core.c 150.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

M
Mark Brown 已提交
36 37
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 39 40 41 42 43 44 45 46
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

47 48
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
49 50
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
51
static LIST_HEAD(regulator_ena_gpio_list);
52
static LIST_HEAD(regulator_supply_alias_list);
53
static LIST_HEAD(regulator_coupler_list);
54
static bool has_full_constraints;
55

56 57
static struct dentry *debugfs_root;

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69
};

70 71 72 73 74 75 76
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
77
	struct gpio_desc *gpiod;
78 79 80 81
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

95
static int _regulator_is_enabled(struct regulator_dev *rdev);
96
static int _regulator_disable(struct regulator *regulator);
97 98
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99
static int _notifier_call_chain(struct regulator_dev *rdev,
100
				  unsigned long event, void *data);
101 102
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
103 104
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
105 106 107
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
108
static void destroy_regulator(struct regulator *regulator);
109
static void _regulator_put(struct regulator *regulator);
110

111
const char *rdev_get_name(struct regulator_dev *rdev)
112 113 114 115 116 117 118 119 120
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

121 122
static bool have_full_constraints(void)
{
123
	return has_full_constraints || of_have_populated_dt();
124 125
}

126 127 128 129 130 131 132 133 134 135 136 137 138
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

139 140 141
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
142
 * @ww_ctx:		w/w mutex acquire context
143 144 145 146 147 148 149
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
150 151
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
152
{
153 154 155 156 157 158 159
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
160
			rdev->ref_cnt++;
161 162 163 164 165 166 167
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
168
		}
169 170
	} else {
		lock = true;
171 172
	}

173 174 175 176 177 178 179 180
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
181 182
}

183 184 185 186 187 188 189 190 191 192 193
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
void regulator_lock(struct regulator_dev *rdev)
194
{
195
	regulator_lock_nested(rdev, NULL);
196
}
197
EXPORT_SYMBOL_GPL(regulator_lock);
198 199 200 201 202 203 204 205

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
206
void regulator_unlock(struct regulator_dev *rdev)
207
{
208
	mutex_lock(&regulator_nesting_mutex);
209

210 211 212
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
213
	}
214 215 216 217

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
218
}
219
EXPORT_SYMBOL_GPL(regulator_unlock);
220

221
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
222
{
223 224 225 226 227
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
228

229 230 231 232 233 234 235
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

236 237
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
238
{
239
	struct regulator_dev *c_rdev;
240
	int i;
241

242 243
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
244 245 246 247

		if (!c_rdev)
			continue;

248
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
249 250 251
			regulator_unlock_recursive(
					c_rdev->supply->rdev,
					c_rdev->coupling_desc.n_coupled);
252

253 254
		regulator_unlock(c_rdev);
	}
255 256
}

257 258 259 260
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
261
{
262
	struct regulator_dev *c_rdev;
263
	int i, err;
264

265 266
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
267

268 269
		if (!c_rdev)
			continue;
270

271 272 273 274 275 276 277
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
278

279 280 281 282 283 284 285
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

286
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
287 288 289 290 291 292 293 294
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
295 296
		}
	}
297 298 299 300 301 302 303

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
304 305
}

306
/**
307 308 309 310 311
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
312
 * Unlock all regulators related with rdev by coupling or supplying.
313
 */
314 315
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
316
{
317 318
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
319 320 321
}

/**
322 323
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
324
 * @ww_ctx:			w/w mutex acquire context
325 326
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
327
 * all regulators related with rdev by coupling or supplying.
328
 */
329 330
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
331
{
332 333 334
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
335

336
	mutex_lock(&regulator_list_mutex);
337

338
	ww_acquire_init(ww_ctx, &regulator_ww_class);
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
360 361
}

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
384 385
			if (regnode)
				goto err_node_put;
386
		} else {
387
			goto err_node_put;
388 389 390
		}
	}
	return NULL;
391 392 393 394

err_node_put:
	of_node_put(child);
	return regnode;
395 396
}

397 398 399 400 401 402
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
403
 * returns the device node corresponding to the regulator if found, else
404 405 406 407 408 409 410 411 412 413 414 415 416
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
417 418 419 420
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

421 422
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
423 424 425 426 427
		return NULL;
	}
	return regnode;
}

428
/* Platform voltage constraint check */
429 430
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
431 432 433
{
	BUG_ON(*min_uV > *max_uV);

434
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
435
		rdev_err(rdev, "voltage operation not allowed\n");
436 437 438 439 440 441 442 443
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

444 445
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
446
			 *min_uV, *max_uV);
447
		return -EINVAL;
448
	}
449 450 451 452

	return 0;
}

453 454 455 456 457 458
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

459 460 461
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
462 463 464
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
465 466
{
	struct regulator *regulator;
467
	struct regulator_voltage *voltage;
468 469

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
470
		voltage = &regulator->voltage[state];
471 472 473 474
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
475
		if (!voltage->min_uV && !voltage->max_uV)
476 477
			continue;

478 479 480 481
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
482 483
	}

484
	if (*min_uV > *max_uV) {
485 486
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
487
		return -EINVAL;
488
	}
489 490 491 492

	return 0;
}

493 494 495 496 497 498
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

499
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
500
		rdev_err(rdev, "current operation not allowed\n");
501 502 503 504 505 506 507 508
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

509 510
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
511
			 *min_uA, *max_uA);
512
		return -EINVAL;
513
	}
514 515 516 517 518

	return 0;
}

/* operating mode constraint check */
519 520
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
521
{
522
	switch (*mode) {
523 524 525 526 527 528
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
529
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
530 531 532
		return -EINVAL;
	}

533
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
534
		rdev_err(rdev, "mode operation not allowed\n");
535 536
		return -EPERM;
	}
537 538 539 540 541 542 543 544

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
545
	}
546 547

	return -EINVAL;
548 549
}

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return NULL;

	/* If we have no suspend mode configuration don't set anything;
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
	 */
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
			rdev_warn(rdev, "No configuration\n");
		return NULL;
	}

	return rstate;
}

592 593 594
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
595
	struct regulator_dev *rdev = dev_get_drvdata(dev);
596
	int uV;
597

598
	regulator_lock(rdev);
599
	uV = regulator_get_voltage_rdev(rdev);
600
	regulator_unlock(rdev);
601

602 603 604
	if (uV < 0)
		return uV;
	return sprintf(buf, "%d\n", uV);
605
}
606
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
607 608 609 610

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
611
	struct regulator_dev *rdev = dev_get_drvdata(dev);
612 613 614

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
615
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
616

617 618
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
619 620 621
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

622
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
623
}
624
static DEVICE_ATTR_RO(name);
625

626
static const char *regulator_opmode_to_str(int mode)
627 628 629
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
630
		return "fast";
631
	case REGULATOR_MODE_NORMAL:
632
		return "normal";
633
	case REGULATOR_MODE_IDLE:
634
		return "idle";
635
	case REGULATOR_MODE_STANDBY:
636
		return "standby";
637
	}
638 639 640 641 642 643
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
644 645
}

D
David Brownell 已提交
646 647
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
648
{
649
	struct regulator_dev *rdev = dev_get_drvdata(dev);
650

D
David Brownell 已提交
651 652
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
653
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
654 655 656

static ssize_t regulator_print_state(char *buf, int state)
{
657 658 659 660 661 662 663 664
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
665 666 667 668
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
669 670
	ssize_t ret;

671
	regulator_lock(rdev);
672
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
673
	regulator_unlock(rdev);
D
David Brownell 已提交
674

675
	return ret;
D
David Brownell 已提交
676
}
677
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
678

D
David Brownell 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
712 713 714
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
715 716 717
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
718 719 720 721 722 723 724 725
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

726 727 728
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
729
	struct regulator_dev *rdev = dev_get_drvdata(dev);
730 731 732 733 734 735

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
736
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
737 738 739 740

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
741
	struct regulator_dev *rdev = dev_get_drvdata(dev);
742 743 744 745 746 747

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
748
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
749 750 751 752

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
753
	struct regulator_dev *rdev = dev_get_drvdata(dev);
754 755 756 757 758 759

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
760
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
761 762 763 764

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
765
	struct regulator_dev *rdev = dev_get_drvdata(dev);
766 767 768 769 770 771

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
772
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
773 774 775 776

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
777
	struct regulator_dev *rdev = dev_get_drvdata(dev);
778 779 780
	struct regulator *regulator;
	int uA = 0;

781
	regulator_lock(rdev);
782 783 784 785
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
786
	regulator_unlock(rdev);
787 788
	return sprintf(buf, "%d\n", uA);
}
789
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
790

791 792
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
793
{
794
	struct regulator_dev *rdev = dev_get_drvdata(dev);
795 796
	return sprintf(buf, "%d\n", rdev->use_count);
}
797
static DEVICE_ATTR_RO(num_users);
798

799 800
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
801
{
802
	struct regulator_dev *rdev = dev_get_drvdata(dev);
803 804 805 806 807 808 809 810 811

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
812
static DEVICE_ATTR_RO(type);
813 814 815 816

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
817
	struct regulator_dev *rdev = dev_get_drvdata(dev);
818 819 820

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
821 822
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
823 824 825 826

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
827
	struct regulator_dev *rdev = dev_get_drvdata(dev);
828 829 830

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
831 832
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
833 834 835 836

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
837
	struct regulator_dev *rdev = dev_get_drvdata(dev);
838 839 840

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
841 842
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
843 844 845 846

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
847
	struct regulator_dev *rdev = dev_get_drvdata(dev);
848

D
David Brownell 已提交
849 850
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
851
}
852 853
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
854 855 856 857

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
858
	struct regulator_dev *rdev = dev_get_drvdata(dev);
859

D
David Brownell 已提交
860 861
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
862
}
863 864
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
865 866 867 868

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
869
	struct regulator_dev *rdev = dev_get_drvdata(dev);
870

D
David Brownell 已提交
871 872
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
873
}
874 875
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
876 877 878 879

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
880
	struct regulator_dev *rdev = dev_get_drvdata(dev);
881

D
David Brownell 已提交
882 883
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
884
}
885 886
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
887 888 889 890

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
891
	struct regulator_dev *rdev = dev_get_drvdata(dev);
892

D
David Brownell 已提交
893 894
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
895
}
896 897
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
898 899 900 901

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
902
	struct regulator_dev *rdev = dev_get_drvdata(dev);
903

D
David Brownell 已提交
904 905
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
906
}
907 908 909
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
931

932 933
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
934
static int drms_uA_update(struct regulator_dev *rdev)
935 936 937 938 939
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

940 941 942 943
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
944 945
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
946
		return 0;
947
	}
948

949 950
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
951 952
		return 0;

953 954
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
955
		return -EINVAL;
956 957

	/* calc total requested load */
958 959 960 961
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
962

963 964
	current_uA += rdev->constraints->system_load;

965 966 967 968 969 970
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
971
		/* get output voltage */
972
		output_uV = regulator_get_voltage_rdev(rdev);
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

989 990 991 992 993 994 995 996 997 998 999
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
1000

1001 1002 1003
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
1004 1005 1006
	}

	return err;
1007 1008
}

1009 1010
static int __suspend_set_state(struct regulator_dev *rdev,
			       const struct regulator_state *rstate)
1011 1012
{
	int ret = 0;
1013

1014 1015
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1016
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1017 1018
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1019
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1020 1021 1022
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1023
	if (ret < 0) {
1024
		rdev_err(rdev, "failed to enabled/disable\n");
1025 1026 1027 1028 1029 1030
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1031
			rdev_err(rdev, "failed to set voltage\n");
1032 1033 1034 1035 1036 1037 1038
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1039
			rdev_err(rdev, "failed to set mode\n");
1040 1041 1042 1043
			return ret;
		}
	}

1044
	return ret;
1045 1046
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
static int suspend_set_initial_state(struct regulator_dev *rdev)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev,
			rdev->constraints->initial_state);
	if (!rstate)
		return 0;

	return __suspend_set_state(rdev, rstate);
}

1059 1060 1061
static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
1062
	char buf[160] = "";
1063
	size_t len = sizeof(buf) - 1;
1064 1065
	int count = 0;
	int ret;
1066

1067
	if (constraints->min_uV && constraints->max_uV) {
1068
		if (constraints->min_uV == constraints->max_uV)
1069 1070
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1071
		else
1072 1073 1074 1075
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1076 1077 1078 1079
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1080
		ret = regulator_get_voltage_rdev(rdev);
1081
		if (ret > 0)
1082 1083
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1084 1085
	}

1086
	if (constraints->uV_offset)
1087 1088
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1089

1090
	if (constraints->min_uA && constraints->max_uA) {
1091
		if (constraints->min_uA == constraints->max_uA)
1092 1093
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1094
		else
1095 1096 1097 1098
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1099 1100 1101 1102 1103 1104
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1105 1106
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1107
	}
1108

1109
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1110
		count += scnprintf(buf + count, len - count, "fast ");
1111
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1112
		count += scnprintf(buf + count, len - count, "normal ");
1113
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1114
		count += scnprintf(buf + count, len - count, "idle ");
1115
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1116
		count += scnprintf(buf + count, len - count, "standby");
1117

1118
	if (!count)
1119
		scnprintf(buf, len, "no parameters");
1120

1121
	rdev_dbg(rdev, "%s\n", buf);
1122 1123

	if ((constraints->min_uV != constraints->max_uV) &&
1124
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1125 1126
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1127 1128
}

1129
static int machine_constraints_voltage(struct regulator_dev *rdev,
1130
	struct regulation_constraints *constraints)
1131
{
1132
	const struct regulator_ops *ops = rdev->desc->ops;
1133 1134 1135 1136
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1137 1138
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1139
		int current_uV = regulator_get_voltage_rdev(rdev);
1140 1141

		if (current_uV == -ENOTRECOVERABLE) {
1142
			/* This regulator can't be read and must be initialized */
1143 1144 1145 1146 1147 1148
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1149
			current_uV = regulator_get_voltage_rdev(rdev);
1150 1151
		}

1152
		if (current_uV < 0) {
1153 1154 1155
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
1156 1157
			return current_uV;
		}
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1178 1179
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1180
			ret = _regulator_do_set_voltage(
1181
				rdev, target_min, target_max);
1182 1183
			if (ret < 0) {
				rdev_err(rdev,
1184 1185
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1186 1187
				return ret;
			}
1188
		}
1189
	}
1190

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1202 1203
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1204
		if (count == 1 && !cmin) {
1205
			cmin = 1;
1206
			cmax = INT_MAX;
1207 1208
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1209 1210
		}

1211 1212
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1213
			return 0;
1214

1215
		/* else require explicit machine-level constraints */
1216
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1217
			rdev_err(rdev, "invalid voltage constraints\n");
1218
			return -EINVAL;
1219 1220
		}

1221 1222 1223 1224
		/* no need to loop voltages if range is continuous */
		if (rdev->desc->continuous_voltage_range)
			return 0;

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1242 1243 1244
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1245
			return -EINVAL;
1246 1247 1248 1249
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1250 1251
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1252 1253 1254
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1255 1256
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1257 1258 1259 1260
			constraints->max_uV = max_uV;
		}
	}

1261 1262 1263
	return 0;
}

1264 1265 1266
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1267
	const struct regulator_ops *ops = rdev->desc->ops;
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1294 1295
static int _regulator_do_enable(struct regulator_dev *rdev);

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1308
	const struct regulation_constraints *constraints)
1309 1310
{
	int ret = 0;
1311
	const struct regulator_ops *ops = rdev->desc->ops;
1312

1313 1314 1315 1316 1317 1318
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1319 1320
	if (!rdev->constraints)
		return -ENOMEM;
1321

1322
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1323
	if (ret != 0)
1324
		return ret;
1325

1326
	ret = machine_constraints_current(rdev, rdev->constraints);
1327
	if (ret != 0)
1328
		return ret;
1329

1330 1331 1332 1333 1334
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1335
			return ret;
1336 1337 1338
		}
	}

1339
	/* do we need to setup our suspend state */
1340
	if (rdev->constraints->initial_state) {
1341
		ret = suspend_set_initial_state(rdev);
1342
		if (ret < 0) {
1343
			rdev_err(rdev, "failed to set suspend state\n");
1344
			return ret;
1345 1346
		}
	}
1347

1348
	if (rdev->constraints->initial_mode) {
1349
		if (!ops->set_mode) {
1350
			rdev_err(rdev, "no set_mode operation\n");
1351
			return -EINVAL;
1352 1353
		}

1354
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1355
		if (ret < 0) {
1356
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1357
			return ret;
1358
		}
1359 1360 1361 1362 1363 1364
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1365 1366
	}

1367 1368
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1369 1370 1371
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1372
			return ret;
1373 1374 1375
		}
	}

S
Stephen Boyd 已提交
1376 1377 1378 1379
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1380
			return ret;
S
Stephen Boyd 已提交
1381 1382 1383
		}
	}

S
Stephen Boyd 已提交
1384 1385 1386 1387
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1388
			return ret;
S
Stephen Boyd 已提交
1389 1390 1391
		}
	}

1392 1393 1394 1395 1396
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1397
			return ret;
1398 1399 1400
		}
	}

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1412 1413 1414 1415
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1416 1417 1418 1419 1420 1421 1422 1423 1424
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1425 1426 1427 1428 1429
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
			rdev_err(rdev, "failed to enable\n");
			return ret;
		}
1430 1431 1432

		if (rdev->constraints->always_on)
			rdev->use_count++;
1433 1434
	}

1435
	print_constraints(rdev);
1436
	return 0;
1437 1438 1439 1440
}

/**
 * set_supply - set regulator supply regulator
1441 1442
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1443 1444 1445 1446 1447 1448
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1449
		      struct regulator_dev *supply_rdev)
1450 1451 1452
{
	int err;

1453 1454
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1455 1456 1457
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1458
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1459 1460
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1461
		return err;
1462
	}
1463
	supply_rdev->open_count++;
1464 1465

	return 0;
1466 1467 1468
}

/**
1469
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1470
 * @rdev:         regulator source
1471
 * @consumer_dev_name: dev_name() string for device supply applies to
1472
 * @supply:       symbolic name for supply
1473 1474 1475 1476 1477 1478 1479
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1480 1481
				      const char *consumer_dev_name,
				      const char *supply)
1482
{
1483
	struct regulator_map *node, *new_node;
1484
	int has_dev;
1485 1486 1487 1488

	if (supply == NULL)
		return -EINVAL;

1489 1490 1491 1492 1493
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
	if (new_node == NULL)
		return -ENOMEM;

	new_node->regulator = rdev;
	new_node->supply = supply;

	if (has_dev) {
		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (new_node->dev_name == NULL) {
			kfree(new_node);
			return -ENOMEM;
		}
	}

	mutex_lock(&regulator_list_mutex);
1510
	list_for_each_entry(node, &regulator_map_list, list) {
1511 1512 1513 1514
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1515
			continue;
1516 1517
		}

1518 1519 1520
		if (strcmp(node->supply, supply) != 0)
			continue;

1521 1522 1523 1524 1525 1526
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1527
		goto fail;
1528 1529
	}

1530 1531
	list_add(&new_node->list, &regulator_map_list);
	mutex_unlock(&regulator_list_mutex);
1532

1533
	return 0;
1534 1535 1536 1537 1538 1539

fail:
	mutex_unlock(&regulator_list_mutex);
	kfree(new_node->dev_name);
	kfree(new_node);
	return -EBUSY;
1540 1541
}

1542 1543 1544 1545 1546 1547 1548
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1549
			kfree(node->dev_name);
1550 1551 1552 1553 1554
			kfree(node);
		}
	}
}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1604
#define REG_STR_SIZE	64
1605 1606 1607 1608 1609 1610

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
	int err;

	if (dev) {
		char buf[REG_STR_SIZE];
		int size;

		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			return NULL;

		supply_name = kstrdup(buf, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	} else {
		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	}
1630 1631

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1632 1633
	if (regulator == NULL) {
		kfree(supply_name);
1634
		return NULL;
1635
	}
1636 1637

	regulator->rdev = rdev;
1638 1639 1640
	regulator->supply_name = supply_name;

	regulator_lock(rdev);
1641
	list_add(&regulator->list, &rdev->consumer_list);
1642
	regulator_unlock(rdev);
1643 1644

	if (dev) {
1645 1646
		regulator->dev = dev;

1647
		/* Add a link to the device sysfs entry */
1648
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1649
					       supply_name);
1650
		if (err) {
1651
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1652
				  dev->kobj.name, err);
1653
			/* non-fatal */
1654
		}
1655 1656
	}

1657
	regulator->debugfs = debugfs_create_dir(supply_name,
1658
						rdev->debugfs);
1659
	if (!regulator->debugfs) {
1660
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1661 1662 1663 1664
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1665
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1666
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1667
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1668 1669 1670
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1671
	}
1672

1673 1674 1675 1676 1677
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1678
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1679 1680 1681
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1682 1683 1684
	return regulator;
}

1685 1686
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1687 1688
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1689 1690 1691
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1692 1693
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1742 1743 1744 1745 1746
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1747
 */
1748
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1749
						  const char *supply)
1750
{
1751
	struct regulator_dev *r = NULL;
1752
	struct device_node *node;
1753 1754
	struct regulator_map *map;
	const char *devname = NULL;
1755

1756 1757
	regulator_supply_alias(&dev, &supply);

1758 1759 1760
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1761
		if (node) {
1762 1763 1764
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1765

1766
			/*
1767 1768
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1769
			 */
1770
			return ERR_PTR(-EPROBE_DEFER);
1771
		}
1772 1773 1774
	}

	/* if not found, try doing it non-dt way */
1775 1776 1777
	if (dev)
		devname = dev_name(dev);

1778
	mutex_lock(&regulator_list_mutex);
1779 1780 1781 1782 1783 1784
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1785 1786
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1787 1788
			r = map->regulator;
			break;
1789
		}
1790
	}
1791
	mutex_unlock(&regulator_list_mutex);
1792

1793 1794 1795 1796
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1797 1798 1799 1800
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1801 1802
}

1803 1804 1805 1806 1807 1808
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

1809
	/* No supply to resolve? */
1810 1811 1812 1813 1814 1815 1816
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1817 1818 1819 1820
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1821 1822 1823 1824
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1825 1826
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1827
			get_device(&r->dev);
1828 1829 1830 1831 1832
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1833 1834
	}

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1848 1849
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1850 1851
	if (ret < 0) {
		put_device(&r->dev);
1852
		return ret;
1853
	}
1854 1855

	ret = set_supply(rdev, r);
1856 1857
	if (ret < 0) {
		put_device(&r->dev);
1858
		return ret;
1859
	}
1860

1861 1862 1863 1864 1865 1866
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1867
		ret = regulator_enable(rdev->supply);
1868
		if (ret < 0) {
1869
			_regulator_put(rdev->supply);
1870
			rdev->supply = NULL;
1871
			return ret;
1872
		}
1873 1874 1875 1876 1877
	}

	return 0;
}

1878
/* Internal regulator request function */
1879 1880
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1881 1882
{
	struct regulator_dev *rdev;
1883
	struct regulator *regulator;
1884
	struct device_link *link;
1885
	int ret;
1886

1887 1888 1889 1890 1891
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1892
	if (id == NULL) {
1893
		pr_err("get() with no identifier\n");
1894
		return ERR_PTR(-EINVAL);
1895 1896
	}

1897
	rdev = regulator_dev_lookup(dev, id);
1898 1899
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1900

1901 1902 1903 1904 1905 1906
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1907

1908 1909 1910 1911 1912
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1913

1914 1915 1916 1917 1918 1919 1920
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
1921
			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1922 1923 1924
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1925

1926 1927 1928 1929
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1930

1931 1932 1933
		default:
			return ERR_PTR(-ENODEV);
		}
1934 1935
	}

1936 1937
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1938 1939
		put_device(&rdev->dev);
		return regulator;
1940 1941
	}

1942
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1943
		regulator = ERR_PTR(-EBUSY);
1944 1945
		put_device(&rdev->dev);
		return regulator;
1946 1947
	}

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1958 1959 1960
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1961 1962
		put_device(&rdev->dev);
		return regulator;
1963 1964
	}

1965
	if (!try_module_get(rdev->owner)) {
1966
		regulator = ERR_PTR(-EPROBE_DEFER);
1967 1968 1969
		put_device(&rdev->dev);
		return regulator;
	}
1970

1971 1972 1973 1974
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
W
Wen Yang 已提交
1975
		put_device(&rdev->dev);
1976
		return regulator;
1977 1978
	}

1979
	rdev->open_count++;
1980
	if (get_type == EXCLUSIVE_GET) {
1981 1982 1983 1984 1985 1986 1987 1988 1989
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1990 1991 1992
	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
	if (!IS_ERR_OR_NULL(link))
		regulator->device_link = true;
1993

1994 1995
	return regulator;
}
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
2012
	return _regulator_get(dev, id, NORMAL_GET);
2013
}
2014 2015
EXPORT_SYMBOL_GPL(regulator_get);

2016 2017 2018 2019 2020 2021 2022
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
2023 2024 2025
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2039
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2040 2041 2042
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2043 2044 2045 2046 2047 2048
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2049
 * or IS_ERR() condition containing errno.
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2065
	return _regulator_get(dev, id, OPTIONAL_GET);
2066 2067 2068
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2069
static void destroy_regulator(struct regulator *regulator)
2070
{
2071
	struct regulator_dev *rdev = regulator->rdev;
2072

2073 2074
	debugfs_remove_recursive(regulator->debugfs);

2075
	if (regulator->dev) {
2076 2077
		if (regulator->device_link)
			device_link_remove(regulator->dev, &rdev->dev);
2078 2079

		/* remove any sysfs entries */
2080
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2081 2082
	}

2083
	regulator_lock(rdev);
2084 2085
	list_del(&regulator->list);

2086 2087
	rdev->open_count--;
	rdev->exclusive = 0;
2088
	regulator_unlock(rdev);
2089

2090
	kfree_const(regulator->supply_name);
2091
	kfree(regulator);
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
}

/* regulator_list_mutex lock held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (IS_ERR_OR_NULL(regulator))
		return;

	lockdep_assert_held_once(&regulator_list_mutex);

	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

	rdev = regulator->rdev;

	destroy_regulator(regulator);
2110

2111
	module_put(rdev->owner);
W
Wen Yang 已提交
2112
	put_device(&rdev->dev);
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2127 2128 2129 2130
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2208 2209
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2210
					 struct device *alias_dev,
2211
					 const char *const *alias_id,
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2249
					    const char *const *id,
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2260 2261 2262 2263
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
2264
	struct regulator_enable_gpio *pin, *new_pin;
2265
	struct gpio_desc *gpiod;
2266

2267
	gpiod = config->ena_gpiod;
2268 2269 2270
	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);

	mutex_lock(&regulator_list_mutex);
2271

2272
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2273
		if (pin->gpiod == gpiod) {
2274
			rdev_dbg(rdev, "GPIO is already used\n");
2275 2276 2277 2278
			goto update_ena_gpio_to_rdev;
		}
	}

2279 2280
	if (new_pin == NULL) {
		mutex_unlock(&regulator_list_mutex);
2281
		return -ENOMEM;
2282 2283 2284 2285
	}

	pin = new_pin;
	new_pin = NULL;
2286

2287
	pin->gpiod = gpiod;
2288 2289 2290 2291 2292
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
2293 2294 2295 2296

	mutex_unlock(&regulator_list_mutex);
	kfree(new_pin);

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
		if (pin != rdev->ena_pin)
			continue;

		if (--pin->request_count)
			break;

		gpiod_put(pin->gpiod);
		list_del(&pin->list);
		kfree(pin);
		break;
2319
	}
2320 2321

	rdev->ena_pin = NULL;
2322 2323
}

2324
/**
2325 2326 2327 2328
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2342
			gpiod_set_value_cansleep(pin->gpiod, 1);
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2353
			gpiod_set_value_cansleep(pin->gpiod, 0);
2354 2355 2356 2357 2358 2359 2360
			pin->enable_count = 0;
		}
	}

	return 0;
}

2361 2362 2363 2364 2365 2366
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2367
 *     Documentation/timers/timers-howto.rst
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
/**
 * _regulator_check_status_enabled
 *
 * A helper function to check if the regulator status can be interpreted
 * as 'regulator is enabled'.
 * @rdev: the regulator device to check
 *
 * Return:
 * * 1			- if status shows regulator is in enabled state
 * * 0			- if not enabled state
 * * Error Value	- as received from ops->get_status()
 */
static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
{
	int ret = rdev->desc->ops->get_status(rdev);

	if (ret < 0) {
		rdev_info(rdev, "get_status returned error: %d\n", ret);
		return ret;
	}

	switch (ret) {
	case REGULATOR_STATUS_OFF:
	case REGULATOR_STATUS_ERROR:
	case REGULATOR_STATUS_UNDEFINED:
		return 0;
	default:
		return 1;
	}
}

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
2461
			 * detected and we get a penalty of
2462 2463 2464 2465 2466 2467 2468 2469 2470
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2471
	if (rdev->ena_pin) {
2472 2473 2474 2475 2476 2477
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2478
	} else if (rdev->desc->ops->enable) {
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	/* If poll_enabled_time is set, poll upto the delay calculated
	 * above, delaying poll_enabled_time uS to check if the regulator
	 * actually got enabled.
	 * If the regulator isn't enabled after enable_delay has
	 * expired, return -ETIMEDOUT.
	 */
	if (rdev->desc->poll_enabled_time) {
		unsigned int time_remaining = delay;

		while (time_remaining > 0) {
			_regulator_enable_delay(rdev->desc->poll_enabled_time);

			if (rdev->desc->ops->get_status) {
				ret = _regulator_check_status_enabled(rdev);
				if (ret < 0)
					return ret;
				else if (ret)
					break;
			} else if (rdev->desc->ops->is_enabled(rdev))
				break;

			time_remaining -= rdev->desc->poll_enabled_time;
		}

		if (time_remaining <= 0) {
			rdev_err(rdev, "Enabled check timed out\n");
			return -ETIMEDOUT;
		}
	} else {
		_regulator_enable_delay(delay);
	}
2522 2523 2524 2525 2526 2527

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2587
/* locks held by regulator_enable() */
2588
static int _regulator_enable(struct regulator *regulator)
2589
{
2590
	struct regulator_dev *rdev = regulator->rdev;
2591
	int ret;
2592

2593 2594
	lockdep_assert_held_once(&rdev->mutex.base);

2595
	if (rdev->use_count == 0 && rdev->supply) {
2596
		ret = _regulator_enable(rdev->supply);
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2607

2608 2609 2610
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2611

2612 2613 2614 2615
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2616
			if (!regulator_ops_is_valid(rdev,
2617 2618
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2619
				goto err_consumer_disable;
2620
			}
2621

2622
			ret = _regulator_do_enable(rdev);
2623
			if (ret < 0)
2624
				goto err_consumer_disable;
2625

2626 2627
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2628
		} else if (ret < 0) {
2629
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2630
			goto err_consumer_disable;
2631
		}
2632
		/* Fallthrough on positive return values - already enabled */
2633 2634
	}

2635 2636 2637
	rdev->use_count++;

	return 0;
2638

2639 2640 2641
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2642
err_disable_supply:
2643
	if (rdev->use_count == 0 && rdev->supply)
2644
		_regulator_disable(rdev->supply);
2645 2646

	return ret;
2647 2648 2649 2650 2651 2652
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2653 2654 2655 2656
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2657
 * NOTE: the output value can be set by other drivers, boot loader or may be
2658
 * hardwired in the regulator.
2659 2660 2661
 */
int regulator_enable(struct regulator *regulator)
{
2662
	struct regulator_dev *rdev = regulator->rdev;
2663
	struct ww_acquire_ctx ww_ctx;
2664
	int ret;
2665

2666
	regulator_lock_dependent(rdev, &ww_ctx);
2667
	ret = _regulator_enable(regulator);
2668
	regulator_unlock_dependent(rdev, &ww_ctx);
2669

2670 2671 2672 2673
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2674 2675 2676 2677 2678 2679
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2680
	if (rdev->ena_pin) {
2681 2682 2683 2684 2685 2686
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2687 2688 2689 2690 2691 2692 2693

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2694 2695 2696 2697 2698 2699
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2700 2701 2702 2703 2704
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2705
/* locks held by regulator_disable() */
2706
static int _regulator_disable(struct regulator *regulator)
2707
{
2708
	struct regulator_dev *rdev = regulator->rdev;
2709 2710
	int ret = 0;

2711
	lockdep_assert_held_once(&rdev->mutex.base);
2712

D
David Brownell 已提交
2713
	if (WARN(rdev->use_count <= 0,
2714
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2715 2716
		return -EIO;

2717
	/* are we the last user and permitted to disable ? */
2718 2719
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2720 2721

		/* we are last user */
2722
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2723 2724 2725 2726 2727 2728
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2729
			ret = _regulator_do_disable(rdev);
2730
			if (ret < 0) {
2731
				rdev_err(rdev, "failed to disable\n");
2732 2733 2734
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2735 2736
				return ret;
			}
2737 2738
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2739 2740 2741 2742 2743 2744
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2745

2746 2747 2748
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2749 2750 2751
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2752
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2753
		ret = _regulator_disable(rdev->supply);
2754

2755 2756 2757 2758 2759 2760 2761
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2762 2763 2764
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2765
 *
2766
 * NOTE: this will only disable the regulator output if no other consumer
2767 2768
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2769 2770 2771
 */
int regulator_disable(struct regulator *regulator)
{
2772
	struct regulator_dev *rdev = regulator->rdev;
2773
	struct ww_acquire_ctx ww_ctx;
2774
	int ret;
2775

2776
	regulator_lock_dependent(rdev, &ww_ctx);
2777
	ret = _regulator_disable(regulator);
2778
	regulator_unlock_dependent(rdev, &ww_ctx);
2779

2780 2781 2782 2783 2784
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2785
static int _regulator_force_disable(struct regulator_dev *rdev)
2786 2787 2788
{
	int ret = 0;

2789
	lockdep_assert_held_once(&rdev->mutex.base);
2790

2791 2792 2793 2794 2795
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2796 2797 2798
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2799 2800
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2801
		return ret;
2802 2803
	}

2804 2805 2806 2807
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2821
	struct regulator_dev *rdev = regulator->rdev;
2822
	struct ww_acquire_ctx ww_ctx;
2823 2824
	int ret;

2825
	regulator_lock_dependent(rdev, &ww_ctx);
2826

2827
	ret = _regulator_force_disable(regulator->rdev);
2828

2829 2830
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2831 2832 2833 2834 2835 2836

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2837 2838
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2839

2840
	regulator_unlock_dependent(rdev, &ww_ctx);
2841

2842 2843 2844 2845
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2846 2847 2848 2849
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2850
	struct ww_acquire_ctx ww_ctx;
2851
	int count, i, ret;
2852 2853
	struct regulator *regulator;
	int total_count = 0;
2854

2855
	regulator_lock_dependent(rdev, &ww_ctx);
2856

2857 2858 2859 2860 2861 2862 2863 2864
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
		}
2879
	}
2880
	WARN_ON(!total_count);
2881

2882 2883 2884 2885
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2886 2887 2888 2889 2890
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2891
 * @ms: milliseconds until the regulator is disabled
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2904 2905 2906
	if (!ms)
		return regulator_disable(regulator);

2907
	regulator_lock(rdev);
2908
	regulator->deferred_disables++;
2909 2910
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2911
	regulator_unlock(rdev);
2912

2913
	return 0;
2914 2915 2916
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2917 2918
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2919
	/* A GPIO control always takes precedence */
2920
	if (rdev->ena_pin)
2921 2922
		return rdev->ena_gpio_state;

2923
	/* If we don't know then assume that the regulator is always on */
2924
	if (!rdev->desc->ops->is_enabled)
2925
		return 1;
2926

2927
	return rdev->desc->ops->is_enabled(rdev);
2928 2929
}

2930 2931
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2943
			regulator_lock(rdev);
2944 2945
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2946
			regulator_unlock(rdev);
2947
	} else if (rdev->is_switch && rdev->supply) {
2948 2949
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2964 2965 2966 2967
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2968 2969 2970 2971 2972 2973 2974
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2975 2976 2977
 */
int regulator_is_enabled(struct regulator *regulator)
{
2978 2979
	int ret;

2980 2981 2982
	if (regulator->always_on)
		return 1;

2983
	regulator_lock(regulator->rdev);
2984
	ret = _regulator_is_enabled(regulator->rdev);
2985
	regulator_unlock(regulator->rdev);
2986 2987

	return ret;
2988 2989 2990
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

3003 3004 3005
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

3006
	if (!rdev->is_switch || !rdev->supply)
3007 3008 3009
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
3020
 * zero if this selector code can't be used on this system, or a
3021 3022 3023 3024
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
3025
	return _regulator_list_voltage(regulator->rdev, selector, 1);
3026 3027 3028
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
3061 3062
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3063 3064 3065 3066

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

3067 3068
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3088 3089
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3115 3116 3117 3118 3119 3120 3121
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3122
 * Returns a boolean.
3123 3124 3125 3126
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3127
	struct regulator_dev *rdev = regulator->rdev;
3128 3129
	int i, voltages, ret;

3130
	/* If we can't change voltage check the current voltage */
3131
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3132 3133
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3134
			return min_uV <= ret && ret <= max_uV;
3135 3136 3137 3138
		else
			return ret;
	}

3139 3140 3141 3142 3143
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3144 3145
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3146
		return 0;
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3158
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3159

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3174 3175 3176 3177 3178
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3179 3180 3181
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3182 3183 3184 3185 3186 3187 3188
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3189
	data.old_uV = regulator_get_voltage_rdev(rdev);
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3213
	data.old_uV = regulator_get_voltage_rdev(rdev);
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3291 3292 3293 3294 3295 3296 3297 3298 3299
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3300 3301
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3302 3303 3304 3305 3306 3307
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3308 3309

	if (ramp_delay == 0) {
3310
		rdev_dbg(rdev, "ramp_delay not set\n");
3311 3312 3313 3314 3315 3316
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3317 3318 3319 3320
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3321
	int delay = 0;
3322
	int best_val = 0;
3323
	unsigned int selector;
3324
	int old_selector = -1;
3325
	const struct regulator_ops *ops = rdev->desc->ops;
3326
	int old_uV = regulator_get_voltage_rdev(rdev);
3327 3328 3329

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3330 3331 3332
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3333 3334 3335 3336
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3337
	if (_regulator_is_enabled(rdev) &&
3338 3339
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3340 3341 3342 3343
		if (old_selector < 0)
			return old_selector;
	}

3344
	if (ops->set_voltage) {
3345 3346
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3347 3348

		if (ret >= 0) {
3349 3350 3351
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3352
			else
3353
				best_val = regulator_get_voltage_rdev(rdev);
3354 3355
		}

3356
	} else if (ops->set_voltage_sel) {
3357
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3358
		if (ret >= 0) {
3359
			best_val = ops->list_voltage(rdev, ret);
3360 3361
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3362 3363
				if (old_selector == selector)
					ret = 0;
3364 3365 3366
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3367
				else
3368 3369
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3370 3371 3372
			} else {
				ret = -EINVAL;
			}
3373
		}
3374 3375 3376
	} else {
		ret = -EINVAL;
	}
3377

3378 3379
	if (ret)
		goto out;
3380

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3398
		}
3399
	}
3400

3401 3402 3403
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3404 3405
	}

3406 3407 3408 3409 3410 3411
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3412 3413
	}

3414
	if (best_val >= 0) {
3415 3416
		unsigned long data = best_val;

3417
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3418 3419
				     (void *)data);
	}
3420

3421
out:
3422
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3423 3424 3425 3426

	return ret;
}

3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3453
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3454 3455
					  int min_uV, int max_uV,
					  suspend_state_t state)
3456 3457
{
	struct regulator_dev *rdev = regulator->rdev;
3458
	struct regulator_voltage *voltage = &regulator->voltage[state];
3459
	int ret = 0;
3460
	int old_min_uV, old_max_uV;
3461
	int current_uV;
3462

3463 3464 3465 3466
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3467
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3468 3469
		goto out;

3470
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3471
	 * return successfully even though the regulator does not support
3472 3473
	 * changing the voltage.
	 */
3474
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3475
		current_uV = regulator_get_voltage_rdev(rdev);
3476
		if (min_uV <= current_uV && current_uV <= max_uV) {
3477 3478
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3479 3480 3481 3482
			goto out;
		}
	}

3483
	/* sanity check */
3484 3485
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3486 3487 3488 3489 3490 3491 3492 3493
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3494

3495
	/* restore original values in case of error */
3496 3497 3498 3499
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3500

3501 3502
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3503 3504 3505 3506
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3507

3508 3509 3510 3511
out:
	return ret;
}

3512 3513
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3514 3515 3516 3517 3518
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3519 3520 3521
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3522 3523
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3524 3525 3526 3527 3528 3529
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3530
			goto out;
3531 3532
		}

M
Mark Brown 已提交
3533
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3534 3535
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3536
			goto out;
3537 3538 3539 3540
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3541
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3542 3543
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3544
			goto out;
3545 3546 3547 3548 3549 3550 3551
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3552
				best_supply_uV, INT_MAX, state);
3553 3554 3555
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3556
			goto out;
3557 3558 3559
		}
	}

3560 3561 3562 3563 3564
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3565
	if (ret < 0)
3566
		goto out;
3567

3568 3569
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3570
				best_supply_uV, INT_MAX, state);
3571 3572 3573 3574 3575 3576 3577
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3578
out:
3579
	return ret;
3580
}
3581
EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3582

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3593
		*current_uV = regulator_get_voltage_rdev(rdev);
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3625
	int i, ret, max_spread;
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3659
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3670

3671 3672 3673 3674 3675 3676 3677 3678
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3679 3680
	max_spread = constraints->max_spread[0];

3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3698
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3736 3737 3738 3739
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3740
			ret = regulator_get_voltage_rdev(rdev);
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

3756 3757
int regulator_do_balance_voltage(struct regulator_dev *rdev,
				 suspend_state_t state, bool skip_coupled)
3758 3759 3760 3761 3762 3763
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3764 3765
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3766 3767

	c_rdevs = c_desc->coupled_rdevs;
3768
	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3795
			if (test_bit(i, &c_rdev_done))
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3823

3824 3825
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3826

3827 3828 3829
		if (ret < 0)
			goto out;

3830 3831
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
3832 3833 3834 3835

	} while (n_coupled > 1);

out:
3836 3837 3838
	return ret;
}

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_coupler *coupler = c_desc->coupler;
	bool skip_coupled = false;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		skip_coupled = true;

	if (c_desc->n_resolved < c_desc->n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);

	return regulator_do_balance_voltage(rdev, state, skip_coupled);
}

3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3885 3886
	struct ww_acquire_ctx ww_ctx;
	int ret;
3887

3888
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3889

3890 3891
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3892

3893
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3894

3895 3896 3897 3898
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3911
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3965 3966
	struct ww_acquire_ctx ww_ctx;
	int ret;
3967 3968 3969 3970 3971

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3972
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3973 3974 3975 3976

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3977
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3978 3979 3980 3981 3982

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3996 3997
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3998 3999 4000 4001 4002
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

4003 4004 4005 4006 4007
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

4008
	/* Currently requires operations to do this */
4009
	if (!ops->list_voltage || !rdev->desc->n_voltages)
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

4032
/**
4033 4034
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
4035 4036 4037 4038 4039 4040
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
4041
 * Drivers providing ramp_delay in regulation_constraints can use this as their
4042
 * set_voltage_time_sel() operation.
4043 4044 4045 4046 4047
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
4048
	int old_volt, new_volt;
4049

4050 4051 4052
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
4053

4054 4055 4056
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

4057 4058 4059 4060 4061
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4062
}
4063
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4064

4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
4076
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4077 4078
	int ret, min_uV, max_uV;

4079
	regulator_lock(rdev);
4080 4081 4082 4083 4084 4085 4086 4087

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
4088
	if (!voltage->min_uV && !voltage->max_uV) {
4089 4090 4091 4092
		ret = -EINVAL;
		goto out;
	}

4093 4094
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
4095 4096 4097 4098 4099 4100

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

4101
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4102 4103 4104 4105 4106 4107
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
4108
	regulator_unlock(rdev);
4109 4110 4111 4112
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

4113
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4114
{
4115
	int sel, ret;
4116 4117 4118 4119 4120 4121 4122 4123
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
4124 4125 4126 4127 4128
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
4129

4130
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4131 4132
		}
	}
4133 4134 4135 4136 4137

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4138
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4139
	} else if (rdev->desc->ops->get_voltage) {
4140
		ret = rdev->desc->ops->get_voltage(rdev);
4141 4142
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4143 4144
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4145
	} else if (rdev->supply) {
4146
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4147
	} else {
4148
		return -EINVAL;
4149
	}
4150

4151 4152
	if (ret < 0)
		return ret;
4153
	return ret - rdev->constraints->uV_offset;
4154
}
4155
EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4168
	struct ww_acquire_ctx ww_ctx;
4169 4170
	int ret;

4171
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4172
	ret = regulator_get_voltage_rdev(regulator->rdev);
4173
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4174 4175 4176 4177 4178 4179 4180 4181

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4182
 * @min_uA: Minimum supported current in uA
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4201
	regulator_lock(rdev);
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4216
	regulator_unlock(rdev);
4217 4218 4219 4220
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4221 4222 4223 4224 4225 4226 4227 4228 4229
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4230 4231 4232 4233
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4234
	regulator_lock(rdev);
4235
	ret = _regulator_get_current_limit_unlocked(rdev);
4236
	regulator_unlock(rdev);
4237

4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4271
	int regulator_curr_mode;
4272

4273
	regulator_lock(rdev);
4274 4275 4276 4277 4278 4279 4280

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4281 4282 4283 4284 4285 4286 4287 4288 4289
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4290
	/* constraints check */
4291
	ret = regulator_mode_constrain(rdev, &mode);
4292 4293 4294 4295 4296
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4297
	regulator_unlock(rdev);
4298 4299 4300 4301
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4302 4303 4304 4305 4306 4307 4308 4309 4310
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4311 4312 4313 4314
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4315
	regulator_lock(rdev);
4316
	ret = _regulator_get_mode_unlocked(rdev);
4317
	regulator_unlock(rdev);
4318

4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4334 4335 4336 4337 4338
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4339
	regulator_lock(rdev);
4340 4341 4342 4343 4344 4345 4346 4347 4348

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4349
	regulator_unlock(rdev);
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4367
/**
4368
 * regulator_set_load - set regulator load
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4391 4392 4393 4394 4395 4396 4397 4398
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4399
 * On error a negative errno is returned.
4400
 */
4401
int regulator_set_load(struct regulator *regulator, int uA_load)
4402 4403
{
	struct regulator_dev *rdev = regulator->rdev;
4404 4405
	int old_uA_load;
	int ret = 0;
4406

4407
	regulator_lock(rdev);
4408
	old_uA_load = regulator->uA_load;
4409
	regulator->uA_load = uA_load;
4410 4411 4412 4413 4414
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4415
	regulator_unlock(rdev);
4416

4417 4418
	return ret;
}
4419
EXPORT_SYMBOL_GPL(regulator_set_load);
4420

4421 4422 4423 4424
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4425
 * @enable: enable or disable bypass mode
4426 4427 4428 4429 4430 4431 4432 4433 4434
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
4435
	const char *name = rdev_get_name(rdev);
4436 4437 4438 4439 4440
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4441
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4442 4443
		return 0;

4444
	regulator_lock(rdev);
4445 4446 4447 4448 4449

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
4450 4451
			trace_regulator_bypass_enable(name);

4452 4453 4454
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
4455 4456
			else
				trace_regulator_bypass_enable_complete(name);
4457 4458 4459 4460 4461 4462
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
4463 4464
			trace_regulator_bypass_disable(name);

4465 4466 4467
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
4468 4469
			else
				trace_regulator_bypass_disable_complete(name);
4470 4471 4472 4473 4474 4475
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4476
	regulator_unlock(rdev);
4477 4478 4479 4480 4481

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4482 4483 4484
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4485
 * @nb: notifier block
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4500
 * @nb: notifier block
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4512 4513 4514
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4515
static int _notifier_call_chain(struct regulator_dev *rdev,
4516 4517 4518
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4519
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4546 4547
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4558 4559 4560 4561 4562 4563 4564
	if (ret != -EPROBE_DEFER)
		dev_err(dev, "Failed to get supply '%s': %d\n",
			consumers[i].supply, ret);
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4565
	while (--i >= 0)
4566 4567 4568 4569 4570 4571
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4572 4573 4574 4575 4576 4577 4578
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4594
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4595
	int i;
4596
	int ret = 0;
4597

4598
	for (i = 0; i < num_consumers; i++) {
4599 4600
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4601
	}
4602 4603 4604 4605

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4606
	for (i = 0; i < num_consumers; i++) {
4607 4608
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4609
			goto err;
4610
		}
4611 4612 4613 4614 4615
	}

	return 0;

err:
4616 4617 4618 4619 4620 4621 4622
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4636 4637
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4638 4639 4640 4641 4642 4643
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4644
	int ret, r;
4645

4646
	for (i = num_consumers - 1; i >= 0; --i) {
4647 4648 4649 4650 4651 4652 4653 4654
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4655
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4656 4657 4658
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4659
			pr_err("Failed to re-enable %s: %d\n",
4660 4661
			       consumers[i].supply, r);
	}
4662 4663 4664 4665 4666

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4685
	int ret = 0;
4686

4687
	for (i = 0; i < num_consumers; i++) {
4688 4689 4690
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4691 4692
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4693 4694 4695 4696 4697 4698 4699
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4723
 * @rdev: regulator source
4724
 * @event: notifier block
4725
 * @data: callback-specific data.
4726 4727 4728
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4729
 * Note lock must be held by caller.
4730 4731 4732 4733
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4734
	lockdep_assert_held_once(&rdev->mutex.base);
4735

4736 4737 4738 4739 4740 4741
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4758
	case REGULATOR_MODE_STANDBY:
4759 4760
		return REGULATOR_STATUS_STANDBY;
	default:
4761
		return REGULATOR_STATUS_UNDEFINED;
4762 4763 4764 4765
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4793 4794 4795 4796
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4797 4798
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4799
{
4800
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4801
	struct regulator_dev *rdev = dev_to_rdev(dev);
4802
	const struct regulator_ops *ops = rdev->desc->ops;
4803 4804 4805 4806 4807 4808 4809
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4810 4811

	/* some attributes need specific methods to be displayed */
4812 4813 4814 4815 4816 4817 4818
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4819
	}
4820

4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4836
	/* constraints need specific supporting methods */
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4872

4873 4874 4875
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4876 4877 4878

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4879
	kfree(rdev);
4880 4881
}

4882 4883
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4896
	if (!rdev->debugfs) {
4897 4898 4899 4900 4901 4902 4903 4904
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4905 4906
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4907 4908
}

4909 4910
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4911 4912 4913 4914 4915 4916
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4917 4918
}

4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

4970
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4971
{
4972
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4985 4986
		if (!c_rdev)
			continue;
4987

4988 4989 4990 4991 4992 4993
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

4994
		regulator_lock(c_rdev);
4995

4996 4997
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
4998

4999
		regulator_unlock(c_rdev);
5000

5001 5002
		regulator_resolve_coupling(c_rdev);
	}
5003 5004
}

5005
static void regulator_remove_coupling(struct regulator_dev *rdev)
5006
{
5007
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5008 5009 5010 5011
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
5012
	int err;
5013

5014
	n_coupled = c_desc->n_coupled;
5015

5016 5017
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
5018

5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
			rdev_err(rdev, "failed to detach from coupler: %d\n",
				 err);
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
5052 5053
}

5054
static int regulator_init_coupling(struct regulator_dev *rdev)
5055
{
5056
	struct regulator_dev **coupled;
5057
	int err, n_phandles;
5058 5059 5060 5061 5062 5063

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

5064 5065
	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
	if (!coupled)
5066
		return -ENOMEM;
5067

5068 5069
	rdev->coupling_desc.coupled_rdevs = coupled;

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

5082
	if (!of_check_coupling_data(rdev))
5083 5084
		return -EPERM;

5085
	mutex_lock(&regulator_list_mutex);
5086
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5087 5088
	mutex_unlock(&regulator_list_mutex);

5089 5090 5091 5092
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
		rdev_err(rdev, "failed to get coupler: %d\n", err);
		return err;
5093 5094
	}

5095 5096 5097 5098 5099 5100 5101 5102 5103
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5104
		return -EPERM;
5105
	}
5106

5107 5108 5109 5110 5111 5112
	if (!rdev->constraints->always_on) {
		rdev_err(rdev,
			 "Coupling of a non always-on regulator is unimplemented\n");
		return -ENOTSUPP;
	}

5113 5114 5115
	return 0;
}

5116 5117 5118 5119
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

5120 5121
/**
 * regulator_register - register regulator
5122
 * @regulator_desc: regulator to register
5123
 * @cfg: runtime configuration for regulator
5124 5125
 *
 * Called by regulator drivers to register a regulator.
5126 5127
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
5128
 */
5129 5130
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
5131
		   const struct regulator_config *cfg)
5132
{
5133
	const struct regulation_constraints *constraints = NULL;
5134
	const struct regulator_init_data *init_data;
5135
	struct regulator_config *config = NULL;
5136
	static atomic_t regulator_no = ATOMIC_INIT(-1);
5137
	struct regulator_dev *rdev;
5138 5139
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
5140
	struct device *dev;
5141
	int ret, i;
5142

5143
	if (cfg == NULL)
5144
		return ERR_PTR(-EINVAL);
5145 5146 5147 5148 5149 5150
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5151

5152
	dev = cfg->dev;
5153
	WARN_ON(!dev);
5154

5155 5156 5157 5158
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5159

5160
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5161 5162 5163 5164
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5165

5166 5167 5168
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5169 5170
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5171 5172 5173 5174

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5175 5176
		ret = -EINVAL;
		goto rinse;
5177
	}
5178 5179
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5180 5181
		ret = -EINVAL;
		goto rinse;
5182
	}
5183

5184
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5185 5186 5187 5188
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5189
	device_initialize(&rdev->dev);
5190

5191 5192 5193 5194 5195 5196
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
5197
		ret = -ENOMEM;
5198
		goto clean;
5199 5200
	}

5201
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5202
					       &rdev->dev.of_node);
5203 5204 5205 5206 5207 5208 5209 5210

	/*
	 * Sometimes not all resources are probed already so we need to take
	 * that into account. This happens most the time if the ena_gpiod comes
	 * from a gpio extender or something else.
	 */
	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
		ret = -EPROBE_DEFER;
5211
		goto clean;
5212 5213
	}

5214 5215 5216 5217 5218
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5219
	 * a descriptor, we definitely got one from parsing the device
5220 5221 5222 5223
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5224 5225 5226 5227 5228
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5229
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5230
	rdev->reg_data = config->driver_data;
5231 5232
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5233 5234
	if (config->regmap)
		rdev->regmap = config->regmap;
5235
	else if (dev_get_regmap(dev, NULL))
5236
		rdev->regmap = dev_get_regmap(dev, NULL);
5237 5238
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5239 5240 5241
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5242
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5243

5244
	/* preform any regulator specific init */
5245
	if (init_data && init_data->regulator_init) {
5246
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5247 5248
		if (ret < 0)
			goto clean;
5249 5250
	}

5251
	if (config->ena_gpiod) {
5252 5253
		ret = regulator_ena_gpio_request(rdev, config);
		if (ret != 0) {
5254 5255
			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
				 ret);
5256
			goto clean;
5257
		}
5258 5259 5260
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5261 5262
	}

5263
	/* register with sysfs */
5264
	rdev->dev.class = &regulator_class;
5265
	rdev->dev.parent = dev;
5266
	dev_set_name(&rdev->dev, "regulator.%lu",
5267
		    (unsigned long) atomic_inc_return(&regulator_no));
5268
	dev_set_drvdata(&rdev->dev, rdev);
5269

5270
	/* set regulator constraints */
5271 5272 5273 5274
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
5275
		rdev->supply_name = init_data->supply_regulator;
5276
	else if (regulator_desc->supply_name)
5277
		rdev->supply_name = regulator_desc->supply_name;
5278

5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

5291 5292
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
5293 5294
		goto wash;

5295
	/* add consumers devices */
5296 5297 5298 5299
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5300
				init_data->consumer_supplies[i].supply);
5301 5302 5303 5304 5305
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5306
		}
5307
	}
5308

5309 5310 5311 5312 5313
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5314 5315
	ret = device_add(&rdev->dev);
	if (ret != 0)
5316 5317
		goto unset_supplies;

5318
	rdev_init_debugfs(rdev);
5319

5320 5321 5322 5323 5324
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5325 5326 5327
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5328
	kfree(config);
5329
	return rdev;
D
David Brownell 已提交
5330

5331
unset_supplies:
5332
	mutex_lock(&regulator_list_mutex);
5333
	unset_regulator_supplies(rdev);
5334
	regulator_remove_coupling(rdev);
5335
	mutex_unlock(&regulator_list_mutex);
5336
wash:
5337
	kfree(rdev->coupling_desc.coupled_rdevs);
5338
	mutex_lock(&regulator_list_mutex);
5339
	regulator_ena_gpio_free(rdev);
5340
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5341
clean:
5342 5343
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
5344
	kfree(config);
5345
	put_device(&rdev->dev);
5346 5347 5348
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5349
	return ERR_PTR(ret);
5350 5351 5352 5353 5354
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5355
 * @rdev: regulator to unregister
5356 5357 5358 5359 5360 5361 5362 5363
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5364 5365 5366
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5367
		regulator_put(rdev->supply);
5368
	}
5369

5370 5371
	flush_work(&rdev->disable_work.work);

5372
	mutex_lock(&regulator_list_mutex);
5373

5374
	debugfs_remove_recursive(rdev->debugfs);
5375
	WARN_ON(rdev->open_count);
5376
	regulator_remove_coupling(rdev);
5377
	unset_regulator_supplies(rdev);
5378
	list_del(&rdev->list);
5379
	regulator_ena_gpio_free(rdev);
5380
	device_unregister(&rdev->dev);
5381 5382

	mutex_unlock(&regulator_list_mutex);
5383 5384 5385
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5386
#ifdef CONFIG_SUSPEND
5387
/**
5388
 * regulator_suspend - prepare regulators for system wide suspend
5389
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5390 5391 5392
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5393
static int regulator_suspend(struct device *dev)
5394
{
5395
	struct regulator_dev *rdev = dev_to_rdev(dev);
5396
	suspend_state_t state = pm_suspend_target_state;
5397
	int ret;
5398 5399 5400 5401 5402
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev, state);
	if (!rstate)
		return 0;
5403 5404

	regulator_lock(rdev);
5405
	ret = __suspend_set_state(rdev, rstate);
5406
	regulator_unlock(rdev);
5407

5408
	return ret;
5409
}
5410

5411
static int regulator_resume(struct device *dev)
5412
{
5413
	suspend_state_t state = pm_suspend_target_state;
5414
	struct regulator_dev *rdev = dev_to_rdev(dev);
5415
	struct regulator_state *rstate;
5416
	int ret = 0;
5417

5418
	rstate = regulator_get_suspend_state(rdev, state);
5419
	if (rstate == NULL)
5420
		return 0;
5421

5422 5423 5424 5425
	/* Avoid grabbing the lock if we don't need to */
	if (!rdev->desc->ops->resume)
		return 0;

5426
	regulator_lock(rdev);
5427

5428 5429
	if (rstate->enabled == ENABLE_IN_SUSPEND ||
	    rstate->enabled == DISABLE_IN_SUSPEND)
5430
		ret = rdev->desc->ops->resume(rdev);
5431

5432
	regulator_unlock(rdev);
5433

5434
	return ret;
5435
}
5436 5437
#else /* !CONFIG_SUSPEND */

5438 5439
#define regulator_suspend	NULL
#define regulator_resume	NULL
5440 5441 5442 5443 5444

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5445 5446
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5447 5448 5449
};
#endif

M
Mark Brown 已提交
5450
struct class regulator_class = {
5451 5452 5453 5454 5455 5456 5457
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5475 5476
/**
 * rdev_get_drvdata - get rdev regulator driver data
5477
 * @rdev: regulator
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5514
 * @rdev: regulator
5515 5516 5517 5518 5519 5520 5521
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5522 5523 5524 5525 5526 5527
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5528 5529 5530 5531 5532 5533
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5534 5535 5536 5537 5538 5539
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5540
#ifdef CONFIG_DEBUG_FS
5541
static int supply_map_show(struct seq_file *sf, void *data)
5542 5543 5544 5545
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5546 5547 5548
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5549 5550
	}

5551 5552
	return 0;
}
5553
DEFINE_SHOW_ATTRIBUTE(supply_map);
5554

5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5577 5578 5579 5580 5581 5582
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5583
	struct summary_data summary_data;
5584
	unsigned int opmode;
5585 5586 5587 5588

	if (!rdev)
		return;

5589
	opmode = _regulator_get_mode_unlocked(rdev);
5590
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5591 5592
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5593
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5594
		   regulator_opmode_to_str(opmode));
5595

5596
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5597 5598
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5617
		if (consumer->dev && consumer->dev->class == &regulator_class)
5618 5619 5620 5621
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5622
			   30 - (level + 1) * 3,
5623
			   consumer->supply_name ? consumer->supply_name :
5624
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5625 5626 5627

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5628 5629
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5630
				   consumer->uA_load / 1000,
5631 5632
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5633 5634
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5635 5636 5637 5638 5639 5640 5641 5642
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5643 5644 5645
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5646

5647 5648
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5686 5687

	regulator_unlock(rdev);
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5718 5719
	mutex_lock(&regulator_list_mutex);

5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5746 5747

	mutex_unlock(&regulator_list_mutex);
5748 5749
}

5750
static int regulator_summary_show_roots(struct device *dev, void *data)
5751
{
5752 5753
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5754

5755 5756
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5757

5758 5759
	return 0;
}
5760

5761 5762
static int regulator_summary_show(struct seq_file *s, void *data)
{
5763 5764
	struct ww_acquire_ctx ww_ctx;

5765 5766
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5767

5768 5769
	regulator_summary_lock(&ww_ctx);

5770 5771
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5772

5773 5774
	regulator_summary_unlock(&ww_ctx);

5775 5776
	return 0;
}
5777 5778
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5779

5780 5781
static int __init regulator_init(void)
{
5782 5783 5784 5785
	int ret;

	ret = class_register(&regulator_class);

5786
	debugfs_root = debugfs_create_dir("regulator", NULL);
5787
	if (!debugfs_root)
5788
		pr_warn("regulator: Failed to create debugfs directory\n");
5789

5790
#ifdef CONFIG_DEBUG_FS
5791 5792
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5793

5794
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5795
			    NULL, &regulator_summary_fops);
5796
#endif
5797 5798
	regulator_dummy_init();

5799 5800
	regulator_coupler_register(&generic_regulator_coupler);

5801
	return ret;
5802 5803 5804 5805
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5806

5807
static int regulator_late_cleanup(struct device *dev, void *data)
5808
{
5809 5810 5811
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5812 5813
	int enabled, ret;

5814 5815 5816
	if (c && c->always_on)
		return 0;

5817
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5818 5819
		return 0;

5820
	regulator_lock(rdev);
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5851
	regulator_unlock(rdev);
5852 5853 5854 5855

	return 0;
}

5856
static void regulator_init_complete_work_function(struct work_struct *work)
5857
{
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5868
	/* If we have a full configuration then disable any regulators
5869 5870 5871
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5872
	 */
5873 5874
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
}

static DECLARE_DELAYED_WORK(regulator_init_complete_work,
			    regulator_init_complete_work_function);

static int __init regulator_init_complete(void)
{
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

	/*
5892 5893 5894 5895 5896 5897 5898 5899 5900
	 * We punt completion for an arbitrary amount of time since
	 * systems like distros will load many drivers from userspace
	 * so consumers might not always be ready yet, this is
	 * particularly an issue with laptops where this might bounce
	 * the display off then on.  Ideally we'd get a notification
	 * from userspace when this happens but we don't so just wait
	 * a bit and hope we waited long enough.  It'd be better if
	 * we'd only do this on systems that need it, and a kernel
	 * command line option might be useful.
5901
	 */
5902 5903
	schedule_delayed_work(&regulator_init_complete_work,
			      msecs_to_jiffies(30000));
5904 5905 5906

	return 0;
}
5907
late_initcall_sync(regulator_init_complete);