core.c 149.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

M
Mark Brown 已提交
36 37
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 39 40 41 42 43 44 45 46
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

47 48
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
49 50
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
51
static LIST_HEAD(regulator_ena_gpio_list);
52
static LIST_HEAD(regulator_supply_alias_list);
53
static LIST_HEAD(regulator_coupler_list);
54
static bool has_full_constraints;
55

56 57
static struct dentry *debugfs_root;

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69
};

70 71 72 73 74 75 76
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
77
	struct gpio_desc *gpiod;
78 79 80 81
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

95
static int _regulator_is_enabled(struct regulator_dev *rdev);
96
static int _regulator_disable(struct regulator *regulator);
97 98
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99
static int _notifier_call_chain(struct regulator_dev *rdev,
100
				  unsigned long event, void *data);
101 102
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
103 104
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
105 106 107
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
108
static void destroy_regulator(struct regulator *regulator);
109
static void _regulator_put(struct regulator *regulator);
110

111
const char *rdev_get_name(struct regulator_dev *rdev)
112 113 114 115 116 117 118 119 120
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

121 122
static bool have_full_constraints(void)
{
123
	return has_full_constraints || of_have_populated_dt();
124 125
}

126 127 128 129 130 131 132 133 134 135 136 137 138
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

139 140 141
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
142
 * @ww_ctx:		w/w mutex acquire context
143 144 145 146 147 148 149
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
150 151
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
152
{
153 154 155 156 157 158 159
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
160
			rdev->ref_cnt++;
161 162 163 164 165 166 167
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
168
		}
169 170
	} else {
		lock = true;
171 172
	}

173 174 175 176 177 178 179 180
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
181 182
}

183 184 185 186 187 188 189 190 191 192 193
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
void regulator_lock(struct regulator_dev *rdev)
194
{
195
	regulator_lock_nested(rdev, NULL);
196
}
197
EXPORT_SYMBOL_GPL(regulator_lock);
198 199 200 201 202 203 204 205

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
206
void regulator_unlock(struct regulator_dev *rdev)
207
{
208
	mutex_lock(&regulator_nesting_mutex);
209

210 211 212
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
213
	}
214 215 216 217

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
218
}
219
EXPORT_SYMBOL_GPL(regulator_unlock);
220

221
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
222
{
223 224 225 226 227
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
228

229 230 231 232 233 234 235
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

236 237
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
238
{
239
	struct regulator_dev *c_rdev;
240
	int i;
241

242 243
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
244 245 246 247

		if (!c_rdev)
			continue;

248
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
249 250 251
			regulator_unlock_recursive(
					c_rdev->supply->rdev,
					c_rdev->coupling_desc.n_coupled);
252

253 254
		regulator_unlock(c_rdev);
	}
255 256
}

257 258 259 260
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
261
{
262
	struct regulator_dev *c_rdev;
263
	int i, err;
264

265 266
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
267

268 269
		if (!c_rdev)
			continue;
270

271 272 273 274 275 276 277
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
278

279 280 281 282 283 284 285
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

286
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
287 288 289 290 291 292 293 294
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
295 296
		}
	}
297 298 299 300 301 302 303

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
304 305
}

306
/**
307 308 309 310 311
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
312
 * Unlock all regulators related with rdev by coupling or supplying.
313
 */
314 315
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
316
{
317 318
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
319 320 321
}

/**
322 323
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
324
 * @ww_ctx:			w/w mutex acquire context
325 326
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
327
 * all regulators related with rdev by coupling or supplying.
328
 */
329 330
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
331
{
332 333 334
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
335

336
	mutex_lock(&regulator_list_mutex);
337

338
	ww_acquire_init(ww_ctx, &regulator_ww_class);
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
360 361
}

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
384 385
			if (regnode)
				goto err_node_put;
386
		} else {
387
			goto err_node_put;
388 389 390
		}
	}
	return NULL;
391 392 393 394

err_node_put:
	of_node_put(child);
	return regnode;
395 396
}

397 398 399 400 401 402
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
403
 * returns the device node corresponding to the regulator if found, else
404 405 406 407 408 409 410 411 412 413 414 415 416
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
417 418 419 420
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

421 422
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
423 424 425 426 427
		return NULL;
	}
	return regnode;
}

428
/* Platform voltage constraint check */
429 430
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
431 432 433
{
	BUG_ON(*min_uV > *max_uV);

434
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
435
		rdev_err(rdev, "voltage operation not allowed\n");
436 437 438 439 440 441 442 443
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

444 445
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
446
			 *min_uV, *max_uV);
447
		return -EINVAL;
448
	}
449 450 451 452

	return 0;
}

453 454 455 456 457 458
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

459 460 461
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
462 463 464
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
465 466
{
	struct regulator *regulator;
467
	struct regulator_voltage *voltage;
468 469

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
470
		voltage = &regulator->voltage[state];
471 472 473 474
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
475
		if (!voltage->min_uV && !voltage->max_uV)
476 477
			continue;

478 479 480 481
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
482 483
	}

484
	if (*min_uV > *max_uV) {
485 486
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
487
		return -EINVAL;
488
	}
489 490 491 492

	return 0;
}

493 494 495 496 497 498
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

499
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
500
		rdev_err(rdev, "current operation not allowed\n");
501 502 503 504 505 506 507 508
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

509 510
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
511
			 *min_uA, *max_uA);
512
		return -EINVAL;
513
	}
514 515 516 517 518

	return 0;
}

/* operating mode constraint check */
519 520
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
521
{
522
	switch (*mode) {
523 524 525 526 527 528
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
529
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
530 531 532
		return -EINVAL;
	}

533
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
534
		rdev_err(rdev, "mode operation not allowed\n");
535 536
		return -EPERM;
	}
537 538 539 540 541 542 543 544

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
545
	}
546 547

	return -EINVAL;
548 549
}

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

568 569 570
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
571
	struct regulator_dev *rdev = dev_get_drvdata(dev);
572
	int uV;
573

574
	regulator_lock(rdev);
575
	uV = regulator_get_voltage_rdev(rdev);
576
	regulator_unlock(rdev);
577

578 579 580
	if (uV < 0)
		return uV;
	return sprintf(buf, "%d\n", uV);
581
}
582
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
583 584 585 586

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
587
	struct regulator_dev *rdev = dev_get_drvdata(dev);
588 589 590

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
591
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
592

593 594
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
595 596 597
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

598
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
599
}
600
static DEVICE_ATTR_RO(name);
601

602
static const char *regulator_opmode_to_str(int mode)
603 604 605
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
606
		return "fast";
607
	case REGULATOR_MODE_NORMAL:
608
		return "normal";
609
	case REGULATOR_MODE_IDLE:
610
		return "idle";
611
	case REGULATOR_MODE_STANDBY:
612
		return "standby";
613
	}
614 615 616 617 618 619
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
620 621
}

D
David Brownell 已提交
622 623
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
624
{
625
	struct regulator_dev *rdev = dev_get_drvdata(dev);
626

D
David Brownell 已提交
627 628
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
629
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
630 631 632

static ssize_t regulator_print_state(char *buf, int state)
{
633 634 635 636 637 638 639 640
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
641 642 643 644
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
645 646
	ssize_t ret;

647
	regulator_lock(rdev);
648
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
649
	regulator_unlock(rdev);
D
David Brownell 已提交
650

651
	return ret;
D
David Brownell 已提交
652
}
653
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
654

D
David Brownell 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
688 689 690
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
691 692 693
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
694 695 696 697 698 699 700 701
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

702 703 704
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
705
	struct regulator_dev *rdev = dev_get_drvdata(dev);
706 707 708 709 710 711

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
712
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
713 714 715 716

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
717
	struct regulator_dev *rdev = dev_get_drvdata(dev);
718 719 720 721 722 723

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
724
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
725 726 727 728

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
729
	struct regulator_dev *rdev = dev_get_drvdata(dev);
730 731 732 733 734 735

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
736
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
737 738 739 740

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
741
	struct regulator_dev *rdev = dev_get_drvdata(dev);
742 743 744 745 746 747

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
748
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
749 750 751 752

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
753
	struct regulator_dev *rdev = dev_get_drvdata(dev);
754 755 756
	struct regulator *regulator;
	int uA = 0;

757
	regulator_lock(rdev);
758 759 760 761
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
762
	regulator_unlock(rdev);
763 764
	return sprintf(buf, "%d\n", uA);
}
765
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
766

767 768
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
769
{
770
	struct regulator_dev *rdev = dev_get_drvdata(dev);
771 772
	return sprintf(buf, "%d\n", rdev->use_count);
}
773
static DEVICE_ATTR_RO(num_users);
774

775 776
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
777
{
778
	struct regulator_dev *rdev = dev_get_drvdata(dev);
779 780 781 782 783 784 785 786 787

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
788
static DEVICE_ATTR_RO(type);
789 790 791 792

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
793
	struct regulator_dev *rdev = dev_get_drvdata(dev);
794 795 796

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
797 798
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
799 800 801 802

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
803
	struct regulator_dev *rdev = dev_get_drvdata(dev);
804 805 806

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
807 808
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
809 810 811 812

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
813
	struct regulator_dev *rdev = dev_get_drvdata(dev);
814 815 816

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
817 818
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
819 820 821 822

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
823
	struct regulator_dev *rdev = dev_get_drvdata(dev);
824

D
David Brownell 已提交
825 826
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
827
}
828 829
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
830 831 832 833

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
834
	struct regulator_dev *rdev = dev_get_drvdata(dev);
835

D
David Brownell 已提交
836 837
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
838
}
839 840
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
841 842 843 844

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
845
	struct regulator_dev *rdev = dev_get_drvdata(dev);
846

D
David Brownell 已提交
847 848
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
849
}
850 851
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
852 853 854 855

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
856
	struct regulator_dev *rdev = dev_get_drvdata(dev);
857

D
David Brownell 已提交
858 859
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
860
}
861 862
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
863 864 865 866

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
867
	struct regulator_dev *rdev = dev_get_drvdata(dev);
868

D
David Brownell 已提交
869 870
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
871
}
872 873
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
874 875 876 877

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
878
	struct regulator_dev *rdev = dev_get_drvdata(dev);
879

D
David Brownell 已提交
880 881
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
882
}
883 884 885
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
907

908 909
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
910
static int drms_uA_update(struct regulator_dev *rdev)
911 912 913 914 915
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

916 917 918 919
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
920 921
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
922
		return 0;
923
	}
924

925 926
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
927 928
		return 0;

929 930
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
931
		return -EINVAL;
932 933

	/* calc total requested load */
934 935 936 937
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
938

939 940
	current_uA += rdev->constraints->system_load;

941 942 943 944 945 946
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
947
		/* get output voltage */
948
		output_uV = regulator_get_voltage_rdev(rdev);
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

965 966 967 968 969 970 971 972 973 974 975
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
976

977 978 979
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
980 981 982
	}

	return err;
983 984 985
}

static int suspend_set_state(struct regulator_dev *rdev,
986
				    suspend_state_t state)
987 988
{
	int ret = 0;
989 990 991 992
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
993
		return 0;
994

995
	/* If we have no suspend mode configuration don't set anything;
996 997
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
998
	 */
999 1000
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
1001 1002
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
1003
			rdev_warn(rdev, "No configuration\n");
1004 1005 1006
		return 0;
	}

1007 1008
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1009
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1010 1011
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1012
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1013 1014 1015
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1016
	if (ret < 0) {
1017
		rdev_err(rdev, "failed to enabled/disable\n");
1018 1019 1020 1021 1022 1023
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1024
			rdev_err(rdev, "failed to set voltage\n");
1025 1026 1027 1028 1029 1030 1031
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1032
			rdev_err(rdev, "failed to set mode\n");
1033 1034 1035 1036
			return ret;
		}
	}

1037
	return ret;
1038 1039 1040 1041 1042
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
1043
	char buf[160] = "";
1044
	size_t len = sizeof(buf) - 1;
1045 1046
	int count = 0;
	int ret;
1047

1048
	if (constraints->min_uV && constraints->max_uV) {
1049
		if (constraints->min_uV == constraints->max_uV)
1050 1051
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1052
		else
1053 1054 1055 1056
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1057 1058 1059 1060
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1061
		ret = regulator_get_voltage_rdev(rdev);
1062
		if (ret > 0)
1063 1064
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1065 1066
	}

1067
	if (constraints->uV_offset)
1068 1069
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1070

1071
	if (constraints->min_uA && constraints->max_uA) {
1072
		if (constraints->min_uA == constraints->max_uA)
1073 1074
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1075
		else
1076 1077 1078 1079
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1080 1081 1082 1083 1084 1085
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1086 1087
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1088
	}
1089

1090
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1091
		count += scnprintf(buf + count, len - count, "fast ");
1092
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1093
		count += scnprintf(buf + count, len - count, "normal ");
1094
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1095
		count += scnprintf(buf + count, len - count, "idle ");
1096
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1097
		count += scnprintf(buf + count, len - count, "standby");
1098

1099
	if (!count)
1100
		scnprintf(buf, len, "no parameters");
1101

1102
	rdev_dbg(rdev, "%s\n", buf);
1103 1104

	if ((constraints->min_uV != constraints->max_uV) &&
1105
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1106 1107
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1108 1109
}

1110
static int machine_constraints_voltage(struct regulator_dev *rdev,
1111
	struct regulation_constraints *constraints)
1112
{
1113
	const struct regulator_ops *ops = rdev->desc->ops;
1114 1115 1116 1117
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1118 1119
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1120
		int current_uV = regulator_get_voltage_rdev(rdev);
1121 1122

		if (current_uV == -ENOTRECOVERABLE) {
1123
			/* This regulator can't be read and must be initialized */
1124 1125 1126 1127 1128 1129
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1130
			current_uV = regulator_get_voltage_rdev(rdev);
1131 1132
		}

1133
		if (current_uV < 0) {
1134 1135 1136
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
1137 1138
			return current_uV;
		}
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1159 1160
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1161
			ret = _regulator_do_set_voltage(
1162
				rdev, target_min, target_max);
1163 1164
			if (ret < 0) {
				rdev_err(rdev,
1165 1166
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1167 1168
				return ret;
			}
1169
		}
1170
	}
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1183 1184
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1185
		if (count == 1 && !cmin) {
1186
			cmin = 1;
1187
			cmax = INT_MAX;
1188 1189
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1190 1191
		}

1192 1193
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1194
			return 0;
1195

1196
		/* else require explicit machine-level constraints */
1197
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1198
			rdev_err(rdev, "invalid voltage constraints\n");
1199
			return -EINVAL;
1200 1201
		}

1202 1203 1204 1205
		/* no need to loop voltages if range is continuous */
		if (rdev->desc->continuous_voltage_range)
			return 0;

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1223 1224 1225
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1226
			return -EINVAL;
1227 1228 1229 1230
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1231 1232
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1233 1234 1235
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1236 1237
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1238 1239 1240 1241
			constraints->max_uV = max_uV;
		}
	}

1242 1243 1244
	return 0;
}

1245 1246 1247
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1248
	const struct regulator_ops *ops = rdev->desc->ops;
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1275 1276
static int _regulator_do_enable(struct regulator_dev *rdev);

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1289
	const struct regulation_constraints *constraints)
1290 1291
{
	int ret = 0;
1292
	const struct regulator_ops *ops = rdev->desc->ops;
1293

1294 1295 1296 1297 1298 1299
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1300 1301
	if (!rdev->constraints)
		return -ENOMEM;
1302

1303
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1304
	if (ret != 0)
1305
		return ret;
1306

1307
	ret = machine_constraints_current(rdev, rdev->constraints);
1308
	if (ret != 0)
1309
		return ret;
1310

1311 1312 1313 1314 1315
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1316
			return ret;
1317 1318 1319
		}
	}

1320
	/* do we need to setup our suspend state */
1321
	if (rdev->constraints->initial_state) {
1322
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1323
		if (ret < 0) {
1324
			rdev_err(rdev, "failed to set suspend state\n");
1325
			return ret;
1326 1327
		}
	}
1328

1329
	if (rdev->constraints->initial_mode) {
1330
		if (!ops->set_mode) {
1331
			rdev_err(rdev, "no set_mode operation\n");
1332
			return -EINVAL;
1333 1334
		}

1335
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1336
		if (ret < 0) {
1337
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1338
			return ret;
1339
		}
1340 1341 1342 1343 1344 1345
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1346 1347
	}

1348 1349
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1350 1351 1352
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1353
			return ret;
1354 1355 1356
		}
	}

S
Stephen Boyd 已提交
1357 1358 1359 1360
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1361
			return ret;
S
Stephen Boyd 已提交
1362 1363 1364
		}
	}

S
Stephen Boyd 已提交
1365 1366 1367 1368
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1369
			return ret;
S
Stephen Boyd 已提交
1370 1371 1372
		}
	}

1373 1374 1375 1376 1377
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1378
			return ret;
1379 1380 1381
		}
	}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1393 1394 1395 1396
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1397 1398 1399 1400 1401 1402 1403 1404 1405
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1406 1407 1408 1409 1410
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
			rdev_err(rdev, "failed to enable\n");
			return ret;
		}
1411 1412 1413

		if (rdev->constraints->always_on)
			rdev->use_count++;
1414 1415
	}

1416
	print_constraints(rdev);
1417
	return 0;
1418 1419 1420 1421
}

/**
 * set_supply - set regulator supply regulator
1422 1423
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1424 1425 1426 1427 1428 1429
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1430
		      struct regulator_dev *supply_rdev)
1431 1432 1433
{
	int err;

1434 1435
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1436 1437 1438
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1439
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1440 1441
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1442
		return err;
1443
	}
1444
	supply_rdev->open_count++;
1445 1446

	return 0;
1447 1448 1449
}

/**
1450
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1451
 * @rdev:         regulator source
1452
 * @consumer_dev_name: dev_name() string for device supply applies to
1453
 * @supply:       symbolic name for supply
1454 1455 1456 1457 1458 1459 1460
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1461 1462
				      const char *consumer_dev_name,
				      const char *supply)
1463 1464
{
	struct regulator_map *node;
1465
	int has_dev;
1466 1467 1468 1469

	if (supply == NULL)
		return -EINVAL;

1470 1471 1472 1473 1474
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1475
	list_for_each_entry(node, &regulator_map_list, list) {
1476 1477 1478 1479
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1480
			continue;
1481 1482
		}

1483 1484 1485
		if (strcmp(node->supply, supply) != 0)
			continue;

1486 1487 1488 1489 1490 1491
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1492 1493 1494
		return -EBUSY;
	}

1495
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1496 1497 1498 1499 1500 1501
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1502 1503 1504 1505 1506 1507
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1508 1509
	}

1510 1511 1512 1513
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1514 1515 1516 1517 1518 1519 1520
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1521
			kfree(node->dev_name);
1522 1523 1524 1525 1526
			kfree(node);
		}
	}
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1576
#define REG_STR_SIZE	64
1577 1578 1579 1580 1581 1582

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	int err;

	if (dev) {
		char buf[REG_STR_SIZE];
		int size;

		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			return NULL;

		supply_name = kstrdup(buf, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	} else {
		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	}
1602 1603

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1604 1605
	if (regulator == NULL) {
		kfree(supply_name);
1606
		return NULL;
1607
	}
1608 1609

	regulator->rdev = rdev;
1610 1611 1612
	regulator->supply_name = supply_name;

	regulator_lock(rdev);
1613
	list_add(&regulator->list, &rdev->consumer_list);
1614
	regulator_unlock(rdev);
1615 1616

	if (dev) {
1617 1618
		regulator->dev = dev;

1619
		/* Add a link to the device sysfs entry */
1620
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1621
					       supply_name);
1622
		if (err) {
1623
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1624
				  dev->kobj.name, err);
1625
			/* non-fatal */
1626
		}
1627 1628
	}

1629
	regulator->debugfs = debugfs_create_dir(supply_name,
1630
						rdev->debugfs);
1631
	if (!regulator->debugfs) {
1632
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1633 1634 1635 1636
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1637
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1638
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1639
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1640 1641 1642
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1643
	}
1644

1645 1646 1647 1648 1649
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1650
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1651 1652 1653
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1654 1655 1656
	return regulator;
}

1657 1658
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1659 1660
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1661 1662 1663
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1664 1665
}

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1714 1715 1716 1717 1718
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1719
 */
1720
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1721
						  const char *supply)
1722
{
1723
	struct regulator_dev *r = NULL;
1724
	struct device_node *node;
1725 1726
	struct regulator_map *map;
	const char *devname = NULL;
1727

1728 1729
	regulator_supply_alias(&dev, &supply);

1730 1731 1732
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1733
		if (node) {
1734 1735 1736
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1737

1738
			/*
1739 1740
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1741
			 */
1742
			return ERR_PTR(-EPROBE_DEFER);
1743
		}
1744 1745 1746
	}

	/* if not found, try doing it non-dt way */
1747 1748 1749
	if (dev)
		devname = dev_name(dev);

1750
	mutex_lock(&regulator_list_mutex);
1751 1752 1753 1754 1755 1756
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1757 1758
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1759 1760
			r = map->regulator;
			break;
1761
		}
1762
	}
1763
	mutex_unlock(&regulator_list_mutex);
1764

1765 1766 1767 1768
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1769 1770 1771 1772
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1773 1774
}

1775 1776 1777 1778 1779 1780
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

1781
	/* No supply to resolve? */
1782 1783 1784 1785 1786 1787 1788
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1789 1790 1791 1792
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1793 1794 1795 1796
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1797 1798
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1799
			get_device(&r->dev);
1800 1801 1802 1803 1804
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1805 1806
	}

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1820 1821
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1822 1823
	if (ret < 0) {
		put_device(&r->dev);
1824
		return ret;
1825
	}
1826 1827

	ret = set_supply(rdev, r);
1828 1829
	if (ret < 0) {
		put_device(&r->dev);
1830
		return ret;
1831
	}
1832

1833 1834 1835 1836 1837 1838
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1839
		ret = regulator_enable(rdev->supply);
1840
		if (ret < 0) {
1841
			_regulator_put(rdev->supply);
1842
			rdev->supply = NULL;
1843
			return ret;
1844
		}
1845 1846 1847 1848 1849
	}

	return 0;
}

1850
/* Internal regulator request function */
1851 1852
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1853 1854
{
	struct regulator_dev *rdev;
1855
	struct regulator *regulator;
1856
	struct device_link *link;
1857
	int ret;
1858

1859 1860 1861 1862 1863
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1864
	if (id == NULL) {
1865
		pr_err("get() with no identifier\n");
1866
		return ERR_PTR(-EINVAL);
1867 1868
	}

1869
	rdev = regulator_dev_lookup(dev, id);
1870 1871
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1872

1873 1874 1875 1876 1877 1878
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1879

1880 1881 1882 1883 1884
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1885

1886 1887 1888 1889 1890 1891 1892
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
1893
			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1894 1895 1896
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1897

1898 1899 1900 1901
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1902

1903 1904 1905
		default:
			return ERR_PTR(-ENODEV);
		}
1906 1907
	}

1908 1909
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1910 1911
		put_device(&rdev->dev);
		return regulator;
1912 1913
	}

1914
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1915
		regulator = ERR_PTR(-EBUSY);
1916 1917
		put_device(&rdev->dev);
		return regulator;
1918 1919
	}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1930 1931 1932
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1933 1934
		put_device(&rdev->dev);
		return regulator;
1935 1936
	}

1937
	if (!try_module_get(rdev->owner)) {
1938
		regulator = ERR_PTR(-EPROBE_DEFER);
1939 1940 1941
		put_device(&rdev->dev);
		return regulator;
	}
1942

1943 1944 1945 1946
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
W
Wen Yang 已提交
1947
		put_device(&rdev->dev);
1948
		return regulator;
1949 1950
	}

1951
	rdev->open_count++;
1952
	if (get_type == EXCLUSIVE_GET) {
1953 1954 1955 1956 1957 1958 1959 1960 1961
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1962 1963 1964
	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
	if (!IS_ERR_OR_NULL(link))
		regulator->device_link = true;
1965

1966 1967
	return regulator;
}
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1984
	return _regulator_get(dev, id, NORMAL_GET);
1985
}
1986 1987
EXPORT_SYMBOL_GPL(regulator_get);

1988 1989 1990 1991 1992 1993 1994
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1995 1996 1997
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2011
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2012 2013 2014
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2015 2016 2017 2018 2019 2020
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2021
 * or IS_ERR() condition containing errno.
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2037
	return _regulator_get(dev, id, OPTIONAL_GET);
2038 2039 2040
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2041
static void destroy_regulator(struct regulator *regulator)
2042
{
2043
	struct regulator_dev *rdev = regulator->rdev;
2044

2045 2046
	debugfs_remove_recursive(regulator->debugfs);

2047
	if (regulator->dev) {
2048 2049
		if (regulator->device_link)
			device_link_remove(regulator->dev, &rdev->dev);
2050 2051

		/* remove any sysfs entries */
2052
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2053 2054
	}

2055
	regulator_lock(rdev);
2056 2057
	list_del(&regulator->list);

2058 2059
	rdev->open_count--;
	rdev->exclusive = 0;
2060
	regulator_unlock(rdev);
2061

2062
	kfree_const(regulator->supply_name);
2063
	kfree(regulator);
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
}

/* regulator_list_mutex lock held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (IS_ERR_OR_NULL(regulator))
		return;

	lockdep_assert_held_once(&regulator_list_mutex);

	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

	rdev = regulator->rdev;

	destroy_regulator(regulator);
2082

2083
	module_put(rdev->owner);
W
Wen Yang 已提交
2084
	put_device(&rdev->dev);
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2099 2100 2101 2102
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2180 2181
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2182
					 struct device *alias_dev,
2183
					 const char *const *alias_id,
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2221
					    const char *const *id,
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2232 2233 2234 2235
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
2236
	struct regulator_enable_gpio *pin, *new_pin;
2237
	struct gpio_desc *gpiod;
2238

2239
	gpiod = config->ena_gpiod;
2240 2241 2242
	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);

	mutex_lock(&regulator_list_mutex);
2243

2244
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2245
		if (pin->gpiod == gpiod) {
2246
			rdev_dbg(rdev, "GPIO is already used\n");
2247 2248 2249 2250
			goto update_ena_gpio_to_rdev;
		}
	}

2251 2252
	if (new_pin == NULL) {
		mutex_unlock(&regulator_list_mutex);
2253
		return -ENOMEM;
2254 2255 2256 2257
	}

	pin = new_pin;
	new_pin = NULL;
2258

2259
	pin->gpiod = gpiod;
2260 2261 2262 2263 2264
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
2265 2266 2267 2268

	mutex_unlock(&regulator_list_mutex);
	kfree(new_pin);

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2281
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2282 2283
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2284
				gpiod_put(pin->gpiod);
2285 2286
				list_del(&pin->list);
				kfree(pin);
2287 2288
				rdev->ena_pin = NULL;
				return;
2289 2290 2291 2292 2293 2294 2295
			} else {
				pin->request_count--;
			}
		}
	}
}

2296
/**
2297 2298 2299 2300
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2314
			gpiod_set_value_cansleep(pin->gpiod, 1);
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2325
			gpiod_set_value_cansleep(pin->gpiod, 0);
2326 2327 2328 2329 2330 2331 2332
			pin->enable_count = 0;
		}
	}

	return 0;
}

2333 2334 2335 2336 2337 2338
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2339
 *     Documentation/timers/timers-howto.rst
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
/**
 * _regulator_check_status_enabled
 *
 * A helper function to check if the regulator status can be interpreted
 * as 'regulator is enabled'.
 * @rdev: the regulator device to check
 *
 * Return:
 * * 1			- if status shows regulator is in enabled state
 * * 0			- if not enabled state
 * * Error Value	- as received from ops->get_status()
 */
static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
{
	int ret = rdev->desc->ops->get_status(rdev);

	if (ret < 0) {
		rdev_info(rdev, "get_status returned error: %d\n", ret);
		return ret;
	}

	switch (ret) {
	case REGULATOR_STATUS_OFF:
	case REGULATOR_STATUS_ERROR:
	case REGULATOR_STATUS_UNDEFINED:
		return 0;
	default:
		return 1;
	}
}

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
2433
			 * detected and we get a penalty of
2434 2435 2436 2437 2438 2439 2440 2441 2442
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2443
	if (rdev->ena_pin) {
2444 2445 2446 2447 2448 2449
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2450
	} else if (rdev->desc->ops->enable) {
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	/* If poll_enabled_time is set, poll upto the delay calculated
	 * above, delaying poll_enabled_time uS to check if the regulator
	 * actually got enabled.
	 * If the regulator isn't enabled after enable_delay has
	 * expired, return -ETIMEDOUT.
	 */
	if (rdev->desc->poll_enabled_time) {
		unsigned int time_remaining = delay;

		while (time_remaining > 0) {
			_regulator_enable_delay(rdev->desc->poll_enabled_time);

			if (rdev->desc->ops->get_status) {
				ret = _regulator_check_status_enabled(rdev);
				if (ret < 0)
					return ret;
				else if (ret)
					break;
			} else if (rdev->desc->ops->is_enabled(rdev))
				break;

			time_remaining -= rdev->desc->poll_enabled_time;
		}

		if (time_remaining <= 0) {
			rdev_err(rdev, "Enabled check timed out\n");
			return -ETIMEDOUT;
		}
	} else {
		_regulator_enable_delay(delay);
	}
2494 2495 2496 2497 2498 2499

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2559
/* locks held by regulator_enable() */
2560
static int _regulator_enable(struct regulator *regulator)
2561
{
2562
	struct regulator_dev *rdev = regulator->rdev;
2563
	int ret;
2564

2565 2566
	lockdep_assert_held_once(&rdev->mutex.base);

2567
	if (rdev->use_count == 0 && rdev->supply) {
2568
		ret = _regulator_enable(rdev->supply);
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2579

2580 2581 2582
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2583

2584 2585 2586 2587
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2588
			if (!regulator_ops_is_valid(rdev,
2589 2590
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2591
				goto err_consumer_disable;
2592
			}
2593

2594
			ret = _regulator_do_enable(rdev);
2595
			if (ret < 0)
2596
				goto err_consumer_disable;
2597

2598 2599
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2600
		} else if (ret < 0) {
2601
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2602
			goto err_consumer_disable;
2603
		}
2604
		/* Fallthrough on positive return values - already enabled */
2605 2606
	}

2607 2608 2609
	rdev->use_count++;

	return 0;
2610

2611 2612 2613
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2614
err_disable_supply:
2615
	if (rdev->use_count == 0 && rdev->supply)
2616
		_regulator_disable(rdev->supply);
2617 2618

	return ret;
2619 2620 2621 2622 2623 2624
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2625 2626 2627 2628
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2629
 * NOTE: the output value can be set by other drivers, boot loader or may be
2630
 * hardwired in the regulator.
2631 2632 2633
 */
int regulator_enable(struct regulator *regulator)
{
2634
	struct regulator_dev *rdev = regulator->rdev;
2635
	struct ww_acquire_ctx ww_ctx;
2636
	int ret;
2637

2638
	regulator_lock_dependent(rdev, &ww_ctx);
2639
	ret = _regulator_enable(regulator);
2640
	regulator_unlock_dependent(rdev, &ww_ctx);
2641

2642 2643 2644 2645
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2646 2647 2648 2649 2650 2651
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2652
	if (rdev->ena_pin) {
2653 2654 2655 2656 2657 2658
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2659 2660 2661 2662 2663 2664 2665

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2666 2667 2668 2669 2670 2671
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2672 2673 2674 2675 2676
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2677
/* locks held by regulator_disable() */
2678
static int _regulator_disable(struct regulator *regulator)
2679
{
2680
	struct regulator_dev *rdev = regulator->rdev;
2681 2682
	int ret = 0;

2683
	lockdep_assert_held_once(&rdev->mutex.base);
2684

D
David Brownell 已提交
2685
	if (WARN(rdev->use_count <= 0,
2686
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2687 2688
		return -EIO;

2689
	/* are we the last user and permitted to disable ? */
2690 2691
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2692 2693

		/* we are last user */
2694
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2695 2696 2697 2698 2699 2700
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2701
			ret = _regulator_do_disable(rdev);
2702
			if (ret < 0) {
2703
				rdev_err(rdev, "failed to disable\n");
2704 2705 2706
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2707 2708
				return ret;
			}
2709 2710
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2711 2712 2713 2714 2715 2716
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2717

2718 2719 2720
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2721 2722 2723
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2724
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2725
		ret = _regulator_disable(rdev->supply);
2726

2727 2728 2729 2730 2731 2732 2733
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2734 2735 2736
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2737
 *
2738
 * NOTE: this will only disable the regulator output if no other consumer
2739 2740
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2741 2742 2743
 */
int regulator_disable(struct regulator *regulator)
{
2744
	struct regulator_dev *rdev = regulator->rdev;
2745
	struct ww_acquire_ctx ww_ctx;
2746
	int ret;
2747

2748
	regulator_lock_dependent(rdev, &ww_ctx);
2749
	ret = _regulator_disable(regulator);
2750
	regulator_unlock_dependent(rdev, &ww_ctx);
2751

2752 2753 2754 2755 2756
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2757
static int _regulator_force_disable(struct regulator_dev *rdev)
2758 2759 2760
{
	int ret = 0;

2761
	lockdep_assert_held_once(&rdev->mutex.base);
2762

2763 2764 2765 2766 2767
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2768 2769 2770
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2771 2772
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2773
		return ret;
2774 2775
	}

2776 2777 2778 2779
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2793
	struct regulator_dev *rdev = regulator->rdev;
2794
	struct ww_acquire_ctx ww_ctx;
2795 2796
	int ret;

2797
	regulator_lock_dependent(rdev, &ww_ctx);
2798

2799
	ret = _regulator_force_disable(regulator->rdev);
2800

2801 2802
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2803 2804 2805 2806 2807 2808

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2809 2810
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2811

2812
	regulator_unlock_dependent(rdev, &ww_ctx);
2813

2814 2815 2816 2817
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2818 2819 2820 2821
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2822
	struct ww_acquire_ctx ww_ctx;
2823
	int count, i, ret;
2824 2825
	struct regulator *regulator;
	int total_count = 0;
2826

2827
	regulator_lock_dependent(rdev, &ww_ctx);
2828

2829 2830 2831 2832 2833 2834 2835 2836
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
		}
2851
	}
2852
	WARN_ON(!total_count);
2853

2854 2855 2856 2857
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2858 2859 2860 2861 2862
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2863
 * @ms: milliseconds until the regulator is disabled
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2876 2877 2878
	if (!ms)
		return regulator_disable(regulator);

2879
	regulator_lock(rdev);
2880
	regulator->deferred_disables++;
2881 2882
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2883
	regulator_unlock(rdev);
2884

2885
	return 0;
2886 2887 2888
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2889 2890
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2891
	/* A GPIO control always takes precedence */
2892
	if (rdev->ena_pin)
2893 2894
		return rdev->ena_gpio_state;

2895
	/* If we don't know then assume that the regulator is always on */
2896
	if (!rdev->desc->ops->is_enabled)
2897
		return 1;
2898

2899
	return rdev->desc->ops->is_enabled(rdev);
2900 2901
}

2902 2903
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2915
			regulator_lock(rdev);
2916 2917
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2918
			regulator_unlock(rdev);
2919
	} else if (rdev->is_switch && rdev->supply) {
2920 2921
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2936 2937 2938 2939
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2940 2941 2942 2943 2944 2945 2946
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2947 2948 2949
 */
int regulator_is_enabled(struct regulator *regulator)
{
2950 2951
	int ret;

2952 2953 2954
	if (regulator->always_on)
		return 1;

2955
	regulator_lock(regulator->rdev);
2956
	ret = _regulator_is_enabled(regulator->rdev);
2957
	regulator_unlock(regulator->rdev);
2958 2959

	return ret;
2960 2961 2962
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2975 2976 2977
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2978
	if (!rdev->is_switch || !rdev->supply)
2979 2980 2981
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2992
 * zero if this selector code can't be used on this system, or a
2993 2994 2995 2996
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2997
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2998 2999 3000
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
3033 3034
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3035 3036 3037 3038

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

3039 3040
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3060 3061
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3087 3088 3089 3090 3091 3092 3093
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3094
 * Returns a boolean.
3095 3096 3097 3098
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3099
	struct regulator_dev *rdev = regulator->rdev;
3100 3101
	int i, voltages, ret;

3102
	/* If we can't change voltage check the current voltage */
3103
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3104 3105
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3106
			return min_uV <= ret && ret <= max_uV;
3107 3108 3109 3110
		else
			return ret;
	}

3111 3112 3113 3114 3115
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3116 3117
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3118
		return 0;
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3130
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3131

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3146 3147 3148 3149 3150
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3151 3152 3153
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3154 3155 3156 3157 3158 3159 3160
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3161
	data.old_uV = regulator_get_voltage_rdev(rdev);
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3185
	data.old_uV = regulator_get_voltage_rdev(rdev);
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3263 3264 3265 3266 3267 3268 3269 3270 3271
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3272 3273
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3274 3275 3276 3277 3278 3279
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3280 3281

	if (ramp_delay == 0) {
3282
		rdev_dbg(rdev, "ramp_delay not set\n");
3283 3284 3285 3286 3287 3288
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3289 3290 3291 3292
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3293
	int delay = 0;
3294
	int best_val = 0;
3295
	unsigned int selector;
3296
	int old_selector = -1;
3297
	const struct regulator_ops *ops = rdev->desc->ops;
3298
	int old_uV = regulator_get_voltage_rdev(rdev);
3299 3300 3301

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3302 3303 3304
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3305 3306 3307 3308
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3309
	if (_regulator_is_enabled(rdev) &&
3310 3311
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3312 3313 3314 3315
		if (old_selector < 0)
			return old_selector;
	}

3316
	if (ops->set_voltage) {
3317 3318
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3319 3320

		if (ret >= 0) {
3321 3322 3323
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3324
			else
3325
				best_val = regulator_get_voltage_rdev(rdev);
3326 3327
		}

3328
	} else if (ops->set_voltage_sel) {
3329
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3330
		if (ret >= 0) {
3331
			best_val = ops->list_voltage(rdev, ret);
3332 3333
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3334 3335
				if (old_selector == selector)
					ret = 0;
3336 3337 3338
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3339
				else
3340 3341
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3342 3343 3344
			} else {
				ret = -EINVAL;
			}
3345
		}
3346 3347 3348
	} else {
		ret = -EINVAL;
	}
3349

3350 3351
	if (ret)
		goto out;
3352

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3370
		}
3371
	}
3372

3373 3374 3375
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3376 3377
	}

3378 3379 3380 3381 3382 3383
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3384 3385
	}

3386
	if (best_val >= 0) {
3387 3388
		unsigned long data = best_val;

3389
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3390 3391
				     (void *)data);
	}
3392

3393
out:
3394
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3395 3396 3397 3398

	return ret;
}

3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3425
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3426 3427
					  int min_uV, int max_uV,
					  suspend_state_t state)
3428 3429
{
	struct regulator_dev *rdev = regulator->rdev;
3430
	struct regulator_voltage *voltage = &regulator->voltage[state];
3431
	int ret = 0;
3432
	int old_min_uV, old_max_uV;
3433
	int current_uV;
3434

3435 3436 3437 3438
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3439
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3440 3441
		goto out;

3442
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3443
	 * return successfully even though the regulator does not support
3444 3445
	 * changing the voltage.
	 */
3446
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3447
		current_uV = regulator_get_voltage_rdev(rdev);
3448
		if (min_uV <= current_uV && current_uV <= max_uV) {
3449 3450
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3451 3452 3453 3454
			goto out;
		}
	}

3455
	/* sanity check */
3456 3457
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3458 3459 3460 3461 3462 3463 3464 3465
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3466

3467
	/* restore original values in case of error */
3468 3469 3470 3471
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3472

3473 3474
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3475 3476 3477 3478
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3479

3480 3481 3482 3483
out:
	return ret;
}

3484 3485
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3486 3487 3488 3489 3490
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3491 3492 3493
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3494 3495
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3496 3497 3498 3499 3500 3501
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3502
			goto out;
3503 3504
		}

M
Mark Brown 已提交
3505
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3506 3507
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3508
			goto out;
3509 3510 3511 3512
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3513
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3514 3515
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3516
			goto out;
3517 3518 3519 3520 3521 3522 3523
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3524
				best_supply_uV, INT_MAX, state);
3525 3526 3527
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3528
			goto out;
3529 3530 3531
		}
	}

3532 3533 3534 3535 3536
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3537
	if (ret < 0)
3538
		goto out;
3539

3540 3541
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3542
				best_supply_uV, INT_MAX, state);
3543 3544 3545 3546 3547 3548 3549
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3550
out:
3551
	return ret;
3552
}
3553
EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3554

3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3565
		*current_uV = regulator_get_voltage_rdev(rdev);
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3597
	int i, ret, max_spread;
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3631
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3642

3643 3644 3645 3646 3647 3648 3649 3650
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3651 3652
	max_spread = constraints->max_spread[0];

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3670
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3708 3709 3710 3711
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3712
			ret = regulator_get_voltage_rdev(rdev);
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

3728 3729
int regulator_do_balance_voltage(struct regulator_dev *rdev,
				 suspend_state_t state, bool skip_coupled)
3730 3731 3732 3733 3734 3735
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3736 3737
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3738 3739

	c_rdevs = c_desc->coupled_rdevs;
3740
	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3767
			if (test_bit(i, &c_rdev_done))
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3795

3796 3797
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3798

3799 3800 3801
		if (ret < 0)
			goto out;

3802 3803
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
3804 3805 3806 3807

	} while (n_coupled > 1);

out:
3808 3809 3810
	return ret;
}

3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_coupler *coupler = c_desc->coupler;
	bool skip_coupled = false;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		skip_coupled = true;

	if (c_desc->n_resolved < c_desc->n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);

	return regulator_do_balance_voltage(rdev, state, skip_coupled);
}

3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3857 3858
	struct ww_acquire_ctx ww_ctx;
	int ret;
3859

3860
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3861

3862 3863
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3864

3865
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3866

3867 3868 3869 3870
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3883
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3937 3938
	struct ww_acquire_ctx ww_ctx;
	int ret;
3939 3940 3941 3942 3943

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3944
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3945 3946 3947 3948

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3949
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3950 3951 3952 3953 3954

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3968 3969
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3970 3971 3972 3973 3974
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3975 3976 3977 3978 3979
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3980
	/* Currently requires operations to do this */
3981
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

4004
/**
4005 4006
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
4007 4008 4009 4010 4011 4012
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
4013
 * Drivers providing ramp_delay in regulation_constraints can use this as their
4014
 * set_voltage_time_sel() operation.
4015 4016 4017 4018 4019
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
4020
	int old_volt, new_volt;
4021

4022 4023 4024
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
4025

4026 4027 4028
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

4029 4030 4031 4032 4033
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4034
}
4035
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4036

4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
4048
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4049 4050
	int ret, min_uV, max_uV;

4051
	regulator_lock(rdev);
4052 4053 4054 4055 4056 4057 4058 4059

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
4060
	if (!voltage->min_uV && !voltage->max_uV) {
4061 4062 4063 4064
		ret = -EINVAL;
		goto out;
	}

4065 4066
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
4067 4068 4069 4070 4071 4072

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

4073
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4074 4075 4076 4077 4078 4079
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
4080
	regulator_unlock(rdev);
4081 4082 4083 4084
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

4085
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4086
{
4087
	int sel, ret;
4088 4089 4090 4091 4092 4093 4094 4095
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
4096 4097 4098 4099 4100
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
4101

4102
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4103 4104
		}
	}
4105 4106 4107 4108 4109

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4110
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4111
	} else if (rdev->desc->ops->get_voltage) {
4112
		ret = rdev->desc->ops->get_voltage(rdev);
4113 4114
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4115 4116
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4117
	} else if (rdev->supply) {
4118
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4119
	} else {
4120
		return -EINVAL;
4121
	}
4122

4123 4124
	if (ret < 0)
		return ret;
4125
	return ret - rdev->constraints->uV_offset;
4126
}
4127
EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4140
	struct ww_acquire_ctx ww_ctx;
4141 4142
	int ret;

4143
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4144
	ret = regulator_get_voltage_rdev(regulator->rdev);
4145
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4146 4147 4148 4149 4150 4151 4152 4153

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4154
 * @min_uA: Minimum supported current in uA
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4173
	regulator_lock(rdev);
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4188
	regulator_unlock(rdev);
4189 4190 4191 4192
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4193 4194 4195 4196 4197 4198 4199 4200 4201
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4202 4203 4204 4205
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4206
	regulator_lock(rdev);
4207
	ret = _regulator_get_current_limit_unlocked(rdev);
4208
	regulator_unlock(rdev);
4209

4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4243
	int regulator_curr_mode;
4244

4245
	regulator_lock(rdev);
4246 4247 4248 4249 4250 4251 4252

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4253 4254 4255 4256 4257 4258 4259 4260 4261
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4262
	/* constraints check */
4263
	ret = regulator_mode_constrain(rdev, &mode);
4264 4265 4266 4267 4268
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4269
	regulator_unlock(rdev);
4270 4271 4272 4273
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4274 4275 4276 4277 4278 4279 4280 4281 4282
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4283 4284 4285 4286
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4287
	regulator_lock(rdev);
4288
	ret = _regulator_get_mode_unlocked(rdev);
4289
	regulator_unlock(rdev);
4290

4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4306 4307 4308 4309 4310
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4311
	regulator_lock(rdev);
4312 4313 4314 4315 4316 4317 4318 4319 4320

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4321
	regulator_unlock(rdev);
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4339
/**
4340
 * regulator_set_load - set regulator load
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4363 4364 4365 4366 4367 4368 4369 4370
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4371
 * On error a negative errno is returned.
4372
 */
4373
int regulator_set_load(struct regulator *regulator, int uA_load)
4374 4375
{
	struct regulator_dev *rdev = regulator->rdev;
4376 4377
	int old_uA_load;
	int ret = 0;
4378

4379
	regulator_lock(rdev);
4380
	old_uA_load = regulator->uA_load;
4381
	regulator->uA_load = uA_load;
4382 4383 4384 4385 4386
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4387
	regulator_unlock(rdev);
4388

4389 4390
	return ret;
}
4391
EXPORT_SYMBOL_GPL(regulator_set_load);
4392

4393 4394 4395 4396
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4397
 * @enable: enable or disable bypass mode
4398 4399 4400 4401 4402 4403 4404 4405 4406
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
4407
	const char *name = rdev_get_name(rdev);
4408 4409 4410 4411 4412
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4413
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4414 4415
		return 0;

4416
	regulator_lock(rdev);
4417 4418 4419 4420 4421

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
4422 4423
			trace_regulator_bypass_enable(name);

4424 4425 4426
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
4427 4428
			else
				trace_regulator_bypass_enable_complete(name);
4429 4430 4431 4432 4433 4434
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
4435 4436
			trace_regulator_bypass_disable(name);

4437 4438 4439
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
4440 4441
			else
				trace_regulator_bypass_disable_complete(name);
4442 4443 4444 4445 4446 4447
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4448
	regulator_unlock(rdev);
4449 4450 4451 4452 4453

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4454 4455 4456
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4457
 * @nb: notifier block
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4472
 * @nb: notifier block
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4484 4485 4486
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4487
static int _notifier_call_chain(struct regulator_dev *rdev,
4488 4489 4490
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4491
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4518 4519
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4530 4531 4532 4533 4534 4535 4536
	if (ret != -EPROBE_DEFER)
		dev_err(dev, "Failed to get supply '%s': %d\n",
			consumers[i].supply, ret);
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4537
	while (--i >= 0)
4538 4539 4540 4541 4542 4543
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4544 4545 4546 4547 4548 4549 4550
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4566
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4567
	int i;
4568
	int ret = 0;
4569

4570
	for (i = 0; i < num_consumers; i++) {
4571 4572
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4573
	}
4574 4575 4576 4577

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4578
	for (i = 0; i < num_consumers; i++) {
4579 4580
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4581
			goto err;
4582
		}
4583 4584 4585 4586 4587
	}

	return 0;

err:
4588 4589 4590 4591 4592 4593 4594
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4608 4609
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4610 4611 4612 4613 4614 4615
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4616
	int ret, r;
4617

4618
	for (i = num_consumers - 1; i >= 0; --i) {
4619 4620 4621 4622 4623 4624 4625 4626
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4627
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4628 4629 4630
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4631
			pr_err("Failed to re-enable %s: %d\n",
4632 4633
			       consumers[i].supply, r);
	}
4634 4635 4636 4637 4638

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4657
	int ret = 0;
4658

4659
	for (i = 0; i < num_consumers; i++) {
4660 4661 4662
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4663 4664
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4665 4666 4667 4668 4669 4670 4671
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4695
 * @rdev: regulator source
4696
 * @event: notifier block
4697
 * @data: callback-specific data.
4698 4699 4700
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4701
 * Note lock must be held by caller.
4702 4703 4704 4705
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4706
	lockdep_assert_held_once(&rdev->mutex.base);
4707

4708 4709 4710 4711 4712 4713
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4730
	case REGULATOR_MODE_STANDBY:
4731 4732
		return REGULATOR_STATUS_STANDBY;
	default:
4733
		return REGULATOR_STATUS_UNDEFINED;
4734 4735 4736 4737
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4765 4766 4767 4768
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4769 4770
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4771
{
4772
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4773
	struct regulator_dev *rdev = dev_to_rdev(dev);
4774
	const struct regulator_ops *ops = rdev->desc->ops;
4775 4776 4777 4778 4779 4780 4781
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4782 4783

	/* some attributes need specific methods to be displayed */
4784 4785 4786 4787 4788 4789 4790
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4791
	}
4792

4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4808
	/* constraints need specific supporting methods */
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4844

4845 4846 4847
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4848 4849 4850

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4851
	kfree(rdev);
4852 4853
}

4854 4855
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4868
	if (!rdev->debugfs) {
4869 4870 4871 4872 4873 4874 4875 4876
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4877 4878
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4879 4880
}

4881 4882
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4883 4884 4885 4886 4887 4888
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4889 4890
}

4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

4942
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4943
{
4944
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4957 4958
		if (!c_rdev)
			continue;
4959

4960 4961 4962 4963 4964 4965
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

4966
		regulator_lock(c_rdev);
4967

4968 4969
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
4970

4971
		regulator_unlock(c_rdev);
4972

4973 4974
		regulator_resolve_coupling(c_rdev);
	}
4975 4976
}

4977
static void regulator_remove_coupling(struct regulator_dev *rdev)
4978
{
4979
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4980 4981 4982 4983
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
4984
	int err;
4985

4986
	n_coupled = c_desc->n_coupled;
4987

4988 4989
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
4990

4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
			rdev_err(rdev, "failed to detach from coupler: %d\n",
				 err);
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
5024 5025
}

5026
static int regulator_init_coupling(struct regulator_dev *rdev)
5027
{
5028 5029
	int err, n_phandles;
	size_t alloc_size;
5030 5031 5032 5033 5034 5035

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

5036 5037 5038 5039 5040
	alloc_size = sizeof(*rdev) * (n_phandles + 1);

	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
	if (!rdev->coupling_desc.coupled_rdevs)
		return -ENOMEM;
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

5054
	if (!of_check_coupling_data(rdev))
5055 5056
		return -EPERM;

5057
	mutex_lock(&regulator_list_mutex);
5058
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5059 5060
	mutex_unlock(&regulator_list_mutex);

5061 5062 5063 5064
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
		rdev_err(rdev, "failed to get coupler: %d\n", err);
		return err;
5065 5066
	}

5067 5068 5069 5070 5071 5072 5073 5074 5075
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5076
		return -EPERM;
5077
	}
5078

5079 5080 5081 5082 5083 5084
	if (!rdev->constraints->always_on) {
		rdev_err(rdev,
			 "Coupling of a non always-on regulator is unimplemented\n");
		return -ENOTSUPP;
	}

5085 5086 5087
	return 0;
}

5088 5089 5090 5091
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

5092 5093
/**
 * regulator_register - register regulator
5094
 * @regulator_desc: regulator to register
5095
 * @cfg: runtime configuration for regulator
5096 5097
 *
 * Called by regulator drivers to register a regulator.
5098 5099
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
5100
 */
5101 5102
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
5103
		   const struct regulator_config *cfg)
5104
{
5105
	const struct regulation_constraints *constraints = NULL;
5106
	const struct regulator_init_data *init_data;
5107
	struct regulator_config *config = NULL;
5108
	static atomic_t regulator_no = ATOMIC_INIT(-1);
5109
	struct regulator_dev *rdev;
5110 5111
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
5112
	struct device *dev;
5113
	int ret, i;
5114

5115
	if (cfg == NULL)
5116
		return ERR_PTR(-EINVAL);
5117 5118 5119 5120 5121 5122
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5123

5124
	dev = cfg->dev;
5125
	WARN_ON(!dev);
5126

5127 5128 5129 5130
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5131

5132
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5133 5134 5135 5136
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5137

5138 5139 5140
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5141 5142
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5143 5144 5145 5146

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5147 5148
		ret = -EINVAL;
		goto rinse;
5149
	}
5150 5151
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5152 5153
		ret = -EINVAL;
		goto rinse;
5154
	}
5155

5156
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5157 5158 5159 5160
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5161

5162 5163 5164 5165 5166 5167 5168
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
5169 5170
		ret = -ENOMEM;
		goto rinse;
5171 5172
	}

5173
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5174
					       &rdev->dev.of_node);
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187

	/*
	 * Sometimes not all resources are probed already so we need to take
	 * that into account. This happens most the time if the ena_gpiod comes
	 * from a gpio extender or something else.
	 */
	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
		kfree(config);
		kfree(rdev);
		ret = -EPROBE_DEFER;
		goto rinse;
	}

5188 5189 5190 5191 5192
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5193
	 * a descriptor, we definitely got one from parsing the device
5194 5195 5196 5197
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5198 5199 5200 5201 5202
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5203
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5204
	rdev->reg_data = config->driver_data;
5205 5206
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5207 5208
	if (config->regmap)
		rdev->regmap = config->regmap;
5209
	else if (dev_get_regmap(dev, NULL))
5210
		rdev->regmap = dev_get_regmap(dev, NULL);
5211 5212
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5213 5214 5215
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5216
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5217

5218
	/* preform any regulator specific init */
5219
	if (init_data && init_data->regulator_init) {
5220
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5221 5222
		if (ret < 0)
			goto clean;
5223 5224
	}

5225
	if (config->ena_gpiod) {
5226 5227
		ret = regulator_ena_gpio_request(rdev, config);
		if (ret != 0) {
5228 5229
			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
				 ret);
5230
			goto clean;
5231
		}
5232 5233 5234
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5235 5236
	}

5237
	/* register with sysfs */
5238
	device_initialize(&rdev->dev);
5239
	rdev->dev.class = &regulator_class;
5240
	rdev->dev.parent = dev;
5241
	dev_set_name(&rdev->dev, "regulator.%lu",
5242
		    (unsigned long) atomic_inc_return(&regulator_no));
5243
	dev_set_drvdata(&rdev->dev, rdev);
5244

5245
	/* set regulator constraints */
5246 5247 5248 5249
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
5250
		rdev->supply_name = init_data->supply_regulator;
5251
	else if (regulator_desc->supply_name)
5252
		rdev->supply_name = regulator_desc->supply_name;
5253

5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

5266 5267
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
5268 5269
		goto wash;

5270
	/* add consumers devices */
5271
	if (init_data) {
5272
		mutex_lock(&regulator_list_mutex);
5273 5274 5275
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5276
				init_data->consumer_supplies[i].supply);
5277
			if (ret < 0) {
5278
				mutex_unlock(&regulator_list_mutex);
5279 5280 5281 5282
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5283
		}
5284
		mutex_unlock(&regulator_list_mutex);
5285
	}
5286

5287 5288 5289 5290 5291
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5292 5293
	ret = device_add(&rdev->dev);
	if (ret != 0)
5294 5295
		goto unset_supplies;

5296
	rdev_init_debugfs(rdev);
5297

5298 5299 5300 5301 5302
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5303 5304 5305
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5306
	kfree(config);
5307
	return rdev;
D
David Brownell 已提交
5308

5309
unset_supplies:
5310
	mutex_lock(&regulator_list_mutex);
5311
	unset_regulator_supplies(rdev);
5312
	regulator_remove_coupling(rdev);
5313
	mutex_unlock(&regulator_list_mutex);
5314
wash:
5315
	kfree(rdev->coupling_desc.coupled_rdevs);
5316
	mutex_lock(&regulator_list_mutex);
5317
	regulator_ena_gpio_free(rdev);
5318
	mutex_unlock(&regulator_list_mutex);
5319 5320
	put_device(&rdev->dev);
	rdev = NULL;
D
David Brownell 已提交
5321
clean:
5322 5323
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
5324
	kfree(rdev);
5325
	kfree(config);
5326 5327 5328
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5329
	return ERR_PTR(ret);
5330 5331 5332 5333 5334
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5335
 * @rdev: regulator to unregister
5336 5337 5338 5339 5340 5341 5342 5343
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5344 5345 5346
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5347
		regulator_put(rdev->supply);
5348
	}
5349

5350 5351
	flush_work(&rdev->disable_work.work);

5352
	mutex_lock(&regulator_list_mutex);
5353

5354
	debugfs_remove_recursive(rdev->debugfs);
5355
	WARN_ON(rdev->open_count);
5356
	regulator_remove_coupling(rdev);
5357
	unset_regulator_supplies(rdev);
5358
	list_del(&rdev->list);
5359
	regulator_ena_gpio_free(rdev);
5360
	device_unregister(&rdev->dev);
5361 5362

	mutex_unlock(&regulator_list_mutex);
5363 5364 5365
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5366
#ifdef CONFIG_SUSPEND
5367
/**
5368
 * regulator_suspend - prepare regulators for system wide suspend
5369
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5370 5371 5372
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5373
static int regulator_suspend(struct device *dev)
5374
{
5375
	struct regulator_dev *rdev = dev_to_rdev(dev);
5376
	suspend_state_t state = pm_suspend_target_state;
5377 5378 5379 5380 5381
	int ret;

	regulator_lock(rdev);
	ret = suspend_set_state(rdev, state);
	regulator_unlock(rdev);
5382

5383
	return ret;
5384
}
5385

5386
static int regulator_resume(struct device *dev)
5387
{
5388
	suspend_state_t state = pm_suspend_target_state;
5389
	struct regulator_dev *rdev = dev_to_rdev(dev);
5390
	struct regulator_state *rstate;
5391
	int ret = 0;
5392

5393
	rstate = regulator_get_suspend_state(rdev, state);
5394
	if (rstate == NULL)
5395
		return 0;
5396

5397
	regulator_lock(rdev);
5398

5399
	if (rdev->desc->ops->resume &&
5400 5401
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
5402
		ret = rdev->desc->ops->resume(rdev);
5403

5404
	regulator_unlock(rdev);
5405

5406
	return ret;
5407
}
5408 5409
#else /* !CONFIG_SUSPEND */

5410 5411
#define regulator_suspend	NULL
#define regulator_resume	NULL
5412 5413 5414 5415 5416

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5417 5418
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5419 5420 5421
};
#endif

M
Mark Brown 已提交
5422
struct class regulator_class = {
5423 5424 5425 5426 5427 5428 5429
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5447 5448
/**
 * rdev_get_drvdata - get rdev regulator driver data
5449
 * @rdev: regulator
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5486
 * @rdev: regulator
5487 5488 5489 5490 5491 5492 5493
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5494 5495 5496 5497 5498 5499
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5500 5501 5502 5503 5504 5505
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5506 5507 5508 5509 5510 5511
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5512
#ifdef CONFIG_DEBUG_FS
5513
static int supply_map_show(struct seq_file *sf, void *data)
5514 5515 5516 5517
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5518 5519 5520
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5521 5522
	}

5523 5524
	return 0;
}
5525
DEFINE_SHOW_ATTRIBUTE(supply_map);
5526

5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5549 5550 5551 5552 5553 5554
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5555
	struct summary_data summary_data;
5556
	unsigned int opmode;
5557 5558 5559 5560

	if (!rdev)
		return;

5561
	opmode = _regulator_get_mode_unlocked(rdev);
5562
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5563 5564
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5565
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5566
		   regulator_opmode_to_str(opmode));
5567

5568
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5569 5570
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5589
		if (consumer->dev && consumer->dev->class == &regulator_class)
5590 5591 5592 5593
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5594
			   30 - (level + 1) * 3,
5595
			   consumer->supply_name ? consumer->supply_name :
5596
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5597 5598 5599

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5600 5601
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5602
				   consumer->uA_load / 1000,
5603 5604
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5605 5606
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5607 5608 5609 5610 5611 5612 5613 5614
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5615 5616 5617
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5618

5619 5620
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5658 5659

	regulator_unlock(rdev);
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5690 5691
	mutex_lock(&regulator_list_mutex);

5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5718 5719

	mutex_unlock(&regulator_list_mutex);
5720 5721
}

5722
static int regulator_summary_show_roots(struct device *dev, void *data)
5723
{
5724 5725
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5726

5727 5728
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5729

5730 5731
	return 0;
}
5732

5733 5734
static int regulator_summary_show(struct seq_file *s, void *data)
{
5735 5736
	struct ww_acquire_ctx ww_ctx;

5737 5738
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5739

5740 5741
	regulator_summary_lock(&ww_ctx);

5742 5743
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5744

5745 5746
	regulator_summary_unlock(&ww_ctx);

5747 5748
	return 0;
}
5749 5750
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5751

5752 5753
static int __init regulator_init(void)
{
5754 5755 5756 5757
	int ret;

	ret = class_register(&regulator_class);

5758
	debugfs_root = debugfs_create_dir("regulator", NULL);
5759
	if (!debugfs_root)
5760
		pr_warn("regulator: Failed to create debugfs directory\n");
5761

5762
#ifdef CONFIG_DEBUG_FS
5763 5764
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5765

5766
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5767
			    NULL, &regulator_summary_fops);
5768
#endif
5769 5770
	regulator_dummy_init();

5771 5772
	regulator_coupler_register(&generic_regulator_coupler);

5773
	return ret;
5774 5775 5776 5777
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5778

5779
static int regulator_late_cleanup(struct device *dev, void *data)
5780
{
5781 5782 5783
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5784 5785
	int enabled, ret;

5786 5787 5788
	if (c && c->always_on)
		return 0;

5789
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5790 5791
		return 0;

5792
	regulator_lock(rdev);
5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5823
	regulator_unlock(rdev);
5824 5825 5826 5827

	return 0;
}

5828
static void regulator_init_complete_work_function(struct work_struct *work)
5829
{
5830 5831 5832 5833 5834 5835 5836 5837 5838 5839
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5840
	/* If we have a full configuration then disable any regulators
5841 5842 5843
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5844
	 */
5845 5846
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863
}

static DECLARE_DELAYED_WORK(regulator_init_complete_work,
			    regulator_init_complete_work_function);

static int __init regulator_init_complete(void)
{
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

	/*
5864 5865 5866 5867 5868 5869 5870 5871 5872
	 * We punt completion for an arbitrary amount of time since
	 * systems like distros will load many drivers from userspace
	 * so consumers might not always be ready yet, this is
	 * particularly an issue with laptops where this might bounce
	 * the display off then on.  Ideally we'd get a notification
	 * from userspace when this happens but we don't so just wait
	 * a bit and hope we waited long enough.  It'd be better if
	 * we'd only do this on systems that need it, and a kernel
	 * command line option might be useful.
5873
	 */
5874 5875
	schedule_delayed_work(&regulator_init_complete_work,
			      msecs_to_jiffies(30000));
5876 5877 5878

	return 0;
}
5879
late_initcall_sync(regulator_init_complete);