core.c 114.5 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
55
static LIST_HEAD(regulator_ena_gpio_list);
56
static LIST_HEAD(regulator_supply_alias_list);
57
static bool has_full_constraints;
58

59 60
static struct dentry *debugfs_root;

61 62
static struct class regulator_class;

63
/*
64 65 66 67 68 69
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
70
	const char *dev_name;   /* The dev_name() for the consumer */
71
	const char *supply;
72
	struct regulator_dev *regulator;
73 74
};

75 76 77 78 79 80 81
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
82
	struct gpio_desc *gpiod;
83 84 85 86 87
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

101
static int _regulator_is_enabled(struct regulator_dev *rdev);
102
static int _regulator_disable(struct regulator_dev *rdev);
103 104 105
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106
static int _notifier_call_chain(struct regulator_dev *rdev,
107
				  unsigned long event, void *data);
108 109
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
110 111 112
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
113
static void _regulator_put(struct regulator *regulator);
114

115 116 117 118
static struct regulator_dev *dev_to_rdev(struct device *dev)
{
	return container_of(dev, struct regulator_dev, dev);
}
119

120 121 122 123 124 125 126 127 128 129
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

130 131
static bool have_full_constraints(void)
{
132
	return has_full_constraints || of_have_populated_dt();
133 134
}

135 136 137 138 139 140 141 142
static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
{
	if (rdev && rdev->supply)
		return rdev->supply->rdev;

	return NULL;
}

143 144 145 146 147 148
/**
 * regulator_lock_supply - lock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_lock_supply(struct regulator_dev *rdev)
{
149
	int i;
150

151
	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
152
		mutex_lock_nested(&rdev->mutex, i);
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
}

/**
 * regulator_unlock_supply - unlock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_unlock_supply(struct regulator_dev *rdev)
{
	struct regulator *supply;

	while (1) {
		mutex_unlock(&rdev->mutex);
		supply = rdev->supply;

		if (!rdev->supply)
			return;

		rdev = supply->rdev;
	}
}

174 175 176 177 178 179
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
180
 * returns the device node corresponding to the regulator if found, else
181 182 183 184 185 186 187 188 189 190 191 192 193
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
194
		dev_dbg(dev, "Looking up %s property in node %s failed",
195 196 197 198 199 200
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

201 202 203 204 205 206 207 208 209 210 211
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

212 213 214 215 216 217 218
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
219
		rdev_err(rdev, "no constraints\n");
220 221 222
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
223
		rdev_err(rdev, "voltage operation not allowed\n");
224 225 226 227 228 229 230 231
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

232 233
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
234
			 *min_uV, *max_uV);
235
		return -EINVAL;
236
	}
237 238 239 240

	return 0;
}

241 242 243 244 245 246 247 248 249
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
250 251 252 253 254 255 256
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

257 258 259 260 261 262
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

263
	if (*min_uV > *max_uV) {
264 265
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
266
		return -EINVAL;
267
	}
268 269 270 271

	return 0;
}

272 273 274 275 276 277 278
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
279
		rdev_err(rdev, "no constraints\n");
280 281 282
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
283
		rdev_err(rdev, "current operation not allowed\n");
284 285 286 287 288 289 290 291
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

292 293
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
294
			 *min_uA, *max_uA);
295
		return -EINVAL;
296
	}
297 298 299 300 301

	return 0;
}

/* operating mode constraint check */
302
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
303
{
304
	switch (*mode) {
305 306 307 308 309 310
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
311
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
312 313 314
		return -EINVAL;
	}

315
	if (!rdev->constraints) {
316
		rdev_err(rdev, "no constraints\n");
317 318 319
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
320
		rdev_err(rdev, "mode operation not allowed\n");
321 322
		return -EPERM;
	}
323 324 325 326 327 328 329 330

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
331
	}
332 333

	return -EINVAL;
334 335 336 337 338 339
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
340
		rdev_err(rdev, "no constraints\n");
341 342 343
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
344
		rdev_dbg(rdev, "drms operation not allowed\n");
345 346 347 348 349 350 351 352
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
353
	struct regulator_dev *rdev = dev_get_drvdata(dev);
354 355 356 357 358 359 360 361
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
362
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
363 364 365 366

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
367
	struct regulator_dev *rdev = dev_get_drvdata(dev);
368 369 370

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
371
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
372

373 374
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
375 376 377
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

378
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
379
}
380
static DEVICE_ATTR_RO(name);
381

D
David Brownell 已提交
382
static ssize_t regulator_print_opmode(char *buf, int mode)
383 384 385 386 387 388 389 390 391 392 393 394 395 396
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
397 398
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
399
{
400
	struct regulator_dev *rdev = dev_get_drvdata(dev);
401

D
David Brownell 已提交
402 403
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
404
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
405 406 407

static ssize_t regulator_print_state(char *buf, int state)
{
408 409 410 411 412 413 414 415
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
416 417 418 419
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
420 421 422 423 424
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
425

426
	return ret;
D
David Brownell 已提交
427
}
428
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
429

D
David Brownell 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
463 464 465
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
466 467 468
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
469 470 471 472 473 474 475 476
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

477 478 479
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
480
	struct regulator_dev *rdev = dev_get_drvdata(dev);
481 482 483 484 485 486

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
487
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
488 489 490 491

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
492
	struct regulator_dev *rdev = dev_get_drvdata(dev);
493 494 495 496 497 498

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
499
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
500 501 502 503

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
504
	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 506 507 508 509 510

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
511
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
512 513 514 515

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
516
	struct regulator_dev *rdev = dev_get_drvdata(dev);
517 518 519 520 521 522

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
523
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
524 525 526 527

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
528
	struct regulator_dev *rdev = dev_get_drvdata(dev);
529 530 531 532 533
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
534
		uA += regulator->uA_load;
535 536 537
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
538
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
539

540 541
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
542
{
543
	struct regulator_dev *rdev = dev_get_drvdata(dev);
544 545
	return sprintf(buf, "%d\n", rdev->use_count);
}
546
static DEVICE_ATTR_RO(num_users);
547

548 549
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
550
{
551
	struct regulator_dev *rdev = dev_get_drvdata(dev);
552 553 554 555 556 557 558 559 560

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
561
static DEVICE_ATTR_RO(type);
562 563 564 565

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
566
	struct regulator_dev *rdev = dev_get_drvdata(dev);
567 568 569

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
570 571
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
572 573 574 575

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
576
	struct regulator_dev *rdev = dev_get_drvdata(dev);
577 578 579

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
580 581
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
582 583 584 585

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
586
	struct regulator_dev *rdev = dev_get_drvdata(dev);
587 588 589

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
590 591
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
592 593 594 595

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
596
	struct regulator_dev *rdev = dev_get_drvdata(dev);
597

D
David Brownell 已提交
598 599
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
600
}
601 602
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
603 604 605 606

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
607
	struct regulator_dev *rdev = dev_get_drvdata(dev);
608

D
David Brownell 已提交
609 610
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
611
}
612 613
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
614 615 616 617

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
618
	struct regulator_dev *rdev = dev_get_drvdata(dev);
619

D
David Brownell 已提交
620 621
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
622
}
623 624
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
625 626 627 628

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
629
	struct regulator_dev *rdev = dev_get_drvdata(dev);
630

D
David Brownell 已提交
631 632
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
633
}
634 635
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
636 637 638 639

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
640
	struct regulator_dev *rdev = dev_get_drvdata(dev);
641

D
David Brownell 已提交
642 643
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
644
}
645 646
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
647 648 649 650

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
651
	struct regulator_dev *rdev = dev_get_drvdata(dev);
652

D
David Brownell 已提交
653 654
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
655
}
656 657 658
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
680

681 682
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
683
static int drms_uA_update(struct regulator_dev *rdev)
684 685 686 687 688
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

689 690
	lockdep_assert_held_once(&rdev->mutex);

691 692 693 694
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
695
	err = regulator_check_drms(rdev);
696 697 698
	if (err < 0)
		return 0;

699 700
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
701 702
		return 0;

703 704
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
705
		return -EINVAL;
706 707

	/* get output voltage */
708
	output_uV = _regulator_get_voltage(rdev);
709 710 711 712
	if (output_uV <= 0) {
		rdev_err(rdev, "invalid output voltage found\n");
		return -EINVAL;
	}
713 714

	/* get input voltage */
715 716
	input_uV = 0;
	if (rdev->supply)
717
		input_uV = regulator_get_voltage(rdev->supply);
718
	if (input_uV <= 0)
719
		input_uV = rdev->constraints->input_uV;
720 721 722 723
	if (input_uV <= 0) {
		rdev_err(rdev, "invalid input voltage found\n");
		return -EINVAL;
	}
724 725 726

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
727
		current_uA += sibling->uA_load;
728

729 730
	current_uA += rdev->constraints->system_load;

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
748

749 750 751
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
752 753 754
	}

	return err;
755 756 757 758 759 760
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
761 762

	/* If we have no suspend mode configration don't set anything;
763 764
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
765 766
	 */
	if (!rstate->enabled && !rstate->disabled) {
767 768
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
769
			rdev_warn(rdev, "No configuration\n");
770 771 772 773
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
774
		rdev_err(rdev, "invalid configuration\n");
775 776
		return -EINVAL;
	}
777

778
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
779
		ret = rdev->desc->ops->set_suspend_enable(rdev);
780
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
781
		ret = rdev->desc->ops->set_suspend_disable(rdev);
782 783 784
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

785
	if (ret < 0) {
786
		rdev_err(rdev, "failed to enabled/disable\n");
787 788 789 790 791 792
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
793
			rdev_err(rdev, "failed to set voltage\n");
794 795 796 797 798 799 800
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
801
			rdev_err(rdev, "failed to set mode\n");
802 803 804 805 806 807 808 809 810
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
811 812
	lockdep_assert_held_once(&rdev->mutex);

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
834
	char buf[160] = "";
835
	size_t len = sizeof(buf) - 1;
836 837
	int count = 0;
	int ret;
838

839
	if (constraints->min_uV && constraints->max_uV) {
840
		if (constraints->min_uV == constraints->max_uV)
841 842
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
843
		else
844 845 846 847
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
848 849 850 851 852 853
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
854 855
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
856 857
	}

858
	if (constraints->uV_offset)
859 860
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
861

862
	if (constraints->min_uA && constraints->max_uA) {
863
		if (constraints->min_uA == constraints->max_uA)
864 865
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
866
		else
867 868 869 870
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
871 872 873 874 875 876
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
877 878
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
879
	}
880

881
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
882
		count += scnprintf(buf + count, len - count, "fast ");
883
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
884
		count += scnprintf(buf + count, len - count, "normal ");
885
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
886
		count += scnprintf(buf + count, len - count, "idle ");
887
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
888
		count += scnprintf(buf + count, len - count, "standby");
889

890
	if (!count)
891
		scnprintf(buf, len, "no parameters");
892

893
	rdev_dbg(rdev, "%s\n", buf);
894 895 896 897 898

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
899 900
}

901
static int machine_constraints_voltage(struct regulator_dev *rdev,
902
	struct regulation_constraints *constraints)
903
{
904
	const struct regulator_ops *ops = rdev->desc->ops;
905 906 907 908
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
909
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
910 911
		int current_uV = _regulator_get_voltage(rdev);
		if (current_uV < 0) {
912 913 914
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
915 916 917 918 919 920 921 922 923
			return current_uV;
		}
		if (current_uV < rdev->constraints->min_uV ||
		    current_uV > rdev->constraints->max_uV) {
			ret = _regulator_do_set_voltage(
				rdev, rdev->constraints->min_uV,
				rdev->constraints->max_uV);
			if (ret < 0) {
				rdev_err(rdev,
924 925
					"failed to apply %duV constraint(%d)\n",
					rdev->constraints->min_uV, ret);
926 927
				return ret;
			}
928
		}
929
	}
930

931 932 933 934 935 936 937 938 939 940 941
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

942 943
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
944
		if (count == 1 && !cmin) {
945
			cmin = 1;
946
			cmax = INT_MAX;
947 948
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
949 950
		}

951 952
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
953
			return 0;
954

955
		/* else require explicit machine-level constraints */
956
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
957
			rdev_err(rdev, "invalid voltage constraints\n");
958
			return -EINVAL;
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
978 979 980
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
981
			return -EINVAL;
982 983 984 985
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
986 987
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
988 989 990
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
991 992
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
993 994 995 996
			constraints->max_uV = max_uV;
		}
	}

997 998 999
	return 0;
}

1000 1001 1002
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1003
	const struct regulator_ops *ops = rdev->desc->ops;
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1030 1031
static int _regulator_do_enable(struct regulator_dev *rdev);

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1044
	const struct regulation_constraints *constraints)
1045 1046
{
	int ret = 0;
1047
	const struct regulator_ops *ops = rdev->desc->ops;
1048

1049 1050 1051 1052 1053 1054
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1055 1056
	if (!rdev->constraints)
		return -ENOMEM;
1057

1058
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1059
	if (ret != 0)
1060
		return ret;
1061

1062
	ret = machine_constraints_current(rdev, rdev->constraints);
1063
	if (ret != 0)
1064
		return ret;
1065

1066 1067 1068 1069 1070
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1071
			return ret;
1072 1073 1074
		}
	}

1075
	/* do we need to setup our suspend state */
1076
	if (rdev->constraints->initial_state) {
1077
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078
		if (ret < 0) {
1079
			rdev_err(rdev, "failed to set suspend state\n");
1080
			return ret;
1081 1082
		}
	}
1083

1084
	if (rdev->constraints->initial_mode) {
1085
		if (!ops->set_mode) {
1086
			rdev_err(rdev, "no set_mode operation\n");
1087
			return -EINVAL;
1088 1089
		}

1090
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1091
		if (ret < 0) {
1092
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1093
			return ret;
1094 1095 1096
		}
	}

1097 1098 1099
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1100 1101 1102
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1103
			rdev_err(rdev, "failed to enable\n");
1104
			return ret;
1105 1106 1107
		}
	}

1108 1109
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1110 1111 1112
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1113
			return ret;
1114 1115 1116
		}
	}

S
Stephen Boyd 已提交
1117 1118 1119 1120
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1121
			return ret;
S
Stephen Boyd 已提交
1122 1123 1124
		}
	}

S
Stephen Boyd 已提交
1125 1126 1127 1128
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1129
			return ret;
S
Stephen Boyd 已提交
1130 1131 1132
		}
	}

1133 1134 1135 1136 1137
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1138
			return ret;
1139 1140 1141
		}
	}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1153 1154 1155 1156 1157 1158 1159 1160
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
1161 1162 1163
		}
	}

1164
	print_constraints(rdev);
1165
	return 0;
1166 1167 1168 1169
}

/**
 * set_supply - set regulator supply regulator
1170 1171
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1172 1173 1174 1175 1176 1177
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1178
		      struct regulator_dev *supply_rdev)
1179 1180 1181
{
	int err;

1182 1183
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1184 1185 1186
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1187
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1188 1189
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1190
		return err;
1191
	}
1192
	supply_rdev->open_count++;
1193 1194

	return 0;
1195 1196 1197
}

/**
1198
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1199
 * @rdev:         regulator source
1200
 * @consumer_dev_name: dev_name() string for device supply applies to
1201
 * @supply:       symbolic name for supply
1202 1203 1204 1205 1206 1207 1208
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1209 1210
				      const char *consumer_dev_name,
				      const char *supply)
1211 1212
{
	struct regulator_map *node;
1213
	int has_dev;
1214 1215 1216 1217

	if (supply == NULL)
		return -EINVAL;

1218 1219 1220 1221 1222
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1223
	list_for_each_entry(node, &regulator_map_list, list) {
1224 1225 1226 1227
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1228
			continue;
1229 1230
		}

1231 1232 1233
		if (strcmp(node->supply, supply) != 0)
			continue;

1234 1235 1236 1237 1238 1239
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1240 1241 1242
		return -EBUSY;
	}

1243
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1244 1245 1246 1247 1248 1249
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1250 1251 1252 1253 1254 1255
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1256 1257
	}

1258 1259 1260 1261
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1262 1263 1264 1265 1266 1267 1268
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1269
			kfree(node->dev_name);
1270 1271 1272 1273 1274
			kfree(node);
		}
	}
}

1275
#define REG_STR_SIZE	64
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1294 1295
		regulator->dev = dev;

1296
		/* Add a link to the device sysfs entry */
1297 1298 1299
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1300
			goto overflow_err;
1301 1302 1303

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1304
			goto overflow_err;
1305

1306
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1307 1308
					buf);
		if (err) {
1309
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1310
				  dev->kobj.name, err);
1311
			/* non-fatal */
1312
		}
1313 1314 1315
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1316
			goto overflow_err;
1317 1318 1319 1320
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1321
	if (!regulator->debugfs) {
1322
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1323 1324 1325 1326 1327 1328 1329
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1330
	}
1331

1332 1333 1334 1335 1336 1337 1338 1339 1340
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1341 1342 1343 1344 1345 1346 1347 1348 1349
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1350 1351
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1352 1353
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1354
	if (!rdev->desc->ops->enable_time)
1355
		return rdev->desc->enable_time;
1356 1357 1358
	return rdev->desc->ops->enable_time(rdev);
}

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
static int of_node_match(struct device *dev, const void *data)
{
	return dev->of_node == data;
}

static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, np, of_node_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
 * lookup could succeed in the future.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
 * @supply and with the embedded struct device refcount incremented by one,
 * or NULL on failure. The refcount must be dropped by calling put_device().
 */
1426
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1427 1428
						  const char *supply,
						  int *ret)
1429 1430 1431
{
	struct regulator_dev *r;
	struct device_node *node;
1432 1433
	struct regulator_map *map;
	const char *devname = NULL;
1434

1435 1436
	regulator_supply_alias(&dev, &supply);

1437 1438 1439
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1440
		if (node) {
1441 1442 1443
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1444 1445
			*ret = -EPROBE_DEFER;
			return NULL;
1446 1447 1448 1449 1450 1451 1452 1453 1454
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1455 1456 1457
	}

	/* if not found, try doing it non-dt way */
1458 1459 1460
	if (dev)
		devname = dev_name(dev);

1461 1462 1463
	r = regulator_lookup_by_name(supply);
	if (r)
		return r;
1464

1465
	mutex_lock(&regulator_list_mutex);
1466 1467 1468 1469 1470 1471
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1472 1473 1474
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
			mutex_unlock(&regulator_list_mutex);
1475
			return map->regulator;
1476
		}
1477
	}
1478
	mutex_unlock(&regulator_list_mutex);
1479

1480 1481 1482
	return NULL;
}

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
	if (!r) {
1499 1500 1501 1502 1503 1504 1505 1506
		if (ret == -ENODEV) {
			/*
			 * No supply was specified for this regulator and
			 * there will never be one.
			 */
			return 0;
		}

1507 1508 1509 1510
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1511 1512
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1513
			get_device(&r->dev);
1514 1515 1516 1517 1518
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1519 1520 1521 1522
	}

	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1523 1524
	if (ret < 0) {
		put_device(&r->dev);
1525
		return ret;
1526
	}
1527 1528

	ret = set_supply(rdev, r);
1529 1530
	if (ret < 0) {
		put_device(&r->dev);
1531
		return ret;
1532
	}
1533 1534

	/* Cascade always-on state to supply */
1535
	if (_regulator_is_enabled(rdev) && rdev->supply) {
1536
		ret = regulator_enable(rdev->supply);
1537
		if (ret < 0) {
1538
			_regulator_put(rdev->supply);
1539
			return ret;
1540
		}
1541 1542 1543 1544 1545
	}

	return 0;
}

1546 1547
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
1548
					bool exclusive, bool allow_dummy)
1549 1550
{
	struct regulator_dev *rdev;
1551
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1552
	const char *devname = NULL;
1553
	int ret;
1554 1555

	if (id == NULL) {
1556
		pr_err("get() with no identifier\n");
1557
		return ERR_PTR(-EINVAL);
1558 1559
	}

1560 1561 1562
	if (dev)
		devname = dev_name(dev);

1563 1564 1565 1566 1567
	if (have_full_constraints())
		ret = -ENODEV;
	else
		ret = -EPROBE_DEFER;

1568
	rdev = regulator_dev_lookup(dev, id, &ret);
1569 1570 1571
	if (rdev)
		goto found;

1572 1573
	regulator = ERR_PTR(ret);

1574 1575 1576 1577
	/*
	 * If we have return value from dev_lookup fail, we do not expect to
	 * succeed, so, quit with appropriate error value
	 */
1578
	if (ret && ret != -ENODEV)
1579
		return regulator;
1580

1581 1582 1583
	if (!devname)
		devname = "deviceless";

1584 1585 1586
	/*
	 * Assume that a regulator is physically present and enabled
	 * even if it isn't hooked up and just provide a dummy.
1587
	 */
1588
	if (have_full_constraints() && allow_dummy) {
1589 1590
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1591

1592
		rdev = dummy_regulator_rdev;
1593
		get_device(&rdev->dev);
1594
		goto found;
1595 1596
	/* Don't log an error when called from regulator_get_optional() */
	} else if (!have_full_constraints() || exclusive) {
1597
		dev_warn(dev, "dummy supplies not allowed\n");
1598 1599
	}

1600 1601 1602
	return regulator;

found:
1603 1604
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1605 1606
		put_device(&rdev->dev);
		return regulator;
1607 1608 1609 1610
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
1611 1612
		put_device(&rdev->dev);
		return regulator;
1613 1614
	}

1615 1616 1617
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1618 1619
		put_device(&rdev->dev);
		return regulator;
1620 1621
	}

1622 1623 1624 1625
	if (!try_module_get(rdev->owner)) {
		put_device(&rdev->dev);
		return regulator;
	}
1626

1627 1628 1629
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1630
		put_device(&rdev->dev);
1631
		module_put(rdev->owner);
1632
		return regulator;
1633 1634
	}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1646 1647
	return regulator;
}
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1664
	return _regulator_get(dev, id, false, true);
1665
}
1666 1667
EXPORT_SYMBOL_GPL(regulator_get);

1668 1669 1670 1671 1672 1673 1674
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1675 1676 1677
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1691
	return _regulator_get(dev, id, true, false);
1692 1693 1694
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1695 1696 1697 1698 1699 1700
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1701
 * or IS_ERR() condition containing errno.
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1717
	return _regulator_get(dev, id, false, false);
1718 1719 1720
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1721
/* regulator_list_mutex lock held by regulator_put() */
1722
static void _regulator_put(struct regulator *regulator)
1723 1724 1725
{
	struct regulator_dev *rdev;

1726
	if (IS_ERR_OR_NULL(regulator))
1727 1728
		return;

1729 1730
	lockdep_assert_held_once(&regulator_list_mutex);

1731 1732
	rdev = regulator->rdev;

1733 1734
	debugfs_remove_recursive(regulator->debugfs);

1735
	/* remove any sysfs entries */
1736
	if (regulator->dev)
1737
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1738
	mutex_lock(&rdev->mutex);
1739 1740
	list_del(&regulator->list);

1741 1742
	rdev->open_count--;
	rdev->exclusive = 0;
1743
	put_device(&rdev->dev);
1744
	mutex_unlock(&rdev->mutex);
1745

1746 1747 1748
	kfree(regulator->supply_name);
	kfree(regulator);

1749
	module_put(rdev->owner);
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1764 1765 1766 1767
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1845 1846
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1847
					 struct device *alias_dev,
1848
					 const char *const *alias_id,
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
1886
					    const char *const *id,
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


1897 1898 1899 1900 1901
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
1902
	struct gpio_desc *gpiod;
1903 1904
	int ret;

1905 1906
	gpiod = gpio_to_desc(config->ena_gpio);

1907
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1908
		if (pin->gpiod == gpiod) {
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

1927
	pin->gpiod = gpiod;
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1946
		if (pin->gpiod == rdev->ena_pin->gpiod) {
1947 1948
			if (pin->request_count <= 1) {
				pin->request_count = 0;
1949
				gpiod_put(pin->gpiod);
1950 1951
				list_del(&pin->list);
				kfree(pin);
1952 1953
				rdev->ena_pin = NULL;
				return;
1954 1955 1956 1957 1958 1959 1960
			} else {
				pin->request_count--;
			}
		}
	}
}

1961
/**
1962 1963 1964 1965
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
1979 1980
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
1991 1992
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
1993 1994 1995 1996 1997 1998 1999
			pin->enable_count = 0;
		}
	}

	return 0;
}

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2079
	if (rdev->ena_pin) {
2080 2081 2082 2083 2084 2085
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2086
	} else if (rdev->desc->ops->enable) {
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2099
	_regulator_enable_delay(delay);
2100 2101 2102 2103 2104 2105

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2106 2107 2108
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
2109
	int ret;
2110

2111 2112
	lockdep_assert_held_once(&rdev->mutex);

2113
	/* check voltage and requested load before enabling */
2114 2115 2116
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
2117

2118 2119 2120 2121 2122 2123 2124
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

2125
			ret = _regulator_do_enable(rdev);
2126 2127 2128
			if (ret < 0)
				return ret;

2129
		} else if (ret < 0) {
2130
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2131 2132
			return ret;
		}
2133
		/* Fallthrough on positive return values - already enabled */
2134 2135
	}

2136 2137 2138
	rdev->use_count++;

	return 0;
2139 2140 2141 2142 2143 2144
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2145 2146 2147 2148
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2149
 * NOTE: the output value can be set by other drivers, boot loader or may be
2150
 * hardwired in the regulator.
2151 2152 2153
 */
int regulator_enable(struct regulator *regulator)
{
2154 2155
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2156

2157 2158 2159
	if (regulator->always_on)
		return 0;

2160 2161 2162 2163 2164 2165
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

2166
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
2167
	ret = _regulator_enable(rdev);
2168
	mutex_unlock(&rdev->mutex);
2169

2170
	if (ret != 0 && rdev->supply)
2171 2172
		regulator_disable(rdev->supply);

2173 2174 2175 2176
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2177 2178 2179 2180 2181 2182
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2183
	if (rdev->ena_pin) {
2184 2185 2186 2187 2188 2189
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2190 2191 2192 2193 2194 2195 2196

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2197 2198 2199 2200 2201 2202
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2203 2204 2205 2206 2207
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2208
/* locks held by regulator_disable() */
2209
static int _regulator_disable(struct regulator_dev *rdev)
2210 2211 2212
{
	int ret = 0;

2213 2214
	lockdep_assert_held_once(&rdev->mutex);

D
David Brownell 已提交
2215
	if (WARN(rdev->use_count <= 0,
2216
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2217 2218
		return -EIO;

2219
	/* are we the last user and permitted to disable ? */
2220 2221
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2222 2223

		/* we are last user */
2224
		if (_regulator_can_change_status(rdev)) {
2225 2226 2227 2228 2229 2230
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2231
			ret = _regulator_do_disable(rdev);
2232
			if (ret < 0) {
2233
				rdev_err(rdev, "failed to disable\n");
2234 2235 2236
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2237 2238
				return ret;
			}
2239 2240
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2253

2254 2255 2256 2257 2258 2259 2260
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2261 2262 2263
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2264
 *
2265
 * NOTE: this will only disable the regulator output if no other consumer
2266 2267
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2268 2269 2270
 */
int regulator_disable(struct regulator *regulator)
{
2271 2272
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2273

2274 2275 2276
	if (regulator->always_on)
		return 0;

2277
	mutex_lock(&rdev->mutex);
2278
	ret = _regulator_disable(rdev);
2279
	mutex_unlock(&rdev->mutex);
2280

2281 2282
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2283

2284 2285 2286 2287 2288
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2289
static int _regulator_force_disable(struct regulator_dev *rdev)
2290 2291 2292
{
	int ret = 0;

2293 2294
	lockdep_assert_held_once(&rdev->mutex);

2295 2296 2297 2298 2299
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2300 2301 2302
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2303 2304
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2305
		return ret;
2306 2307
	}

2308 2309 2310 2311
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2325
	struct regulator_dev *rdev = regulator->rdev;
2326 2327
	int ret;

2328
	mutex_lock(&rdev->mutex);
2329
	regulator->uA_load = 0;
2330
	ret = _regulator_force_disable(regulator->rdev);
2331
	mutex_unlock(&rdev->mutex);
2332

2333 2334 2335
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2336

2337 2338 2339 2340
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2389 2390 2391
	if (regulator->always_on)
		return 0;

2392 2393 2394
	if (!ms)
		return regulator_disable(regulator);

2395 2396 2397 2398
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

2399 2400 2401
	queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			   msecs_to_jiffies(ms));
	return 0;
2402 2403 2404
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2405 2406
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2407
	/* A GPIO control always takes precedence */
2408
	if (rdev->ena_pin)
2409 2410
		return rdev->ena_gpio_state;

2411
	/* If we don't know then assume that the regulator is always on */
2412
	if (!rdev->desc->ops->is_enabled)
2413
		return 1;
2414

2415
	return rdev->desc->ops->is_enabled(rdev);
2416 2417
}

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
static int _regulator_list_voltage(struct regulator *regulator,
				    unsigned selector, int lock)
{
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
			mutex_lock(&rdev->mutex);
		ret = ops->list_voltage(rdev, selector);
		if (lock)
			mutex_unlock(&rdev->mutex);
	} else if (rdev->supply) {
		ret = _regulator_list_voltage(rdev->supply, selector, lock);
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2452 2453 2454 2455
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2456 2457 2458 2459 2460 2461 2462
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2463 2464 2465
 */
int regulator_is_enabled(struct regulator *regulator)
{
2466 2467
	int ret;

2468 2469 2470
	if (regulator->always_on)
		return 1;

2471 2472 2473 2474 2475
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2476 2477 2478
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2479 2480 2481 2482 2483
/**
 * regulator_can_change_voltage - check if regulator can change voltage
 * @regulator: regulator source
 *
 * Returns positive if the regulator driver backing the source/client
2484
 * can change its voltage, false otherwise. Useful for detecting fixed
2485 2486 2487 2488 2489 2490 2491 2492
 * or dummy regulators and disabling voltage change logic in the client
 * driver.
 */
int regulator_can_change_voltage(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	if (rdev->constraints &&
2493 2494 2495 2496 2497 2498 2499 2500 2501
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
			return 1;

		if (rdev->desc->continuous_voltage_range &&
		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
		    rdev->constraints->min_uV != rdev->constraints->max_uV)
			return 1;
	}
2502 2503 2504 2505 2506

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_can_change_voltage);

2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2519 2520 2521 2522 2523 2524 2525
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

	if (!rdev->supply)
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2536
 * zero if this selector code can't be used on this system, or a
2537 2538 2539 2540
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2541
	return _regulator_list_voltage(regulator, selector, 1);
2542 2543 2544
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2577 2578
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	 *vsel_reg = rdev->desc->vsel_reg;
	 *vsel_mask = rdev->desc->vsel_mask;

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2604 2605
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2643
	struct regulator_dev *rdev = regulator->rdev;
2644 2645
	int i, voltages, ret;

2646 2647 2648 2649
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2650
			return min_uV <= ret && ret <= max_uV;
2651 2652 2653 2654
		else
			return ret;
	}

2655 2656 2657 2658 2659
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2674
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2675

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2742 2743 2744 2745
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2746
	int delay = 0;
2747
	int best_val = 0;
2748
	unsigned int selector;
2749
	int old_selector = -1;
2750 2751 2752

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2753 2754 2755
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2756 2757 2758 2759
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2760 2761
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2762 2763 2764 2765 2766 2767
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2768
	if (rdev->desc->ops->set_voltage) {
2769 2770
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2771 2772 2773 2774 2775 2776 2777 2778 2779

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2780
	} else if (rdev->desc->ops->set_voltage_sel) {
2781
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2782
		if (ret >= 0) {
2783 2784 2785
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2786 2787 2788
				if (old_selector == selector)
					ret = 0;
				else
2789 2790
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2791 2792 2793
			} else {
				ret = -EINVAL;
			}
2794
		}
2795 2796 2797
	} else {
		ret = -EINVAL;
	}
2798

2799
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2800 2801
	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
		&& old_selector != selector) {
2802

2803 2804 2805 2806 2807 2808
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2809
		}
2810

2811 2812 2813 2814 2815 2816 2817
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2818 2819
	}

2820 2821 2822
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2823
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2824 2825
				     (void *)data);
	}
2826

2827
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2828 2829 2830 2831

	return ret;
}

2832 2833
static int regulator_set_voltage_unlocked(struct regulator *regulator,
					  int min_uV, int max_uV)
2834 2835
{
	struct regulator_dev *rdev = regulator->rdev;
2836
	int ret = 0;
2837
	int old_min_uV, old_max_uV;
2838
	int current_uV;
2839 2840
	int best_supply_uV = 0;
	int supply_change_uV = 0;
2841

2842 2843 2844 2845 2846 2847 2848
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2849
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
2850
	 * return successfully even though the regulator does not support
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
	 * changing the voltage.
	 */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
			regulator->min_uV = min_uV;
			regulator->max_uV = max_uV;
			goto out;
		}
	}

2862
	/* sanity check */
2863 2864
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2865 2866 2867 2868 2869 2870 2871 2872
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2873

2874 2875 2876
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2877 2878
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2879

2880 2881
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2882
		goto out2;
2883

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	if (rdev->supply && (rdev->desc->min_dropout_uV ||
				!rdev->desc->ops->get_voltage)) {
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
			goto out2;
		}

		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
			goto out2;
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
			goto out2;
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
				best_supply_uV, INT_MAX);
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
			goto out2;
		}
	}

2922
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2923 2924
	if (ret < 0)
		goto out2;
2925

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
				best_supply_uV, INT_MAX);
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

2936 2937
out:
	return ret;
2938 2939 2940
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966

	return ret;
}

/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	int ret = 0;

2967
	regulator_lock_supply(regulator->rdev);
2968 2969 2970

	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);

2971
	regulator_unlock_supply(regulator->rdev);
2972

2973 2974 2975 2976
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
2990 2991
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3022
/**
3023 3024
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3025 3026 3027 3028 3029 3030
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3031
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3032
 * set_voltage_time_sel() operation.
3033 3034 3035 3036 3037
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3038
	unsigned int ramp_delay = 0;
3039
	int old_volt, new_volt;
3040 3041 3042 3043 3044 3045 3046

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
3047
		rdev_warn(rdev, "ramp_delay not set\n");
3048
		return 0;
3049
	}
3050

3051 3052 3053
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3054

3055 3056 3057 3058
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3059
}
3060
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3061

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3109 3110
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3111
	int sel, ret;
3112 3113 3114 3115 3116

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3117
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3118
	} else if (rdev->desc->ops->get_voltage) {
3119
		ret = rdev->desc->ops->get_voltage(rdev);
3120 3121
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3122 3123
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3124
	} else if (rdev->supply) {
3125
		ret = _regulator_get_voltage(rdev->supply->rdev);
3126
	} else {
3127
		return -EINVAL;
3128
	}
3129

3130 3131
	if (ret < 0)
		return ret;
3132
	return ret - rdev->constraints->uV_offset;
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

3148
	regulator_lock_supply(regulator->rdev);
3149 3150 3151

	ret = _regulator_get_voltage(regulator->rdev);

3152
	regulator_unlock_supply(regulator->rdev);
3153 3154 3155 3156 3157 3158 3159 3160

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
3161
 * @min_uA: Minimum supported current in uA
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
3248
	int regulator_curr_mode;
3249 3250 3251 3252 3253 3254 3255 3256 3257

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

3258 3259 3260 3261 3262 3263 3264 3265 3266
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

3267
	/* constraints check */
3268
	ret = regulator_mode_constrain(rdev, &mode);
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
3310
 * regulator_set_load - set regulator load
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
3333
 * On error a negative errno is returned.
3334
 */
3335
int regulator_set_load(struct regulator *regulator, int uA_load)
3336 3337
{
	struct regulator_dev *rdev = regulator->rdev;
3338
	int ret;
3339

3340 3341
	mutex_lock(&rdev->mutex);
	regulator->uA_load = uA_load;
3342
	ret = drms_uA_update(rdev);
3343
	mutex_unlock(&rdev->mutex);
3344

3345 3346
	return ret;
}
3347
EXPORT_SYMBOL_GPL(regulator_set_load);
3348

3349 3350 3351 3352
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3353
 * @enable: enable or disable bypass mode
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

	if (rdev->constraints &&
	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

3402 3403 3404
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
3405
 * @nb: notifier block
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
3420
 * @nb: notifier block
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

3432 3433 3434
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
3435
static int _notifier_call_chain(struct regulator_dev *rdev,
3436 3437 3438
				  unsigned long event, void *data)
{
	/* call rdev chain first */
3439
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
3466 3467 3468 3469
		consumers[i].consumer = _regulator_get(dev,
						       consumers[i].supply,
						       false,
						       !consumers[i].optional);
3470 3471
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3472 3473
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3474 3475 3476 3477 3478 3479 3480 3481
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3482
	while (--i >= 0)
3483 3484 3485 3486 3487 3488
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3489 3490 3491 3492 3493 3494 3495
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3511
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3512
	int i;
3513
	int ret = 0;
3514

3515 3516 3517 3518 3519 3520 3521
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3522 3523 3524 3525

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3526
	for (i = 0; i < num_consumers; i++) {
3527 3528
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3529
			goto err;
3530
		}
3531 3532 3533 3534 3535
	}

	return 0;

err:
3536 3537 3538 3539 3540 3541 3542
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3556 3557
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3558 3559 3560 3561 3562 3563
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3564
	int ret, r;
3565

3566
	for (i = num_consumers - 1; i >= 0; --i) {
3567 3568 3569 3570 3571 3572 3573 3574
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3575
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3576 3577 3578 3579 3580 3581
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
3582 3583 3584 3585 3586

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3647
 * @rdev: regulator source
3648
 * @event: notifier block
3649
 * @data: callback-specific data.
3650 3651 3652
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3653
 * Note lock must be held by caller.
3654 3655 3656 3657
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
3658 3659
	lockdep_assert_held_once(&rdev->mutex);

3660 3661 3662 3663 3664 3665
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3682
	case REGULATOR_MODE_STANDBY:
3683 3684
		return REGULATOR_STATUS_STANDBY;
	default:
3685
		return REGULATOR_STATUS_UNDEFINED;
3686 3687 3688 3689
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

3717 3718 3719 3720
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
3721 3722
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
3723
{
3724
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
3725
	struct regulator_dev *rdev = dev_to_rdev(dev);
3726
	const struct regulator_ops *ops = rdev->desc->ops;
3727 3728 3729 3730 3731 3732 3733
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
3734 3735

	/* some attributes need specific methods to be displayed */
3736 3737 3738 3739 3740 3741 3742
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
3743
	}
3744

3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

3760
	/* some attributes are type-specific */
3761 3762
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3763 3764

	/* constraints need specific supporting methods */
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
3800

3801 3802 3803
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
3804 3805 3806

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
3807
	kfree(rdev);
3808 3809
}

3810 3811 3812 3813 3814 3815
static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
};

3816 3817
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3830
	if (!rdev->debugfs) {
3831 3832 3833 3834 3835 3836 3837 3838
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3839 3840
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3841 3842
}

3843 3844 3845 3846 3847
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
	return regulator_resolve_supply(dev_to_rdev(dev));
}

3848 3849
/**
 * regulator_register - register regulator
3850
 * @regulator_desc: regulator to register
3851
 * @cfg: runtime configuration for regulator
3852 3853
 *
 * Called by regulator drivers to register a regulator.
3854 3855
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3856
 */
3857 3858
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3859
		   const struct regulator_config *cfg)
3860
{
3861
	const struct regulation_constraints *constraints = NULL;
3862
	const struct regulator_init_data *init_data;
3863
	struct regulator_config *config = NULL;
3864
	static atomic_t regulator_no = ATOMIC_INIT(-1);
3865
	struct regulator_dev *rdev;
3866
	struct device *dev;
3867
	int ret, i;
3868

3869
	if (regulator_desc == NULL || cfg == NULL)
3870 3871
		return ERR_PTR(-EINVAL);

3872
	dev = cfg->dev;
3873
	WARN_ON(!dev);
3874

3875 3876 3877
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3878 3879
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3880 3881
		return ERR_PTR(-EINVAL);

3882 3883 3884
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3885 3886
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3887 3888 3889 3890 3891 3892

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3893 3894 3895 3896
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3897

3898 3899 3900 3901
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

3912
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3913 3914 3915 3916 3917 3918
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

3919 3920 3921
	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3922
	rdev->reg_data = config->driver_data;
3923 3924
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3925 3926
	if (config->regmap)
		rdev->regmap = config->regmap;
3927
	else if (dev_get_regmap(dev, NULL))
3928
		rdev->regmap = dev_get_regmap(dev, NULL);
3929 3930
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3931 3932 3933
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3934
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3935

3936
	/* preform any regulator specific init */
3937
	if (init_data && init_data->regulator_init) {
3938
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3939 3940
		if (ret < 0)
			goto clean;
3941 3942
	}

3943 3944 3945 3946 3947 3948
	if ((config->ena_gpio || config->ena_gpio_initialized) &&
	    gpio_is_valid(config->ena_gpio)) {
		ret = regulator_ena_gpio_request(rdev, config);
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
3949
			goto clean;
3950 3951 3952
		}
	}

3953
	/* register with sysfs */
3954
	rdev->dev.class = &regulator_class;
3955
	rdev->dev.parent = dev;
3956
	dev_set_name(&rdev->dev, "regulator.%lu",
3957
		    (unsigned long) atomic_inc_return(&regulator_no));
3958
	ret = device_register(&rdev->dev);
3959 3960
	if (ret != 0) {
		put_device(&rdev->dev);
3961
		goto wash;
3962
	}
3963 3964 3965

	dev_set_drvdata(&rdev->dev, rdev);

3966
	/* set regulator constraints */
3967 3968 3969 3970
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3971 3972 3973
	if (ret < 0)
		goto scrub;

3974
	if (init_data && init_data->supply_regulator)
3975
		rdev->supply_name = init_data->supply_regulator;
3976
	else if (regulator_desc->supply_name)
3977
		rdev->supply_name = regulator_desc->supply_name;
3978

3979
	/* add consumers devices */
3980 3981 3982 3983
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3984
				init_data->consumer_supplies[i].supply);
3985 3986 3987 3988 3989
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3990
		}
3991
	}
3992

3993
	rdev_init_debugfs(rdev);
3994 3995 3996 3997

	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
3998
out:
3999
	mutex_unlock(&regulator_list_mutex);
4000
	kfree(config);
4001
	return rdev;
D
David Brownell 已提交
4002

4003 4004 4005
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
4006
scrub:
4007
	regulator_ena_gpio_free(rdev);
D
David Brownell 已提交
4008
	device_unregister(&rdev->dev);
4009 4010 4011 4012
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

4013 4014
wash:
	regulator_ena_gpio_free(rdev);
D
David Brownell 已提交
4015 4016 4017 4018
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
4019 4020 4021 4022 4023
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
4024
 * @rdev: regulator to unregister
4025 4026 4027 4028 4029 4030 4031 4032
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

4033 4034 4035
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
4036
		regulator_put(rdev->supply);
4037
	}
4038
	mutex_lock(&regulator_list_mutex);
4039
	debugfs_remove_recursive(rdev->debugfs);
4040
	flush_work(&rdev->disable_work.work);
4041
	WARN_ON(rdev->open_count);
4042
	unset_regulator_supplies(rdev);
4043
	list_del(&rdev->list);
4044
	mutex_unlock(&regulator_list_mutex);
4045
	regulator_ena_gpio_free(rdev);
4046
	device_unregister(&rdev->dev);
4047 4048 4049
}
EXPORT_SYMBOL_GPL(regulator_unregister);

4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
static int _regulator_suspend_prepare(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const suspend_state_t *state = data;
	int ret;

	mutex_lock(&rdev->mutex);
	ret = suspend_prepare(rdev, *state);
	mutex_unlock(&rdev->mutex);

	return ret;
}

4063
/**
4064
 * regulator_suspend_prepare - prepare regulators for system wide suspend
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

4076 4077 4078 4079
	return class_for_each_device(&regulator_class, NULL, &state,
				     _regulator_suspend_prepare);
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4080

4081 4082 4083 4084
static int _regulator_suspend_finish(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	int ret;
4085

4086 4087 4088 4089 4090 4091 4092 4093
	mutex_lock(&rdev->mutex);
	if (rdev->use_count > 0  || rdev->constraints->always_on) {
		if (!_regulator_is_enabled(rdev)) {
			ret = _regulator_do_enable(rdev);
			if (ret)
				dev_err(dev,
					"Failed to resume regulator %d\n",
					ret);
4094
		}
4095 4096 4097 4098 4099 4100 4101 4102 4103
	} else {
		if (!have_full_constraints())
			goto unlock;
		if (!_regulator_is_enabled(rdev))
			goto unlock;

		ret = _regulator_do_disable(rdev);
		if (ret)
			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4104
	}
4105 4106 4107 4108 4109
unlock:
	mutex_unlock(&rdev->mutex);

	/* Keep processing regulators in spite of any errors */
	return 0;
4110 4111
}

4112 4113 4114 4115 4116 4117 4118 4119
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
4120 4121
	return class_for_each_device(&regulator_class, NULL, NULL,
				     _regulator_suspend_finish);
4122 4123 4124
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

4142 4143
/**
 * rdev_get_drvdata - get rdev regulator driver data
4144
 * @rdev: regulator
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
4181
 * @rdev: regulator
4182 4183 4184 4185 4186 4187 4188
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
4231
#endif
4232 4233

static const struct file_operations supply_map_fops = {
4234
#ifdef CONFIG_DEBUG_FS
4235 4236 4237
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
4238
};
4239

4240
#ifdef CONFIG_DEBUG_FS
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

4263 4264 4265 4266 4267 4268
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
4269
	struct summary_data summary_data;
4270 4271 4272 4273 4274 4275 4276 4277 4278

	if (!rdev)
		return;

	seq_printf(s, "%*s%-*s %3d %4d %6d ",
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
		   rdev->use_count, rdev->open_count, rdev->bypass_count);

4279 4280
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
		if (consumer->dev->class == &regulator_class)
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
			   30 - (level + 1) * 3, dev_name(consumer->dev));

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
4308
			seq_printf(s, "%37dmV %5dmV",
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
				   consumer->min_uV / 1000,
				   consumer->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

4319 4320 4321
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
4322

4323 4324
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
4325 4326
}

4327
static int regulator_summary_show_roots(struct device *dev, void *data)
4328
{
4329 4330
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
4331

4332 4333
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
4334

4335 4336
	return 0;
}
4337

4338 4339 4340 4341
static int regulator_summary_show(struct seq_file *s, void *data)
{
	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
	seq_puts(s, "-------------------------------------------------------------------------------\n");
4342

4343 4344
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363

	return 0;
}

static int regulator_summary_open(struct inode *inode, struct file *file)
{
	return single_open(file, regulator_summary_show, inode->i_private);
}
#endif

static const struct file_operations regulator_summary_fops = {
#ifdef CONFIG_DEBUG_FS
	.open		= regulator_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
#endif
};

4364 4365
static int __init regulator_init(void)
{
4366 4367 4368 4369
	int ret;

	ret = class_register(&regulator_class);

4370
	debugfs_root = debugfs_create_dir("regulator", NULL);
4371
	if (!debugfs_root)
4372
		pr_warn("regulator: Failed to create debugfs directory\n");
4373

4374 4375
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
4376

4377
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4378
			    NULL, &regulator_summary_fops);
4379

4380 4381 4382
	regulator_dummy_init();

	return ret;
4383 4384 4385 4386
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
4387

4388
static int __init regulator_late_cleanup(struct device *dev, void *data)
4389
{
4390 4391 4392
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
4393 4394
	int enabled, ret;

4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
	if (c && c->always_on)
		return 0;

	if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
	mutex_unlock(&rdev->mutex);

	return 0;
}

static int __init regulator_init_complete(void)
{
4439 4440 4441 4442 4443 4444 4445 4446 4447
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

4448
	/* If we have a full configuration then disable any regulators
4449 4450 4451
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
4452
	 */
4453 4454
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
4455 4456 4457

	return 0;
}
4458
late_initcall_sync(regulator_init_complete);