core.c 147.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

M
Mark Brown 已提交
36 37
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 39 40 41 42 43 44 45 46
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

47 48
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
49 50
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
51
static LIST_HEAD(regulator_ena_gpio_list);
52
static LIST_HEAD(regulator_supply_alias_list);
53
static LIST_HEAD(regulator_coupler_list);
54
static bool has_full_constraints;
55

56 57
static struct dentry *debugfs_root;

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69
};

70 71 72 73 74 75 76
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
77
	struct gpio_desc *gpiod;
78 79 80 81
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

95
static int _regulator_is_enabled(struct regulator_dev *rdev);
96
static int _regulator_disable(struct regulator *regulator);
97 98
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99
static int _notifier_call_chain(struct regulator_dev *rdev,
100
				  unsigned long event, void *data);
101 102
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
103 104
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
105 106 107
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
108
static void _regulator_put(struct regulator *regulator);
109

110
const char *rdev_get_name(struct regulator_dev *rdev)
111 112 113 114 115 116 117 118 119
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

120 121
static bool have_full_constraints(void)
{
122
	return has_full_constraints || of_have_populated_dt();
123 124
}

125 126 127 128 129 130 131 132 133 134 135 136 137
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

138 139 140
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
141
 * @ww_ctx:		w/w mutex acquire context
142 143 144 145 146 147 148
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
149 150
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
151
{
152 153 154 155 156 157 158
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
159
			rdev->ref_cnt++;
160 161 162 163 164 165 166
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
167
		}
168 169
	} else {
		lock = true;
170 171
	}

172 173 174 175 176 177 178 179
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
180 181
}

182 183 184 185 186 187 188 189 190 191 192
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
void regulator_lock(struct regulator_dev *rdev)
193
{
194
	regulator_lock_nested(rdev, NULL);
195
}
196
EXPORT_SYMBOL_GPL(regulator_lock);
197 198 199 200 201 202 203 204

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
205
void regulator_unlock(struct regulator_dev *rdev)
206
{
207
	mutex_lock(&regulator_nesting_mutex);
208

209 210 211
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
212
	}
213 214 215 216

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
217
}
218
EXPORT_SYMBOL_GPL(regulator_unlock);
219

220
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
221
{
222 223 224 225 226
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
227

228 229 230 231 232 233 234
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

235 236
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
237
{
238
	struct regulator_dev *c_rdev;
239
	int i;
240

241 242
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
243 244 245 246

		if (!c_rdev)
			continue;

247
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
248 249 250
			regulator_unlock_recursive(
					c_rdev->supply->rdev,
					c_rdev->coupling_desc.n_coupled);
251

252 253
		regulator_unlock(c_rdev);
	}
254 255
}

256 257 258 259
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
260
{
261
	struct regulator_dev *c_rdev;
262
	int i, err;
263

264 265
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
266

267 268
		if (!c_rdev)
			continue;
269

270 271 272 273 274 275 276
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
277

278 279 280 281 282 283 284
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

285
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
286 287 288 289 290 291 292 293
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
294 295
		}
	}
296 297 298 299 300 301 302

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
303 304
}

305
/**
306 307 308 309 310
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
311
 * Unlock all regulators related with rdev by coupling or supplying.
312
 */
313 314
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
315
{
316 317
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
318 319 320
}

/**
321 322
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
323
 * @ww_ctx:			w/w mutex acquire context
324 325
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
326
 * all regulators related with rdev by coupling or supplying.
327
 */
328 329
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
330
{
331 332 333
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
334

335
	mutex_lock(&regulator_list_mutex);
336

337
	ww_acquire_init(ww_ctx, &regulator_ww_class);
338

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
359 360
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
383 384
			if (regnode)
				goto err_node_put;
385
		} else {
386
			goto err_node_put;
387 388 389
		}
	}
	return NULL;
390 391 392 393

err_node_put:
	of_node_put(child);
	return regnode;
394 395
}

396 397 398 399 400 401
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
402
 * returns the device node corresponding to the regulator if found, else
403 404 405 406 407 408 409 410 411 412 413 414 415
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
416 417 418 419
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

420 421
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
422 423 424 425 426
		return NULL;
	}
	return regnode;
}

427
/* Platform voltage constraint check */
428 429
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
430 431 432
{
	BUG_ON(*min_uV > *max_uV);

433
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
434
		rdev_err(rdev, "voltage operation not allowed\n");
435 436 437 438 439 440 441 442
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

443 444
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
445
			 *min_uV, *max_uV);
446
		return -EINVAL;
447
	}
448 449 450 451

	return 0;
}

452 453 454 455 456 457
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

458 459 460
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
461 462 463
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
464 465
{
	struct regulator *regulator;
466
	struct regulator_voltage *voltage;
467 468

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
469
		voltage = &regulator->voltage[state];
470 471 472 473
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
474
		if (!voltage->min_uV && !voltage->max_uV)
475 476
			continue;

477 478 479 480
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
481 482
	}

483
	if (*min_uV > *max_uV) {
484 485
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
486
		return -EINVAL;
487
	}
488 489 490 491

	return 0;
}

492 493 494 495 496 497
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

498
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
499
		rdev_err(rdev, "current operation not allowed\n");
500 501 502 503 504 505 506 507
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

508 509
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
510
			 *min_uA, *max_uA);
511
		return -EINVAL;
512
	}
513 514 515 516 517

	return 0;
}

/* operating mode constraint check */
518 519
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
520
{
521
	switch (*mode) {
522 523 524 525 526 527
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
528
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
529 530 531
		return -EINVAL;
	}

532
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
533
		rdev_err(rdev, "mode operation not allowed\n");
534 535
		return -EPERM;
	}
536 537 538 539 540 541 542 543

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
544
	}
545 546

	return -EINVAL;
547 548
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

567 568 569
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
570
	struct regulator_dev *rdev = dev_get_drvdata(dev);
571
	int uV;
572

573
	regulator_lock(rdev);
574
	uV = regulator_get_voltage_rdev(rdev);
575
	regulator_unlock(rdev);
576

577 578 579
	if (uV < 0)
		return uV;
	return sprintf(buf, "%d\n", uV);
580
}
581
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
582 583 584 585

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
586
	struct regulator_dev *rdev = dev_get_drvdata(dev);
587 588 589

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
590
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
591

592 593
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
594 595 596
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

597
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
598
}
599
static DEVICE_ATTR_RO(name);
600

601
static const char *regulator_opmode_to_str(int mode)
602 603 604
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
605
		return "fast";
606
	case REGULATOR_MODE_NORMAL:
607
		return "normal";
608
	case REGULATOR_MODE_IDLE:
609
		return "idle";
610
	case REGULATOR_MODE_STANDBY:
611
		return "standby";
612
	}
613 614 615 616 617 618
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
619 620
}

D
David Brownell 已提交
621 622
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
623
{
624
	struct regulator_dev *rdev = dev_get_drvdata(dev);
625

D
David Brownell 已提交
626 627
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
628
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
629 630 631

static ssize_t regulator_print_state(char *buf, int state)
{
632 633 634 635 636 637 638 639
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
640 641 642 643
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
644 645
	ssize_t ret;

646
	regulator_lock(rdev);
647
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
648
	regulator_unlock(rdev);
D
David Brownell 已提交
649

650
	return ret;
D
David Brownell 已提交
651
}
652
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
653

D
David Brownell 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
687 688 689
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
690 691 692
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
693 694 695 696 697 698 699 700
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

701 702 703
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
704
	struct regulator_dev *rdev = dev_get_drvdata(dev);
705 706 707 708 709 710

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
711
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
712 713 714 715

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
716
	struct regulator_dev *rdev = dev_get_drvdata(dev);
717 718 719 720 721 722

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
723
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
724 725 726 727

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
728
	struct regulator_dev *rdev = dev_get_drvdata(dev);
729 730 731 732 733 734

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
735
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
736 737 738 739

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
740
	struct regulator_dev *rdev = dev_get_drvdata(dev);
741 742 743 744 745 746

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
747
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
748 749 750 751

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
752
	struct regulator_dev *rdev = dev_get_drvdata(dev);
753 754 755
	struct regulator *regulator;
	int uA = 0;

756
	regulator_lock(rdev);
757 758 759 760
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
761
	regulator_unlock(rdev);
762 763
	return sprintf(buf, "%d\n", uA);
}
764
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
765

766 767
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
768
{
769
	struct regulator_dev *rdev = dev_get_drvdata(dev);
770 771
	return sprintf(buf, "%d\n", rdev->use_count);
}
772
static DEVICE_ATTR_RO(num_users);
773

774 775
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
776
{
777
	struct regulator_dev *rdev = dev_get_drvdata(dev);
778 779 780 781 782 783 784 785 786

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
787
static DEVICE_ATTR_RO(type);
788 789 790 791

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
792
	struct regulator_dev *rdev = dev_get_drvdata(dev);
793 794 795

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
796 797
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
798 799 800 801

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
802
	struct regulator_dev *rdev = dev_get_drvdata(dev);
803 804 805

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
806 807
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
808 809 810 811

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
812
	struct regulator_dev *rdev = dev_get_drvdata(dev);
813 814 815

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
816 817
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
818 819 820 821

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
822
	struct regulator_dev *rdev = dev_get_drvdata(dev);
823

D
David Brownell 已提交
824 825
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
826
}
827 828
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
829 830 831 832

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
833
	struct regulator_dev *rdev = dev_get_drvdata(dev);
834

D
David Brownell 已提交
835 836
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
837
}
838 839
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
840 841 842 843

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
844
	struct regulator_dev *rdev = dev_get_drvdata(dev);
845

D
David Brownell 已提交
846 847
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
848
}
849 850
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
851 852 853 854

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
855
	struct regulator_dev *rdev = dev_get_drvdata(dev);
856

D
David Brownell 已提交
857 858
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
859
}
860 861
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
862 863 864 865

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
866
	struct regulator_dev *rdev = dev_get_drvdata(dev);
867

D
David Brownell 已提交
868 869
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
870
}
871 872
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
873 874 875 876

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
877
	struct regulator_dev *rdev = dev_get_drvdata(dev);
878

D
David Brownell 已提交
879 880
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
881
}
882 883 884
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
906

907 908
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
909
static int drms_uA_update(struct regulator_dev *rdev)
910 911 912 913 914
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

915 916 917 918
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
919 920
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
921
		return 0;
922
	}
923

924 925
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
926 927
		return 0;

928 929
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
930
		return -EINVAL;
931 932

	/* calc total requested load */
933 934 935 936
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
937

938 939
	current_uA += rdev->constraints->system_load;

940 941 942 943 944 945
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
946
		/* get output voltage */
947
		output_uV = regulator_get_voltage_rdev(rdev);
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

964 965 966 967 968 969 970 971 972 973 974
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
975

976 977 978
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
979 980 981
	}

	return err;
982 983 984
}

static int suspend_set_state(struct regulator_dev *rdev,
985
				    suspend_state_t state)
986 987
{
	int ret = 0;
988 989 990 991
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
992
		return 0;
993

994
	/* If we have no suspend mode configuration don't set anything;
995 996
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
997
	 */
998 999
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
1000 1001
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
1002
			rdev_warn(rdev, "No configuration\n");
1003 1004 1005
		return 0;
	}

1006 1007
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1008
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1009 1010
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1011
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1012 1013 1014
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1015
	if (ret < 0) {
1016
		rdev_err(rdev, "failed to enabled/disable\n");
1017 1018 1019 1020 1021 1022
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1023
			rdev_err(rdev, "failed to set voltage\n");
1024 1025 1026 1027 1028 1029 1030
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1031
			rdev_err(rdev, "failed to set mode\n");
1032 1033 1034 1035
			return ret;
		}
	}

1036
	return ret;
1037 1038 1039 1040 1041
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
1042
	char buf[160] = "";
1043
	size_t len = sizeof(buf) - 1;
1044 1045
	int count = 0;
	int ret;
1046

1047
	if (constraints->min_uV && constraints->max_uV) {
1048
		if (constraints->min_uV == constraints->max_uV)
1049 1050
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1051
		else
1052 1053 1054 1055
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1056 1057 1058 1059
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1060
		ret = regulator_get_voltage_rdev(rdev);
1061
		if (ret > 0)
1062 1063
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1064 1065
	}

1066
	if (constraints->uV_offset)
1067 1068
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1069

1070
	if (constraints->min_uA && constraints->max_uA) {
1071
		if (constraints->min_uA == constraints->max_uA)
1072 1073
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1074
		else
1075 1076 1077 1078
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1079 1080 1081 1082 1083 1084
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1085 1086
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1087
	}
1088

1089
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090
		count += scnprintf(buf + count, len - count, "fast ");
1091
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092
		count += scnprintf(buf + count, len - count, "normal ");
1093
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094
		count += scnprintf(buf + count, len - count, "idle ");
1095
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096
		count += scnprintf(buf + count, len - count, "standby");
1097

1098
	if (!count)
1099
		scnprintf(buf, len, "no parameters");
1100

1101
	rdev_dbg(rdev, "%s\n", buf);
1102 1103

	if ((constraints->min_uV != constraints->max_uV) &&
1104
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1105 1106
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1107 1108
}

1109
static int machine_constraints_voltage(struct regulator_dev *rdev,
1110
	struct regulation_constraints *constraints)
1111
{
1112
	const struct regulator_ops *ops = rdev->desc->ops;
1113 1114 1115 1116
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1117 1118
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1119
		int current_uV = regulator_get_voltage_rdev(rdev);
1120 1121

		if (current_uV == -ENOTRECOVERABLE) {
1122
			/* This regulator can't be read and must be initialized */
1123 1124 1125 1126 1127 1128
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1129
			current_uV = regulator_get_voltage_rdev(rdev);
1130 1131
		}

1132
		if (current_uV < 0) {
1133 1134 1135
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
1136 1137
			return current_uV;
		}
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1158 1159
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1160
			ret = _regulator_do_set_voltage(
1161
				rdev, target_min, target_max);
1162 1163
			if (ret < 0) {
				rdev_err(rdev,
1164 1165
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1166 1167
				return ret;
			}
1168
		}
1169
	}
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1182 1183
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1184
		if (count == 1 && !cmin) {
1185
			cmin = 1;
1186
			cmax = INT_MAX;
1187 1188
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1189 1190
		}

1191 1192
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1193
			return 0;
1194

1195
		/* else require explicit machine-level constraints */
1196
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197
			rdev_err(rdev, "invalid voltage constraints\n");
1198
			return -EINVAL;
1199 1200
		}

1201 1202 1203 1204
		/* no need to loop voltages if range is continuous */
		if (rdev->desc->continuous_voltage_range)
			return 0;

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1222 1223 1224
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1225
			return -EINVAL;
1226 1227 1228 1229
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1230 1231
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1232 1233 1234
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1235 1236
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1237 1238 1239 1240
			constraints->max_uV = max_uV;
		}
	}

1241 1242 1243
	return 0;
}

1244 1245 1246
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1247
	const struct regulator_ops *ops = rdev->desc->ops;
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1274 1275
static int _regulator_do_enable(struct regulator_dev *rdev);

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1288
	const struct regulation_constraints *constraints)
1289 1290
{
	int ret = 0;
1291
	const struct regulator_ops *ops = rdev->desc->ops;
1292

1293 1294 1295 1296 1297 1298
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1299 1300
	if (!rdev->constraints)
		return -ENOMEM;
1301

1302
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1303
	if (ret != 0)
1304
		return ret;
1305

1306
	ret = machine_constraints_current(rdev, rdev->constraints);
1307
	if (ret != 0)
1308
		return ret;
1309

1310 1311 1312 1313 1314
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1315
			return ret;
1316 1317 1318
		}
	}

1319
	/* do we need to setup our suspend state */
1320
	if (rdev->constraints->initial_state) {
1321
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1322
		if (ret < 0) {
1323
			rdev_err(rdev, "failed to set suspend state\n");
1324
			return ret;
1325 1326
		}
	}
1327

1328
	if (rdev->constraints->initial_mode) {
1329
		if (!ops->set_mode) {
1330
			rdev_err(rdev, "no set_mode operation\n");
1331
			return -EINVAL;
1332 1333
		}

1334
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1335
		if (ret < 0) {
1336
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1337
			return ret;
1338
		}
1339 1340 1341 1342 1343 1344
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1345 1346
	}

1347 1348
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1349 1350 1351
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1352
			return ret;
1353 1354 1355
		}
	}

S
Stephen Boyd 已提交
1356 1357 1358 1359
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1360
			return ret;
S
Stephen Boyd 已提交
1361 1362 1363
		}
	}

S
Stephen Boyd 已提交
1364 1365 1366 1367
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1368
			return ret;
S
Stephen Boyd 已提交
1369 1370 1371
		}
	}

1372 1373 1374 1375 1376
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1377
			return ret;
1378 1379 1380
		}
	}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1392 1393 1394 1395
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1396 1397 1398 1399 1400 1401 1402 1403 1404
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1405 1406 1407 1408 1409
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
			rdev_err(rdev, "failed to enable\n");
			return ret;
		}
1410 1411 1412

		if (rdev->constraints->always_on)
			rdev->use_count++;
1413 1414
	}

1415
	print_constraints(rdev);
1416
	return 0;
1417 1418 1419 1420
}

/**
 * set_supply - set regulator supply regulator
1421 1422
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1423 1424 1425 1426 1427 1428
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1429
		      struct regulator_dev *supply_rdev)
1430 1431 1432
{
	int err;

1433 1434
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1435 1436 1437
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1438
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1439 1440
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1441
		return err;
1442
	}
1443
	supply_rdev->open_count++;
1444 1445

	return 0;
1446 1447 1448
}

/**
1449
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1450
 * @rdev:         regulator source
1451
 * @consumer_dev_name: dev_name() string for device supply applies to
1452
 * @supply:       symbolic name for supply
1453 1454 1455 1456 1457 1458 1459
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1460 1461
				      const char *consumer_dev_name,
				      const char *supply)
1462 1463
{
	struct regulator_map *node;
1464
	int has_dev;
1465 1466 1467 1468

	if (supply == NULL)
		return -EINVAL;

1469 1470 1471 1472 1473
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1474
	list_for_each_entry(node, &regulator_map_list, list) {
1475 1476 1477 1478
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1479
			continue;
1480 1481
		}

1482 1483 1484
		if (strcmp(node->supply, supply) != 0)
			continue;

1485 1486 1487 1488 1489 1490
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1491 1492 1493
		return -EBUSY;
	}

1494
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1495 1496 1497 1498 1499 1500
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1501 1502 1503 1504 1505 1506
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1507 1508
	}

1509 1510 1511 1512
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1513 1514 1515 1516 1517 1518 1519
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1520
			kfree(node->dev_name);
1521 1522 1523 1524 1525
			kfree(node);
		}
	}
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1575
#define REG_STR_SIZE	64
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

1589
	regulator_lock(rdev);
1590 1591 1592 1593
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1594 1595
		regulator->dev = dev;

1596
		/* Add a link to the device sysfs entry */
1597 1598
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1599
		if (size >= REG_STR_SIZE)
1600
			goto overflow_err;
1601 1602 1603

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1604
			goto overflow_err;
1605

1606
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1607 1608
					buf);
		if (err) {
1609
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1610
				  dev->kobj.name, err);
1611
			/* non-fatal */
1612
		}
1613
	} else {
1614
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1615
		if (regulator->supply_name == NULL)
1616
			goto overflow_err;
1617 1618 1619 1620
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1621
	if (!regulator->debugfs) {
1622
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1623 1624 1625 1626
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1627
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1628
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1629
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1630 1631 1632
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1633
	}
1634

1635 1636 1637 1638 1639
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1640
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1641 1642 1643
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1644
	regulator_unlock(rdev);
1645 1646 1647 1648
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
1649
	regulator_unlock(rdev);
1650 1651 1652
	return NULL;
}

1653 1654
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1655 1656
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1657 1658 1659
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1660 1661
}

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1710 1711 1712 1713 1714
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1715
 */
1716
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1717
						  const char *supply)
1718
{
1719
	struct regulator_dev *r = NULL;
1720
	struct device_node *node;
1721 1722
	struct regulator_map *map;
	const char *devname = NULL;
1723

1724 1725
	regulator_supply_alias(&dev, &supply);

1726 1727 1728
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1729
		if (node) {
1730 1731 1732
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1733

1734
			/*
1735 1736
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1737
			 */
1738
			return ERR_PTR(-EPROBE_DEFER);
1739
		}
1740 1741 1742
	}

	/* if not found, try doing it non-dt way */
1743 1744 1745
	if (dev)
		devname = dev_name(dev);

1746
	mutex_lock(&regulator_list_mutex);
1747 1748 1749 1750 1751 1752
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1753 1754
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1755 1756
			r = map->regulator;
			break;
1757
		}
1758
	}
1759
	mutex_unlock(&regulator_list_mutex);
1760

1761 1762 1763 1764
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1765 1766 1767 1768
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1769 1770
}

1771 1772 1773 1774 1775 1776
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

1777
	/* No supply to resolve? */
1778 1779 1780 1781 1782 1783 1784
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1785 1786 1787 1788
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1789 1790 1791 1792
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1793 1794
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1795
			get_device(&r->dev);
1796 1797 1798 1799 1800
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1801 1802
	}

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1816 1817
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1818 1819
	if (ret < 0) {
		put_device(&r->dev);
1820
		return ret;
1821
	}
1822 1823

	ret = set_supply(rdev, r);
1824 1825
	if (ret < 0) {
		put_device(&r->dev);
1826
		return ret;
1827
	}
1828

1829 1830 1831 1832 1833 1834
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1835
		ret = regulator_enable(rdev->supply);
1836
		if (ret < 0) {
1837
			_regulator_put(rdev->supply);
1838
			rdev->supply = NULL;
1839
			return ret;
1840
		}
1841 1842 1843 1844 1845
	}

	return 0;
}

1846
/* Internal regulator request function */
1847 1848
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1849 1850
{
	struct regulator_dev *rdev;
1851
	struct regulator *regulator;
1852
	const char *devname = dev ? dev_name(dev) : "deviceless";
1853
	int ret;
1854

1855 1856 1857 1858 1859
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1860
	if (id == NULL) {
1861
		pr_err("get() with no identifier\n");
1862
		return ERR_PTR(-EINVAL);
1863 1864
	}

1865
	rdev = regulator_dev_lookup(dev, id);
1866 1867
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1868

1869 1870 1871 1872 1873 1874
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1875

1876 1877 1878 1879 1880
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1881

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1895

1896 1897 1898 1899
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1900

1901 1902 1903
		default:
			return ERR_PTR(-ENODEV);
		}
1904 1905
	}

1906 1907
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1908 1909
		put_device(&rdev->dev);
		return regulator;
1910 1911
	}

1912
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1913
		regulator = ERR_PTR(-EBUSY);
1914 1915
		put_device(&rdev->dev);
		return regulator;
1916 1917
	}

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1928 1929 1930
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1931 1932
		put_device(&rdev->dev);
		return regulator;
1933 1934
	}

1935
	if (!try_module_get(rdev->owner)) {
1936
		regulator = ERR_PTR(-EPROBE_DEFER);
1937 1938 1939
		put_device(&rdev->dev);
		return regulator;
	}
1940

1941 1942 1943 1944
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
W
Wen Yang 已提交
1945
		put_device(&rdev->dev);
1946
		return regulator;
1947 1948
	}

1949
	rdev->open_count++;
1950
	if (get_type == EXCLUSIVE_GET) {
1951 1952 1953 1954 1955 1956 1957 1958 1959
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1960 1961
	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);

1962 1963
	return regulator;
}
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1980
	return _regulator_get(dev, id, NORMAL_GET);
1981
}
1982 1983
EXPORT_SYMBOL_GPL(regulator_get);

1984 1985 1986 1987 1988 1989 1990
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1991 1992 1993
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2007
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2008 2009 2010
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2011 2012 2013 2014 2015 2016
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2017
 * or IS_ERR() condition containing errno.
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2033
	return _regulator_get(dev, id, OPTIONAL_GET);
2034 2035 2036
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2037
/* regulator_list_mutex lock held by regulator_put() */
2038
static void _regulator_put(struct regulator *regulator)
2039 2040 2041
{
	struct regulator_dev *rdev;

2042
	if (IS_ERR_OR_NULL(regulator))
2043 2044
		return;

2045 2046
	lockdep_assert_held_once(&regulator_list_mutex);

2047 2048 2049
	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

2050 2051
	rdev = regulator->rdev;

2052 2053
	debugfs_remove_recursive(regulator->debugfs);

2054
	if (regulator->dev) {
2055
		device_link_remove(regulator->dev, &rdev->dev);
2056 2057

		/* remove any sysfs entries */
2058
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2059 2060
	}

2061
	regulator_lock(rdev);
2062 2063
	list_del(&regulator->list);

2064 2065
	rdev->open_count--;
	rdev->exclusive = 0;
2066
	regulator_unlock(rdev);
2067

2068
	kfree_const(regulator->supply_name);
2069 2070
	kfree(regulator);

2071
	module_put(rdev->owner);
W
Wen Yang 已提交
2072
	put_device(&rdev->dev);
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2087 2088 2089 2090
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2168 2169
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2170
					 struct device *alias_dev,
2171
					 const char *const *alias_id,
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2209
					    const char *const *id,
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2220 2221 2222 2223 2224
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
2225
	struct gpio_desc *gpiod;
2226

2227
	gpiod = config->ena_gpiod;
2228

2229
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2230
		if (pin->gpiod == gpiod) {
2231
			rdev_dbg(rdev, "GPIO is already used\n");
2232 2233 2234 2235 2236
			goto update_ena_gpio_to_rdev;
		}
	}

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2237
	if (pin == NULL)
2238 2239
		return -ENOMEM;

2240
	pin->gpiod = gpiod;
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2258
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2259 2260
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2261
				gpiod_put(pin->gpiod);
2262 2263
				list_del(&pin->list);
				kfree(pin);
2264 2265
				rdev->ena_pin = NULL;
				return;
2266 2267 2268 2269 2270 2271 2272
			} else {
				pin->request_count--;
			}
		}
	}
}

2273
/**
2274 2275 2276 2277
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2291
			gpiod_set_value_cansleep(pin->gpiod, 1);
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2302
			gpiod_set_value_cansleep(pin->gpiod, 0);
2303 2304 2305 2306 2307 2308 2309
			pin->enable_count = 0;
		}
	}

	return 0;
}

2310 2311 2312 2313 2314 2315
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2316
 *     Documentation/timers/timers-howto.rst
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
2379
			 * detected and we get a penalty of
2380 2381 2382 2383 2384 2385 2386 2387 2388
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2389
	if (rdev->ena_pin) {
2390 2391 2392 2393 2394 2395
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2396
	} else if (rdev->desc->ops->enable) {
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2409
	_regulator_enable_delay(delay);
2410 2411 2412 2413 2414 2415

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2475
/* locks held by regulator_enable() */
2476
static int _regulator_enable(struct regulator *regulator)
2477
{
2478
	struct regulator_dev *rdev = regulator->rdev;
2479
	int ret;
2480

2481 2482
	lockdep_assert_held_once(&rdev->mutex.base);

2483
	if (rdev->use_count == 0 && rdev->supply) {
2484
		ret = _regulator_enable(rdev->supply);
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2495

2496 2497 2498
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2499

2500 2501 2502 2503
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2504
			if (!regulator_ops_is_valid(rdev,
2505 2506
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2507
				goto err_consumer_disable;
2508
			}
2509

2510
			ret = _regulator_do_enable(rdev);
2511
			if (ret < 0)
2512
				goto err_consumer_disable;
2513

2514 2515
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2516
		} else if (ret < 0) {
2517
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2518
			goto err_consumer_disable;
2519
		}
2520
		/* Fallthrough on positive return values - already enabled */
2521 2522
	}

2523 2524 2525
	rdev->use_count++;

	return 0;
2526

2527 2528 2529
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2530
err_disable_supply:
2531
	if (rdev->use_count == 0 && rdev->supply)
2532
		_regulator_disable(rdev->supply);
2533 2534

	return ret;
2535 2536 2537 2538 2539 2540
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2541 2542 2543 2544
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2545
 * NOTE: the output value can be set by other drivers, boot loader or may be
2546
 * hardwired in the regulator.
2547 2548 2549
 */
int regulator_enable(struct regulator *regulator)
{
2550
	struct regulator_dev *rdev = regulator->rdev;
2551
	struct ww_acquire_ctx ww_ctx;
2552
	int ret;
2553

2554
	regulator_lock_dependent(rdev, &ww_ctx);
2555
	ret = _regulator_enable(regulator);
2556
	regulator_unlock_dependent(rdev, &ww_ctx);
2557

2558 2559 2560 2561
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2562 2563 2564 2565 2566 2567
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2568
	if (rdev->ena_pin) {
2569 2570 2571 2572 2573 2574
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2575 2576 2577 2578 2579 2580 2581

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2582 2583 2584 2585 2586 2587
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2588 2589 2590 2591 2592
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2593
/* locks held by regulator_disable() */
2594
static int _regulator_disable(struct regulator *regulator)
2595
{
2596
	struct regulator_dev *rdev = regulator->rdev;
2597 2598
	int ret = 0;

2599
	lockdep_assert_held_once(&rdev->mutex.base);
2600

D
David Brownell 已提交
2601
	if (WARN(rdev->use_count <= 0,
2602
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2603 2604
		return -EIO;

2605
	/* are we the last user and permitted to disable ? */
2606 2607
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2608 2609

		/* we are last user */
2610
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2611 2612 2613 2614 2615 2616
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2617
			ret = _regulator_do_disable(rdev);
2618
			if (ret < 0) {
2619
				rdev_err(rdev, "failed to disable\n");
2620 2621 2622
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2623 2624
				return ret;
			}
2625 2626
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2627 2628 2629 2630 2631 2632
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2633

2634 2635 2636
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2637 2638 2639
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2640
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2641
		ret = _regulator_disable(rdev->supply);
2642

2643 2644 2645 2646 2647 2648 2649
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2650 2651 2652
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2653
 *
2654
 * NOTE: this will only disable the regulator output if no other consumer
2655 2656
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2657 2658 2659
 */
int regulator_disable(struct regulator *regulator)
{
2660
	struct regulator_dev *rdev = regulator->rdev;
2661
	struct ww_acquire_ctx ww_ctx;
2662
	int ret;
2663

2664
	regulator_lock_dependent(rdev, &ww_ctx);
2665
	ret = _regulator_disable(regulator);
2666
	regulator_unlock_dependent(rdev, &ww_ctx);
2667

2668 2669 2670 2671 2672
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2673
static int _regulator_force_disable(struct regulator_dev *rdev)
2674 2675 2676
{
	int ret = 0;

2677
	lockdep_assert_held_once(&rdev->mutex.base);
2678

2679 2680 2681 2682 2683
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2684 2685 2686
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2687 2688
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2689
		return ret;
2690 2691
	}

2692 2693 2694 2695
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2709
	struct regulator_dev *rdev = regulator->rdev;
2710
	struct ww_acquire_ctx ww_ctx;
2711 2712
	int ret;

2713
	regulator_lock_dependent(rdev, &ww_ctx);
2714

2715
	ret = _regulator_force_disable(regulator->rdev);
2716

2717 2718
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2719 2720 2721 2722 2723 2724

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2725 2726
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2727

2728
	regulator_unlock_dependent(rdev, &ww_ctx);
2729

2730 2731 2732 2733
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2734 2735 2736 2737
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2738
	struct ww_acquire_ctx ww_ctx;
2739
	int count, i, ret;
2740 2741
	struct regulator *regulator;
	int total_count = 0;
2742

2743
	regulator_lock_dependent(rdev, &ww_ctx);
2744

2745 2746 2747 2748 2749 2750 2751 2752
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
		}
2767
	}
2768
	WARN_ON(!total_count);
2769

2770 2771 2772 2773
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2774 2775 2776 2777 2778
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2779
 * @ms: milliseconds until the regulator is disabled
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2792 2793 2794
	if (!ms)
		return regulator_disable(regulator);

2795
	regulator_lock(rdev);
2796
	regulator->deferred_disables++;
2797 2798
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2799
	regulator_unlock(rdev);
2800

2801
	return 0;
2802 2803 2804
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2805 2806
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2807
	/* A GPIO control always takes precedence */
2808
	if (rdev->ena_pin)
2809 2810
		return rdev->ena_gpio_state;

2811
	/* If we don't know then assume that the regulator is always on */
2812
	if (!rdev->desc->ops->is_enabled)
2813
		return 1;
2814

2815
	return rdev->desc->ops->is_enabled(rdev);
2816 2817
}

2818 2819
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2831
			regulator_lock(rdev);
2832 2833
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2834
			regulator_unlock(rdev);
2835
	} else if (rdev->is_switch && rdev->supply) {
2836 2837
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2852 2853 2854 2855
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2856 2857 2858 2859 2860 2861 2862
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2863 2864 2865
 */
int regulator_is_enabled(struct regulator *regulator)
{
2866 2867
	int ret;

2868 2869 2870
	if (regulator->always_on)
		return 1;

2871
	regulator_lock(regulator->rdev);
2872
	ret = _regulator_is_enabled(regulator->rdev);
2873
	regulator_unlock(regulator->rdev);
2874 2875

	return ret;
2876 2877 2878
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2891 2892 2893
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2894
	if (!rdev->is_switch || !rdev->supply)
2895 2896 2897
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2908
 * zero if this selector code can't be used on this system, or a
2909 2910 2911 2912
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2913
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2914 2915 2916
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2949 2950
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2951 2952 2953 2954

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2955 2956
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2976 2977
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3003 3004 3005 3006 3007 3008 3009
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3010
 * Returns a boolean.
3011 3012 3013 3014
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3015
	struct regulator_dev *rdev = regulator->rdev;
3016 3017
	int i, voltages, ret;

3018
	/* If we can't change voltage check the current voltage */
3019
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3020 3021
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3022
			return min_uV <= ret && ret <= max_uV;
3023 3024 3025 3026
		else
			return ret;
	}

3027 3028 3029 3030 3031
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3032 3033
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3034
		return 0;
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3046
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3047

3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3062 3063 3064 3065 3066
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3067 3068 3069
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3070 3071 3072 3073 3074 3075 3076
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3077
	data.old_uV = regulator_get_voltage_rdev(rdev);
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3101
	data.old_uV = regulator_get_voltage_rdev(rdev);
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3179 3180 3181 3182 3183 3184 3185 3186 3187
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3188 3189
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3190 3191 3192 3193 3194 3195
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3196 3197

	if (ramp_delay == 0) {
3198
		rdev_dbg(rdev, "ramp_delay not set\n");
3199 3200 3201 3202 3203 3204
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3205 3206 3207 3208
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3209
	int delay = 0;
3210
	int best_val = 0;
3211
	unsigned int selector;
3212
	int old_selector = -1;
3213
	const struct regulator_ops *ops = rdev->desc->ops;
3214
	int old_uV = regulator_get_voltage_rdev(rdev);
3215 3216 3217

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3218 3219 3220
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3221 3222 3223 3224
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3225
	if (_regulator_is_enabled(rdev) &&
3226 3227
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3228 3229 3230 3231
		if (old_selector < 0)
			return old_selector;
	}

3232
	if (ops->set_voltage) {
3233 3234
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3235 3236

		if (ret >= 0) {
3237 3238 3239
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3240
			else
3241
				best_val = regulator_get_voltage_rdev(rdev);
3242 3243
		}

3244
	} else if (ops->set_voltage_sel) {
3245
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3246
		if (ret >= 0) {
3247
			best_val = ops->list_voltage(rdev, ret);
3248 3249
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3250 3251
				if (old_selector == selector)
					ret = 0;
3252 3253 3254
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3255
				else
3256 3257
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3258 3259 3260
			} else {
				ret = -EINVAL;
			}
3261
		}
3262 3263 3264
	} else {
		ret = -EINVAL;
	}
3265

3266 3267
	if (ret)
		goto out;
3268

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3286
		}
3287
	}
3288

3289 3290 3291
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3292 3293
	}

3294 3295 3296 3297 3298 3299
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3300 3301
	}

3302
	if (best_val >= 0) {
3303 3304
		unsigned long data = best_val;

3305
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3306 3307
				     (void *)data);
	}
3308

3309
out:
3310
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3311 3312 3313 3314

	return ret;
}

3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3341
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3342 3343
					  int min_uV, int max_uV,
					  suspend_state_t state)
3344 3345
{
	struct regulator_dev *rdev = regulator->rdev;
3346
	struct regulator_voltage *voltage = &regulator->voltage[state];
3347
	int ret = 0;
3348
	int old_min_uV, old_max_uV;
3349
	int current_uV;
3350

3351 3352 3353 3354
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3355
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3356 3357
		goto out;

3358
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3359
	 * return successfully even though the regulator does not support
3360 3361
	 * changing the voltage.
	 */
3362
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3363
		current_uV = regulator_get_voltage_rdev(rdev);
3364
		if (min_uV <= current_uV && current_uV <= max_uV) {
3365 3366
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3367 3368 3369 3370
			goto out;
		}
	}

3371
	/* sanity check */
3372 3373
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3374 3375 3376 3377 3378 3379 3380 3381
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3382

3383
	/* restore original values in case of error */
3384 3385 3386 3387
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3388

3389 3390
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3391 3392 3393 3394
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3395

3396 3397 3398 3399
out:
	return ret;
}

3400 3401
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3402 3403 3404 3405 3406
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3407 3408 3409
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3410 3411
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3412 3413 3414 3415 3416 3417
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3418
			goto out;
3419 3420
		}

M
Mark Brown 已提交
3421
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3422 3423
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3424
			goto out;
3425 3426 3427 3428
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3429
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3430 3431
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3432
			goto out;
3433 3434 3435 3436 3437 3438 3439
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3440
				best_supply_uV, INT_MAX, state);
3441 3442 3443
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3444
			goto out;
3445 3446 3447
		}
	}

3448 3449 3450 3451 3452
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3453
	if (ret < 0)
3454
		goto out;
3455

3456 3457
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3458
				best_supply_uV, INT_MAX, state);
3459 3460 3461 3462 3463 3464 3465
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3466
out:
3467
	return ret;
3468
}
3469
EXPORT_SYMBOL(regulator_set_voltage_rdev);
3470

3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3481
		*current_uV = regulator_get_voltage_rdev(rdev);
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3513
	int i, ret, max_spread;
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3547
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3558

3559 3560 3561 3562 3563 3564 3565 3566
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3567 3568
	max_spread = constraints->max_spread[0];

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3586
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3624 3625 3626 3627
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3628
			ret = regulator_get_voltage_rdev(rdev);
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
3650
	struct regulator_coupler *coupler = c_desc->coupler;
3651 3652
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3653 3654
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670

	c_rdevs = c_desc->coupled_rdevs;
	n_coupled = c_desc->n_coupled;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		n_coupled = 1;

	if (c_desc->n_resolved < n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

3671 3672 3673
	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3700
			if (test_bit(i, &c_rdev_done))
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3728

3729 3730
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3731

3732 3733 3734
		if (ret < 0)
			goto out;

3735 3736
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
3737 3738 3739 3740

	} while (n_coupled > 1);

out:
3741 3742 3743
	return ret;
}

3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3764 3765
	struct ww_acquire_ctx ww_ctx;
	int ret;
3766

3767
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3768

3769 3770
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3771

3772
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3773

3774 3775 3776 3777
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3790
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3844 3845
	struct ww_acquire_ctx ww_ctx;
	int ret;
3846 3847 3848 3849 3850

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3851
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3852 3853 3854 3855

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3856
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3857 3858 3859 3860 3861

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3875 3876
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3877 3878 3879 3880 3881
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3882 3883 3884 3885 3886
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3887
	/* Currently requires operations to do this */
3888
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3911
/**
3912 3913
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3914 3915 3916 3917 3918 3919
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3920
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3921
 * set_voltage_time_sel() operation.
3922 3923 3924 3925 3926
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3927
	int old_volt, new_volt;
3928

3929 3930 3931
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3932

3933 3934 3935
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3936 3937 3938 3939 3940
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3941
}
3942
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3943

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
3955
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3956 3957
	int ret, min_uV, max_uV;

3958
	regulator_lock(rdev);
3959 3960 3961 3962 3963 3964 3965 3966

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
3967
	if (!voltage->min_uV && !voltage->max_uV) {
3968 3969 3970 3971
		ret = -EINVAL;
		goto out;
	}

3972 3973
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
3974 3975 3976 3977 3978 3979

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

3980
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3981 3982 3983 3984 3985 3986
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
3987
	regulator_unlock(rdev);
3988 3989 3990 3991
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3992
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3993
{
3994
	int sel, ret;
3995 3996 3997 3998 3999 4000 4001 4002
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
4003 4004 4005 4006 4007
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
4008

4009
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4010 4011
		}
	}
4012 4013 4014 4015 4016

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4017
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4018
	} else if (rdev->desc->ops->get_voltage) {
4019
		ret = rdev->desc->ops->get_voltage(rdev);
4020 4021
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4022 4023
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4024
	} else if (rdev->supply) {
4025
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4026
	} else {
4027
		return -EINVAL;
4028
	}
4029

4030 4031
	if (ret < 0)
		return ret;
4032
	return ret - rdev->constraints->uV_offset;
4033
}
4034
EXPORT_SYMBOL(regulator_get_voltage_rdev);
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4047
	struct ww_acquire_ctx ww_ctx;
4048 4049
	int ret;

4050
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4051
	ret = regulator_get_voltage_rdev(regulator->rdev);
4052
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4053 4054 4055 4056 4057 4058 4059 4060

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4061
 * @min_uA: Minimum supported current in uA
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4080
	regulator_lock(rdev);
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4095
	regulator_unlock(rdev);
4096 4097 4098 4099
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4100 4101 4102 4103 4104 4105 4106 4107 4108
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4109 4110 4111 4112
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4113
	regulator_lock(rdev);
4114
	ret = _regulator_get_current_limit_unlocked(rdev);
4115
	regulator_unlock(rdev);
4116

4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4150
	int regulator_curr_mode;
4151

4152
	regulator_lock(rdev);
4153 4154 4155 4156 4157 4158 4159

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4160 4161 4162 4163 4164 4165 4166 4167 4168
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4169
	/* constraints check */
4170
	ret = regulator_mode_constrain(rdev, &mode);
4171 4172 4173 4174 4175
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4176
	regulator_unlock(rdev);
4177 4178 4179 4180
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4181 4182 4183 4184 4185 4186 4187 4188 4189
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4190 4191 4192 4193
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4194
	regulator_lock(rdev);
4195
	ret = _regulator_get_mode_unlocked(rdev);
4196
	regulator_unlock(rdev);
4197

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4213 4214 4215 4216 4217
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4218
	regulator_lock(rdev);
4219 4220 4221 4222 4223 4224 4225 4226 4227

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4228
	regulator_unlock(rdev);
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4246
/**
4247
 * regulator_set_load - set regulator load
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4270 4271 4272 4273 4274 4275 4276 4277
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4278
 * On error a negative errno is returned.
4279
 */
4280
int regulator_set_load(struct regulator *regulator, int uA_load)
4281 4282
{
	struct regulator_dev *rdev = regulator->rdev;
4283 4284
	int old_uA_load;
	int ret = 0;
4285

4286
	regulator_lock(rdev);
4287
	old_uA_load = regulator->uA_load;
4288
	regulator->uA_load = uA_load;
4289 4290 4291 4292 4293
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4294
	regulator_unlock(rdev);
4295

4296 4297
	return ret;
}
4298
EXPORT_SYMBOL_GPL(regulator_set_load);
4299

4300 4301 4302 4303
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4304
 * @enable: enable or disable bypass mode
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4319
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4320 4321
		return 0;

4322
	regulator_lock(rdev);
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4346
	regulator_unlock(rdev);
4347 4348 4349 4350 4351

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4352 4353 4354
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4355
 * @nb: notifier block
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4370
 * @nb: notifier block
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4382 4383 4384
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4385
static int _notifier_call_chain(struct regulator_dev *rdev,
4386 4387 4388
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4389
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4416 4417
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4428 4429 4430 4431 4432 4433 4434
	if (ret != -EPROBE_DEFER)
		dev_err(dev, "Failed to get supply '%s': %d\n",
			consumers[i].supply, ret);
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4435
	while (--i >= 0)
4436 4437 4438 4439 4440 4441
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4442 4443 4444 4445 4446 4447 4448
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4464
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4465
	int i;
4466
	int ret = 0;
4467

4468
	for (i = 0; i < num_consumers; i++) {
4469 4470
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4471
	}
4472 4473 4474 4475

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4476
	for (i = 0; i < num_consumers; i++) {
4477 4478
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4479
			goto err;
4480
		}
4481 4482 4483 4484 4485
	}

	return 0;

err:
4486 4487 4488 4489 4490 4491 4492
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4506 4507
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4508 4509 4510 4511 4512 4513
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4514
	int ret, r;
4515

4516
	for (i = num_consumers - 1; i >= 0; --i) {
4517 4518 4519 4520 4521 4522 4523 4524
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4525
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4526 4527 4528
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4529
			pr_err("Failed to re-enable %s: %d\n",
4530 4531
			       consumers[i].supply, r);
	}
4532 4533 4534 4535 4536

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4555
	int ret = 0;
4556

4557
	for (i = 0; i < num_consumers; i++) {
4558 4559 4560
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4561 4562
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4563 4564 4565 4566 4567 4568 4569
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4593
 * @rdev: regulator source
4594
 * @event: notifier block
4595
 * @data: callback-specific data.
4596 4597 4598
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4599
 * Note lock must be held by caller.
4600 4601 4602 4603
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4604
	lockdep_assert_held_once(&rdev->mutex.base);
4605

4606 4607 4608 4609 4610 4611
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4628
	case REGULATOR_MODE_STANDBY:
4629 4630
		return REGULATOR_STATUS_STANDBY;
	default:
4631
		return REGULATOR_STATUS_UNDEFINED;
4632 4633 4634 4635
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4663 4664 4665 4666
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4667 4668
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4669
{
4670
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4671
	struct regulator_dev *rdev = dev_to_rdev(dev);
4672
	const struct regulator_ops *ops = rdev->desc->ops;
4673 4674 4675 4676 4677 4678 4679
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4680 4681

	/* some attributes need specific methods to be displayed */
4682 4683 4684 4685 4686 4687 4688
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4689
	}
4690

4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4706
	/* constraints need specific supporting methods */
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4742

4743 4744 4745
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4746 4747 4748

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4749
	kfree(rdev);
4750 4751
}

4752 4753
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4766
	if (!rdev->debugfs) {
4767 4768 4769 4770 4771 4772 4773 4774
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4775 4776
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4777 4778
}

4779 4780
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4781 4782 4783 4784 4785 4786
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4787 4788
}

4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

4840
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4841
{
4842
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4855 4856
		if (!c_rdev)
			continue;
4857

4858 4859 4860 4861 4862 4863
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

4864
		regulator_lock(c_rdev);
4865

4866 4867
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
4868

4869
		regulator_unlock(c_rdev);
4870

4871 4872
		regulator_resolve_coupling(c_rdev);
	}
4873 4874
}

4875
static void regulator_remove_coupling(struct regulator_dev *rdev)
4876
{
4877
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4878 4879 4880 4881
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
4882
	int err;
4883

4884
	n_coupled = c_desc->n_coupled;
4885

4886 4887
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
4888

4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
			rdev_err(rdev, "failed to detach from coupler: %d\n",
				 err);
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
4922 4923
}

4924
static int regulator_init_coupling(struct regulator_dev *rdev)
4925
{
4926 4927
	int err, n_phandles;
	size_t alloc_size;
4928 4929 4930 4931 4932 4933

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

4934 4935 4936 4937 4938
	alloc_size = sizeof(*rdev) * (n_phandles + 1);

	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
	if (!rdev->coupling_desc.coupled_rdevs)
		return -ENOMEM;
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

4952
	if (!of_check_coupling_data(rdev))
4953 4954
		return -EPERM;

4955 4956 4957 4958 4959
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
		rdev_err(rdev, "failed to get coupler: %d\n", err);
		return err;
4960 4961
	}

4962 4963 4964 4965 4966 4967 4968 4969 4970
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
4971
		return -EPERM;
4972
	}
4973

4974 4975 4976 4977 4978 4979
	if (!rdev->constraints->always_on) {
		rdev_err(rdev,
			 "Coupling of a non always-on regulator is unimplemented\n");
		return -ENOTSUPP;
	}

4980 4981 4982
	return 0;
}

4983 4984 4985 4986
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

4987 4988
/**
 * regulator_register - register regulator
4989
 * @regulator_desc: regulator to register
4990
 * @cfg: runtime configuration for regulator
4991 4992
 *
 * Called by regulator drivers to register a regulator.
4993 4994
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
4995
 */
4996 4997
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
4998
		   const struct regulator_config *cfg)
4999
{
5000
	const struct regulation_constraints *constraints = NULL;
5001
	const struct regulator_init_data *init_data;
5002
	struct regulator_config *config = NULL;
5003
	static atomic_t regulator_no = ATOMIC_INIT(-1);
5004
	struct regulator_dev *rdev;
5005 5006
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
5007
	bool reg_device_fail = false;
5008
	struct device *dev;
5009
	int ret, i;
5010

5011
	if (cfg == NULL)
5012
		return ERR_PTR(-EINVAL);
5013 5014 5015 5016 5017 5018
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5019

5020
	dev = cfg->dev;
5021
	WARN_ON(!dev);
5022

5023 5024 5025 5026
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5027

5028
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5029 5030 5031 5032
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5033

5034 5035 5036
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5037 5038
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5039 5040 5041 5042

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5043 5044
		ret = -EINVAL;
		goto rinse;
5045
	}
5046 5047
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5048 5049
		ret = -EINVAL;
		goto rinse;
5050
	}
5051

5052
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5053 5054 5055 5056
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5057

5058 5059 5060 5061 5062 5063 5064
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
5065 5066
		ret = -ENOMEM;
		goto rinse;
5067 5068
	}

5069
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5070
					       &rdev->dev.of_node);
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083

	/*
	 * Sometimes not all resources are probed already so we need to take
	 * that into account. This happens most the time if the ena_gpiod comes
	 * from a gpio extender or something else.
	 */
	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
		kfree(config);
		kfree(rdev);
		ret = -EPROBE_DEFER;
		goto rinse;
	}

5084 5085 5086 5087 5088
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5089
	 * a descriptor, we definitely got one from parsing the device
5090 5091 5092 5093
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5094 5095 5096 5097 5098
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5099
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5100
	rdev->reg_data = config->driver_data;
5101 5102
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5103 5104
	if (config->regmap)
		rdev->regmap = config->regmap;
5105
	else if (dev_get_regmap(dev, NULL))
5106
		rdev->regmap = dev_get_regmap(dev, NULL);
5107 5108
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5109 5110 5111
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5112
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5113

5114
	/* preform any regulator specific init */
5115
	if (init_data && init_data->regulator_init) {
5116
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5117 5118
		if (ret < 0)
			goto clean;
5119 5120
	}

5121
	if (config->ena_gpiod) {
5122
		mutex_lock(&regulator_list_mutex);
5123
		ret = regulator_ena_gpio_request(rdev, config);
5124
		mutex_unlock(&regulator_list_mutex);
5125
		if (ret != 0) {
5126 5127
			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
				 ret);
5128
			goto clean;
5129
		}
5130 5131 5132
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5133 5134
	}

5135
	/* register with sysfs */
5136
	rdev->dev.class = &regulator_class;
5137
	rdev->dev.parent = dev;
5138
	dev_set_name(&rdev->dev, "regulator.%lu",
5139
		    (unsigned long) atomic_inc_return(&regulator_no));
5140

5141
	/* set regulator constraints */
5142 5143 5144 5145
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
5146
		rdev->supply_name = init_data->supply_regulator;
5147
	else if (regulator_desc->supply_name)
5148
		rdev->supply_name = regulator_desc->supply_name;
5149

5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

5162
	mutex_lock(&regulator_list_mutex);
5163
	ret = regulator_init_coupling(rdev);
5164
	mutex_unlock(&regulator_list_mutex);
5165
	if (ret < 0)
5166 5167
		goto wash;

5168
	/* add consumers devices */
5169
	if (init_data) {
5170
		mutex_lock(&regulator_list_mutex);
5171 5172 5173
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5174
				init_data->consumer_supplies[i].supply);
5175
			if (ret < 0) {
5176
				mutex_unlock(&regulator_list_mutex);
5177 5178 5179 5180
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5181
		}
5182
		mutex_unlock(&regulator_list_mutex);
5183
	}
5184

5185 5186 5187 5188 5189
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5190
	dev_set_drvdata(&rdev->dev, rdev);
5191 5192
	ret = device_register(&rdev->dev);
	if (ret != 0) {
5193
		reg_device_fail = true;
5194 5195 5196
		goto unset_supplies;
	}

5197
	rdev_init_debugfs(rdev);
5198

5199 5200 5201 5202 5203
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5204 5205 5206
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5207
	kfree(config);
5208
	return rdev;
D
David Brownell 已提交
5209

5210
unset_supplies:
5211
	mutex_lock(&regulator_list_mutex);
5212
	unset_regulator_supplies(rdev);
5213
	regulator_remove_coupling(rdev);
5214
	mutex_unlock(&regulator_list_mutex);
5215
wash:
5216
	kfree(rdev->constraints);
5217
	mutex_lock(&regulator_list_mutex);
5218
	regulator_ena_gpio_free(rdev);
5219
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5220
clean:
5221 5222
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
5223 5224 5225 5226
	if (reg_device_fail)
		put_device(&rdev->dev);
	else
		kfree(rdev);
5227
	kfree(config);
5228 5229 5230
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5231
	return ERR_PTR(ret);
5232 5233 5234 5235 5236
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5237
 * @rdev: regulator to unregister
5238 5239 5240 5241 5242 5243 5244 5245
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5246 5247 5248
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5249
		regulator_put(rdev->supply);
5250
	}
5251

5252 5253
	flush_work(&rdev->disable_work.work);

5254
	mutex_lock(&regulator_list_mutex);
5255

5256
	debugfs_remove_recursive(rdev->debugfs);
5257
	WARN_ON(rdev->open_count);
5258
	regulator_remove_coupling(rdev);
5259
	unset_regulator_supplies(rdev);
5260
	list_del(&rdev->list);
5261
	regulator_ena_gpio_free(rdev);
5262
	device_unregister(&rdev->dev);
5263 5264

	mutex_unlock(&regulator_list_mutex);
5265 5266 5267
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5268
#ifdef CONFIG_SUSPEND
5269
/**
5270
 * regulator_suspend - prepare regulators for system wide suspend
5271
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5272 5273 5274
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5275
static int regulator_suspend(struct device *dev)
5276
{
5277
	struct regulator_dev *rdev = dev_to_rdev(dev);
5278
	suspend_state_t state = pm_suspend_target_state;
5279 5280 5281 5282 5283
	int ret;

	regulator_lock(rdev);
	ret = suspend_set_state(rdev, state);
	regulator_unlock(rdev);
5284

5285
	return ret;
5286
}
5287

5288
static int regulator_resume(struct device *dev)
5289
{
5290
	suspend_state_t state = pm_suspend_target_state;
5291
	struct regulator_dev *rdev = dev_to_rdev(dev);
5292
	struct regulator_state *rstate;
5293
	int ret = 0;
5294

5295
	rstate = regulator_get_suspend_state(rdev, state);
5296
	if (rstate == NULL)
5297
		return 0;
5298

5299
	regulator_lock(rdev);
5300

5301
	if (rdev->desc->ops->resume &&
5302 5303
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
5304
		ret = rdev->desc->ops->resume(rdev);
5305

5306
	regulator_unlock(rdev);
5307

5308
	return ret;
5309
}
5310 5311
#else /* !CONFIG_SUSPEND */

5312 5313
#define regulator_suspend	NULL
#define regulator_resume	NULL
5314 5315 5316 5317 5318

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5319 5320
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5321 5322 5323
};
#endif

M
Mark Brown 已提交
5324
struct class regulator_class = {
5325 5326 5327 5328 5329 5330 5331
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5349 5350
/**
 * rdev_get_drvdata - get rdev regulator driver data
5351
 * @rdev: regulator
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5388
 * @rdev: regulator
5389 5390 5391 5392 5393 5394 5395
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5396 5397 5398 5399 5400 5401
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5402 5403 5404 5405 5406 5407
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5408 5409 5410 5411 5412 5413
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5414
#ifdef CONFIG_DEBUG_FS
5415
static int supply_map_show(struct seq_file *sf, void *data)
5416 5417 5418 5419
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5420 5421 5422
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5423 5424
	}

5425 5426
	return 0;
}
5427
DEFINE_SHOW_ATTRIBUTE(supply_map);
5428

5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5451 5452 5453 5454 5455 5456
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5457
	struct summary_data summary_data;
5458
	unsigned int opmode;
5459 5460 5461 5462

	if (!rdev)
		return;

5463
	opmode = _regulator_get_mode_unlocked(rdev);
5464
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5465 5466
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5467
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5468
		   regulator_opmode_to_str(opmode));
5469

5470
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5471 5472
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5491
		if (consumer->dev && consumer->dev->class == &regulator_class)
5492 5493 5494 5495
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5496 5497
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5498 5499 5500

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5501 5502
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5503
				   consumer->uA_load / 1000,
5504 5505
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5506 5507
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5508 5509 5510 5511 5512 5513 5514 5515
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5516 5517 5518
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5519

5520 5521
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5559 5560

	regulator_unlock(rdev);
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5591 5592
	mutex_lock(&regulator_list_mutex);

5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5619 5620

	mutex_unlock(&regulator_list_mutex);
5621 5622
}

5623
static int regulator_summary_show_roots(struct device *dev, void *data)
5624
{
5625 5626
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5627

5628 5629
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5630

5631 5632
	return 0;
}
5633

5634 5635
static int regulator_summary_show(struct seq_file *s, void *data)
{
5636 5637
	struct ww_acquire_ctx ww_ctx;

5638 5639
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5640

5641 5642
	regulator_summary_lock(&ww_ctx);

5643 5644
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5645

5646 5647
	regulator_summary_unlock(&ww_ctx);

5648 5649
	return 0;
}
5650 5651
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5652

5653 5654
static int __init regulator_init(void)
{
5655 5656 5657 5658
	int ret;

	ret = class_register(&regulator_class);

5659
	debugfs_root = debugfs_create_dir("regulator", NULL);
5660
	if (!debugfs_root)
5661
		pr_warn("regulator: Failed to create debugfs directory\n");
5662

5663
#ifdef CONFIG_DEBUG_FS
5664 5665
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5666

5667
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5668
			    NULL, &regulator_summary_fops);
5669
#endif
5670 5671
	regulator_dummy_init();

5672 5673
	regulator_coupler_register(&generic_regulator_coupler);

5674
	return ret;
5675 5676 5677 5678
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5679

5680
static int regulator_late_cleanup(struct device *dev, void *data)
5681
{
5682 5683 5684
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5685 5686
	int enabled, ret;

5687 5688 5689
	if (c && c->always_on)
		return 0;

5690
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5691 5692
		return 0;

5693
	regulator_lock(rdev);
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5724
	regulator_unlock(rdev);
5725 5726 5727 5728

	return 0;
}

5729
static void regulator_init_complete_work_function(struct work_struct *work)
5730
{
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5741
	/* If we have a full configuration then disable any regulators
5742 5743 5744
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5745
	 */
5746 5747
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776
}

static DECLARE_DELAYED_WORK(regulator_init_complete_work,
			    regulator_init_complete_work_function);

static int __init regulator_init_complete(void)
{
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

	/*
	 * We punt completion for an arbitrary amount of time since
	 * systems like distros will load many drivers from userspace
	 * so consumers might not always be ready yet, this is
	 * particularly an issue with laptops where this might bounce
	 * the display off then on.  Ideally we'd get a notification
	 * from userspace when this happens but we don't so just wait
	 * a bit and hope we waited long enough.  It'd be better if
	 * we'd only do this on systems that need it, and a kernel
	 * command line option might be useful.
	 */
	schedule_delayed_work(&regulator_init_complete_work,
			      msecs_to_jiffies(30000));
5777 5778 5779

	return 0;
}
5780
late_initcall_sync(regulator_init_complete);