core.c 152.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

M
Mark Brown 已提交
36 37
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 39 40 41 42 43 44 45 46
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

47 48
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
49 50
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
51
static LIST_HEAD(regulator_ena_gpio_list);
52
static LIST_HEAD(regulator_supply_alias_list);
53
static LIST_HEAD(regulator_coupler_list);
54
static bool has_full_constraints;
55

56 57
static struct dentry *debugfs_root;

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69
};

70 71 72 73 74 75 76
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
77
	struct gpio_desc *gpiod;
78 79 80 81
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

95
static int _regulator_is_enabled(struct regulator_dev *rdev);
96
static int _regulator_disable(struct regulator *regulator);
97 98
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99
static int _notifier_call_chain(struct regulator_dev *rdev,
100
				  unsigned long event, void *data);
101 102
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
103 104
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
105 106 107
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
108
static void destroy_regulator(struct regulator *regulator);
109
static void _regulator_put(struct regulator *regulator);
110

111
const char *rdev_get_name(struct regulator_dev *rdev)
112 113 114 115 116 117 118 119 120
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

121 122
static bool have_full_constraints(void)
{
123
	return has_full_constraints || of_have_populated_dt();
124 125
}

126 127 128 129 130 131 132 133 134 135 136 137 138
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

139 140 141
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
142
 * @ww_ctx:		w/w mutex acquire context
143 144 145 146 147 148 149
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
150 151
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
152
{
153 154 155 156 157 158 159
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
160
			rdev->ref_cnt++;
161 162 163 164 165 166 167
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
168
		}
169 170
	} else {
		lock = true;
171 172
	}

173 174 175 176 177 178 179 180
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
181 182
}

183 184 185 186 187 188 189 190 191 192
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
193
static void regulator_lock(struct regulator_dev *rdev)
194
{
195
	regulator_lock_nested(rdev, NULL);
196 197 198 199 200 201 202 203 204
}

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
205
static void regulator_unlock(struct regulator_dev *rdev)
206
{
207
	mutex_lock(&regulator_nesting_mutex);
208

209 210 211
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
212
	}
213 214 215 216

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
217 218
}

219
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220
{
221 222 223 224 225
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226

227 228 229 230 231 232 233
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

234 235
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
236
{
237 238
	struct regulator_dev *c_rdev, *supply_rdev;
	int i, supply_n_coupled;
239

240 241
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242 243 244 245

		if (!c_rdev)
			continue;

246 247 248 249 250 251 252
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
			supply_rdev = c_rdev->supply->rdev;
			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;

			regulator_unlock_recursive(supply_rdev,
						   supply_n_coupled);
		}
253

254 255
		regulator_unlock(c_rdev);
	}
256 257
}

258 259 260 261
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
262
{
263
	struct regulator_dev *c_rdev;
264
	int i, err;
265

266 267
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268

269 270
		if (!c_rdev)
			continue;
271

272 273 274 275 276 277 278
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
279

280 281 282 283 284 285 286
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

287
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288 289 290 291 292 293 294 295
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
296 297
		}
	}
298 299 300 301 302 303 304

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
305 306
}

307
/**
308 309 310 311 312
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
313
 * Unlock all regulators related with rdev by coupling or supplying.
314
 */
315 316
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
317
{
318 319
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
320 321 322
}

/**
323 324
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
325
 * @ww_ctx:			w/w mutex acquire context
326 327
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
328
 * all regulators related with rdev by coupling or supplying.
329
 */
330 331
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
332
{
333 334 335
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
336

337
	mutex_lock(&regulator_list_mutex);
338

339
	ww_acquire_init(ww_ctx, &regulator_ww_class);
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
361 362
}

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
385 386
			if (regnode)
				goto err_node_put;
387
		} else {
388
			goto err_node_put;
389 390 391
		}
	}
	return NULL;
392 393 394 395

err_node_put:
	of_node_put(child);
	return regnode;
396 397
}

398 399 400 401 402 403
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
404
 * returns the device node corresponding to the regulator if found, else
405 406 407 408 409
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
410
	char prop_name[64]; /* 64 is max size of property name */
411 412 413

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

414
	snprintf(prop_name, 64, "%s-supply", supply);
415 416 417
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
418 419 420 421
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

422 423
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
424 425 426 427 428
		return NULL;
	}
	return regnode;
}

429
/* Platform voltage constraint check */
430 431
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
432 433 434
{
	BUG_ON(*min_uV > *max_uV);

435
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436
		rdev_err(rdev, "voltage operation not allowed\n");
437 438 439 440 441 442 443 444
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

445 446
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447
			 *min_uV, *max_uV);
448
		return -EINVAL;
449
	}
450 451 452 453

	return 0;
}

454 455 456 457 458 459
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

460 461 462
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
463 464 465
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
466 467
{
	struct regulator *regulator;
468
	struct regulator_voltage *voltage;
469 470

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
471
		voltage = &regulator->voltage[state];
472 473 474 475
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
476
		if (!voltage->min_uV && !voltage->max_uV)
477 478
			continue;

479 480 481 482
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
483 484
	}

485
	if (*min_uV > *max_uV) {
486 487
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
488
		return -EINVAL;
489
	}
490 491 492 493

	return 0;
}

494 495 496 497 498 499
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

500
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501
		rdev_err(rdev, "current operation not allowed\n");
502 503 504 505 506 507 508 509
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

510 511
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512
			 *min_uA, *max_uA);
513
		return -EINVAL;
514
	}
515 516 517 518 519

	return 0;
}

/* operating mode constraint check */
520 521
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
522
{
523
	switch (*mode) {
524 525 526 527 528 529
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
530
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
531 532 533
		return -EINVAL;
	}

534
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535
		rdev_err(rdev, "mode operation not allowed\n");
536 537
		return -EPERM;
	}
538 539 540

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
541 542
	 * try higher modes.
	 */
543 544 545 546
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
547
	}
548 549

	return -EINVAL;
550 551
}

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return NULL;

	/* If we have no suspend mode configuration don't set anything;
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
	 */
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
			rdev_warn(rdev, "No configuration\n");
		return NULL;
	}

	return rstate;
}

594 595 596
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
597
	struct regulator_dev *rdev = dev_get_drvdata(dev);
598
	int uV;
599

600
	regulator_lock(rdev);
601
	uV = regulator_get_voltage_rdev(rdev);
602
	regulator_unlock(rdev);
603

604 605 606
	if (uV < 0)
		return uV;
	return sprintf(buf, "%d\n", uV);
607
}
608
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
609 610 611 612

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
613
	struct regulator_dev *rdev = dev_get_drvdata(dev);
614 615 616

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
617
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
618

619 620
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
621 622 623
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

624
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
625
}
626
static DEVICE_ATTR_RO(name);
627

628
static const char *regulator_opmode_to_str(int mode)
629 630 631
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
632
		return "fast";
633
	case REGULATOR_MODE_NORMAL:
634
		return "normal";
635
	case REGULATOR_MODE_IDLE:
636
		return "idle";
637
	case REGULATOR_MODE_STANDBY:
638
		return "standby";
639
	}
640 641 642 643 644 645
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
646 647
}

D
David Brownell 已提交
648 649
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
650
{
651
	struct regulator_dev *rdev = dev_get_drvdata(dev);
652

D
David Brownell 已提交
653 654
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
655
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
656 657 658

static ssize_t regulator_print_state(char *buf, int state)
{
659 660 661 662 663 664 665 666
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
667 668 669 670
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
671 672
	ssize_t ret;

673
	regulator_lock(rdev);
674
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
675
	regulator_unlock(rdev);
D
David Brownell 已提交
676

677
	return ret;
D
David Brownell 已提交
678
}
679
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
680

D
David Brownell 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
714 715 716
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
717 718 719
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
720 721 722 723 724 725 726 727
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

728 729 730
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
731
	struct regulator_dev *rdev = dev_get_drvdata(dev);
732 733 734 735 736 737

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
738
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
739 740 741 742

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
743
	struct regulator_dev *rdev = dev_get_drvdata(dev);
744 745 746 747 748 749

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
750
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
751 752 753 754

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
755
	struct regulator_dev *rdev = dev_get_drvdata(dev);
756 757 758 759 760 761

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
762
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
763 764 765 766

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
767
	struct regulator_dev *rdev = dev_get_drvdata(dev);
768 769 770 771 772 773

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
774
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
775 776 777 778

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
779
	struct regulator_dev *rdev = dev_get_drvdata(dev);
780 781 782
	struct regulator *regulator;
	int uA = 0;

783
	regulator_lock(rdev);
784 785 786 787
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
788
	regulator_unlock(rdev);
789 790
	return sprintf(buf, "%d\n", uA);
}
791
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
792

793 794
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
795
{
796
	struct regulator_dev *rdev = dev_get_drvdata(dev);
797 798
	return sprintf(buf, "%d\n", rdev->use_count);
}
799
static DEVICE_ATTR_RO(num_users);
800

801 802
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
803
{
804
	struct regulator_dev *rdev = dev_get_drvdata(dev);
805 806 807 808 809 810 811 812 813

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
814
static DEVICE_ATTR_RO(type);
815 816 817 818

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
819
	struct regulator_dev *rdev = dev_get_drvdata(dev);
820 821 822

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
823 824
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
825 826 827 828

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
829
	struct regulator_dev *rdev = dev_get_drvdata(dev);
830 831 832

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
833 834
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
835 836 837 838

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
839
	struct regulator_dev *rdev = dev_get_drvdata(dev);
840 841 842

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
843 844
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
845 846 847 848

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
849
	struct regulator_dev *rdev = dev_get_drvdata(dev);
850

D
David Brownell 已提交
851 852
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
853
}
854 855
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
856 857 858 859

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
860
	struct regulator_dev *rdev = dev_get_drvdata(dev);
861

D
David Brownell 已提交
862 863
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
864
}
865 866
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
867 868 869 870

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
871
	struct regulator_dev *rdev = dev_get_drvdata(dev);
872

D
David Brownell 已提交
873 874
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
875
}
876 877
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
878 879 880 881

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
882
	struct regulator_dev *rdev = dev_get_drvdata(dev);
883

D
David Brownell 已提交
884 885
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
886
}
887 888
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
889 890 891 892

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
893
	struct regulator_dev *rdev = dev_get_drvdata(dev);
894

D
David Brownell 已提交
895 896
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
897
}
898 899
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
900 901 902 903

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
904
	struct regulator_dev *rdev = dev_get_drvdata(dev);
905

D
David Brownell 已提交
906 907
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
908
}
909 910 911
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
933

934
/* Calculate the new optimum regulator operating mode based on the new total
935 936
 * consumer load. All locks held by caller
 */
937
static int drms_uA_update(struct regulator_dev *rdev)
938 939 940 941 942
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

943 944 945 946
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
947 948
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
949
		return 0;
950
	}
951

952 953
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
954 955
		return 0;

956 957
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
958
		return -EINVAL;
959 960

	/* calc total requested load */
961 962 963 964
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
965

966 967
	current_uA += rdev->constraints->system_load;

968 969 970 971
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
972 973
			rdev_err(rdev, "failed to set load %d: %pe\n",
				 current_uA, ERR_PTR(err));
974
	} else {
975
		/* get output voltage */
976
		output_uV = regulator_get_voltage_rdev(rdev);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

993 994 995 996 997 998 999
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
1000 1001
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
				 current_uA, input_uV, output_uV, ERR_PTR(err));
1002 1003
			return err;
		}
1004

1005 1006
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
1007 1008
			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
				 mode, ERR_PTR(err));
1009 1010 1011
	}

	return err;
1012 1013
}

1014 1015
static int __suspend_set_state(struct regulator_dev *rdev,
			       const struct regulator_state *rstate)
1016 1017
{
	int ret = 0;
1018

1019 1020
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1021
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1022 1023
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1024
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1025 1026 1027
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1028
	if (ret < 0) {
1029
		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1030 1031 1032 1033 1034 1035
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1036
			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1037 1038 1039 1040 1041 1042 1043
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1044
			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1045 1046 1047 1048
			return ret;
		}
	}

1049
	return ret;
1050 1051
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
static int suspend_set_initial_state(struct regulator_dev *rdev)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev,
			rdev->constraints->initial_state);
	if (!rstate)
		return 0;

	return __suspend_set_state(rdev, rstate);
}

1064 1065
#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
static void print_constraints_debug(struct regulator_dev *rdev)
1066 1067
{
	struct regulation_constraints *constraints = rdev->constraints;
1068
	char buf[160] = "";
1069
	size_t len = sizeof(buf) - 1;
1070 1071
	int count = 0;
	int ret;
1072

1073
	if (constraints->min_uV && constraints->max_uV) {
1074
		if (constraints->min_uV == constraints->max_uV)
1075 1076
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1077
		else
1078 1079 1080 1081
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1082 1083 1084 1085
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1086
		ret = regulator_get_voltage_rdev(rdev);
1087
		if (ret > 0)
1088 1089
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1090 1091
	}

1092
	if (constraints->uV_offset)
1093 1094
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1095

1096
	if (constraints->min_uA && constraints->max_uA) {
1097
		if (constraints->min_uA == constraints->max_uA)
1098 1099
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1100
		else
1101 1102 1103 1104
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1105 1106 1107 1108 1109 1110
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1111 1112
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1113
	}
1114

1115
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1116
		count += scnprintf(buf + count, len - count, "fast ");
1117
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1118
		count += scnprintf(buf + count, len - count, "normal ");
1119
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1120
		count += scnprintf(buf + count, len - count, "idle ");
1121
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1122
		count += scnprintf(buf + count, len - count, "standby ");
1123

1124
	if (!count)
1125 1126 1127 1128 1129 1130
		count = scnprintf(buf, len, "no parameters");
	else
		--count;

	count += scnprintf(buf + count, len - count, ", %s",
		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1131

1132
	rdev_dbg(rdev, "%s\n", buf);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
}
#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
static inline void print_constraints_debug(struct regulator_dev *rdev) {}
#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;

	print_constraints_debug(rdev);
1143 1144

	if ((constraints->min_uV != constraints->max_uV) &&
1145
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1146 1147
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1148 1149
}

1150
static int machine_constraints_voltage(struct regulator_dev *rdev,
1151
	struct regulation_constraints *constraints)
1152
{
1153
	const struct regulator_ops *ops = rdev->desc->ops;
1154 1155 1156 1157
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1158 1159
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1160
		int current_uV = regulator_get_voltage_rdev(rdev);
1161 1162

		if (current_uV == -ENOTRECOVERABLE) {
1163
			/* This regulator can't be read and must be initialized */
1164 1165 1166 1167 1168 1169
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1170
			current_uV = regulator_get_voltage_rdev(rdev);
1171 1172
		}

1173
		if (current_uV < 0) {
1174
			rdev_err(rdev,
1175 1176
				 "failed to get the current voltage: %pe\n",
				 ERR_PTR(current_uV));
1177 1178
			return current_uV;
		}
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1199 1200
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1201
			ret = _regulator_do_set_voltage(
1202
				rdev, target_min, target_max);
1203 1204
			if (ret < 0) {
				rdev_err(rdev,
1205 1206
					"failed to apply %d-%duV constraint: %pe\n",
					target_min, target_max, ERR_PTR(ret));
1207 1208
				return ret;
			}
1209
		}
1210
	}
1211

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1223
		/* it's safe to autoconfigure fixed-voltage supplies
1224 1225
		 * and the constraints are used by list_voltage.
		 */
1226
		if (count == 1 && !cmin) {
1227
			cmin = 1;
1228
			cmax = INT_MAX;
1229 1230
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1231 1232
		}

1233 1234
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1235
			return 0;
1236

1237
		/* else require explicit machine-level constraints */
1238
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1239
			rdev_err(rdev, "invalid voltage constraints\n");
1240
			return -EINVAL;
1241 1242
		}

1243 1244 1245 1246
		/* no need to loop voltages if range is continuous */
		if (rdev->desc->continuous_voltage_range)
			return 0;

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1264 1265 1266
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1267
			return -EINVAL;
1268 1269 1270 1271
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1272 1273
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1274 1275 1276
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1277 1278
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1279 1280 1281 1282
			constraints->max_uV = max_uV;
		}
	}

1283 1284 1285
	return 0;
}

1286 1287 1288
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1289
	const struct regulator_ops *ops = rdev->desc->ops;
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1316 1317
static int _regulator_do_enable(struct regulator_dev *rdev);

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
1328
static int set_machine_constraints(struct regulator_dev *rdev)
1329 1330
{
	int ret = 0;
1331
	const struct regulator_ops *ops = rdev->desc->ops;
1332

1333
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1334
	if (ret != 0)
1335
		return ret;
1336

1337
	ret = machine_constraints_current(rdev, rdev->constraints);
1338
	if (ret != 0)
1339
		return ret;
1340

1341 1342 1343 1344
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
1345
			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1346
			return ret;
1347 1348 1349
		}
	}

1350
	/* do we need to setup our suspend state */
1351
	if (rdev->constraints->initial_state) {
1352
		ret = suspend_set_initial_state(rdev);
1353
		if (ret < 0) {
1354
			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1355
			return ret;
1356 1357
		}
	}
1358

1359
	if (rdev->constraints->initial_mode) {
1360
		if (!ops->set_mode) {
1361
			rdev_err(rdev, "no set_mode operation\n");
1362
			return -EINVAL;
1363 1364
		}

1365
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1366
		if (ret < 0) {
1367
			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1368
			return ret;
1369
		}
1370 1371 1372 1373 1374 1375
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1376 1377
	}

1378 1379
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1380 1381
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
1382
			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1383
			return ret;
1384 1385 1386
		}
	}

S
Stephen Boyd 已提交
1387 1388 1389
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
1390
			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1391
			return ret;
S
Stephen Boyd 已提交
1392 1393 1394
		}
	}

S
Stephen Boyd 已提交
1395 1396 1397
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
1398
			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1399
			return ret;
S
Stephen Boyd 已提交
1400 1401 1402
		}
	}

1403 1404 1405 1406
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
1407 1408
			rdev_err(rdev, "failed to set over current protection: %pe\n",
				 ERR_PTR(ret));
1409
			return ret;
1410 1411 1412
		}
	}

1413 1414 1415 1416 1417 1418
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
1419
			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1420 1421 1422 1423
			return ret;
		}
	}

1424 1425 1426 1427
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1428 1429 1430 1431 1432 1433 1434 1435 1436
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1437 1438
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1439
			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1440 1441
			return ret;
		}
1442 1443 1444

		if (rdev->constraints->always_on)
			rdev->use_count++;
1445 1446
	} else if (rdev->desc->off_on_delay) {
		rdev->last_off_jiffy = jiffies;
1447 1448
	}

1449
	print_constraints(rdev);
1450
	return 0;
1451 1452 1453 1454
}

/**
 * set_supply - set regulator supply regulator
1455 1456
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1457 1458 1459 1460 1461 1462
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1463
		      struct regulator_dev *supply_rdev)
1464 1465 1466
{
	int err;

1467 1468
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1469 1470 1471
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1472
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1473 1474
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1475
		return err;
1476
	}
1477
	supply_rdev->open_count++;
1478 1479

	return 0;
1480 1481 1482
}

/**
1483
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1484
 * @rdev:         regulator source
1485
 * @consumer_dev_name: dev_name() string for device supply applies to
1486
 * @supply:       symbolic name for supply
1487 1488 1489 1490 1491 1492 1493
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1494 1495
				      const char *consumer_dev_name,
				      const char *supply)
1496
{
1497
	struct regulator_map *node, *new_node;
1498
	int has_dev;
1499 1500 1501 1502

	if (supply == NULL)
		return -EINVAL;

1503 1504 1505 1506 1507
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
	if (new_node == NULL)
		return -ENOMEM;

	new_node->regulator = rdev;
	new_node->supply = supply;

	if (has_dev) {
		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (new_node->dev_name == NULL) {
			kfree(new_node);
			return -ENOMEM;
		}
	}

	mutex_lock(&regulator_list_mutex);
1524
	list_for_each_entry(node, &regulator_map_list, list) {
1525 1526 1527 1528
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1529
			continue;
1530 1531
		}

1532 1533 1534
		if (strcmp(node->supply, supply) != 0)
			continue;

1535 1536 1537 1538 1539 1540
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1541
		goto fail;
1542 1543
	}

1544 1545
	list_add(&new_node->list, &regulator_map_list);
	mutex_unlock(&regulator_list_mutex);
1546

1547
	return 0;
1548 1549 1550 1551 1552 1553

fail:
	mutex_unlock(&regulator_list_mutex);
	kfree(new_node->dev_name);
	kfree(new_node);
	return -EBUSY;
1554 1555
}

1556 1557 1558 1559 1560 1561 1562
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1563
			kfree(node->dev_name);
1564 1565 1566 1567 1568
			kfree(node);
		}
	}
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1618
#define REG_STR_SIZE	64
1619 1620 1621 1622 1623 1624

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
1625
	int err = 0;
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643

	if (dev) {
		char buf[REG_STR_SIZE];
		int size;

		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			return NULL;

		supply_name = kstrdup(buf, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	} else {
		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	}
1644 1645

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1646 1647
	if (regulator == NULL) {
		kfree(supply_name);
1648
		return NULL;
1649
	}
1650 1651

	regulator->rdev = rdev;
1652 1653 1654
	regulator->supply_name = supply_name;

	regulator_lock(rdev);
1655
	list_add(&regulator->list, &rdev->consumer_list);
1656
	regulator_unlock(rdev);
1657 1658

	if (dev) {
1659 1660
		regulator->dev = dev;

1661
		/* Add a link to the device sysfs entry */
1662
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1663
					       supply_name);
1664
		if (err) {
1665 1666
			rdev_dbg(rdev, "could not add device link %s: %pe\n",
				  dev->kobj.name, ERR_PTR(err));
1667
			/* non-fatal */
1668
		}
1669 1670
	}

1671 1672
	if (err != -EEXIST)
		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1673
	if (!regulator->debugfs) {
1674
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1675 1676 1677 1678
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1679
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1680
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1681
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1682 1683 1684
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1685
	}
1686

1687 1688 1689 1690 1691
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1692
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1693 1694 1695
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1696 1697 1698
	return regulator;
}

1699 1700
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1701 1702
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1703 1704 1705
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1706 1707
}

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1756 1757 1758 1759 1760
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1761
 */
1762
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1763
						  const char *supply)
1764
{
1765
	struct regulator_dev *r = NULL;
1766
	struct device_node *node;
1767 1768
	struct regulator_map *map;
	const char *devname = NULL;
1769

1770 1771
	regulator_supply_alias(&dev, &supply);

1772 1773 1774
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1775
		if (node) {
1776 1777 1778
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1779

1780
			/*
1781 1782
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1783
			 */
1784
			return ERR_PTR(-EPROBE_DEFER);
1785
		}
1786 1787 1788
	}

	/* if not found, try doing it non-dt way */
1789 1790 1791
	if (dev)
		devname = dev_name(dev);

1792
	mutex_lock(&regulator_list_mutex);
1793 1794 1795 1796 1797 1798
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1799 1800
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1801 1802
			r = map->regulator;
			break;
1803
		}
1804
	}
1805
	mutex_unlock(&regulator_list_mutex);
1806

1807 1808 1809 1810
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1811 1812 1813 1814
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1815 1816
}

1817 1818 1819 1820
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
1821
	int ret = 0;
1822

1823
	/* No supply to resolve? */
1824 1825 1826
	if (!rdev->supply_name)
		return 0;

1827
	/* Supply already resolved? (fast-path without locking contention) */
1828 1829 1830
	if (rdev->supply)
		return 0;

1831 1832 1833 1834
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1835 1836
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
1837
			goto out;
1838

1839 1840
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1841
			get_device(&r->dev);
1842 1843 1844
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
1845 1846
			ret = -EPROBE_DEFER;
			goto out;
1847
		}
1848 1849
	}

1850 1851 1852
	if (r == rdev) {
		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
			rdev->desc->name, rdev->supply_name);
1853 1854 1855 1856
		if (!have_full_constraints()) {
			ret = -EINVAL;
			goto out;
		}
1857 1858
		r = dummy_regulator_rdev;
		get_device(&r->dev);
1859 1860
	}

1861 1862 1863 1864 1865 1866 1867 1868 1869
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
1870 1871
			ret = -EPROBE_DEFER;
			goto out;
1872 1873 1874
		}
	}

1875 1876
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1877 1878
	if (ret < 0) {
		put_device(&r->dev);
1879
		goto out;
1880
	}
1881

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	/*
	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
	 * between rdev->supply null check and setting rdev->supply in
	 * set_supply() from concurrent tasks.
	 */
	regulator_lock(rdev);

	/* Supply just resolved by a concurrent task? */
	if (rdev->supply) {
		regulator_unlock(rdev);
		put_device(&r->dev);
		goto out;
	}

1896
	ret = set_supply(rdev, r);
1897
	if (ret < 0) {
1898
		regulator_unlock(rdev);
1899
		put_device(&r->dev);
1900
		goto out;
1901
	}
1902

1903 1904
	regulator_unlock(rdev);

1905 1906 1907 1908 1909 1910
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1911
		ret = regulator_enable(rdev->supply);
1912
		if (ret < 0) {
1913
			_regulator_put(rdev->supply);
1914
			rdev->supply = NULL;
1915
			goto out;
1916
		}
1917 1918
	}

1919 1920
out:
	return ret;
1921 1922
}

1923
/* Internal regulator request function */
1924 1925
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1926 1927
{
	struct regulator_dev *rdev;
1928
	struct regulator *regulator;
1929
	struct device_link *link;
1930
	int ret;
1931

1932 1933 1934 1935 1936
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1937
	if (id == NULL) {
1938
		pr_err("get() with no identifier\n");
1939
		return ERR_PTR(-EINVAL);
1940 1941
	}

1942
	rdev = regulator_dev_lookup(dev, id);
1943 1944
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1945

1946 1947 1948 1949 1950 1951
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1952

1953 1954 1955 1956 1957
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1958

1959 1960 1961 1962 1963 1964 1965
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
1966
			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1967 1968 1969
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1970

1971 1972 1973
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
1974
			fallthrough;
1975

1976 1977 1978
		default:
			return ERR_PTR(-ENODEV);
		}
1979 1980
	}

1981 1982
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1983 1984
		put_device(&rdev->dev);
		return regulator;
1985 1986
	}

1987
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1988
		regulator = ERR_PTR(-EBUSY);
1989 1990
		put_device(&rdev->dev);
		return regulator;
1991 1992
	}

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

2003 2004 2005
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
2006 2007
		put_device(&rdev->dev);
		return regulator;
2008 2009
	}

2010
	if (!try_module_get(rdev->owner)) {
2011
		regulator = ERR_PTR(-EPROBE_DEFER);
2012 2013 2014
		put_device(&rdev->dev);
		return regulator;
	}
2015

2016 2017 2018 2019
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
W
Wen Yang 已提交
2020
		put_device(&rdev->dev);
2021
		return regulator;
2022 2023
	}

2024
	rdev->open_count++;
2025
	if (get_type == EXCLUSIVE_GET) {
2026 2027 2028 2029 2030 2031 2032 2033 2034
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

2035 2036 2037
	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
	if (!IS_ERR_OR_NULL(link))
		regulator->device_link = true;
2038

2039 2040
	return regulator;
}
2041 2042 2043 2044 2045 2046 2047 2048 2049

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
2050
 * Use of supply names configured via set_consumer_device_supply() is
2051 2052 2053 2054 2055 2056
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
2057
	return _regulator_get(dev, id, NORMAL_GET);
2058
}
2059 2060
EXPORT_SYMBOL_GPL(regulator_get);

2061 2062 2063 2064 2065 2066 2067
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
2068 2069 2070
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
2071 2072 2073 2074 2075 2076
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
2077
 * Use of supply names configured via set_consumer_device_supply() is
2078 2079 2080 2081 2082 2083
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2084
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2085 2086 2087
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2088 2089 2090 2091 2092 2093
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2094
 * or IS_ERR() condition containing errno.
2095 2096 2097 2098 2099 2100 2101 2102
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
2103
 * Use of supply names configured via set_consumer_device_supply() is
2104 2105 2106 2107 2108 2109
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2110
	return _regulator_get(dev, id, OPTIONAL_GET);
2111 2112 2113
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2114
static void destroy_regulator(struct regulator *regulator)
2115
{
2116
	struct regulator_dev *rdev = regulator->rdev;
2117

2118 2119
	debugfs_remove_recursive(regulator->debugfs);

2120
	if (regulator->dev) {
2121 2122
		if (regulator->device_link)
			device_link_remove(regulator->dev, &rdev->dev);
2123 2124

		/* remove any sysfs entries */
2125
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2126 2127
	}

2128
	regulator_lock(rdev);
2129 2130
	list_del(&regulator->list);

2131 2132
	rdev->open_count--;
	rdev->exclusive = 0;
2133
	regulator_unlock(rdev);
2134

2135
	kfree_const(regulator->supply_name);
2136
	kfree(regulator);
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
}

/* regulator_list_mutex lock held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (IS_ERR_OR_NULL(regulator))
		return;

	lockdep_assert_held_once(&regulator_list_mutex);

	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

	rdev = regulator->rdev;

	destroy_regulator(regulator);
2155

2156
	module_put(rdev->owner);
W
Wen Yang 已提交
2157
	put_device(&rdev->dev);
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2172 2173 2174 2175
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2253 2254
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2255
					 struct device *alias_dev,
2256
					 const char *const *alias_id,
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2294
					    const char *const *id,
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2305 2306 2307 2308
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
2309
	struct regulator_enable_gpio *pin, *new_pin;
2310
	struct gpio_desc *gpiod;
2311

2312
	gpiod = config->ena_gpiod;
2313 2314 2315
	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);

	mutex_lock(&regulator_list_mutex);
2316

2317
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2318
		if (pin->gpiod == gpiod) {
2319
			rdev_dbg(rdev, "GPIO is already used\n");
2320 2321 2322 2323
			goto update_ena_gpio_to_rdev;
		}
	}

2324 2325
	if (new_pin == NULL) {
		mutex_unlock(&regulator_list_mutex);
2326
		return -ENOMEM;
2327 2328 2329 2330
	}

	pin = new_pin;
	new_pin = NULL;
2331

2332
	pin->gpiod = gpiod;
2333 2334 2335 2336 2337
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
2338 2339 2340 2341

	mutex_unlock(&regulator_list_mutex);
	kfree(new_pin);

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
		if (pin != rdev->ena_pin)
			continue;

		if (--pin->request_count)
			break;

		gpiod_put(pin->gpiod);
		list_del(&pin->list);
		kfree(pin);
		break;
2364
	}
2365 2366

	rdev->ena_pin = NULL;
2367 2368
}

2369
/**
2370 2371 2372 2373
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2387
			gpiod_set_value_cansleep(pin->gpiod, 1);
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2398
			gpiod_set_value_cansleep(pin->gpiod, 0);
2399 2400 2401 2402 2403 2404 2405
			pin->enable_count = 0;
		}
	}

	return 0;
}

2406 2407 2408 2409 2410 2411
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2412
 *     Documentation/timers/timers-howto.rst
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
/**
 * _regulator_check_status_enabled
 *
 * A helper function to check if the regulator status can be interpreted
 * as 'regulator is enabled'.
 * @rdev: the regulator device to check
 *
 * Return:
 * * 1			- if status shows regulator is in enabled state
 * * 0			- if not enabled state
 * * Error Value	- as received from ops->get_status()
 */
static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
{
	int ret = rdev->desc->ops->get_status(rdev);

	if (ret < 0) {
		rdev_info(rdev, "get_status returned error: %d\n", ret);
		return ret;
	}

	switch (ret) {
	case REGULATOR_STATUS_OFF:
	case REGULATOR_STATUS_ERROR:
	case REGULATOR_STATUS_UNDEFINED:
		return 0;
	default:
		return 1;
	}
}

2476 2477 2478 2479 2480 2481 2482 2483 2484
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
2485
		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2486 2487 2488 2489 2490
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
2506
			 * detected and we get a penalty of
2507 2508 2509 2510 2511 2512 2513 2514 2515
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2516
	if (rdev->ena_pin) {
2517 2518 2519 2520 2521 2522
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2523
	} else if (rdev->desc->ops->enable) {
2524 2525 2526 2527 2528 2529 2530 2531 2532
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
2533 2534
	 * together.
	 */
2535 2536
	trace_regulator_enable_delay(rdev_get_name(rdev));

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
	/* If poll_enabled_time is set, poll upto the delay calculated
	 * above, delaying poll_enabled_time uS to check if the regulator
	 * actually got enabled.
	 * If the regulator isn't enabled after enable_delay has
	 * expired, return -ETIMEDOUT.
	 */
	if (rdev->desc->poll_enabled_time) {
		unsigned int time_remaining = delay;

		while (time_remaining > 0) {
			_regulator_enable_delay(rdev->desc->poll_enabled_time);

			if (rdev->desc->ops->get_status) {
				ret = _regulator_check_status_enabled(rdev);
				if (ret < 0)
					return ret;
				else if (ret)
					break;
			} else if (rdev->desc->ops->is_enabled(rdev))
				break;

			time_remaining -= rdev->desc->poll_enabled_time;
		}

		if (time_remaining <= 0) {
			rdev_err(rdev, "Enabled check timed out\n");
			return -ETIMEDOUT;
		}
	} else {
		_regulator_enable_delay(delay);
	}
2568 2569 2570 2571 2572 2573

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2633
/* locks held by regulator_enable() */
2634
static int _regulator_enable(struct regulator *regulator)
2635
{
2636
	struct regulator_dev *rdev = regulator->rdev;
2637
	int ret;
2638

2639 2640
	lockdep_assert_held_once(&rdev->mutex.base);

2641
	if (rdev->use_count == 0 && rdev->supply) {
2642
		ret = _regulator_enable(rdev->supply);
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2653

2654 2655 2656
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2657

2658
	if (rdev->use_count == 0) {
2659 2660 2661 2662
		/*
		 * The regulator may already be enabled if it's not switchable
		 * or was left on
		 */
2663 2664
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2665
			if (!regulator_ops_is_valid(rdev,
2666 2667
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2668
				goto err_consumer_disable;
2669
			}
2670

2671
			ret = _regulator_do_enable(rdev);
2672
			if (ret < 0)
2673
				goto err_consumer_disable;
2674

2675 2676
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2677
		} else if (ret < 0) {
2678
			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2679
			goto err_consumer_disable;
2680
		}
2681
		/* Fallthrough on positive return values - already enabled */
2682 2683
	}

2684 2685 2686
	rdev->use_count++;

	return 0;
2687

2688 2689 2690
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2691
err_disable_supply:
2692
	if (rdev->use_count == 0 && rdev->supply)
2693
		_regulator_disable(rdev->supply);
2694 2695

	return ret;
2696 2697 2698 2699 2700 2701
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2702 2703 2704 2705
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2706
 * NOTE: the output value can be set by other drivers, boot loader or may be
2707
 * hardwired in the regulator.
2708 2709 2710
 */
int regulator_enable(struct regulator *regulator)
{
2711
	struct regulator_dev *rdev = regulator->rdev;
2712
	struct ww_acquire_ctx ww_ctx;
2713
	int ret;
2714

2715
	regulator_lock_dependent(rdev, &ww_ctx);
2716
	ret = _regulator_enable(regulator);
2717
	regulator_unlock_dependent(rdev, &ww_ctx);
2718

2719 2720 2721 2722
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2723 2724 2725 2726 2727 2728
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2729
	if (rdev->ena_pin) {
2730 2731 2732 2733 2734 2735
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2736 2737 2738 2739 2740 2741 2742

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2743 2744 2745 2746 2747 2748
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2749 2750 2751 2752 2753
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2754
/* locks held by regulator_disable() */
2755
static int _regulator_disable(struct regulator *regulator)
2756
{
2757
	struct regulator_dev *rdev = regulator->rdev;
2758 2759
	int ret = 0;

2760
	lockdep_assert_held_once(&rdev->mutex.base);
2761

D
David Brownell 已提交
2762
	if (WARN(rdev->use_count <= 0,
2763
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2764 2765
		return -EIO;

2766
	/* are we the last user and permitted to disable ? */
2767 2768
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2769 2770

		/* we are last user */
2771
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2772 2773 2774 2775 2776 2777
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2778
			ret = _regulator_do_disable(rdev);
2779
			if (ret < 0) {
2780
				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2781 2782 2783
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2784 2785
				return ret;
			}
2786 2787
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2788 2789 2790 2791 2792 2793
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2794

2795 2796 2797
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2798 2799 2800
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2801
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2802
		ret = _regulator_disable(rdev->supply);
2803

2804 2805 2806 2807 2808 2809 2810
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2811 2812 2813
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2814
 *
2815
 * NOTE: this will only disable the regulator output if no other consumer
2816 2817
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2818 2819 2820
 */
int regulator_disable(struct regulator *regulator)
{
2821
	struct regulator_dev *rdev = regulator->rdev;
2822
	struct ww_acquire_ctx ww_ctx;
2823
	int ret;
2824

2825
	regulator_lock_dependent(rdev, &ww_ctx);
2826
	ret = _regulator_disable(regulator);
2827
	regulator_unlock_dependent(rdev, &ww_ctx);
2828

2829 2830 2831 2832 2833
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2834
static int _regulator_force_disable(struct regulator_dev *rdev)
2835 2836 2837
{
	int ret = 0;

2838
	lockdep_assert_held_once(&rdev->mutex.base);
2839

2840 2841 2842 2843 2844
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2845 2846
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
2847
		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2848 2849
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2850
		return ret;
2851 2852
	}

2853 2854 2855 2856
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2870
	struct regulator_dev *rdev = regulator->rdev;
2871
	struct ww_acquire_ctx ww_ctx;
2872 2873
	int ret;

2874
	regulator_lock_dependent(rdev, &ww_ctx);
2875

2876
	ret = _regulator_force_disable(regulator->rdev);
2877

2878 2879
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2880 2881 2882 2883 2884 2885

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2886 2887
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2888

2889
	regulator_unlock_dependent(rdev, &ww_ctx);
2890

2891 2892 2893 2894
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2895 2896 2897 2898
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2899
	struct ww_acquire_ctx ww_ctx;
2900
	int count, i, ret;
2901 2902
	struct regulator *regulator;
	int total_count = 0;
2903

2904
	regulator_lock_dependent(rdev, &ww_ctx);
2905

2906 2907 2908 2909 2910 2911 2912 2913
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
2926 2927
				rdev_err(rdev, "Deferred disable failed: %pe\n",
					 ERR_PTR(ret));
2928
		}
2929
	}
2930
	WARN_ON(!total_count);
2931

2932 2933 2934 2935
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2936 2937 2938 2939 2940
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2941
 * @ms: milliseconds until the regulator is disabled
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2954 2955 2956
	if (!ms)
		return regulator_disable(regulator);

2957
	regulator_lock(rdev);
2958
	regulator->deferred_disables++;
2959 2960
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2961
	regulator_unlock(rdev);
2962

2963
	return 0;
2964 2965 2966
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2967 2968
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2969
	/* A GPIO control always takes precedence */
2970
	if (rdev->ena_pin)
2971 2972
		return rdev->ena_gpio_state;

2973
	/* If we don't know then assume that the regulator is always on */
2974
	if (!rdev->desc->ops->is_enabled)
2975
		return 1;
2976

2977
	return rdev->desc->ops->is_enabled(rdev);
2978 2979
}

2980 2981
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
2992 2993
		if (selector < rdev->desc->linear_min_sel)
			return 0;
2994
		if (lock)
2995
			regulator_lock(rdev);
2996 2997
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2998
			regulator_unlock(rdev);
2999
	} else if (rdev->is_switch && rdev->supply) {
3000 3001
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

3016 3017 3018 3019
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
3020 3021 3022 3023 3024 3025 3026
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
3027 3028 3029
 */
int regulator_is_enabled(struct regulator *regulator)
{
3030 3031
	int ret;

3032 3033 3034
	if (regulator->always_on)
		return 1;

3035
	regulator_lock(regulator->rdev);
3036
	ret = _regulator_is_enabled(regulator->rdev);
3037
	regulator_unlock(regulator->rdev);
3038 3039

	return ret;
3040 3041 3042
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

3055 3056 3057
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

3058
	if (!rdev->is_switch || !rdev->supply)
3059 3060 3061
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
3072
 * zero if this selector code can't be used on this system, or a
3073 3074 3075 3076
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
3077
	return _regulator_list_voltage(regulator->rdev, selector, 1);
3078 3079 3080
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
3113 3114
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3115 3116 3117 3118

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

3119 3120
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
3121

3122
	return 0;
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3140 3141
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3142 3143 3144

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
3145 3146
	if (selector < rdev->desc->linear_min_sel)
		return 0;
3147 3148 3149 3150 3151 3152 3153
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3169 3170 3171 3172 3173 3174 3175
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3176
 * Returns a boolean.
3177 3178 3179 3180
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3181
	struct regulator_dev *rdev = regulator->rdev;
3182 3183
	int i, voltages, ret;

3184
	/* If we can't change voltage check the current voltage */
3185
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3186 3187
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3188
			return min_uV <= ret && ret <= max_uV;
3189 3190 3191 3192
		else
			return ret;
	}

3193 3194 3195 3196 3197
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3198 3199
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3200
		return 0;
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3212
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3213

3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3228 3229 3230 3231 3232
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3233 3234 3235
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3236 3237 3238 3239 3240 3241 3242
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3243
	data.old_uV = regulator_get_voltage_rdev(rdev);
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3267
	data.old_uV = regulator_get_voltage_rdev(rdev);
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3345 3346 3347 3348 3349 3350 3351 3352 3353
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3354 3355
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3356 3357 3358 3359 3360 3361
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3362 3363

	if (ramp_delay == 0) {
3364
		rdev_dbg(rdev, "ramp_delay not set\n");
3365 3366 3367 3368 3369 3370
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3371 3372 3373 3374
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3375
	int delay = 0;
3376
	int best_val = 0;
3377
	unsigned int selector;
3378
	int old_selector = -1;
3379
	const struct regulator_ops *ops = rdev->desc->ops;
3380
	int old_uV = regulator_get_voltage_rdev(rdev);
3381 3382 3383

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3384 3385 3386
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3387 3388 3389 3390
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3391
	if (_regulator_is_enabled(rdev) &&
3392 3393
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3394 3395 3396 3397
		if (old_selector < 0)
			return old_selector;
	}

3398
	if (ops->set_voltage) {
3399 3400
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3401 3402

		if (ret >= 0) {
3403 3404 3405
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3406
			else
3407
				best_val = regulator_get_voltage_rdev(rdev);
3408 3409
		}

3410
	} else if (ops->set_voltage_sel) {
3411
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3412
		if (ret >= 0) {
3413
			best_val = ops->list_voltage(rdev, ret);
3414 3415
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3416 3417
				if (old_selector == selector)
					ret = 0;
3418 3419 3420
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3421
				else
3422 3423
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3424 3425 3426
			} else {
				ret = -EINVAL;
			}
3427
		}
3428 3429 3430
	} else {
		ret = -EINVAL;
	}
3431

3432 3433
	if (ret)
		goto out;
3434

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3452
		}
3453
	}
3454

3455
	if (delay < 0) {
3456
		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3457
		delay = 0;
3458 3459
	}

3460 3461 3462 3463 3464 3465
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3466 3467
	}

3468
	if (best_val >= 0) {
3469 3470
		unsigned long data = best_val;

3471
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3472 3473
				     (void *)data);
	}
3474

3475
out:
3476
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3477 3478 3479 3480

	return ret;
}

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3507
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3508 3509
					  int min_uV, int max_uV,
					  suspend_state_t state)
3510 3511
{
	struct regulator_dev *rdev = regulator->rdev;
3512
	struct regulator_voltage *voltage = &regulator->voltage[state];
3513
	int ret = 0;
3514
	int old_min_uV, old_max_uV;
3515
	int current_uV;
3516

3517 3518 3519 3520
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3521
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3522 3523
		goto out;

3524
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3525
	 * return successfully even though the regulator does not support
3526 3527
	 * changing the voltage.
	 */
3528
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3529
		current_uV = regulator_get_voltage_rdev(rdev);
3530
		if (min_uV <= current_uV && current_uV <= max_uV) {
3531 3532
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3533 3534 3535 3536
			goto out;
		}
	}

3537
	/* sanity check */
3538 3539
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3540 3541 3542 3543 3544 3545 3546 3547
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3548

3549
	/* restore original values in case of error */
3550 3551 3552 3553
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3554

3555 3556
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3557 3558 3559 3560
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3561

3562 3563 3564 3565
out:
	return ret;
}

3566 3567
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3568 3569 3570 3571 3572
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3573 3574 3575
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3576 3577
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3578 3579 3580 3581 3582 3583
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3584
			goto out;
3585 3586
		}

M
Mark Brown 已提交
3587
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3588 3589
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3590
			goto out;
3591 3592 3593 3594
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3595
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3596 3597
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3598
			goto out;
3599 3600 3601 3602 3603 3604 3605
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3606
				best_supply_uV, INT_MAX, state);
3607
		if (ret) {
3608 3609
			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
				ERR_PTR(ret));
3610
			goto out;
3611 3612 3613
		}
	}

3614 3615 3616 3617 3618
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3619
	if (ret < 0)
3620
		goto out;
3621

3622 3623
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3624
				best_supply_uV, INT_MAX, state);
3625
		if (ret)
3626 3627
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
				 ERR_PTR(ret));
3628 3629 3630 3631
		/* No need to fail here */
		ret = 0;
	}

3632
out:
3633
	return ret;
3634
}
3635
EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3636

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3647
		*current_uV = regulator_get_voltage_rdev(rdev);
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3679
	int i, ret, max_spread;
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3713
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3724

3725 3726 3727 3728 3729 3730 3731 3732
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3733 3734
	max_spread = constraints->max_spread[0];

3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3752
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3790 3791 3792 3793
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3794
			ret = regulator_get_voltage_rdev(rdev);
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

3810 3811
int regulator_do_balance_voltage(struct regulator_dev *rdev,
				 suspend_state_t state, bool skip_coupled)
3812 3813 3814 3815 3816 3817
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3818 3819
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3820 3821

	c_rdevs = c_desc->coupled_rdevs;
3822
	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3849
			if (test_bit(i, &c_rdev_done))
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3877

3878 3879
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3880

3881 3882 3883
		if (ret < 0)
			goto out;

3884 3885
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
3886 3887 3888 3889

	} while (n_coupled > 1);

out:
3890 3891 3892
	return ret;
}

3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_coupler *coupler = c_desc->coupler;
	bool skip_coupled = false;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		skip_coupled = true;

	if (c_desc->n_resolved < c_desc->n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);

	return regulator_do_balance_voltage(rdev, state, skip_coupled);
}

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3939 3940
	struct ww_acquire_ctx ww_ctx;
	int ret;
3941

3942
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3943

3944 3945
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3946

3947
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3948

3949 3950 3951 3952
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3965
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
4019 4020
	struct ww_acquire_ctx ww_ctx;
	int ret;
4021 4022 4023 4024 4025

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

4026
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4027 4028 4029 4030

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

4031
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4032 4033 4034 4035 4036

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
4050 4051
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
4052 4053 4054 4055 4056
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

4057 4058 4059 4060 4061
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

4062
	/* Currently requires operations to do this */
4063
	if (!ops->list_voltage || !rdev->desc->n_voltages)
4064 4065 4066 4067
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
4068 4069 4070
		if (i < rdev->desc->linear_min_sel)
			continue;

4071 4072 4073
		if (old_sel >= 0 && new_sel >= 0)
			break;

4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

4092
/**
4093 4094
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
4095 4096 4097 4098 4099 4100
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
4101
 * Drivers providing ramp_delay in regulation_constraints can use this as their
4102
 * set_voltage_time_sel() operation.
4103 4104 4105 4106 4107
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
4108
	int old_volt, new_volt;
4109

4110 4111 4112
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
4113

4114 4115 4116
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

4117 4118 4119 4120 4121
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4122
}
4123
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4124

4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
4136
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4137 4138
	int ret, min_uV, max_uV;

4139
	regulator_lock(rdev);
4140 4141 4142 4143 4144 4145 4146 4147

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
4148
	if (!voltage->min_uV && !voltage->max_uV) {
4149 4150 4151 4152
		ret = -EINVAL;
		goto out;
	}

4153 4154
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
4155 4156 4157 4158 4159 4160

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

4161
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4162 4163 4164
	if (ret < 0)
		goto out;

4165 4166 4167 4168 4169
	/* balance only, if regulator is coupled */
	if (rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
	else
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4170 4171

out:
4172
	regulator_unlock(rdev);
4173 4174 4175 4176
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

4177
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4178
{
4179
	int sel, ret;
4180 4181 4182 4183 4184 4185 4186 4187
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
4188 4189 4190 4191 4192
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
4193

4194
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4195 4196
		}
	}
4197 4198 4199 4200 4201

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4202
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4203
	} else if (rdev->desc->ops->get_voltage) {
4204
		ret = rdev->desc->ops->get_voltage(rdev);
4205 4206
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4207 4208
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4209
	} else if (rdev->supply) {
4210
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4211 4212
	} else if (rdev->supply_name) {
		return -EPROBE_DEFER;
4213
	} else {
4214
		return -EINVAL;
4215
	}
4216

4217 4218
	if (ret < 0)
		return ret;
4219
	return ret - rdev->constraints->uV_offset;
4220
}
4221
EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4234
	struct ww_acquire_ctx ww_ctx;
4235 4236
	int ret;

4237
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4238
	ret = regulator_get_voltage_rdev(regulator->rdev);
4239
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4240 4241 4242 4243 4244 4245 4246 4247

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4248
 * @min_uA: Minimum supported current in uA
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4267
	regulator_lock(rdev);
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4282
	regulator_unlock(rdev);
4283 4284 4285 4286
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4287 4288 4289 4290 4291 4292 4293 4294 4295
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4296 4297 4298 4299
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4300
	regulator_lock(rdev);
4301
	ret = _regulator_get_current_limit_unlocked(rdev);
4302
	regulator_unlock(rdev);
4303

4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4337
	int regulator_curr_mode;
4338

4339
	regulator_lock(rdev);
4340 4341 4342 4343 4344 4345 4346

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4347 4348 4349 4350 4351 4352 4353 4354 4355
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4356
	/* constraints check */
4357
	ret = regulator_mode_constrain(rdev, &mode);
4358 4359 4360 4361 4362
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4363
	regulator_unlock(rdev);
4364 4365 4366 4367
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4368 4369 4370 4371 4372 4373 4374 4375 4376
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4377 4378 4379 4380
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4381
	regulator_lock(rdev);
4382
	ret = _regulator_get_mode_unlocked(rdev);
4383
	regulator_unlock(rdev);
4384

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4400 4401 4402 4403 4404
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4405
	regulator_lock(rdev);
4406 4407 4408 4409 4410 4411 4412 4413 4414

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4415
	regulator_unlock(rdev);
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4433
/**
4434
 * regulator_set_load - set regulator load
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4457 4458 4459 4460 4461 4462 4463 4464
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4465
 * On error a negative errno is returned.
4466
 */
4467
int regulator_set_load(struct regulator *regulator, int uA_load)
4468 4469
{
	struct regulator_dev *rdev = regulator->rdev;
4470 4471
	int old_uA_load;
	int ret = 0;
4472

4473
	regulator_lock(rdev);
4474
	old_uA_load = regulator->uA_load;
4475
	regulator->uA_load = uA_load;
4476 4477 4478 4479 4480
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4481
	regulator_unlock(rdev);
4482

4483 4484
	return ret;
}
4485
EXPORT_SYMBOL_GPL(regulator_set_load);
4486

4487 4488 4489 4490
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4491
 * @enable: enable or disable bypass mode
4492 4493 4494 4495 4496 4497 4498 4499 4500
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
4501
	const char *name = rdev_get_name(rdev);
4502 4503 4504 4505 4506
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4507
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4508 4509
		return 0;

4510
	regulator_lock(rdev);
4511 4512 4513 4514 4515

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
4516 4517
			trace_regulator_bypass_enable(name);

4518 4519 4520
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
4521 4522
			else
				trace_regulator_bypass_enable_complete(name);
4523 4524 4525 4526 4527 4528
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
4529 4530
			trace_regulator_bypass_disable(name);

4531 4532 4533
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
4534 4535
			else
				trace_regulator_bypass_disable_complete(name);
4536 4537 4538 4539 4540 4541
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4542
	regulator_unlock(rdev);
4543 4544 4545 4546 4547

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4548 4549 4550
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4551
 * @nb: notifier block
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4566
 * @nb: notifier block
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4578 4579 4580
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4581
static int _notifier_call_chain(struct regulator_dev *rdev,
4582 4583 4584
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4585
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4612 4613
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4624
	if (ret != -EPROBE_DEFER)
4625 4626
		dev_err(dev, "Failed to get supply '%s': %pe\n",
			consumers[i].supply, ERR_PTR(ret));
4627 4628 4629 4630
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4631
	while (--i >= 0)
4632 4633 4634 4635 4636 4637
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4638 4639 4640 4641 4642 4643 4644
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4660
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4661
	int i;
4662
	int ret = 0;
4663

4664
	for (i = 0; i < num_consumers; i++) {
4665 4666
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4667
	}
4668 4669 4670 4671

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4672
	for (i = 0; i < num_consumers; i++) {
4673 4674
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4675
			goto err;
4676
		}
4677 4678 4679 4680 4681
	}

	return 0;

err:
4682 4683
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
4684 4685
			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
			       ERR_PTR(consumers[i].ret));
4686 4687 4688
		else
			regulator_disable(consumers[i].consumer);
	}
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4702 4703
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4704 4705 4706 4707 4708 4709
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4710
	int ret, r;
4711

4712
	for (i = num_consumers - 1; i >= 0; --i) {
4713 4714 4715 4716 4717 4718 4719 4720
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4721
	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4722 4723 4724
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4725 4726
			pr_err("Failed to re-enable %s: %pe\n",
			       consumers[i].supply, ERR_PTR(r));
4727
	}
4728 4729 4730 4731 4732

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4751
	int ret = 0;
4752

4753
	for (i = 0; i < num_consumers; i++) {
4754 4755 4756
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4757 4758
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4759 4760 4761 4762 4763 4764 4765
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4789
 * @rdev: regulator source
4790
 * @event: notifier block
4791
 * @data: callback-specific data.
4792 4793
 *
 * Called by regulator drivers to notify clients a regulator event has
4794
 * occurred.
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4821
	case REGULATOR_MODE_STANDBY:
4822 4823
		return REGULATOR_STATUS_STANDBY;
	default:
4824
		return REGULATOR_STATUS_UNDEFINED;
4825 4826 4827 4828
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4856 4857 4858 4859
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4860 4861
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4862
{
4863
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4864
	struct regulator_dev *rdev = dev_to_rdev(dev);
4865
	const struct regulator_ops *ops = rdev->desc->ops;
4866 4867 4868 4869 4870 4871 4872
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4873 4874

	/* some attributes need specific methods to be displayed */
4875 4876 4877 4878 4879 4880 4881
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4882
	}
4883

4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4899
	/* constraints need specific supporting methods */
4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4935

4936 4937 4938
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4939 4940 4941

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4942
	kfree(rdev);
4943 4944
}

4945 4946
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4959
	if (!rdev->debugfs) {
4960 4961 4962 4963 4964 4965 4966 4967
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4968 4969
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4970 4971
}

4972 4973
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4974 4975 4976 4977 4978 4979
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4980 4981
}

4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

5033
static void regulator_resolve_coupling(struct regulator_dev *rdev)
5034
{
5035
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

5048 5049
		if (!c_rdev)
			continue;
5050

5051 5052 5053 5054 5055 5056
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

5057 5058
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
5059

5060 5061
		regulator_resolve_coupling(c_rdev);
	}
5062 5063
}

5064
static void regulator_remove_coupling(struct regulator_dev *rdev)
5065
{
5066
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5067 5068 5069 5070
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
5071
	int err;
5072

5073
	n_coupled = c_desc->n_coupled;
5074

5075 5076
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
5077

5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
5101 5102 5103 5104

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
5105 5106
			rdev_err(rdev, "failed to detach from coupler: %pe\n",
				 ERR_PTR(err));
5107 5108 5109 5110
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
5111 5112
}

5113
static int regulator_init_coupling(struct regulator_dev *rdev)
5114
{
5115
	struct regulator_dev **coupled;
5116
	int err, n_phandles;
5117 5118 5119 5120 5121 5122

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

5123 5124
	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
	if (!coupled)
5125
		return -ENOMEM;
5126

5127 5128
	rdev->coupling_desc.coupled_rdevs = coupled;

5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

5141
	if (!of_check_coupling_data(rdev))
5142 5143
		return -EPERM;

5144
	mutex_lock(&regulator_list_mutex);
5145
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5146 5147
	mutex_unlock(&regulator_list_mutex);

5148 5149
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
5150
		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5151
		return err;
5152 5153
	}

5154 5155 5156 5157 5158 5159 5160 5161 5162
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5163
		return -EPERM;
5164
	}
5165

5166 5167 5168 5169 5170 5171
	if (!rdev->constraints->always_on) {
		rdev_err(rdev,
			 "Coupling of a non always-on regulator is unimplemented\n");
		return -ENOTSUPP;
	}

5172 5173 5174
	return 0;
}

5175 5176 5177 5178
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

5179 5180
/**
 * regulator_register - register regulator
5181
 * @regulator_desc: regulator to register
5182
 * @cfg: runtime configuration for regulator
5183 5184
 *
 * Called by regulator drivers to register a regulator.
5185 5186
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
5187
 */
5188 5189
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
5190
		   const struct regulator_config *cfg)
5191
{
5192
	const struct regulator_init_data *init_data;
5193
	struct regulator_config *config = NULL;
5194
	static atomic_t regulator_no = ATOMIC_INIT(-1);
5195
	struct regulator_dev *rdev;
5196 5197
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
5198
	struct device *dev;
5199
	int ret, i;
5200

5201
	if (cfg == NULL)
5202
		return ERR_PTR(-EINVAL);
5203 5204 5205 5206 5207 5208
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5209

5210
	dev = cfg->dev;
5211
	WARN_ON(!dev);
5212

5213 5214 5215 5216
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5217

5218
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5219 5220 5221 5222
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5223

5224 5225 5226
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5227 5228
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5229 5230 5231 5232

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5233 5234
		ret = -EINVAL;
		goto rinse;
5235
	}
5236 5237
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5238 5239
		ret = -EINVAL;
		goto rinse;
5240
	}
5241

5242
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5243 5244 5245 5246
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5247
	device_initialize(&rdev->dev);
5248

5249 5250 5251 5252 5253 5254
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
5255
		ret = -ENOMEM;
5256
		goto clean;
5257 5258
	}

5259
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5260
					       &rdev->dev.of_node);
5261 5262 5263 5264 5265 5266 5267 5268

	/*
	 * Sometimes not all resources are probed already so we need to take
	 * that into account. This happens most the time if the ena_gpiod comes
	 * from a gpio extender or something else.
	 */
	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
		ret = -EPROBE_DEFER;
5269
		goto clean;
5270 5271
	}

5272 5273 5274 5275 5276
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5277
	 * a descriptor, we definitely got one from parsing the device
5278 5279 5280 5281
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5282 5283 5284 5285 5286
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5287
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5288
	rdev->reg_data = config->driver_data;
5289 5290
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5291 5292
	if (config->regmap)
		rdev->regmap = config->regmap;
5293
	else if (dev_get_regmap(dev, NULL))
5294
		rdev->regmap = dev_get_regmap(dev, NULL);
5295 5296
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5297 5298 5299
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5300
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5301

5302
	/* preform any regulator specific init */
5303
	if (init_data && init_data->regulator_init) {
5304
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5305 5306
		if (ret < 0)
			goto clean;
5307 5308
	}

5309
	if (config->ena_gpiod) {
5310 5311
		ret = regulator_ena_gpio_request(rdev, config);
		if (ret != 0) {
5312 5313
			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
				 ERR_PTR(ret));
5314
			goto clean;
5315
		}
5316 5317 5318
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5319 5320
	}

5321
	/* register with sysfs */
5322
	rdev->dev.class = &regulator_class;
5323
	rdev->dev.parent = dev;
5324
	dev_set_name(&rdev->dev, "regulator.%lu",
5325
		    (unsigned long) atomic_inc_return(&regulator_no));
5326
	dev_set_drvdata(&rdev->dev, rdev);
5327

5328
	/* set regulator constraints */
5329
	if (init_data)
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
		rdev->constraints = kmemdup(&init_data->constraints,
					    sizeof(*rdev->constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
					    GFP_KERNEL);
	if (!rdev->constraints) {
		ret = -ENOMEM;
		goto wash;
	}
5340 5341

	if (init_data && init_data->supply_regulator)
5342
		rdev->supply_name = init_data->supply_regulator;
5343
	else if (regulator_desc->supply_name)
5344
		rdev->supply_name = regulator_desc->supply_name;
5345

5346
	ret = set_machine_constraints(rdev);
5347 5348
	if (ret == -EPROBE_DEFER) {
		/* Regulator might be in bypass mode and so needs its supply
5349 5350
		 * to set the constraints
		 */
5351 5352
		/* FIXME: this currently triggers a chicken-and-egg problem
		 * when creating -SUPPLY symlink in sysfs to a regulator
5353 5354
		 * that is just being created
		 */
5355 5356
		rdev_dbg(rdev, "will resolve supply early: %s\n",
			 rdev->supply_name);
5357 5358
		ret = regulator_resolve_supply(rdev);
		if (!ret)
5359
			ret = set_machine_constraints(rdev);
5360 5361 5362 5363
		else
			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
				 ERR_PTR(ret));
	}
5364 5365 5366
	if (ret < 0)
		goto wash;

5367 5368
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
5369 5370
		goto wash;

5371
	/* add consumers devices */
5372 5373 5374 5375
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5376
				init_data->consumer_supplies[i].supply);
5377 5378 5379 5380 5381
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5382
		}
5383
	}
5384

5385 5386 5387 5388 5389
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5390 5391
	ret = device_add(&rdev->dev);
	if (ret != 0)
5392 5393
		goto unset_supplies;

5394
	rdev_init_debugfs(rdev);
5395

5396 5397 5398 5399 5400
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5401 5402 5403
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5404
	kfree(config);
5405
	return rdev;
D
David Brownell 已提交
5406

5407
unset_supplies:
5408
	mutex_lock(&regulator_list_mutex);
5409
	unset_regulator_supplies(rdev);
5410
	regulator_remove_coupling(rdev);
5411
	mutex_unlock(&regulator_list_mutex);
5412
wash:
5413
	kfree(rdev->coupling_desc.coupled_rdevs);
5414
	mutex_lock(&regulator_list_mutex);
5415
	regulator_ena_gpio_free(rdev);
5416
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5417
clean:
5418 5419
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
5420
	kfree(config);
5421
	put_device(&rdev->dev);
5422 5423 5424
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5425
	return ERR_PTR(ret);
5426 5427 5428 5429 5430
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5431
 * @rdev: regulator to unregister
5432 5433 5434 5435 5436 5437 5438 5439
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5440 5441 5442
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5443
		regulator_put(rdev->supply);
5444
	}
5445

5446 5447
	flush_work(&rdev->disable_work.work);

5448
	mutex_lock(&regulator_list_mutex);
5449

5450
	debugfs_remove_recursive(rdev->debugfs);
5451
	WARN_ON(rdev->open_count);
5452
	regulator_remove_coupling(rdev);
5453
	unset_regulator_supplies(rdev);
5454
	list_del(&rdev->list);
5455
	regulator_ena_gpio_free(rdev);
5456
	device_unregister(&rdev->dev);
5457 5458

	mutex_unlock(&regulator_list_mutex);
5459 5460 5461
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5462
#ifdef CONFIG_SUSPEND
5463
/**
5464
 * regulator_suspend - prepare regulators for system wide suspend
5465
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5466 5467 5468
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5469
static int regulator_suspend(struct device *dev)
5470
{
5471
	struct regulator_dev *rdev = dev_to_rdev(dev);
5472
	suspend_state_t state = pm_suspend_target_state;
5473
	int ret;
5474 5475 5476 5477 5478
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev, state);
	if (!rstate)
		return 0;
5479 5480

	regulator_lock(rdev);
5481
	ret = __suspend_set_state(rdev, rstate);
5482
	regulator_unlock(rdev);
5483

5484
	return ret;
5485
}
5486

5487
static int regulator_resume(struct device *dev)
5488
{
5489
	suspend_state_t state = pm_suspend_target_state;
5490
	struct regulator_dev *rdev = dev_to_rdev(dev);
5491
	struct regulator_state *rstate;
5492
	int ret = 0;
5493

5494
	rstate = regulator_get_suspend_state(rdev, state);
5495
	if (rstate == NULL)
5496
		return 0;
5497

5498 5499 5500 5501
	/* Avoid grabbing the lock if we don't need to */
	if (!rdev->desc->ops->resume)
		return 0;

5502
	regulator_lock(rdev);
5503

5504 5505
	if (rstate->enabled == ENABLE_IN_SUSPEND ||
	    rstate->enabled == DISABLE_IN_SUSPEND)
5506
		ret = rdev->desc->ops->resume(rdev);
5507

5508
	regulator_unlock(rdev);
5509

5510
	return ret;
5511
}
5512 5513
#else /* !CONFIG_SUSPEND */

5514 5515
#define regulator_suspend	NULL
#define regulator_resume	NULL
5516 5517 5518 5519 5520

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5521 5522
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5523 5524 5525
};
#endif

M
Mark Brown 已提交
5526
struct class regulator_class = {
5527 5528 5529 5530 5531 5532 5533
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5551 5552
/**
 * rdev_get_drvdata - get rdev regulator driver data
5553
 * @rdev: regulator
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
5589
 * rdev_get_id - get regulator ID
5590
 * @rdev: regulator
5591 5592 5593 5594 5595 5596 5597
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5598 5599 5600 5601 5602 5603
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5604 5605 5606 5607 5608 5609
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5610 5611 5612 5613 5614 5615
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5616
#ifdef CONFIG_DEBUG_FS
5617
static int supply_map_show(struct seq_file *sf, void *data)
5618 5619 5620 5621
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5622 5623 5624
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5625 5626
	}

5627 5628
	return 0;
}
5629
DEFINE_SHOW_ATTRIBUTE(supply_map);
5630

5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5653 5654 5655 5656 5657 5658
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5659
	struct summary_data summary_data;
5660
	unsigned int opmode;
5661 5662 5663 5664

	if (!rdev)
		return;

5665
	opmode = _regulator_get_mode_unlocked(rdev);
5666
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5667 5668
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5669
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5670
		   regulator_opmode_to_str(opmode));
5671

5672
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5673 5674
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5693
		if (consumer->dev && consumer->dev->class == &regulator_class)
5694 5695 5696 5697
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5698
			   30 - (level + 1) * 3,
5699
			   consumer->supply_name ? consumer->supply_name :
5700
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5701 5702 5703

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5704 5705
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5706
				   consumer->uA_load / 1000,
5707 5708
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5709 5710
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5711 5712 5713 5714 5715 5716 5717 5718
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5719 5720 5721
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5722

5723 5724
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5762 5763

	regulator_unlock(rdev);
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5794 5795
	mutex_lock(&regulator_list_mutex);

5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5822 5823

	mutex_unlock(&regulator_list_mutex);
5824 5825
}

5826
static int regulator_summary_show_roots(struct device *dev, void *data)
5827
{
5828 5829
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5830

5831 5832
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5833

5834 5835
	return 0;
}
5836

5837 5838
static int regulator_summary_show(struct seq_file *s, void *data)
{
5839 5840
	struct ww_acquire_ctx ww_ctx;

5841 5842
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5843

5844 5845
	regulator_summary_lock(&ww_ctx);

5846 5847
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5848

5849 5850
	regulator_summary_unlock(&ww_ctx);

5851 5852
	return 0;
}
5853 5854
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5855

5856 5857
static int __init regulator_init(void)
{
5858 5859 5860 5861
	int ret;

	ret = class_register(&regulator_class);

5862
	debugfs_root = debugfs_create_dir("regulator", NULL);
5863
	if (!debugfs_root)
5864
		pr_warn("regulator: Failed to create debugfs directory\n");
5865

5866
#ifdef CONFIG_DEBUG_FS
5867 5868
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5869

5870
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5871
			    NULL, &regulator_summary_fops);
5872
#endif
5873 5874
	regulator_dummy_init();

5875 5876
	regulator_coupler_register(&generic_regulator_coupler);

5877
	return ret;
5878 5879 5880 5881
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5882

5883
static int regulator_late_cleanup(struct device *dev, void *data)
5884
{
5885 5886 5887
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5888 5889
	int enabled, ret;

5890 5891 5892
	if (c && c->always_on)
		return 0;

5893
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5894 5895
		return 0;

5896
	regulator_lock(rdev);
5897 5898 5899 5900

	if (rdev->use_count)
		goto unlock;

5901
	/* If we can't read the status assume it's always on. */
5902 5903 5904 5905 5906
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

5907 5908
	/* But if reading the status failed, assume that it's off. */
	if (enabled <= 0)
5909 5910 5911 5912
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
5913 5914
		 * wrong.
		 */
5915 5916 5917
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
5918
			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5929
	regulator_unlock(rdev);
5930 5931 5932 5933

	return 0;
}

5934
static void regulator_init_complete_work_function(struct work_struct *work)
5935
{
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5946
	/* If we have a full configuration then disable any regulators
5947 5948 5949
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5950
	 */
5951 5952
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969
}

static DECLARE_DELAYED_WORK(regulator_init_complete_work,
			    regulator_init_complete_work_function);

static int __init regulator_init_complete(void)
{
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

	/*
5970 5971 5972 5973 5974 5975 5976 5977 5978
	 * We punt completion for an arbitrary amount of time since
	 * systems like distros will load many drivers from userspace
	 * so consumers might not always be ready yet, this is
	 * particularly an issue with laptops where this might bounce
	 * the display off then on.  Ideally we'd get a notification
	 * from userspace when this happens but we don't so just wait
	 * a bit and hope we waited long enough.  It'd be better if
	 * we'd only do this on systems that need it, and a kernel
	 * command line option might be useful.
5979
	 */
5980 5981
	schedule_delayed_work(&regulator_init_complete_work,
			      msecs_to_jiffies(30000));
5982 5983 5984

	return 0;
}
5985
late_initcall_sync(regulator_init_complete);