508
	return regulator;
}
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1525
	return _regulator_get(dev, id, false, true);
1526
}
1527 1528
EXPORT_SYMBOL_GPL(regulator_get);

1529 1530 1531 1532 1533 1534 1535
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1536 1537 1538
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1552
	return _regulator_get(dev, id, true, false);
1553 1554 1555
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1556 1557 1558 1559 1560 1561
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1562
 * or IS_ERR() condition containing errno.
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1578
	return _regulator_get(dev, id, false, false);
1579 1580 1581
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1582
/* regulator_list_mutex lock held by regulator_put() */
1583
static void _regulator_put(struct regulator *regulator)
1584 1585 1586 1587 1588 1589 1590 1591
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	rdev = regulator->rdev;

1592 1593
	debugfs_remove_recursive(regulator->debugfs);

1594
	/* remove any sysfs entries */
1595
	if (regulator->dev)
1596
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1597
	mutex_lock(&rdev->mutex);
1598
	kfree(regulator->supply_name);
1599 1600 1601
	list_del(&regulator->list);
	kfree(regulator);

1602 1603
	rdev->open_count--;
	rdev->exclusive = 0;
1604
	mutex_unlock(&rdev->mutex);
1605

1606
	module_put(rdev->owner);
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1621 1622 1623 1624
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1702 1703
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1704
					 struct device *alias_dev,
1705
					 const char *const *alias_id,
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
1743
					    const char *const *id,
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


1754 1755 1756 1757 1758
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
1759
	struct gpio_desc *gpiod;
1760 1761
	int ret;

1762 1763
	gpiod = gpio_to_desc(config->ena_gpio);

1764
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1765
		if (pin->gpiod == gpiod) {
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

1784
	pin->gpiod = gpiod;
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1803
		if (pin->gpiod == rdev->ena_pin->gpiod) {
1804 1805
			if (pin->request_count <= 1) {
				pin->request_count = 0;
1806
				gpiod_put(pin->gpiod);
1807 1808
				list_del(&pin->list);
				kfree(pin);
1809 1810
				rdev->ena_pin = NULL;
				return;
1811 1812 1813 1814 1815 1816 1817
			} else {
				pin->request_count--;
			}
		}
	}
}

1818
/**
1819 1820 1821 1822
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
1836 1837
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
1848 1849
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
1850 1851 1852 1853 1854 1855 1856
			pin->enable_count = 0;
		}
	}

	return 0;
}

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

1936
	if (rdev->ena_pin) {
1937 1938 1939 1940 1941 1942
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
1943
	} else if (rdev->desc->ops->enable) {
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

1956
	_regulator_enable_delay(delay);
1957 1958 1959 1960 1961 1962

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

1963 1964 1965
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1966
	int ret;
1967 1968

	/* check voltage and requested load before enabling */
1969 1970 1971
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1972

1973 1974 1975 1976 1977 1978 1979
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1980
			ret = _regulator_do_enable(rdev);
1981 1982 1983
			if (ret < 0)
				return ret;

1984
		} else if (ret < 0) {
1985
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1986 1987
			return ret;
		}
1988
		/* Fallthrough on positive return values - already enabled */
1989 1990
	}

1991 1992 1993
	rdev->use_count++;

	return 0;
1994 1995 1996 1997 1998 1999
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2000 2001 2002 2003
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2004
 * NOTE: the output value can be set by other drivers, boot loader or may be
2005
 * hardwired in the regulator.
2006 2007 2008
 */
int regulator_enable(struct regulator *regulator)
{
2009 2010
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2011

2012 2013 2014
	if (regulator->always_on)
		return 0;

2015 2016 2017 2018 2019 2020
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

2021
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
2022
	ret = _regulator_enable(rdev);
2023
	mutex_unlock(&rdev->mutex);
2024

2025
	if (ret != 0 && rdev->supply)
2026 2027
		regulator_disable(rdev->supply);

2028 2029 2030 2031
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2032 2033 2034 2035 2036 2037
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2038
	if (rdev->ena_pin) {
2039 2040 2041 2042 2043 2044
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2045 2046 2047 2048 2049 2050 2051

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2052 2053 2054 2055 2056 2057
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2058 2059 2060 2061 2062
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2063
/* locks held by regulator_disable() */
2064
static int _regulator_disable(struct regulator_dev *rdev)
2065 2066 2067
{
	int ret = 0;

D
David Brownell 已提交
2068
	if (WARN(rdev->use_count <= 0,
2069
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2070 2071
		return -EIO;

2072
	/* are we the last user and permitted to disable ? */
2073 2074
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2075 2076

		/* we are last user */
2077
		if (_regulator_can_change_status(rdev)) {
2078 2079 2080 2081 2082 2083
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2084
			ret = _regulator_do_disable(rdev);
2085
			if (ret < 0) {
2086
				rdev_err(rdev, "failed to disable\n");
2087 2088 2089
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2090 2091
				return ret;
			}
2092 2093
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2106

2107 2108 2109 2110 2111 2112 2113
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2114 2115 2116
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2117
 *
2118
 * NOTE: this will only disable the regulator output if no other consumer
2119 2120
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2121 2122 2123
 */
int regulator_disable(struct regulator *regulator)
{
2124 2125
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2126

2127 2128 2129
	if (regulator->always_on)
		return 0;

2130
	mutex_lock(&rdev->mutex);
2131
	ret = _regulator_disable(rdev);
2132
	mutex_unlock(&rdev->mutex);
2133

2134 2135
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2136

2137 2138 2139 2140 2141
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2142
static int _regulator_force_disable(struct regulator_dev *rdev)
2143 2144 2145
{
	int ret = 0;

2146 2147 2148 2149 2150
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2151 2152 2153
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2154 2155
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2156
		return ret;
2157 2158
	}

2159 2160 2161 2162
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2176
	struct regulator_dev *rdev = regulator->rdev;
2177 2178
	int ret;

2179
	mutex_lock(&rdev->mutex);
2180
	regulator->uA_load = 0;
2181
	ret = _regulator_force_disable(regulator->rdev);
2182
	mutex_unlock(&rdev->mutex);
2183

2184 2185 2186
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2187

2188 2189 2190 2191
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
2239
	int ret;
2240

2241 2242 2243
	if (regulator->always_on)
		return 0;

2244 2245 2246
	if (!ms)
		return regulator_disable(regulator);

2247 2248 2249 2250
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

2251 2252 2253
	ret = queue_delayed_work(system_power_efficient_wq,
				 &rdev->disable_work,
				 msecs_to_jiffies(ms));
2254 2255 2256 2257
	if (ret < 0)
		return ret;
	else
		return 0;
2258 2259 2260
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2261 2262
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2263
	/* A GPIO control always takes precedence */
2264
	if (rdev->ena_pin)
2265 2266
		return rdev->ena_gpio_state;

2267
	/* If we don't know then assume that the regulator is always on */
2268
	if (!rdev->desc->ops->is_enabled)
2269
		return 1;
2270

2271
	return rdev->desc->ops->is_enabled(rdev);
2272 2273 2274 2275 2276 2277
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2278 2279 2280 2281 2282 2283 2284
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2285 2286 2287
 */
int regulator_is_enabled(struct regulator *regulator)
{
2288 2289
	int ret;

2290 2291 2292
	if (regulator->always_on)
		return 1;

2293 2294 2295 2296 2297
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2298 2299 2300
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2301 2302 2303 2304 2305
/**
 * regulator_can_change_voltage - check if regulator can change voltage
 * @regulator: regulator source
 *
 * Returns positive if the regulator driver backing the source/client
2306
 * can change its voltage, false otherwise. Useful for detecting fixed
2307 2308 2309 2310 2311 2312 2313 2314
 * or dummy regulators and disabling voltage change logic in the client
 * driver.
 */
int regulator_can_change_voltage(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	if (rdev->constraints &&
2315 2316 2317 2318 2319 2320 2321 2322 2323
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
			return 1;

		if (rdev->desc->continuous_voltage_range &&
		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
		    rdev->constraints->min_uV != rdev->constraints->max_uV)
			return 1;
	}
2324 2325 2326 2327 2328

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_can_change_voltage);

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2341 2342 2343 2344 2345 2346 2347
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

	if (!rdev->supply)
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2358
 * zero if this selector code can't be used on this system, or a
2359 2360 2361 2362
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2363 2364 2365
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;
2366

2367 2368 2369
	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

2370 2371 2372 2373 2374 2375 2376 2377 2378
	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		mutex_lock(&rdev->mutex);
		ret = ops->list_voltage(rdev, selector);
		mutex_unlock(&rdev->mutex);
	} else if (rdev->supply) {
		ret = regulator_list_voltage(rdev->supply, selector);
	} else {
2379
		return -EINVAL;
2380
	}
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2425 2426
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	 *vsel_reg = rdev->desc->vsel_reg;
	 *vsel_mask = rdev->desc->vsel_mask;

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2452 2453
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2491
	struct regulator_dev *rdev = regulator->rdev;
2492 2493
	int i, voltages, ret;

2494 2495 2496 2497
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2498
			return min_uV <= ret && ret <= max_uV;
2499 2500 2501 2502
		else
			return ret;
	}

2503 2504 2505 2506 2507
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2522
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2523

2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2573 2574 2575 2576
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2577
	int delay = 0;
2578
	int best_val = 0;
2579
	unsigned int selector;
2580
	int old_selector = -1;
2581 2582 2583

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2584 2585 2586
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2587 2588 2589 2590
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2591 2592
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2593 2594 2595 2596 2597 2598
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2599
	if (rdev->desc->ops->set_voltage) {
2600 2601
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2602 2603 2604 2605 2606 2607 2608 2609 2610

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2611
	} else if (rdev->desc->ops->set_voltage_sel) {
2612
		if (rdev->desc->ops->map_voltage) {
2613 2614
			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
							   max_uV);
2615 2616 2617 2618 2619
		} else {
			if (rdev->desc->ops->list_voltage ==
			    regulator_list_voltage_linear)
				ret = regulator_map_voltage_linear(rdev,
								min_uV, max_uV);
2620 2621 2622 2623
			else if (rdev->desc->ops->list_voltage ==
				 regulator_list_voltage_linear_range)
				ret = regulator_map_voltage_linear_range(rdev,
								min_uV, max_uV);
2624 2625 2626 2627
			else
				ret = regulator_map_voltage_iterate(rdev,
								min_uV, max_uV);
		}
2628

2629
		if (ret >= 0) {
2630 2631 2632
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2633 2634 2635
				if (old_selector == selector)
					ret = 0;
				else
2636 2637
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2638 2639 2640
			} else {
				ret = -EINVAL;
			}
2641
		}
2642 2643 2644
	} else {
		ret = -EINVAL;
	}
2645

2646
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2647 2648
	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
		&& old_selector != selector) {
2649

2650 2651 2652 2653 2654 2655
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2656
		}
2657

2658 2659 2660 2661 2662 2663 2664
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2665 2666
	}

2667 2668 2669
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2670
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2671 2672
				     (void *)data);
	}
2673

2674
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2675 2676 2677 2678

	return ret;
}

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2694
 * Regulator system constraints must be set for this regulator before
2695 2696 2697 2698 2699
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2700
	int ret = 0;
2701
	int old_min_uV, old_max_uV;
2702
	int current_uV;
2703 2704 2705

	mutex_lock(&rdev->mutex);

2706 2707 2708 2709 2710 2711 2712
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
	/* If we're trying to set a range that overlaps the current voltage,
	 * return succesfully even though the regulator does not support
	 * changing the voltage.
	 */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
			regulator->min_uV = min_uV;
			regulator->max_uV = max_uV;
			goto out;
		}
	}

2726
	/* sanity check */
2727 2728
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2729 2730 2731 2732 2733 2734 2735 2736
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2737

2738 2739 2740
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2741 2742
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2743

2744 2745
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2746
		goto out2;
2747

2748
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2749 2750
	if (ret < 0)
		goto out2;
2751

2752 2753 2754
out:
	mutex_unlock(&rdev->mutex);
	return ret;
2755 2756 2757 2758
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
	mutex_unlock(&rdev->mutex);
2759 2760 2761 2762
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
2776 2777
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2808
/**
2809 2810
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
2811 2812 2813 2814 2815 2816
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
2817
 * Drivers providing ramp_delay in regulation_constraints can use this as their
2818
 * set_voltage_time_sel() operation.
2819 2820 2821 2822 2823
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
2824
	unsigned int ramp_delay = 0;
2825
	int old_volt, new_volt;
2826 2827 2828 2829 2830 2831 2832

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
2833
		rdev_warn(rdev, "ramp_delay not set\n");
2834
		return 0;
2835
	}
2836

2837 2838 2839
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
2840

2841 2842 2843 2844
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2845
}
2846
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2847

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2895 2896
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2897
	int sel, ret;
2898 2899 2900 2901 2902

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2903
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2904
	} else if (rdev->desc->ops->get_voltage) {
2905
		ret = rdev->desc->ops->get_voltage(rdev);
2906 2907
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
2908 2909
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
2910 2911
	} else if (rdev->supply) {
		ret = regulator_get_voltage(rdev->supply);
2912
	} else {
2913
		return -EINVAL;
2914
	}
2915

2916 2917
	if (ret < 0)
		return ret;
2918
	return ret - rdev->constraints->uV_offset;
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
2947
 * @min_uA: Minimum supported current in uA
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
3034
	int regulator_curr_mode;
3035 3036 3037 3038 3039 3040 3041 3042 3043

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

3044 3045 3046 3047 3048 3049 3050 3051 3052
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

3053
	/* constraints check */
3054
	ret = regulator_mode_constrain(rdev, &mode);
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
3096
 * regulator_set_load - set regulator load
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
3119
 * On error a negative errno is returned.
3120
 */
3121
int regulator_set_load(struct regulator *regulator, int uA_load)
3122 3123
{
	struct regulator_dev *rdev = regulator->rdev;
3124
	int ret;
3125

3126 3127
	mutex_lock(&rdev->mutex);
	regulator->uA_load = uA_load;
3128
	ret = drms_uA_update(rdev);
3129
	mutex_unlock(&rdev->mutex);
3130

3131 3132
	return ret;
}
3133
EXPORT_SYMBOL_GPL(regulator_set_load);
3134

3135 3136 3137 3138
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3139
 * @enable: enable or disable bypass mode
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

	if (rdev->constraints &&
	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

3188 3189 3190
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
3191
 * @nb: notifier block
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
3206
 * @nb: notifier block
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

3218 3219 3220
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
3221
static int _notifier_call_chain(struct regulator_dev *rdev,
3222 3223 3224
				  unsigned long event, void *data)
{
	/* call rdev chain first */
3225
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3256 3257
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3258 3259 3260 3261 3262 3263 3264 3265
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3266
	while (--i >= 0)
3267 3268 3269 3270 3271 3272
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3273 3274 3275 3276 3277 3278 3279
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3295
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3296
	int i;
3297
	int ret = 0;
3298

3299 3300 3301 3302 3303 3304 3305
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3306 3307 3308 3309

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3310
	for (i = 0; i < num_consumers; i++) {
3311 3312
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3313
			goto err;
3314
		}
3315 3316 3317 3318 3319
	}

	return 0;

err:
3320 3321 3322 3323 3324 3325 3326
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3340 3341
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3342 3343 3344 3345 3346 3347
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3348
	int ret, r;
3349

3350
	for (i = num_consumers - 1; i >= 0; --i) {
3351 3352 3353 3354 3355 3356 3357 3358
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3359
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3360 3361 3362 3363 3364 3365
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
3366 3367 3368 3369 3370

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3431
 * @rdev: regulator source
3432
 * @event: notifier block
3433
 * @data: callback-specific data.
3434 3435 3436
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3437
 * Note lock must be held by caller.
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3464
	case REGULATOR_MODE_STANDBY:
3465 3466
		return REGULATOR_STATUS_STANDBY;
	default:
3467
		return REGULATOR_STATUS_UNDEFINED;
3468 3469 3470 3471
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

3499 3500 3501 3502
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
3503 3504
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
3505
{
3506 3507
	struct device *dev = kobj_to_dev(kobj);
	struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3508
	const struct regulator_ops *ops = rdev->desc->ops;
3509 3510 3511 3512 3513 3514 3515
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
3516 3517

	/* some attributes need specific methods to be displayed */
3518 3519 3520 3521 3522 3523 3524
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
3525
	}
3526

3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

3542
	/* some attributes are type-specific */
3543 3544
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3545 3546

	/* constraints need specific supporting methods */
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
3582

3583 3584 3585 3586
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	kfree(rdev);
3587 3588
}

3589 3590 3591 3592 3593 3594
static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
};

3595 3596
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3609
	if (!rdev->debugfs) {
3610 3611 3612 3613 3614 3615 3616 3617
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3618 3619
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3620 3621
}

3622 3623
/**
 * regulator_register - register regulator
3624
 * @regulator_desc: regulator to register
3625
 * @cfg: runtime configuration for regulator
3626 3627
 *
 * Called by regulator drivers to register a regulator.
3628 3629
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3630
 */
3631 3632
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3633
		   const struct regulator_config *cfg)
3634
{
3635
	const struct regulation_constraints *constraints = NULL;
3636
	const struct regulator_init_data *init_data;
3637
	struct regulator_config *config = NULL;
3638
	static atomic_t regulator_no = ATOMIC_INIT(-1);
3639
	struct regulator_dev *rdev;
3640
	struct device *dev;
3641
	int ret, i;
3642

3643
	if (regulator_desc == NULL || cfg == NULL)
3644 3645
		return ERR_PTR(-EINVAL);

3646
	dev = cfg->dev;
3647
	WARN_ON(!dev);
3648

3649 3650 3651
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3652 3653
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3654 3655
		return ERR_PTR(-EINVAL);

3656 3657 3658
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3659 3660
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3661 3662 3663 3664 3665 3666

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3667 3668 3669 3670
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3671

3672 3673 3674 3675
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

3686
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3687 3688 3689 3690 3691 3692
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

3693 3694 3695
	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3696
	rdev->reg_data = config->driver_data;
3697 3698
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3699 3700
	if (config->regmap)
		rdev->regmap = config->regmap;
3701
	else if (dev_get_regmap(dev, NULL))
3702
		rdev->regmap = dev_get_regmap(dev, NULL);
3703 3704
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3705 3706 3707
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3708
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3709

3710
	/* preform any regulator specific init */
3711
	if (init_data && init_data->regulator_init) {
3712
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3713 3714
		if (ret < 0)
			goto clean;
3715 3716 3717
	}

	/* register with sysfs */
3718
	rdev->dev.class = &regulator_class;
3719
	rdev->dev.parent = dev;
3720
	dev_set_name(&rdev->dev, "regulator.%lu",
3721
		    (unsigned long) atomic_inc_return(&regulator_no));
3722
	ret = device_register(&rdev->dev);
3723 3724
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3725
		goto clean;
3726
	}
3727 3728 3729

	dev_set_drvdata(&rdev->dev, rdev);

3730 3731
	if ((config->ena_gpio || config->ena_gpio_initialized) &&
	    gpio_is_valid(config->ena_gpio)) {
3732
		ret = regulator_ena_gpio_request(rdev, config);
3733 3734 3735
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
3736
			goto wash;
3737 3738 3739
		}
	}

3740
	/* set regulator constraints */
3741 3742 3743 3744
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3745 3746 3747
	if (ret < 0)
		goto scrub;

3748
	if (init_data && init_data->supply_regulator)
3749
		rdev->supply_name = init_data->supply_regulator;
3750
	else if (regulator_desc->supply_name)
3751
		rdev->supply_name = regulator_desc->supply_name;
3752

3753
	/* add consumers devices */
3754 3755 3756 3757
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3758
				init_data->consumer_supplies[i].supply);
3759 3760 3761 3762 3763
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3764
		}
3765
	}
3766 3767

	list_add(&rdev->list, &regulator_list);
3768 3769

	rdev_init_debugfs(rdev);
3770
out:
3771
	mutex_unlock(&regulator_list_mutex);
3772
	kfree(config);
3773
	return rdev;
D
David Brownell 已提交
3774

3775 3776 3777
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3778
scrub:
3779
	regulator_ena_gpio_free(rdev);
3780
	kfree(rdev->constraints);
3781
wash:
D
David Brownell 已提交
3782
	device_unregister(&rdev->dev);
3783 3784 3785 3786
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3787 3788 3789 3790
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3791 3792 3793 3794 3795
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3796
 * @rdev: regulator to unregister
3797 3798 3799 3800 3801 3802 3803 3804
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3805 3806 3807
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
3808
		regulator_put(rdev->supply);
3809
	}
3810
	mutex_lock(&regulator_list_mutex);
3811
	debugfs_remove_recursive(rdev->debugfs);
3812
	flush_work(&rdev->disable_work.work);
3813
	WARN_ON(rdev->open_count);
3814
	unset_regulator_supplies(rdev);
3815
	list_del(&rdev->list);
3816
	kfree(rdev->constraints);
3817
	regulator_ena_gpio_free(rdev);
3818
	of_node_put(rdev->dev.of_node);
3819
	device_unregister(&rdev->dev);
3820 3821 3822 3823 3824
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3825
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3848
			rdev_err(rdev, "failed to prepare\n");
3849 3850 3851 3852 3853 3854 3855 3856 3857
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
3872
		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3873 3874 3875 3876 3877
			if (!_regulator_is_enabled(rdev)) {
				error = _regulator_do_enable(rdev);
				if (error)
					ret = error;
			}
3878
		} else {
3879
			if (!have_full_constraints())
3880
				goto unlock;
3881
			if (!_regulator_is_enabled(rdev))
3882 3883
				goto unlock;

3884
			error = _regulator_do_disable(rdev);
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3913 3914
/**
 * rdev_get_drvdata - get rdev regulator driver data
3915
 * @rdev: regulator
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3952
 * @rdev: regulator
3953 3954 3955 3956 3957 3958 3959
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
4002
#endif
4003 4004

static const struct file_operations supply_map_fops = {
4005
#ifdef CONFIG_DEBUG_FS
4006 4007 4008
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
4009
};
4010

4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
#ifdef CONFIG_DEBUG_FS
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct list_head *list = s->private;
	struct regulator_dev *child;
	struct regulation_constraints *c;
	struct regulator *consumer;

	if (!rdev)
		return;

	seq_printf(s, "%*s%-*s %3d %4d %6d ",
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
		   rdev->use_count, rdev->open_count, rdev->bypass_count);

4029 4030
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
		if (consumer->dev->class == &regulator_class)
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
			   30 - (level + 1) * 3, dev_name(consumer->dev));

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
4058
			seq_printf(s, "%37dmV %5dmV",
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
				   consumer->min_uV / 1000,
				   consumer->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

	list_for_each_entry(child, list, list) {
		/* handle only non-root regulators supplied by current rdev */
		if (!child->supply || child->supply->rdev != rdev)
			continue;

		regulator_summary_show_subtree(s, child, level + 1);
	}
}

static int regulator_summary_show(struct seq_file *s, void *data)
{
	struct list_head *list = s->private;
	struct regulator_dev *rdev;

4083 4084
	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
	seq_puts(s, "-------------------------------------------------------------------------------\n");
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114

	mutex_lock(&regulator_list_mutex);

	list_for_each_entry(rdev, list, list) {
		if (rdev->supply)
			continue;

		regulator_summary_show_subtree(s, rdev, 0);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static int regulator_summary_open(struct inode *inode, struct file *file)
{
	return single_open(file, regulator_summary_show, inode->i_private);
}
#endif

static const struct file_operations regulator_summary_fops = {
#ifdef CONFIG_DEBUG_FS
	.open		= regulator_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
#endif
};

4115 4116
static int __init regulator_init(void)
{
4117 4118 4119 4120
	int ret;

	ret = class_register(&regulator_class);

4121
	debugfs_root = debugfs_create_dir("regulator", NULL);
4122
	if (!debugfs_root)
4123
		pr_warn("regulator: Failed to create debugfs directory\n");
4124

4125 4126
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
4127

4128 4129 4130
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
			    &regulator_list, &regulator_summary_fops);

4131 4132 4133
	regulator_dummy_init();

	return ret;
4134 4135 4136 4137
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
4138 4139 4140 4141

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
4142
	const struct regulator_ops *ops;
4143 4144 4145
	struct regulation_constraints *c;
	int enabled, ret;

4146 4147 4148 4149 4150 4151 4152 4153 4154
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

4155 4156 4157
	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
4158 4159 4160
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
4161 4162 4163 4164 4165
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

4166
		if (c && c->always_on)
4167 4168
			continue;

4169 4170 4171
		if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
			continue;

4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

4186
		if (have_full_constraints()) {
4187 4188
			/* We log since this may kill the system if it
			 * goes wrong. */
4189
			rdev_info(rdev, "disabling\n");
4190
			ret = _regulator_do_disable(rdev);
4191
			if (ret != 0)
4192
				rdev_err(rdev, "couldn't disable: %d\n", ret);
4193 4194 4195 4196 4197 4198
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
4199
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
4210
late_initcall_sync(regulator_init_complete);