core.c 151.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

M
Mark Brown 已提交
36 37
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 39 40 41 42 43 44 45 46
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

47 48
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
49 50
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
51
static LIST_HEAD(regulator_ena_gpio_list);
52
static LIST_HEAD(regulator_supply_alias_list);
53
static LIST_HEAD(regulator_coupler_list);
54
static bool has_full_constraints;
55

56 57
static struct dentry *debugfs_root;

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69
};

70 71 72 73 74 75 76
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
77
	struct gpio_desc *gpiod;
78 79 80 81
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

95
static int _regulator_is_enabled(struct regulator_dev *rdev);
96
static int _regulator_disable(struct regulator *regulator);
97 98
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99
static int _notifier_call_chain(struct regulator_dev *rdev,
100
				  unsigned long event, void *data);
101 102
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
103 104
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
105 106 107
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
108
static void destroy_regulator(struct regulator *regulator);
109
static void _regulator_put(struct regulator *regulator);
110

111
const char *rdev_get_name(struct regulator_dev *rdev)
112 113 114 115 116 117 118 119 120
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

121 122
static bool have_full_constraints(void)
{
123
	return has_full_constraints || of_have_populated_dt();
124 125
}

126 127 128 129 130 131 132 133 134 135 136 137 138
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

139 140 141
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
142
 * @ww_ctx:		w/w mutex acquire context
143 144 145 146 147 148 149
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
150 151
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
152
{
153 154 155 156 157 158 159
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
160
			rdev->ref_cnt++;
161 162 163 164 165 166 167
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
168
		}
169 170
	} else {
		lock = true;
171 172
	}

173 174 175 176 177 178 179 180
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
181 182
}

183 184 185 186 187 188 189 190 191 192
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
193
static void regulator_lock(struct regulator_dev *rdev)
194
{
195
	regulator_lock_nested(rdev, NULL);
196 197 198 199 200 201 202 203 204
}

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
205
static void regulator_unlock(struct regulator_dev *rdev)
206
{
207
	mutex_lock(&regulator_nesting_mutex);
208

209 210 211
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
212
	}
213 214 215 216

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
217 218
}

219
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220
{
221 222 223 224 225
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226

227 228 229 230 231 232 233
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

234 235
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
236
{
237 238
	struct regulator_dev *c_rdev, *supply_rdev;
	int i, supply_n_coupled;
239

240 241
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242 243 244 245

		if (!c_rdev)
			continue;

246 247 248 249 250 251 252
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
			supply_rdev = c_rdev->supply->rdev;
			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;

			regulator_unlock_recursive(supply_rdev,
						   supply_n_coupled);
		}
253

254 255
		regulator_unlock(c_rdev);
	}
256 257
}

258 259 260 261
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
262
{
263
	struct regulator_dev *c_rdev;
264
	int i, err;
265

266 267
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268

269 270
		if (!c_rdev)
			continue;
271

272 273 274 275 276 277 278
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
279

280 281 282 283 284 285 286
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

287
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288 289 290 291 292 293 294 295
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
296 297
		}
	}
298 299 300 301 302 303 304

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
305 306
}

307
/**
308 309 310 311 312
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
313
 * Unlock all regulators related with rdev by coupling or supplying.
314
 */
315 316
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
317
{
318 319
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
320 321 322
}

/**
323 324
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
325
 * @ww_ctx:			w/w mutex acquire context
326 327
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
328
 * all regulators related with rdev by coupling or supplying.
329
 */
330 331
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
332
{
333 334 335
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
336

337
	mutex_lock(&regulator_list_mutex);
338

339
	ww_acquire_init(ww_ctx, &regulator_ww_class);
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
361 362
}

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
385 386
			if (regnode)
				goto err_node_put;
387
		} else {
388
			goto err_node_put;
389 390 391
		}
	}
	return NULL;
392 393 394 395

err_node_put:
	of_node_put(child);
	return regnode;
396 397
}

398 399 400 401 402 403
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
404
 * returns the device node corresponding to the regulator if found, else
405 406 407 408 409
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
410
	char prop_name[64]; /* 64 is max size of property name */
411 412 413

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

414
	snprintf(prop_name, 64, "%s-supply", supply);
415 416 417
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
418 419 420 421
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

422 423
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
424 425 426 427 428
		return NULL;
	}
	return regnode;
}

429
/* Platform voltage constraint check */
430 431
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
432 433 434
{
	BUG_ON(*min_uV > *max_uV);

435
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436
		rdev_err(rdev, "voltage operation not allowed\n");
437 438 439 440 441 442 443 444
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

445 446
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447
			 *min_uV, *max_uV);
448
		return -EINVAL;
449
	}
450 451 452 453

	return 0;
}

454 455 456 457 458 459
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

460 461 462
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
463 464 465
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
466 467
{
	struct regulator *regulator;
468
	struct regulator_voltage *voltage;
469 470

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
471
		voltage = &regulator->voltage[state];
472 473 474 475
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
476
		if (!voltage->min_uV && !voltage->max_uV)
477 478
			continue;

479 480 481 482
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
483 484
	}

485
	if (*min_uV > *max_uV) {
486 487
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
488
		return -EINVAL;
489
	}
490 491 492 493

	return 0;
}

494 495 496 497 498 499
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

500
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501
		rdev_err(rdev, "current operation not allowed\n");
502 503 504 505 506 507 508 509
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

510 511
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512
			 *min_uA, *max_uA);
513
		return -EINVAL;
514
	}
515 516 517 518 519

	return 0;
}

/* operating mode constraint check */
520 521
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
522
{
523
	switch (*mode) {
524 525 526 527 528 529
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
530
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
531 532 533
		return -EINVAL;
	}

534
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535
		rdev_err(rdev, "mode operation not allowed\n");
536 537
		return -EPERM;
	}
538 539 540 541 542 543 544 545

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
546
	}
547 548

	return -EINVAL;
549 550
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return NULL;

	/* If we have no suspend mode configuration don't set anything;
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
	 */
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
			rdev_warn(rdev, "No configuration\n");
		return NULL;
	}

	return rstate;
}

593 594 595
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
596
	struct regulator_dev *rdev = dev_get_drvdata(dev);
597
	int uV;
598

599
	regulator_lock(rdev);
600
	uV = regulator_get_voltage_rdev(rdev);
601
	regulator_unlock(rdev);
602

603 604 605
	if (uV < 0)
		return uV;
	return sprintf(buf, "%d\n", uV);
606
}
607
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
608 609 610 611

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
612
	struct regulator_dev *rdev = dev_get_drvdata(dev);
613 614 615

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
616
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
617

618 619
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
620 621 622
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

623
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
624
}
625
static DEVICE_ATTR_RO(name);
626

627
static const char *regulator_opmode_to_str(int mode)
628 629 630
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
631
		return "fast";
632
	case REGULATOR_MODE_NORMAL:
633
		return "normal";
634
	case REGULATOR_MODE_IDLE:
635
		return "idle";
636
	case REGULATOR_MODE_STANDBY:
637
		return "standby";
638
	}
639 640 641 642 643 644
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
645 646
}

D
David Brownell 已提交
647 648
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
649
{
650
	struct regulator_dev *rdev = dev_get_drvdata(dev);
651

D
David Brownell 已提交
652 653
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
654
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
655 656 657

static ssize_t regulator_print_state(char *buf, int state)
{
658 659 660 661 662 663 664 665
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
666 667 668 669
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
670 671
	ssize_t ret;

672
	regulator_lock(rdev);
673
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
674
	regulator_unlock(rdev);
D
David Brownell 已提交
675

676
	return ret;
D
David Brownell 已提交
677
}
678
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
679

D
David Brownell 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
713 714 715
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
716 717 718
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
719 720 721 722 723 724 725 726
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

727 728 729
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
730
	struct regulator_dev *rdev = dev_get_drvdata(dev);
731 732 733 734 735 736

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
737
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
738 739 740 741

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
742
	struct regulator_dev *rdev = dev_get_drvdata(dev);
743 744 745 746 747 748

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
749
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
750 751 752 753

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
754
	struct regulator_dev *rdev = dev_get_drvdata(dev);
755 756 757 758 759 760

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
761
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
762 763 764 765

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
766
	struct regulator_dev *rdev = dev_get_drvdata(dev);
767 768 769 770 771 772

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
773
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
774 775 776 777

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
778
	struct regulator_dev *rdev = dev_get_drvdata(dev);
779 780 781
	struct regulator *regulator;
	int uA = 0;

782
	regulator_lock(rdev);
783 784 785 786
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
787
	regulator_unlock(rdev);
788 789
	return sprintf(buf, "%d\n", uA);
}
790
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
791

792 793
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
794
{
795
	struct regulator_dev *rdev = dev_get_drvdata(dev);
796 797
	return sprintf(buf, "%d\n", rdev->use_count);
}
798
static DEVICE_ATTR_RO(num_users);
799

800 801
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
802
{
803
	struct regulator_dev *rdev = dev_get_drvdata(dev);
804 805 806 807 808 809 810 811 812

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
813
static DEVICE_ATTR_RO(type);
814 815 816 817

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
818
	struct regulator_dev *rdev = dev_get_drvdata(dev);
819 820 821

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
822 823
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
824 825 826 827

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
828
	struct regulator_dev *rdev = dev_get_drvdata(dev);
829 830 831

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
832 833
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
834 835 836 837

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
838
	struct regulator_dev *rdev = dev_get_drvdata(dev);
839 840 841

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
842 843
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
844 845 846 847

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
848
	struct regulator_dev *rdev = dev_get_drvdata(dev);
849

D
David Brownell 已提交
850 851
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
852
}
853 854
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
855 856 857 858

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
859
	struct regulator_dev *rdev = dev_get_drvdata(dev);
860

D
David Brownell 已提交
861 862
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
863
}
864 865
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
866 867 868 869

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
870
	struct regulator_dev *rdev = dev_get_drvdata(dev);
871

D
David Brownell 已提交
872 873
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
874
}
875 876
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
877 878 879 880

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
881
	struct regulator_dev *rdev = dev_get_drvdata(dev);
882

D
David Brownell 已提交
883 884
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
885
}
886 887
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
888 889 890 891

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
892
	struct regulator_dev *rdev = dev_get_drvdata(dev);
893

D
David Brownell 已提交
894 895
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
896
}
897 898
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
899 900 901 902

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
903
	struct regulator_dev *rdev = dev_get_drvdata(dev);
904

D
David Brownell 已提交
905 906
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
907
}
908 909 910
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
932

933 934
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
935
static int drms_uA_update(struct regulator_dev *rdev)
936 937 938 939 940
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

941 942 943 944
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
945 946
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
947
		return 0;
948
	}
949

950 951
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
952 953
		return 0;

954 955
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
956
		return -EINVAL;
957 958

	/* calc total requested load */
959 960 961 962
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
963

964 965
	current_uA += rdev->constraints->system_load;

966 967 968 969
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
970 971
			rdev_err(rdev, "failed to set load %d: %pe\n",
				 current_uA, ERR_PTR(err));
972
	} else {
973
		/* get output voltage */
974
		output_uV = regulator_get_voltage_rdev(rdev);
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

991 992 993 994 995 996 997
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
998 999
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
				 current_uA, input_uV, output_uV, ERR_PTR(err));
1000 1001
			return err;
		}
1002

1003 1004
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
1005 1006
			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
				 mode, ERR_PTR(err));
1007 1008 1009
	}

	return err;
1010 1011
}

1012 1013
static int __suspend_set_state(struct regulator_dev *rdev,
			       const struct regulator_state *rstate)
1014 1015
{
	int ret = 0;
1016

1017 1018
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1019
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1020 1021
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1022
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1023 1024 1025
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1026
	if (ret < 0) {
1027
		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1028 1029 1030 1031 1032 1033
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1034
			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1035 1036 1037 1038 1039 1040 1041
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1042
			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1043 1044 1045 1046
			return ret;
		}
	}

1047
	return ret;
1048 1049
}

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
static int suspend_set_initial_state(struct regulator_dev *rdev)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev,
			rdev->constraints->initial_state);
	if (!rstate)
		return 0;

	return __suspend_set_state(rdev, rstate);
}

1062 1063
#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
static void print_constraints_debug(struct regulator_dev *rdev)
1064 1065
{
	struct regulation_constraints *constraints = rdev->constraints;
1066
	char buf[160] = "";
1067
	size_t len = sizeof(buf) - 1;
1068 1069
	int count = 0;
	int ret;
1070

1071
	if (constraints->min_uV && constraints->max_uV) {
1072
		if (constraints->min_uV == constraints->max_uV)
1073 1074
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1075
		else
1076 1077 1078 1079
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1080 1081 1082 1083
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1084
		ret = regulator_get_voltage_rdev(rdev);
1085
		if (ret > 0)
1086 1087
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1088 1089
	}

1090
	if (constraints->uV_offset)
1091 1092
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1093

1094
	if (constraints->min_uA && constraints->max_uA) {
1095
		if (constraints->min_uA == constraints->max_uA)
1096 1097
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1098
		else
1099 1100 1101 1102
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1103 1104 1105 1106 1107 1108
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1109 1110
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1111
	}
1112

1113
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1114
		count += scnprintf(buf + count, len - count, "fast ");
1115
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1116
		count += scnprintf(buf + count, len - count, "normal ");
1117
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1118
		count += scnprintf(buf + count, len - count, "idle ");
1119
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1120
		count += scnprintf(buf + count, len - count, "standby ");
1121

1122
	if (!count)
1123 1124 1125 1126 1127 1128
		count = scnprintf(buf, len, "no parameters");
	else
		--count;

	count += scnprintf(buf + count, len - count, ", %s",
		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1129

1130
	rdev_dbg(rdev, "%s\n", buf);
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
}
#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
static inline void print_constraints_debug(struct regulator_dev *rdev) {}
#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;

	print_constraints_debug(rdev);
1141 1142

	if ((constraints->min_uV != constraints->max_uV) &&
1143
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1144 1145
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1146 1147
}

1148
static int machine_constraints_voltage(struct regulator_dev *rdev,
1149
	struct regulation_constraints *constraints)
1150
{
1151
	const struct regulator_ops *ops = rdev->desc->ops;
1152 1153 1154 1155
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1156 1157
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1158
		int current_uV = regulator_get_voltage_rdev(rdev);
1159 1160

		if (current_uV == -ENOTRECOVERABLE) {
1161
			/* This regulator can't be read and must be initialized */
1162 1163 1164 1165 1166 1167
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1168
			current_uV = regulator_get_voltage_rdev(rdev);
1169 1170
		}

1171
		if (current_uV < 0) {
1172
			rdev_err(rdev,
1173 1174
				 "failed to get the current voltage: %pe\n",
				 ERR_PTR(current_uV));
1175 1176
			return current_uV;
		}
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1197 1198
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1199
			ret = _regulator_do_set_voltage(
1200
				rdev, target_min, target_max);
1201 1202
			if (ret < 0) {
				rdev_err(rdev,
1203 1204
					"failed to apply %d-%duV constraint: %pe\n",
					target_min, target_max, ERR_PTR(ret));
1205 1206
				return ret;
			}
1207
		}
1208
	}
1209

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1221 1222
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1223
		if (count == 1 && !cmin) {
1224
			cmin = 1;
1225
			cmax = INT_MAX;
1226 1227
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1228 1229
		}

1230 1231
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1232
			return 0;
1233

1234
		/* else require explicit machine-level constraints */
1235
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1236
			rdev_err(rdev, "invalid voltage constraints\n");
1237
			return -EINVAL;
1238 1239
		}

1240 1241 1242 1243
		/* no need to loop voltages if range is continuous */
		if (rdev->desc->continuous_voltage_range)
			return 0;

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1261 1262 1263
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1264
			return -EINVAL;
1265 1266 1267 1268
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1269 1270
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1271 1272 1273
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1274 1275
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1276 1277 1278 1279
			constraints->max_uV = max_uV;
		}
	}

1280 1281 1282
	return 0;
}

1283 1284 1285
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1286
	const struct regulator_ops *ops = rdev->desc->ops;
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1313 1314
static int _regulator_do_enable(struct regulator_dev *rdev);

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
1325
static int set_machine_constraints(struct regulator_dev *rdev)
1326 1327
{
	int ret = 0;
1328
	const struct regulator_ops *ops = rdev->desc->ops;
1329

1330
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1331
	if (ret != 0)
1332
		return ret;
1333

1334
	ret = machine_constraints_current(rdev, rdev->constraints);
1335
	if (ret != 0)
1336
		return ret;
1337

1338 1339 1340 1341
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
1342
			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1343
			return ret;
1344 1345 1346
		}
	}

1347
	/* do we need to setup our suspend state */
1348
	if (rdev->constraints->initial_state) {
1349
		ret = suspend_set_initial_state(rdev);
1350
		if (ret < 0) {
1351
			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1352
			return ret;
1353 1354
		}
	}
1355

1356
	if (rdev->constraints->initial_mode) {
1357
		if (!ops->set_mode) {
1358
			rdev_err(rdev, "no set_mode operation\n");
1359
			return -EINVAL;
1360 1361
		}

1362
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1363
		if (ret < 0) {
1364
			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1365
			return ret;
1366
		}
1367 1368 1369 1370 1371 1372
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1373 1374
	}

1375 1376
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1377 1378
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
1379
			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1380
			return ret;
1381 1382 1383
		}
	}

S
Stephen Boyd 已提交
1384 1385 1386
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
1387
			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1388
			return ret;
S
Stephen Boyd 已提交
1389 1390 1391
		}
	}

S
Stephen Boyd 已提交
1392 1393 1394
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
1395
			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1396
			return ret;
S
Stephen Boyd 已提交
1397 1398 1399
		}
	}

1400 1401 1402 1403
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
1404 1405
			rdev_err(rdev, "failed to set over current protection: %pe\n",
				 ERR_PTR(ret));
1406
			return ret;
1407 1408 1409
		}
	}

1410 1411 1412 1413 1414 1415
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
1416
			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1417 1418 1419 1420
			return ret;
		}
	}

1421 1422 1423 1424
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1425 1426 1427 1428 1429 1430 1431 1432 1433
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1434 1435
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1436
			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1437 1438
			return ret;
		}
1439 1440 1441

		if (rdev->constraints->always_on)
			rdev->use_count++;
1442 1443
	}

1444
	print_constraints(rdev);
1445
	return 0;
1446 1447 1448 1449
}

/**
 * set_supply - set regulator supply regulator
1450 1451
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1452 1453 1454 1455 1456 1457
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1458
		      struct regulator_dev *supply_rdev)
1459 1460 1461
{
	int err;

1462 1463
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1464 1465 1466
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1467
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1468 1469
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1470
		return err;
1471
	}
1472
	supply_rdev->open_count++;
1473 1474

	return 0;
1475 1476 1477
}

/**
1478
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1479
 * @rdev:         regulator source
1480
 * @consumer_dev_name: dev_name() string for device supply applies to
1481
 * @supply:       symbolic name for supply
1482 1483 1484 1485 1486 1487 1488
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1489 1490
				      const char *consumer_dev_name,
				      const char *supply)
1491
{
1492
	struct regulator_map *node, *new_node;
1493
	int has_dev;
1494 1495 1496 1497

	if (supply == NULL)
		return -EINVAL;

1498 1499 1500 1501 1502
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
	if (new_node == NULL)
		return -ENOMEM;

	new_node->regulator = rdev;
	new_node->supply = supply;

	if (has_dev) {
		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (new_node->dev_name == NULL) {
			kfree(new_node);
			return -ENOMEM;
		}
	}

	mutex_lock(&regulator_list_mutex);
1519
	list_for_each_entry(node, &regulator_map_list, list) {
1520 1521 1522 1523
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1524
			continue;
1525 1526
		}

1527 1528 1529
		if (strcmp(node->supply, supply) != 0)
			continue;

1530 1531 1532 1533 1534 1535
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1536
		goto fail;
1537 1538
	}

1539 1540
	list_add(&new_node->list, &regulator_map_list);
	mutex_unlock(&regulator_list_mutex);
1541

1542
	return 0;
1543 1544 1545 1546 1547 1548

fail:
	mutex_unlock(&regulator_list_mutex);
	kfree(new_node->dev_name);
	kfree(new_node);
	return -EBUSY;
1549 1550
}

1551 1552 1553 1554 1555 1556 1557
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1558
			kfree(node->dev_name);
1559 1560 1561 1562 1563
			kfree(node);
		}
	}
}

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1613
#define REG_STR_SIZE	64
1614 1615 1616 1617 1618 1619

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	int err;

	if (dev) {
		char buf[REG_STR_SIZE];
		int size;

		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			return NULL;

		supply_name = kstrdup(buf, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	} else {
		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	}
1639 1640

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1641 1642
	if (regulator == NULL) {
		kfree(supply_name);
1643
		return NULL;
1644
	}
1645 1646

	regulator->rdev = rdev;
1647 1648 1649
	regulator->supply_name = supply_name;

	regulator_lock(rdev);
1650
	list_add(&regulator->list, &rdev->consumer_list);
1651
	regulator_unlock(rdev);
1652 1653

	if (dev) {
1654 1655
		regulator->dev = dev;

1656
		/* Add a link to the device sysfs entry */
1657
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1658
					       supply_name);
1659
		if (err) {
1660 1661
			rdev_dbg(rdev, "could not add device link %s: %pe\n",
				  dev->kobj.name, ERR_PTR(err));
1662
			/* non-fatal */
1663
		}
1664 1665
	}

1666
	regulator->debugfs = debugfs_create_dir(supply_name,
1667
						rdev->debugfs);
1668
	if (!regulator->debugfs) {
1669
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1670 1671 1672 1673
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1674
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1675
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1676
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1677 1678 1679
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1680
	}
1681

1682 1683 1684 1685 1686
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1687
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1688 1689 1690
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1691 1692 1693
	return regulator;
}

1694 1695
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1696 1697
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1698 1699 1700
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1701 1702
}

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1751 1752 1753 1754 1755
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1756
 */
1757
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1758
						  const char *supply)
1759
{
1760
	struct regulator_dev *r = NULL;
1761
	struct device_node *node;
1762 1763
	struct regulator_map *map;
	const char *devname = NULL;
1764

1765 1766
	regulator_supply_alias(&dev, &supply);

1767 1768 1769
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1770
		if (node) {
1771 1772 1773
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1774

1775
			/*
1776 1777
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1778
			 */
1779
			return ERR_PTR(-EPROBE_DEFER);
1780
		}
1781 1782 1783
	}

	/* if not found, try doing it non-dt way */
1784 1785 1786
	if (dev)
		devname = dev_name(dev);

1787
	mutex_lock(&regulator_list_mutex);
1788 1789 1790 1791 1792 1793
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1794 1795
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1796 1797
			r = map->regulator;
			break;
1798
		}
1799
	}
1800
	mutex_unlock(&regulator_list_mutex);
1801

1802 1803 1804 1805
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1806 1807 1808 1809
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1810 1811
}

1812 1813 1814 1815 1816 1817
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

1818
	/* No supply to resolve? */
1819 1820 1821 1822 1823 1824 1825
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1826 1827 1828 1829
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1830 1831 1832 1833
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1834 1835
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1836
			get_device(&r->dev);
1837 1838 1839 1840 1841
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1842 1843
	}

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1857 1858
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1859 1860
	if (ret < 0) {
		put_device(&r->dev);
1861
		return ret;
1862
	}
1863 1864

	ret = set_supply(rdev, r);
1865 1866
	if (ret < 0) {
		put_device(&r->dev);
1867
		return ret;
1868
	}
1869

1870 1871 1872 1873 1874 1875
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1876
		ret = regulator_enable(rdev->supply);
1877
		if (ret < 0) {
1878
			_regulator_put(rdev->supply);
1879
			rdev->supply = NULL;
1880
			return ret;
1881
		}
1882 1883 1884 1885 1886
	}

	return 0;
}

1887
/* Internal regulator request function */
1888 1889
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1890 1891
{
	struct regulator_dev *rdev;
1892
	struct regulator *regulator;
1893
	struct device_link *link;
1894
	int ret;
1895

1896 1897 1898 1899 1900
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1901
	if (id == NULL) {
1902
		pr_err("get() with no identifier\n");
1903
		return ERR_PTR(-EINVAL);
1904 1905
	}

1906
	rdev = regulator_dev_lookup(dev, id);
1907 1908
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1909

1910 1911 1912 1913 1914 1915
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1916

1917 1918 1919 1920 1921
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1922

1923 1924 1925 1926 1927 1928 1929
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
1930
			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1931 1932 1933
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1934

1935 1936 1937
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
1938
			fallthrough;
1939

1940 1941 1942
		default:
			return ERR_PTR(-ENODEV);
		}
1943 1944
	}

1945 1946
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1947 1948
		put_device(&rdev->dev);
		return regulator;
1949 1950
	}

1951
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1952
		regulator = ERR_PTR(-EBUSY);
1953 1954
		put_device(&rdev->dev);
		return regulator;
1955 1956
	}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1967 1968 1969
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1970 1971
		put_device(&rdev->dev);
		return regulator;
1972 1973
	}

1974
	if (!try_module_get(rdev->owner)) {
1975
		regulator = ERR_PTR(-EPROBE_DEFER);
1976 1977 1978
		put_device(&rdev->dev);
		return regulator;
	}
1979

1980 1981 1982 1983
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
W
Wen Yang 已提交
1984
		put_device(&rdev->dev);
1985
		return regulator;
1986 1987
	}

1988
	rdev->open_count++;
1989
	if (get_type == EXCLUSIVE_GET) {
1990 1991 1992 1993 1994 1995 1996 1997 1998
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1999 2000 2001
	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
	if (!IS_ERR_OR_NULL(link))
		regulator->device_link = true;
2002

2003 2004
	return regulator;
}
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
2021
	return _regulator_get(dev, id, NORMAL_GET);
2022
}
2023 2024
EXPORT_SYMBOL_GPL(regulator_get);

2025 2026 2027 2028 2029 2030 2031
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
2032 2033 2034
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2048
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2049 2050 2051
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2052 2053 2054 2055 2056 2057
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2058
 * or IS_ERR() condition containing errno.
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2074
	return _regulator_get(dev, id, OPTIONAL_GET);
2075 2076 2077
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2078
static void destroy_regulator(struct regulator *regulator)
2079
{
2080
	struct regulator_dev *rdev = regulator->rdev;
2081

2082 2083
	debugfs_remove_recursive(regulator->debugfs);

2084
	if (regulator->dev) {
2085 2086
		if (regulator->device_link)
			device_link_remove(regulator->dev, &rdev->dev);
2087 2088

		/* remove any sysfs entries */
2089
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2090 2091
	}

2092
	regulator_lock(rdev);
2093 2094
	list_del(&regulator->list);

2095 2096
	rdev->open_count--;
	rdev->exclusive = 0;
2097
	regulator_unlock(rdev);
2098

2099
	kfree_const(regulator->supply_name);
2100
	kfree(regulator);
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
}

/* regulator_list_mutex lock held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (IS_ERR_OR_NULL(regulator))
		return;

	lockdep_assert_held_once(&regulator_list_mutex);

	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

	rdev = regulator->rdev;

	destroy_regulator(regulator);
2119

2120
	module_put(rdev->owner);
W
Wen Yang 已提交
2121
	put_device(&rdev->dev);
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2136 2137 2138 2139
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2217 2218
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2219
					 struct device *alias_dev,
2220
					 const char *const *alias_id,
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2258
					    const char *const *id,
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2269 2270 2271 2272
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
2273
	struct regulator_enable_gpio *pin, *new_pin;
2274
	struct gpio_desc *gpiod;
2275

2276
	gpiod = config->ena_gpiod;
2277 2278 2279
	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);

	mutex_lock(&regulator_list_mutex);
2280

2281
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2282
		if (pin->gpiod == gpiod) {
2283
			rdev_dbg(rdev, "GPIO is already used\n");
2284 2285 2286 2287
			goto update_ena_gpio_to_rdev;
		}
	}

2288 2289
	if (new_pin == NULL) {
		mutex_unlock(&regulator_list_mutex);
2290
		return -ENOMEM;
2291 2292 2293 2294
	}

	pin = new_pin;
	new_pin = NULL;
2295

2296
	pin->gpiod = gpiod;
2297 2298 2299 2300 2301
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
2302 2303 2304 2305

	mutex_unlock(&regulator_list_mutex);
	kfree(new_pin);

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
		if (pin != rdev->ena_pin)
			continue;

		if (--pin->request_count)
			break;

		gpiod_put(pin->gpiod);
		list_del(&pin->list);
		kfree(pin);
		break;
2328
	}
2329 2330

	rdev->ena_pin = NULL;
2331 2332
}

2333
/**
2334 2335 2336 2337
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2351
			gpiod_set_value_cansleep(pin->gpiod, 1);
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2362
			gpiod_set_value_cansleep(pin->gpiod, 0);
2363 2364 2365 2366 2367 2368 2369
			pin->enable_count = 0;
		}
	}

	return 0;
}

2370 2371 2372 2373 2374 2375
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2376
 *     Documentation/timers/timers-howto.rst
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
/**
 * _regulator_check_status_enabled
 *
 * A helper function to check if the regulator status can be interpreted
 * as 'regulator is enabled'.
 * @rdev: the regulator device to check
 *
 * Return:
 * * 1			- if status shows regulator is in enabled state
 * * 0			- if not enabled state
 * * Error Value	- as received from ops->get_status()
 */
static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
{
	int ret = rdev->desc->ops->get_status(rdev);

	if (ret < 0) {
		rdev_info(rdev, "get_status returned error: %d\n", ret);
		return ret;
	}

	switch (ret) {
	case REGULATOR_STATUS_OFF:
	case REGULATOR_STATUS_ERROR:
	case REGULATOR_STATUS_UNDEFINED:
		return 0;
	default:
		return 1;
	}
}

2440 2441 2442 2443 2444 2445 2446 2447 2448
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
2449
		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2450 2451 2452 2453 2454
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
2470
			 * detected and we get a penalty of
2471 2472 2473 2474 2475 2476 2477 2478 2479
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2480
	if (rdev->ena_pin) {
2481 2482 2483 2484 2485 2486
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2487
	} else if (rdev->desc->ops->enable) {
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
	/* If poll_enabled_time is set, poll upto the delay calculated
	 * above, delaying poll_enabled_time uS to check if the regulator
	 * actually got enabled.
	 * If the regulator isn't enabled after enable_delay has
	 * expired, return -ETIMEDOUT.
	 */
	if (rdev->desc->poll_enabled_time) {
		unsigned int time_remaining = delay;

		while (time_remaining > 0) {
			_regulator_enable_delay(rdev->desc->poll_enabled_time);

			if (rdev->desc->ops->get_status) {
				ret = _regulator_check_status_enabled(rdev);
				if (ret < 0)
					return ret;
				else if (ret)
					break;
			} else if (rdev->desc->ops->is_enabled(rdev))
				break;

			time_remaining -= rdev->desc->poll_enabled_time;
		}

		if (time_remaining <= 0) {
			rdev_err(rdev, "Enabled check timed out\n");
			return -ETIMEDOUT;
		}
	} else {
		_regulator_enable_delay(delay);
	}
2531 2532 2533 2534 2535 2536

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2596
/* locks held by regulator_enable() */
2597
static int _regulator_enable(struct regulator *regulator)
2598
{
2599
	struct regulator_dev *rdev = regulator->rdev;
2600
	int ret;
2601

2602 2603
	lockdep_assert_held_once(&rdev->mutex.base);

2604
	if (rdev->use_count == 0 && rdev->supply) {
2605
		ret = _regulator_enable(rdev->supply);
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2616

2617 2618 2619
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2620

2621 2622 2623 2624
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2625
			if (!regulator_ops_is_valid(rdev,
2626 2627
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2628
				goto err_consumer_disable;
2629
			}
2630

2631
			ret = _regulator_do_enable(rdev);
2632
			if (ret < 0)
2633
				goto err_consumer_disable;
2634

2635 2636
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2637
		} else if (ret < 0) {
2638
			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2639
			goto err_consumer_disable;
2640
		}
2641
		/* Fallthrough on positive return values - already enabled */
2642 2643
	}

2644 2645 2646
	rdev->use_count++;

	return 0;
2647

2648 2649 2650
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2651
err_disable_supply:
2652
	if (rdev->use_count == 0 && rdev->supply)
2653
		_regulator_disable(rdev->supply);
2654 2655

	return ret;
2656 2657 2658 2659 2660 2661
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2662 2663 2664 2665
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2666
 * NOTE: the output value can be set by other drivers, boot loader or may be
2667
 * hardwired in the regulator.
2668 2669 2670
 */
int regulator_enable(struct regulator *regulator)
{
2671
	struct regulator_dev *rdev = regulator->rdev;
2672
	struct ww_acquire_ctx ww_ctx;
2673
	int ret;
2674

2675
	regulator_lock_dependent(rdev, &ww_ctx);
2676
	ret = _regulator_enable(regulator);
2677
	regulator_unlock_dependent(rdev, &ww_ctx);
2678

2679 2680 2681 2682
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2683 2684 2685 2686 2687 2688
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2689
	if (rdev->ena_pin) {
2690 2691 2692 2693 2694 2695
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2696 2697 2698 2699 2700 2701 2702

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2703 2704 2705 2706 2707 2708
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2709 2710 2711 2712 2713
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2714
/* locks held by regulator_disable() */
2715
static int _regulator_disable(struct regulator *regulator)
2716
{
2717
	struct regulator_dev *rdev = regulator->rdev;
2718 2719
	int ret = 0;

2720
	lockdep_assert_held_once(&rdev->mutex.base);
2721

D
David Brownell 已提交
2722
	if (WARN(rdev->use_count <= 0,
2723
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2724 2725
		return -EIO;

2726
	/* are we the last user and permitted to disable ? */
2727 2728
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2729 2730

		/* we are last user */
2731
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2732 2733 2734 2735 2736 2737
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2738
			ret = _regulator_do_disable(rdev);
2739
			if (ret < 0) {
2740
				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2741 2742 2743
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2744 2745
				return ret;
			}
2746 2747
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2748 2749 2750 2751 2752 2753
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2754

2755 2756 2757
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2758 2759 2760
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2761
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2762
		ret = _regulator_disable(rdev->supply);
2763

2764 2765 2766 2767 2768 2769 2770
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2771 2772 2773
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2774
 *
2775
 * NOTE: this will only disable the regulator output if no other consumer
2776 2777
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2778 2779 2780
 */
int regulator_disable(struct regulator *regulator)
{
2781
	struct regulator_dev *rdev = regulator->rdev;
2782
	struct ww_acquire_ctx ww_ctx;
2783
	int ret;
2784

2785
	regulator_lock_dependent(rdev, &ww_ctx);
2786
	ret = _regulator_disable(regulator);
2787
	regulator_unlock_dependent(rdev, &ww_ctx);
2788

2789 2790 2791 2792 2793
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2794
static int _regulator_force_disable(struct regulator_dev *rdev)
2795 2796 2797
{
	int ret = 0;

2798
	lockdep_assert_held_once(&rdev->mutex.base);
2799

2800 2801 2802 2803 2804
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2805 2806
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
2807
		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2808 2809
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2810
		return ret;
2811 2812
	}

2813 2814 2815 2816
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2830
	struct regulator_dev *rdev = regulator->rdev;
2831
	struct ww_acquire_ctx ww_ctx;
2832 2833
	int ret;

2834
	regulator_lock_dependent(rdev, &ww_ctx);
2835

2836
	ret = _regulator_force_disable(regulator->rdev);
2837

2838 2839
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2840 2841 2842 2843 2844 2845

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2846 2847
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2848

2849
	regulator_unlock_dependent(rdev, &ww_ctx);
2850

2851 2852 2853 2854
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2855 2856 2857 2858
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2859
	struct ww_acquire_ctx ww_ctx;
2860
	int count, i, ret;
2861 2862
	struct regulator *regulator;
	int total_count = 0;
2863

2864
	regulator_lock_dependent(rdev, &ww_ctx);
2865

2866 2867 2868 2869 2870 2871 2872 2873
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
2886 2887
				rdev_err(rdev, "Deferred disable failed: %pe\n",
					 ERR_PTR(ret));
2888
		}
2889
	}
2890
	WARN_ON(!total_count);
2891

2892 2893 2894 2895
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2896 2897 2898 2899 2900
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2901
 * @ms: milliseconds until the regulator is disabled
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2914 2915 2916
	if (!ms)
		return regulator_disable(regulator);

2917
	regulator_lock(rdev);
2918
	regulator->deferred_disables++;
2919 2920
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2921
	regulator_unlock(rdev);
2922

2923
	return 0;
2924 2925 2926
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2927 2928
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2929
	/* A GPIO control always takes precedence */
2930
	if (rdev->ena_pin)
2931 2932
		return rdev->ena_gpio_state;

2933
	/* If we don't know then assume that the regulator is always on */
2934
	if (!rdev->desc->ops->is_enabled)
2935
		return 1;
2936

2937
	return rdev->desc->ops->is_enabled(rdev);
2938 2939
}

2940 2941
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2953
			regulator_lock(rdev);
2954 2955
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2956
			regulator_unlock(rdev);
2957
	} else if (rdev->is_switch && rdev->supply) {
2958 2959
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2974 2975 2976 2977
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2978 2979 2980 2981 2982 2983 2984
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2985 2986 2987
 */
int regulator_is_enabled(struct regulator *regulator)
{
2988 2989
	int ret;

2990 2991 2992
	if (regulator->always_on)
		return 1;

2993
	regulator_lock(regulator->rdev);
2994
	ret = _regulator_is_enabled(regulator->rdev);
2995
	regulator_unlock(regulator->rdev);
2996 2997

	return ret;
2998 2999 3000
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

3013 3014 3015
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

3016
	if (!rdev->is_switch || !rdev->supply)
3017 3018 3019
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
3030
 * zero if this selector code can't be used on this system, or a
3031 3032 3033 3034
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
3035
	return _regulator_list_voltage(regulator->rdev, selector, 1);
3036 3037 3038
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
3071 3072
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3073 3074 3075 3076

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

3077 3078
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
3079

3080
	return 0;
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3098 3099
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3125 3126 3127 3128 3129 3130 3131
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3132
 * Returns a boolean.
3133 3134 3135 3136
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3137
	struct regulator_dev *rdev = regulator->rdev;
3138 3139
	int i, voltages, ret;

3140
	/* If we can't change voltage check the current voltage */
3141
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3142 3143
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3144
			return min_uV <= ret && ret <= max_uV;
3145 3146 3147 3148
		else
			return ret;
	}

3149 3150 3151 3152 3153
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3154 3155
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3156
		return 0;
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3168
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3169

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3184 3185 3186 3187 3188
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3189 3190 3191
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3192 3193 3194 3195 3196 3197 3198
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3199
	data.old_uV = regulator_get_voltage_rdev(rdev);
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3223
	data.old_uV = regulator_get_voltage_rdev(rdev);
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3301 3302 3303 3304 3305 3306 3307 3308 3309
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3310 3311
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3312 3313 3314 3315 3316 3317
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3318 3319

	if (ramp_delay == 0) {
3320
		rdev_dbg(rdev, "ramp_delay not set\n");
3321 3322 3323 3324 3325 3326
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3327 3328 3329 3330
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3331
	int delay = 0;
3332
	int best_val = 0;
3333
	unsigned int selector;
3334
	int old_selector = -1;
3335
	const struct regulator_ops *ops = rdev->desc->ops;
3336
	int old_uV = regulator_get_voltage_rdev(rdev);
3337 3338 3339

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3340 3341 3342
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3343 3344 3345 3346
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3347
	if (_regulator_is_enabled(rdev) &&
3348 3349
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3350 3351 3352 3353
		if (old_selector < 0)
			return old_selector;
	}

3354
	if (ops->set_voltage) {
3355 3356
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3357 3358

		if (ret >= 0) {
3359 3360 3361
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3362
			else
3363
				best_val = regulator_get_voltage_rdev(rdev);
3364 3365
		}

3366
	} else if (ops->set_voltage_sel) {
3367
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3368
		if (ret >= 0) {
3369
			best_val = ops->list_voltage(rdev, ret);
3370 3371
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3372 3373
				if (old_selector == selector)
					ret = 0;
3374 3375 3376
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3377
				else
3378 3379
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3380 3381 3382
			} else {
				ret = -EINVAL;
			}
3383
		}
3384 3385 3386
	} else {
		ret = -EINVAL;
	}
3387

3388 3389
	if (ret)
		goto out;
3390

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3408
		}
3409
	}
3410

3411
	if (delay < 0) {
3412
		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3413
		delay = 0;
3414 3415
	}

3416 3417 3418 3419 3420 3421
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3422 3423
	}

3424
	if (best_val >= 0) {
3425 3426
		unsigned long data = best_val;

3427
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3428 3429
				     (void *)data);
	}
3430

3431
out:
3432
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3433 3434 3435 3436

	return ret;
}

3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3463
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3464 3465
					  int min_uV, int max_uV,
					  suspend_state_t state)
3466 3467
{
	struct regulator_dev *rdev = regulator->rdev;
3468
	struct regulator_voltage *voltage = &regulator->voltage[state];
3469
	int ret = 0;
3470
	int old_min_uV, old_max_uV;
3471
	int current_uV;
3472

3473 3474 3475 3476
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3477
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3478 3479
		goto out;

3480
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3481
	 * return successfully even though the regulator does not support
3482 3483
	 * changing the voltage.
	 */
3484
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3485
		current_uV = regulator_get_voltage_rdev(rdev);
3486
		if (min_uV <= current_uV && current_uV <= max_uV) {
3487 3488
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3489 3490 3491 3492
			goto out;
		}
	}

3493
	/* sanity check */
3494 3495
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3496 3497 3498 3499 3500 3501 3502 3503
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3504

3505
	/* restore original values in case of error */
3506 3507 3508 3509
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3510

3511 3512
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3513 3514 3515 3516
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3517

3518 3519 3520 3521
out:
	return ret;
}

3522 3523
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3524 3525 3526 3527 3528
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3529 3530 3531
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3532 3533
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3534 3535 3536 3537 3538 3539
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3540
			goto out;
3541 3542
		}

M
Mark Brown 已提交
3543
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3544 3545
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3546
			goto out;
3547 3548 3549 3550
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3551
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3552 3553
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3554
			goto out;
3555 3556 3557 3558 3559 3560 3561
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3562
				best_supply_uV, INT_MAX, state);
3563
		if (ret) {
3564 3565
			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
				ERR_PTR(ret));
3566
			goto out;
3567 3568 3569
		}
	}

3570 3571 3572 3573 3574
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3575
	if (ret < 0)
3576
		goto out;
3577

3578 3579
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3580
				best_supply_uV, INT_MAX, state);
3581
		if (ret)
3582 3583
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
				 ERR_PTR(ret));
3584 3585 3586 3587
		/* No need to fail here */
		ret = 0;
	}

3588
out:
3589
	return ret;
3590
}
3591
EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3592

3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3603
		*current_uV = regulator_get_voltage_rdev(rdev);
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3635
	int i, ret, max_spread;
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3669
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3680

3681 3682 3683 3684 3685 3686 3687 3688
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3689 3690
	max_spread = constraints->max_spread[0];

3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3708
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3746 3747 3748 3749
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3750
			ret = regulator_get_voltage_rdev(rdev);
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

3766 3767
int regulator_do_balance_voltage(struct regulator_dev *rdev,
				 suspend_state_t state, bool skip_coupled)
3768 3769 3770 3771 3772 3773
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3774 3775
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3776 3777

	c_rdevs = c_desc->coupled_rdevs;
3778
	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3805
			if (test_bit(i, &c_rdev_done))
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3833

3834 3835
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3836

3837 3838 3839
		if (ret < 0)
			goto out;

3840 3841
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
3842 3843 3844 3845

	} while (n_coupled > 1);

out:
3846 3847 3848
	return ret;
}

3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_coupler *coupler = c_desc->coupler;
	bool skip_coupled = false;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		skip_coupled = true;

	if (c_desc->n_resolved < c_desc->n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);

	return regulator_do_balance_voltage(rdev, state, skip_coupled);
}

3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3895 3896
	struct ww_acquire_ctx ww_ctx;
	int ret;
3897

3898
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3899

3900 3901
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3902

3903
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3904

3905 3906 3907 3908
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3921
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3975 3976
	struct ww_acquire_ctx ww_ctx;
	int ret;
3977 3978 3979 3980 3981

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3982
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3983 3984 3985 3986

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3987
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3988 3989 3990 3991 3992

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
4006 4007
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
4008 4009 4010 4011 4012
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

4013 4014 4015 4016 4017
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

4018
	/* Currently requires operations to do this */
4019
	if (!ops->list_voltage || !rdev->desc->n_voltages)
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

4042
/**
4043 4044
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
4045 4046 4047 4048 4049 4050
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
4051
 * Drivers providing ramp_delay in regulation_constraints can use this as their
4052
 * set_voltage_time_sel() operation.
4053 4054 4055 4056 4057
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
4058
	int old_volt, new_volt;
4059

4060 4061 4062
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
4063

4064 4065 4066
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

4067 4068 4069 4070 4071
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4072
}
4073
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4074

4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
4086
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4087 4088
	int ret, min_uV, max_uV;

4089
	regulator_lock(rdev);
4090 4091 4092 4093 4094 4095 4096 4097

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
4098
	if (!voltage->min_uV && !voltage->max_uV) {
4099 4100 4101 4102
		ret = -EINVAL;
		goto out;
	}

4103 4104
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
4105 4106 4107 4108 4109 4110

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

4111
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4112 4113 4114 4115 4116 4117
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
4118
	regulator_unlock(rdev);
4119 4120 4121 4122
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

4123
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4124
{
4125
	int sel, ret;
4126 4127 4128 4129 4130 4131 4132 4133
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
4134 4135 4136 4137 4138
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
4139

4140
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4141 4142
		}
	}
4143 4144 4145 4146 4147

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4148
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4149
	} else if (rdev->desc->ops->get_voltage) {
4150
		ret = rdev->desc->ops->get_voltage(rdev);
4151 4152
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4153 4154
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4155
	} else if (rdev->supply) {
4156
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4157 4158
	} else if (rdev->supply_name) {
		return -EPROBE_DEFER;
4159
	} else {
4160
		return -EINVAL;
4161
	}
4162

4163 4164
	if (ret < 0)
		return ret;
4165
	return ret - rdev->constraints->uV_offset;
4166
}
4167
EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4180
	struct ww_acquire_ctx ww_ctx;
4181 4182
	int ret;

4183
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4184
	ret = regulator_get_voltage_rdev(regulator->rdev);
4185
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4186 4187 4188 4189 4190 4191 4192 4193

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4194
 * @min_uA: Minimum supported current in uA
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4213
	regulator_lock(rdev);
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4228
	regulator_unlock(rdev);
4229 4230 4231 4232
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4233 4234 4235 4236 4237 4238 4239 4240 4241
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4242 4243 4244 4245
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4246
	regulator_lock(rdev);
4247
	ret = _regulator_get_current_limit_unlocked(rdev);
4248
	regulator_unlock(rdev);
4249

4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4283
	int regulator_curr_mode;
4284

4285
	regulator_lock(rdev);
4286 4287 4288 4289 4290 4291 4292

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4293 4294 4295 4296 4297 4298 4299 4300 4301
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4302
	/* constraints check */
4303
	ret = regulator_mode_constrain(rdev, &mode);
4304 4305 4306 4307 4308
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4309
	regulator_unlock(rdev);
4310 4311 4312 4313
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4314 4315 4316 4317 4318 4319 4320 4321 4322
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4323 4324 4325 4326
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4327
	regulator_lock(rdev);
4328
	ret = _regulator_get_mode_unlocked(rdev);
4329
	regulator_unlock(rdev);
4330

4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4346 4347 4348 4349 4350
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4351
	regulator_lock(rdev);
4352 4353 4354 4355 4356 4357 4358 4359 4360

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4361
	regulator_unlock(rdev);
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4379
/**
4380
 * regulator_set_load - set regulator load
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4403 4404 4405 4406 4407 4408 4409 4410
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4411
 * On error a negative errno is returned.
4412
 */
4413
int regulator_set_load(struct regulator *regulator, int uA_load)
4414 4415
{
	struct regulator_dev *rdev = regulator->rdev;
4416 4417
	int old_uA_load;
	int ret = 0;
4418

4419
	regulator_lock(rdev);
4420
	old_uA_load = regulator->uA_load;
4421
	regulator->uA_load = uA_load;
4422 4423 4424 4425 4426
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4427
	regulator_unlock(rdev);
4428

4429 4430
	return ret;
}
4431
EXPORT_SYMBOL_GPL(regulator_set_load);
4432

4433 4434 4435 4436
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4437
 * @enable: enable or disable bypass mode
4438 4439 4440 4441 4442 4443 4444 4445 4446
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
4447
	const char *name = rdev_get_name(rdev);
4448 4449 4450 4451 4452
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4453
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4454 4455
		return 0;

4456
	regulator_lock(rdev);
4457 4458 4459 4460 4461

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
4462 4463
			trace_regulator_bypass_enable(name);

4464 4465 4466
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
4467 4468
			else
				trace_regulator_bypass_enable_complete(name);
4469 4470 4471 4472 4473 4474
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
4475 4476
			trace_regulator_bypass_disable(name);

4477 4478 4479
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
4480 4481
			else
				trace_regulator_bypass_disable_complete(name);
4482 4483 4484 4485 4486 4487
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4488
	regulator_unlock(rdev);
4489 4490 4491 4492 4493

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4494 4495 4496
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4497
 * @nb: notifier block
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4512
 * @nb: notifier block
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4524 4525 4526
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4527
static int _notifier_call_chain(struct regulator_dev *rdev,
4528 4529 4530
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4531
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4558 4559
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4570
	if (ret != -EPROBE_DEFER)
4571 4572
		dev_err(dev, "Failed to get supply '%s': %pe\n",
			consumers[i].supply, ERR_PTR(ret));
4573 4574 4575 4576
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4577
	while (--i >= 0)
4578 4579 4580 4581 4582 4583
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4584 4585 4586 4587 4588 4589 4590
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4606
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4607
	int i;
4608
	int ret = 0;
4609

4610
	for (i = 0; i < num_consumers; i++) {
4611 4612
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4613
	}
4614 4615 4616 4617

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4618
	for (i = 0; i < num_consumers; i++) {
4619 4620
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4621
			goto err;
4622
		}
4623 4624 4625 4626 4627
	}

	return 0;

err:
4628 4629
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
4630 4631
			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
			       ERR_PTR(consumers[i].ret));
4632 4633 4634
		else
			regulator_disable(consumers[i].consumer);
	}
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4648 4649
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4650 4651 4652 4653 4654 4655
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4656
	int ret, r;
4657

4658
	for (i = num_consumers - 1; i >= 0; --i) {
4659 4660 4661 4662 4663 4664 4665 4666
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4667
	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4668 4669 4670
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4671 4672
			pr_err("Failed to re-enable %s: %pe\n",
			       consumers[i].supply, ERR_PTR(r));
4673
	}
4674 4675 4676 4677 4678

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4697
	int ret = 0;
4698

4699
	for (i = 0; i < num_consumers; i++) {
4700 4701 4702
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4703 4704
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4705 4706 4707 4708 4709 4710 4711
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4735
 * @rdev: regulator source
4736
 * @event: notifier block
4737
 * @data: callback-specific data.
4738 4739
 *
 * Called by regulator drivers to notify clients a regulator event has
4740
 * occurred.
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4767
	case REGULATOR_MODE_STANDBY:
4768 4769
		return REGULATOR_STATUS_STANDBY;
	default:
4770
		return REGULATOR_STATUS_UNDEFINED;
4771 4772 4773 4774
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4802 4803 4804 4805
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4806 4807
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4808
{
4809
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4810
	struct regulator_dev *rdev = dev_to_rdev(dev);
4811
	const struct regulator_ops *ops = rdev->desc->ops;
4812 4813 4814 4815 4816 4817 4818
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4819 4820

	/* some attributes need specific methods to be displayed */
4821 4822 4823 4824 4825 4826 4827
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4828
	}
4829

4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4845
	/* constraints need specific supporting methods */
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4881

4882 4883 4884
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4885 4886 4887

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4888
	kfree(rdev);
4889 4890
}

4891 4892
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4905
	if (!rdev->debugfs) {
4906 4907 4908 4909 4910 4911 4912 4913
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4914 4915
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4916 4917
}

4918 4919
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4920 4921 4922 4923 4924 4925
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4926 4927
}

4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

4979
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4980
{
4981
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4994 4995
		if (!c_rdev)
			continue;
4996

4997 4998 4999 5000 5001 5002
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

5003 5004
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
5005

5006 5007
		regulator_resolve_coupling(c_rdev);
	}
5008 5009
}

5010
static void regulator_remove_coupling(struct regulator_dev *rdev)
5011
{
5012
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5013 5014 5015 5016
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
5017
	int err;
5018

5019
	n_coupled = c_desc->n_coupled;
5020

5021 5022
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
5023

5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
5047 5048 5049 5050

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
5051 5052
			rdev_err(rdev, "failed to detach from coupler: %pe\n",
				 ERR_PTR(err));
5053 5054 5055 5056
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
5057 5058
}

5059
static int regulator_init_coupling(struct regulator_dev *rdev)
5060
{
5061
	struct regulator_dev **coupled;
5062
	int err, n_phandles;
5063 5064 5065 5066 5067 5068

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

5069 5070
	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
	if (!coupled)
5071
		return -ENOMEM;
5072

5073 5074
	rdev->coupling_desc.coupled_rdevs = coupled;

5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

5087
	if (!of_check_coupling_data(rdev))
5088 5089
		return -EPERM;

5090
	mutex_lock(&regulator_list_mutex);
5091
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5092 5093
	mutex_unlock(&regulator_list_mutex);

5094 5095
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
5096
		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5097
		return err;
5098 5099
	}

5100 5101 5102 5103 5104 5105 5106 5107 5108
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5109
		return -EPERM;
5110
	}
5111

5112 5113 5114 5115 5116 5117
	if (!rdev->constraints->always_on) {
		rdev_err(rdev,
			 "Coupling of a non always-on regulator is unimplemented\n");
		return -ENOTSUPP;
	}

5118 5119 5120
	return 0;
}

5121 5122 5123 5124
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

5125 5126
/**
 * regulator_register - register regulator
5127
 * @regulator_desc: regulator to register
5128
 * @cfg: runtime configuration for regulator
5129 5130
 *
 * Called by regulator drivers to register a regulator.
5131 5132
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
5133
 */
5134 5135
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
5136
		   const struct regulator_config *cfg)
5137
{
5138
	const struct regulator_init_data *init_data;
5139
	struct regulator_config *config = NULL;
5140
	static atomic_t regulator_no = ATOMIC_INIT(-1);
5141
	struct regulator_dev *rdev;
5142 5143
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
5144
	struct device *dev;
5145
	int ret, i;
5146

5147
	if (cfg == NULL)
5148
		return ERR_PTR(-EINVAL);
5149 5150 5151 5152 5153 5154
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5155

5156
	dev = cfg->dev;
5157
	WARN_ON(!dev);
5158

5159 5160 5161 5162
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5163

5164
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5165 5166 5167 5168
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5169

5170 5171 5172
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5173 5174
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5175 5176 5177 5178

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5179 5180
		ret = -EINVAL;
		goto rinse;
5181
	}
5182 5183
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5184 5185
		ret = -EINVAL;
		goto rinse;
5186
	}
5187

5188
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5189 5190 5191 5192
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5193
	device_initialize(&rdev->dev);
5194

5195 5196 5197 5198 5199 5200
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
5201
		ret = -ENOMEM;
5202
		goto clean;
5203 5204
	}

5205
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5206
					       &rdev->dev.of_node);
5207 5208 5209 5210 5211 5212 5213 5214

	/*
	 * Sometimes not all resources are probed already so we need to take
	 * that into account. This happens most the time if the ena_gpiod comes
	 * from a gpio extender or something else.
	 */
	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
		ret = -EPROBE_DEFER;
5215
		goto clean;
5216 5217
	}

5218 5219 5220 5221 5222
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5223
	 * a descriptor, we definitely got one from parsing the device
5224 5225 5226 5227
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5228 5229 5230 5231 5232
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5233
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5234
	rdev->reg_data = config->driver_data;
5235 5236
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5237 5238
	if (config->regmap)
		rdev->regmap = config->regmap;
5239
	else if (dev_get_regmap(dev, NULL))
5240
		rdev->regmap = dev_get_regmap(dev, NULL);
5241 5242
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5243 5244 5245
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5246
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5247

5248
	/* preform any regulator specific init */
5249
	if (init_data && init_data->regulator_init) {
5250
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5251 5252
		if (ret < 0)
			goto clean;
5253 5254
	}

5255
	if (config->ena_gpiod) {
5256 5257
		ret = regulator_ena_gpio_request(rdev, config);
		if (ret != 0) {
5258 5259
			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
				 ERR_PTR(ret));
5260
			goto clean;
5261
		}
5262 5263 5264
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5265 5266
	}

5267
	/* register with sysfs */
5268
	rdev->dev.class = &regulator_class;
5269
	rdev->dev.parent = dev;
5270
	dev_set_name(&rdev->dev, "regulator.%lu",
5271
		    (unsigned long) atomic_inc_return(&regulator_no));
5272
	dev_set_drvdata(&rdev->dev, rdev);
5273

5274
	/* set regulator constraints */
5275
	if (init_data)
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
		rdev->constraints = kmemdup(&init_data->constraints,
					    sizeof(*rdev->constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
					    GFP_KERNEL);
	if (!rdev->constraints) {
		ret = -ENOMEM;
		goto wash;
	}
5286 5287

	if (init_data && init_data->supply_regulator)
5288
		rdev->supply_name = init_data->supply_regulator;
5289
	else if (regulator_desc->supply_name)
5290
		rdev->supply_name = regulator_desc->supply_name;
5291

5292
	ret = set_machine_constraints(rdev);
5293 5294 5295 5296 5297 5298 5299 5300
	if (ret == -EPROBE_DEFER) {
		/* Regulator might be in bypass mode and so needs its supply
		 * to set the constraints */
		/* FIXME: this currently triggers a chicken-and-egg problem
		 * when creating -SUPPLY symlink in sysfs to a regulator
		 * that is just being created */
		ret = regulator_resolve_supply(rdev);
		if (!ret)
5301
			ret = set_machine_constraints(rdev);
5302 5303 5304 5305
		else
			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
				 ERR_PTR(ret));
	}
5306 5307 5308
	if (ret < 0)
		goto wash;

5309 5310
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
5311 5312
		goto wash;

5313
	/* add consumers devices */
5314 5315 5316 5317
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5318
				init_data->consumer_supplies[i].supply);
5319 5320 5321 5322 5323
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5324
		}
5325
	}
5326

5327 5328 5329 5330 5331
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5332 5333
	ret = device_add(&rdev->dev);
	if (ret != 0)
5334 5335
		goto unset_supplies;

5336
	rdev_init_debugfs(rdev);
5337

5338 5339 5340 5341 5342
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5343 5344 5345
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5346
	kfree(config);
5347
	return rdev;
D
David Brownell 已提交
5348

5349
unset_supplies:
5350
	mutex_lock(&regulator_list_mutex);
5351
	unset_regulator_supplies(rdev);
5352
	regulator_remove_coupling(rdev);
5353
	mutex_unlock(&regulator_list_mutex);
5354
wash:
5355
	kfree(rdev->coupling_desc.coupled_rdevs);
5356
	mutex_lock(&regulator_list_mutex);
5357
	regulator_ena_gpio_free(rdev);
5358
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5359
clean:
5360 5361
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
5362
	kfree(config);
5363
	put_device(&rdev->dev);
5364 5365 5366
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5367
	return ERR_PTR(ret);
5368 5369 5370 5371 5372
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5373
 * @rdev: regulator to unregister
5374 5375 5376 5377 5378 5379 5380 5381
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5382 5383 5384
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5385
		regulator_put(rdev->supply);
5386
	}
5387

5388 5389
	flush_work(&rdev->disable_work.work);

5390
	mutex_lock(&regulator_list_mutex);
5391

5392
	debugfs_remove_recursive(rdev->debugfs);
5393
	WARN_ON(rdev->open_count);
5394
	regulator_remove_coupling(rdev);
5395
	unset_regulator_supplies(rdev);
5396
	list_del(&rdev->list);
5397
	regulator_ena_gpio_free(rdev);
5398
	device_unregister(&rdev->dev);
5399 5400

	mutex_unlock(&regulator_list_mutex);
5401 5402 5403
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5404
#ifdef CONFIG_SUSPEND
5405
/**
5406
 * regulator_suspend - prepare regulators for system wide suspend
5407
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5408 5409 5410
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5411
static int regulator_suspend(struct device *dev)
5412
{
5413
	struct regulator_dev *rdev = dev_to_rdev(dev);
5414
	suspend_state_t state = pm_suspend_target_state;
5415
	int ret;
5416 5417 5418 5419 5420
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev, state);
	if (!rstate)
		return 0;
5421 5422

	regulator_lock(rdev);
5423
	ret = __suspend_set_state(rdev, rstate);
5424
	regulator_unlock(rdev);
5425

5426
	return ret;
5427
}
5428

5429
static int regulator_resume(struct device *dev)
5430
{
5431
	suspend_state_t state = pm_suspend_target_state;
5432
	struct regulator_dev *rdev = dev_to_rdev(dev);
5433
	struct regulator_state *rstate;
5434
	int ret = 0;
5435

5436
	rstate = regulator_get_suspend_state(rdev, state);
5437
	if (rstate == NULL)
5438
		return 0;
5439

5440 5441 5442 5443
	/* Avoid grabbing the lock if we don't need to */
	if (!rdev->desc->ops->resume)
		return 0;

5444
	regulator_lock(rdev);
5445

5446 5447
	if (rstate->enabled == ENABLE_IN_SUSPEND ||
	    rstate->enabled == DISABLE_IN_SUSPEND)
5448
		ret = rdev->desc->ops->resume(rdev);
5449

5450
	regulator_unlock(rdev);
5451

5452
	return ret;
5453
}
5454 5455
#else /* !CONFIG_SUSPEND */

5456 5457
#define regulator_suspend	NULL
#define regulator_resume	NULL
5458 5459 5460 5461 5462

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5463 5464
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5465 5466 5467
};
#endif

M
Mark Brown 已提交
5468
struct class regulator_class = {
5469 5470 5471 5472 5473 5474 5475
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5493 5494
/**
 * rdev_get_drvdata - get rdev regulator driver data
5495
 * @rdev: regulator
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5532
 * @rdev: regulator
5533 5534 5535 5536 5537 5538 5539
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5540 5541 5542 5543 5544 5545
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5546 5547 5548 5549 5550 5551
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5552 5553 5554 5555 5556 5557
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5558
#ifdef CONFIG_DEBUG_FS
5559
static int supply_map_show(struct seq_file *sf, void *data)
5560 5561 5562 5563
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5564 5565 5566
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5567 5568
	}

5569 5570
	return 0;
}
5571
DEFINE_SHOW_ATTRIBUTE(supply_map);
5572

5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5595 5596 5597 5598 5599 5600
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5601
	struct summary_data summary_data;
5602
	unsigned int opmode;
5603 5604 5605 5606

	if (!rdev)
		return;

5607
	opmode = _regulator_get_mode_unlocked(rdev);
5608
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5609 5610
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5611
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5612
		   regulator_opmode_to_str(opmode));
5613

5614
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5615 5616
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5635
		if (consumer->dev && consumer->dev->class == &regulator_class)
5636 5637 5638 5639
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5640
			   30 - (level + 1) * 3,
5641
			   consumer->supply_name ? consumer->supply_name :
5642
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5643 5644 5645

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5646 5647
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5648
				   consumer->uA_load / 1000,
5649 5650
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5651 5652
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5653 5654 5655 5656 5657 5658 5659 5660
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5661 5662 5663
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5664

5665 5666
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5704 5705

	regulator_unlock(rdev);
5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5736 5737
	mutex_lock(&regulator_list_mutex);

5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5764 5765

	mutex_unlock(&regulator_list_mutex);
5766 5767
}

5768
static int regulator_summary_show_roots(struct device *dev, void *data)
5769
{
5770 5771
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5772

5773 5774
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5775

5776 5777
	return 0;
}
5778

5779 5780
static int regulator_summary_show(struct seq_file *s, void *data)
{
5781 5782
	struct ww_acquire_ctx ww_ctx;

5783 5784
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5785

5786 5787
	regulator_summary_lock(&ww_ctx);

5788 5789
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5790

5791 5792
	regulator_summary_unlock(&ww_ctx);

5793 5794
	return 0;
}
5795 5796
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5797

5798 5799
static int __init regulator_init(void)
{
5800 5801 5802 5803
	int ret;

	ret = class_register(&regulator_class);

5804
	debugfs_root = debugfs_create_dir("regulator", NULL);
5805
	if (!debugfs_root)
5806
		pr_warn("regulator: Failed to create debugfs directory\n");
5807

5808
#ifdef CONFIG_DEBUG_FS
5809 5810
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5811

5812
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5813
			    NULL, &regulator_summary_fops);
5814
#endif
5815 5816
	regulator_dummy_init();

5817 5818
	regulator_coupler_register(&generic_regulator_coupler);

5819
	return ret;
5820 5821 5822 5823
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5824

5825
static int regulator_late_cleanup(struct device *dev, void *data)
5826
{
5827 5828 5829
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5830 5831
	int enabled, ret;

5832 5833 5834
	if (c && c->always_on)
		return 0;

5835
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5836 5837
		return 0;

5838
	regulator_lock(rdev);
5839 5840 5841 5842

	if (rdev->use_count)
		goto unlock;

5843
	/* If we can't read the status assume it's always on. */
5844 5845 5846 5847 5848
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

5849 5850
	/* But if reading the status failed, assume that it's off. */
	if (enabled <= 0)
5851 5852 5853 5854 5855 5856 5857 5858
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
5859
			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5860 5861 5862 5863 5864 5865 5866 5867 5868 5869
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5870
	regulator_unlock(rdev);
5871 5872 5873 5874

	return 0;
}

5875
static void regulator_init_complete_work_function(struct work_struct *work)
5876
{
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5887
	/* If we have a full configuration then disable any regulators
5888 5889 5890
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5891
	 */
5892 5893
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
}

static DECLARE_DELAYED_WORK(regulator_init_complete_work,
			    regulator_init_complete_work_function);

static int __init regulator_init_complete(void)
{
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

	/*
5911 5912 5913 5914 5915 5916 5917 5918 5919
	 * We punt completion for an arbitrary amount of time since
	 * systems like distros will load many drivers from userspace
	 * so consumers might not always be ready yet, this is
	 * particularly an issue with laptops where this might bounce
	 * the display off then on.  Ideally we'd get a notification
	 * from userspace when this happens but we don't so just wait
	 * a bit and hope we waited long enough.  It'd be better if
	 * we'd only do this on systems that need it, and a kernel
	 * command line option might be useful.
5920
	 */
5921 5922
	schedule_delayed_work(&regulator_init_complete_work,
			      msecs_to_jiffies(30000));
5923 5924 5925

	return 0;
}
5926
late_initcall_sync(regulator_init_complete);