core.c 110.0 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54 55
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
56
static LIST_HEAD(regulator_ena_gpio_list);
57
static LIST_HEAD(regulator_supply_alias_list);
58
static bool has_full_constraints;
59

60 61
static struct dentry *debugfs_root;

62
/*
63 64 65 66 67 68
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
69
	const char *dev_name;   /* The dev_name() for the consumer */
70
	const char *supply;
71
	struct regulator_dev *regulator;
72 73
};

74 75 76 77 78 79 80
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
81
	struct gpio_desc *gpiod;
82 83 84 85 86
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

87 88 89 90 91 92 93 94 95 96 97 98 99
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

100
static int _regulator_is_enabled(struct regulator_dev *rdev);
101
static int _regulator_disable(struct regulator_dev *rdev);
102 103 104
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105
static int _notifier_call_chain(struct regulator_dev *rdev,
106
				  unsigned long event, void *data);
107 108
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
109 110 111
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
112
static void _regulator_put(struct regulator *regulator);
113

114 115 116 117
static struct regulator_dev *dev_to_rdev(struct device *dev)
{
	return container_of(dev, struct regulator_dev, dev);
}
118

119 120 121 122 123 124 125 126 127 128
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

129 130
static bool have_full_constraints(void)
{
131
	return has_full_constraints || of_have_populated_dt();
132 133
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/**
 * regulator_lock_supply - lock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_lock_supply(struct regulator_dev *rdev)
{
	struct regulator *supply;
	int i = 0;

	while (1) {
		mutex_lock_nested(&rdev->mutex, i++);
		supply = rdev->supply;

		if (!rdev->supply)
			return;

		rdev = supply->rdev;
	}
}

/**
 * regulator_unlock_supply - unlock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_unlock_supply(struct regulator_dev *rdev)
{
	struct regulator *supply;

	while (1) {
		mutex_unlock(&rdev->mutex);
		supply = rdev->supply;

		if (!rdev->supply)
			return;

		rdev = supply->rdev;
	}
}

173 174 175 176 177 178
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
179
 * returns the device node corresponding to the regulator if found, else
180 181 182 183 184 185 186 187 188 189 190 191 192
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
193
		dev_dbg(dev, "Looking up %s property in node %s failed",
194 195 196 197 198 199
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

200 201 202 203 204 205 206 207 208 209 210
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

211 212 213 214 215 216 217
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
218
		rdev_err(rdev, "no constraints\n");
219 220 221
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
222
		rdev_err(rdev, "operation not allowed\n");
223 224 225 226 227 228 229 230
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

231 232
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
233
			 *min_uV, *max_uV);
234
		return -EINVAL;
235
	}
236 237 238 239

	return 0;
}

240 241 242 243 244 245 246 247 248
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
249 250 251 252 253 254 255
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

256 257 258 259 260 261
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

262
	if (*min_uV > *max_uV) {
263 264
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
265
		return -EINVAL;
266
	}
267 268 269 270

	return 0;
}

271 272 273 274 275 276 277
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
278
		rdev_err(rdev, "no constraints\n");
279 280 281
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
282
		rdev_err(rdev, "operation not allowed\n");
283 284 285 286 287 288 289 290
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

291 292
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
293
			 *min_uA, *max_uA);
294
		return -EINVAL;
295
	}
296 297 298 299 300

	return 0;
}

/* operating mode constraint check */
301
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
302
{
303
	switch (*mode) {
304 305 306 307 308 309
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
310
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
311 312 313
		return -EINVAL;
	}

314
	if (!rdev->constraints) {
315
		rdev_err(rdev, "no constraints\n");
316 317 318
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
319
		rdev_err(rdev, "operation not allowed\n");
320 321
		return -EPERM;
	}
322 323 324 325 326 327 328 329

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
330
	}
331 332

	return -EINVAL;
333 334 335 336 337 338
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
339
		rdev_err(rdev, "no constraints\n");
340 341 342
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
343
		rdev_dbg(rdev, "operation not allowed\n");
344 345 346 347 348 349 350 351
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
352
	struct regulator_dev *rdev = dev_get_drvdata(dev);
353 354 355 356 357 358 359 360
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
361
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
362 363 364 365

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
366
	struct regulator_dev *rdev = dev_get_drvdata(dev);
367 368 369

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
370
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
371

372 373
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
374 375 376
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

377
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
378
}
379
static DEVICE_ATTR_RO(name);
380

D
David Brownell 已提交
381
static ssize_t regulator_print_opmode(char *buf, int mode)
382 383 384 385 386 387 388 389 390 391 392 393 394 395
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
396 397
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
398
{
399
	struct regulator_dev *rdev = dev_get_drvdata(dev);
400

D
David Brownell 已提交
401 402
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
403
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
404 405 406

static ssize_t regulator_print_state(char *buf, int state)
{
407 408 409 410 411 412 413 414
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
415 416 417 418
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
419 420 421 422 423
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
424

425
	return ret;
D
David Brownell 已提交
426
}
427
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
428

D
David Brownell 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
462 463 464
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
465 466 467
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
468 469 470 471 472 473 474 475
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

476 477 478
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
479
	struct regulator_dev *rdev = dev_get_drvdata(dev);
480 481 482 483 484 485

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
486
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
487 488 489 490

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
491
	struct regulator_dev *rdev = dev_get_drvdata(dev);
492 493 494 495 496 497

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
498
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
499 500 501 502

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
503
	struct regulator_dev *rdev = dev_get_drvdata(dev);
504 505 506 507 508 509

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
510
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
511 512 513 514

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
515
	struct regulator_dev *rdev = dev_get_drvdata(dev);
516 517 518 519 520 521

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
522
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
523 524 525 526

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
527
	struct regulator_dev *rdev = dev_get_drvdata(dev);
528 529 530 531 532
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
533
		uA += regulator->uA_load;
534 535 536
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
537
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
538

539 540
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
541
{
542
	struct regulator_dev *rdev = dev_get_drvdata(dev);
543 544
	return sprintf(buf, "%d\n", rdev->use_count);
}
545
static DEVICE_ATTR_RO(num_users);
546

547 548
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
549
{
550
	struct regulator_dev *rdev = dev_get_drvdata(dev);
551 552 553 554 555 556 557 558 559

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
560
static DEVICE_ATTR_RO(type);
561 562 563 564

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
565
	struct regulator_dev *rdev = dev_get_drvdata(dev);
566 567 568

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
569 570
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
571 572 573 574

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
575
	struct regulator_dev *rdev = dev_get_drvdata(dev);
576 577 578

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
579 580
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
581 582 583 584

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
585
	struct regulator_dev *rdev = dev_get_drvdata(dev);
586 587 588

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
589 590
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
591 592 593 594

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
595
	struct regulator_dev *rdev = dev_get_drvdata(dev);
596

D
David Brownell 已提交
597 598
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
599
}
600 601
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
602 603 604 605

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
606
	struct regulator_dev *rdev = dev_get_drvdata(dev);
607

D
David Brownell 已提交
608 609
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
610
}
611 612
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
613 614 615 616

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
617
	struct regulator_dev *rdev = dev_get_drvdata(dev);
618

D
David Brownell 已提交
619 620
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
621
}
622 623
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
624 625 626 627

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
628
	struct regulator_dev *rdev = dev_get_drvdata(dev);
629

D
David Brownell 已提交
630 631
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
632
}
633 634
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
635 636 637 638

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
639
	struct regulator_dev *rdev = dev_get_drvdata(dev);
640

D
David Brownell 已提交
641 642
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
643
}
644 645
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
646 647 648 649

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
650
	struct regulator_dev *rdev = dev_get_drvdata(dev);
651

D
David Brownell 已提交
652 653
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
654
}
655 656 657
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
679

680 681
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
682
static int drms_uA_update(struct regulator_dev *rdev)
683 684 685 686 687
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

688 689
	lockdep_assert_held_once(&rdev->mutex);

690 691 692 693
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
694
	err = regulator_check_drms(rdev);
695 696 697
	if (err < 0)
		return 0;

698 699
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
700 701
		return 0;

702 703
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
704
		return -EINVAL;
705 706

	/* get output voltage */
707
	output_uV = _regulator_get_voltage(rdev);
708 709 710 711
	if (output_uV <= 0) {
		rdev_err(rdev, "invalid output voltage found\n");
		return -EINVAL;
	}
712 713

	/* get input voltage */
714 715
	input_uV = 0;
	if (rdev->supply)
716
		input_uV = regulator_get_voltage(rdev->supply);
717
	if (input_uV <= 0)
718
		input_uV = rdev->constraints->input_uV;
719 720 721 722
	if (input_uV <= 0) {
		rdev_err(rdev, "invalid input voltage found\n");
		return -EINVAL;
	}
723 724 725

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
726
		current_uA += sibling->uA_load;
727

728 729
	current_uA += rdev->constraints->system_load;

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
747

748 749 750
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
751 752 753
	}

	return err;
754 755 756 757 758 759
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
760 761

	/* If we have no suspend mode configration don't set anything;
762 763
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
764 765
	 */
	if (!rstate->enabled && !rstate->disabled) {
766 767
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
768
			rdev_warn(rdev, "No configuration\n");
769 770 771 772
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
773
		rdev_err(rdev, "invalid configuration\n");
774 775
		return -EINVAL;
	}
776

777
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
778
		ret = rdev->desc->ops->set_suspend_enable(rdev);
779
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
780
		ret = rdev->desc->ops->set_suspend_disable(rdev);
781 782 783
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

784
	if (ret < 0) {
785
		rdev_err(rdev, "failed to enabled/disable\n");
786 787 788 789 790 791
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
792
			rdev_err(rdev, "failed to set voltage\n");
793 794 795 796 797 798 799
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
800
			rdev_err(rdev, "failed to set mode\n");
801 802 803 804 805 806 807 808 809
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
810 811
	lockdep_assert_held_once(&rdev->mutex);

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
833
	char buf[160] = "";
834
	size_t len = sizeof(buf) - 1;
835 836
	int count = 0;
	int ret;
837

838
	if (constraints->min_uV && constraints->max_uV) {
839
		if (constraints->min_uV == constraints->max_uV)
840 841
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
842
		else
843 844 845 846
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
847 848 849 850 851 852
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
853 854
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
855 856
	}

857
	if (constraints->uV_offset)
858 859
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
860

861
	if (constraints->min_uA && constraints->max_uA) {
862
		if (constraints->min_uA == constraints->max_uA)
863 864
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
865
		else
866 867 868 869
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
870 871 872 873 874 875
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
876 877
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
878
	}
879

880
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
881
		count += scnprintf(buf + count, len - count, "fast ");
882
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
883
		count += scnprintf(buf + count, len - count, "normal ");
884
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
885
		count += scnprintf(buf + count, len - count, "idle ");
886
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
887
		count += scnprintf(buf + count, len - count, "standby");
888

889
	if (!count)
890
		scnprintf(buf, len, "no parameters");
891

892
	rdev_dbg(rdev, "%s\n", buf);
893 894 895 896 897

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
898 899
}

900
static int machine_constraints_voltage(struct regulator_dev *rdev,
901
	struct regulation_constraints *constraints)
902
{
903
	const struct regulator_ops *ops = rdev->desc->ops;
904 905 906 907
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
908
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
909 910
		int current_uV = _regulator_get_voltage(rdev);
		if (current_uV < 0) {
911 912 913
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
914 915 916 917 918 919 920 921 922
			return current_uV;
		}
		if (current_uV < rdev->constraints->min_uV ||
		    current_uV > rdev->constraints->max_uV) {
			ret = _regulator_do_set_voltage(
				rdev, rdev->constraints->min_uV,
				rdev->constraints->max_uV);
			if (ret < 0) {
				rdev_err(rdev,
923 924
					"failed to apply %duV constraint(%d)\n",
					rdev->constraints->min_uV, ret);
925 926
				return ret;
			}
927
		}
928
	}
929

930 931 932 933 934 935 936 937 938 939 940
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

941 942
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
943
		if (count == 1 && !cmin) {
944
			cmin = 1;
945
			cmax = INT_MAX;
946 947
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
948 949
		}

950 951
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
952
			return 0;
953

954
		/* else require explicit machine-level constraints */
955
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
956
			rdev_err(rdev, "invalid voltage constraints\n");
957
			return -EINVAL;
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
977 978 979
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
980
			return -EINVAL;
981 982 983 984
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
985 986
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
987 988 989
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
990 991
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
992 993 994 995
			constraints->max_uV = max_uV;
		}
	}

996 997 998
	return 0;
}

999 1000 1001
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1002
	const struct regulator_ops *ops = rdev->desc->ops;
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1029 1030
static int _regulator_do_enable(struct regulator_dev *rdev);

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1043
	const struct regulation_constraints *constraints)
1044 1045
{
	int ret = 0;
1046
	const struct regulator_ops *ops = rdev->desc->ops;
1047

1048 1049 1050 1051 1052 1053
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1054 1055
	if (!rdev->constraints)
		return -ENOMEM;
1056

1057
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1058 1059 1060
	if (ret != 0)
		goto out;

1061
	ret = machine_constraints_current(rdev, rdev->constraints);
1062 1063 1064
	if (ret != 0)
		goto out;

1065 1066 1067 1068 1069 1070 1071 1072 1073
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
			goto out;
		}
	}

1074
	/* do we need to setup our suspend state */
1075
	if (rdev->constraints->initial_state) {
1076
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1077
		if (ret < 0) {
1078
			rdev_err(rdev, "failed to set suspend state\n");
1079 1080 1081
			goto out;
		}
	}
1082

1083
	if (rdev->constraints->initial_mode) {
1084
		if (!ops->set_mode) {
1085
			rdev_err(rdev, "no set_mode operation\n");
1086 1087 1088 1089
			ret = -EINVAL;
			goto out;
		}

1090
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1091
		if (ret < 0) {
1092
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1093 1094 1095 1096
			goto out;
		}
	}

1097 1098 1099
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1100 1101 1102
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1103
			rdev_err(rdev, "failed to enable\n");
1104 1105 1106 1107
			goto out;
		}
	}

1108 1109
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1110 1111 1112 1113 1114 1115 1116
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
			goto out;
		}
	}

S
Stephen Boyd 已提交
1117 1118 1119 1120 1121 1122 1123 1124
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
			goto out;
		}
	}

S
Stephen Boyd 已提交
1125 1126 1127 1128 1129 1130 1131 1132
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
			goto out;
		}
	}

1133 1134 1135 1136 1137 1138 1139 1140 1141
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
			goto out;
		}
	}

1142
	print_constraints(rdev);
1143
	return 0;
1144
out:
1145 1146
	kfree(rdev->constraints);
	rdev->constraints = NULL;
1147 1148 1149 1150 1151
	return ret;
}

/**
 * set_supply - set regulator supply regulator
1152 1153
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1154 1155 1156 1157 1158 1159
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1160
		      struct regulator_dev *supply_rdev)
1161 1162 1163
{
	int err;

1164 1165
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1166 1167 1168
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1169
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1170 1171
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1172
		return err;
1173
	}
1174
	supply_rdev->open_count++;
1175 1176

	return 0;
1177 1178 1179
}

/**
1180
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1181
 * @rdev:         regulator source
1182
 * @consumer_dev_name: dev_name() string for device supply applies to
1183
 * @supply:       symbolic name for supply
1184 1185 1186 1187 1188 1189 1190
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1191 1192
				      const char *consumer_dev_name,
				      const char *supply)
1193 1194
{
	struct regulator_map *node;
1195
	int has_dev;
1196 1197 1198 1199

	if (supply == NULL)
		return -EINVAL;

1200 1201 1202 1203 1204
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1205
	list_for_each_entry(node, &regulator_map_list, list) {
1206 1207 1208 1209
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1210
			continue;
1211 1212
		}

1213 1214 1215
		if (strcmp(node->supply, supply) != 0)
			continue;

1216 1217 1218 1219 1220 1221
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1222 1223 1224
		return -EBUSY;
	}

1225
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1226 1227 1228 1229 1230 1231
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1232 1233 1234 1235 1236 1237
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1238 1239
	}

1240 1241 1242 1243
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1244 1245 1246 1247 1248 1249 1250
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1251
			kfree(node->dev_name);
1252 1253 1254 1255 1256
			kfree(node);
		}
	}
}

1257
#define REG_STR_SIZE	64
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1276 1277
		regulator->dev = dev;

1278
		/* Add a link to the device sysfs entry */
1279 1280 1281
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1282
			goto overflow_err;
1283 1284 1285

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1286
			goto overflow_err;
1287

1288
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1289 1290
					buf);
		if (err) {
1291
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1292
				  dev->kobj.name, err);
1293
			/* non-fatal */
1294
		}
1295 1296 1297
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1298
			goto overflow_err;
1299 1300 1301 1302
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1303
	if (!regulator->debugfs) {
1304
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1305 1306 1307 1308 1309 1310 1311
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1312
	}
1313

1314 1315 1316 1317 1318 1319 1320 1321 1322
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1323 1324 1325 1326 1327 1328 1329 1330 1331
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1332 1333
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1334 1335
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1336
	if (!rdev->desc->ops->enable_time)
1337
		return rdev->desc->enable_time;
1338 1339 1340
	return rdev->desc->ops->enable_time(rdev);
}

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1367
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1368 1369
						  const char *supply,
						  int *ret)
1370 1371 1372
{
	struct regulator_dev *r;
	struct device_node *node;
1373 1374
	struct regulator_map *map;
	const char *devname = NULL;
1375

1376 1377
	regulator_supply_alias(&dev, &supply);

1378 1379 1380
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1381
		if (node) {
1382 1383 1384 1385
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1386 1387
			*ret = -EPROBE_DEFER;
			return NULL;
1388 1389 1390 1391 1392 1393 1394 1395 1396
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1397 1398 1399
	}

	/* if not found, try doing it non-dt way */
1400 1401 1402
	if (dev)
		devname = dev_name(dev);

1403 1404 1405 1406
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1418 1419 1420
	return NULL;
}

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
	if (ret == -ENODEV) {
		/*
		 * No supply was specified for this regulator and
		 * there will never be one.
		 */
		return 0;
	}

	if (!r) {
1445 1446 1447 1448 1449 1450 1451
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	}

	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
	if (ret < 0)
		return ret;

	ret = set_supply(rdev, r);
	if (ret < 0)
		return ret;

	/* Cascade always-on state to supply */
	if (_regulator_is_enabled(rdev)) {
		ret = regulator_enable(rdev->supply);
1466 1467 1468
		if (ret < 0) {
			if (rdev->supply)
				_regulator_put(rdev->supply);
1469
			return ret;
1470
		}
1471 1472 1473 1474 1475
	}

	return 0;
}

1476 1477
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
1478
					bool exclusive, bool allow_dummy)
1479 1480
{
	struct regulator_dev *rdev;
1481
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1482
	const char *devname = NULL;
1483
	int ret;
1484 1485

	if (id == NULL) {
1486
		pr_err("get() with no identifier\n");
1487
		return ERR_PTR(-EINVAL);
1488 1489
	}

1490 1491 1492
	if (dev)
		devname = dev_name(dev);

1493 1494 1495 1496 1497
	if (have_full_constraints())
		ret = -ENODEV;
	else
		ret = -EPROBE_DEFER;

1498 1499
	mutex_lock(&regulator_list_mutex);

1500
	rdev = regulator_dev_lookup(dev, id, &ret);
1501 1502 1503
	if (rdev)
		goto found;

1504 1505
	regulator = ERR_PTR(ret);

1506 1507 1508 1509
	/*
	 * If we have return value from dev_lookup fail, we do not expect to
	 * succeed, so, quit with appropriate error value
	 */
1510
	if (ret && ret != -ENODEV)
1511 1512
		goto out;

1513 1514 1515
	if (!devname)
		devname = "deviceless";

1516 1517 1518
	/*
	 * Assume that a regulator is physically present and enabled
	 * even if it isn't hooked up and just provide a dummy.
1519
	 */
1520
	if (have_full_constraints() && allow_dummy) {
1521 1522
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1523

1524 1525
		rdev = dummy_regulator_rdev;
		goto found;
1526 1527
	/* Don't log an error when called from regulator_get_optional() */
	} else if (!have_full_constraints() || exclusive) {
1528
		dev_warn(dev, "dummy supplies not allowed\n");
1529 1530
	}

1531 1532 1533 1534
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1545 1546 1547 1548 1549 1550
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
		goto out;
	}

1551 1552 1553
	if (!try_module_get(rdev->owner))
		goto out;

1554 1555 1556 1557
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1558
		goto out;
1559 1560
	}

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1572
out:
1573
	mutex_unlock(&regulator_list_mutex);
1574

1575 1576
	return regulator;
}
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1593
	return _regulator_get(dev, id, false, true);
1594
}
1595 1596
EXPORT_SYMBOL_GPL(regulator_get);

1597 1598 1599 1600 1601 1602 1603
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1604 1605 1606
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1620
	return _regulator_get(dev, id, true, false);
1621 1622 1623
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1624 1625 1626 1627 1628 1629
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1630
 * or IS_ERR() condition containing errno.
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1646
	return _regulator_get(dev, id, false, false);
1647 1648 1649
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1650
/* regulator_list_mutex lock held by regulator_put() */
1651
static void _regulator_put(struct regulator *regulator)
1652 1653 1654
{
	struct regulator_dev *rdev;

1655
	if (IS_ERR_OR_NULL(regulator))
1656 1657
		return;

1658 1659
	lockdep_assert_held_once(&regulator_list_mutex);

1660 1661
	rdev = regulator->rdev;

1662 1663
	debugfs_remove_recursive(regulator->debugfs);

1664
	/* remove any sysfs entries */
1665
	if (regulator->dev)
1666
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1667
	mutex_lock(&rdev->mutex);
1668 1669
	list_del(&regulator->list);

1670 1671
	rdev->open_count--;
	rdev->exclusive = 0;
1672
	mutex_unlock(&rdev->mutex);
1673

1674 1675 1676
	kfree(regulator->supply_name);
	kfree(regulator);

1677
	module_put(rdev->owner);
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1692 1693 1694 1695
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1773 1774
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1775
					 struct device *alias_dev,
1776
					 const char *const *alias_id,
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
1814
					    const char *const *id,
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


1825 1826 1827 1828 1829
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
1830
	struct gpio_desc *gpiod;
1831 1832
	int ret;

1833 1834
	gpiod = gpio_to_desc(config->ena_gpio);

1835
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1836
		if (pin->gpiod == gpiod) {
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

1855
	pin->gpiod = gpiod;
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1874
		if (pin->gpiod == rdev->ena_pin->gpiod) {
1875 1876
			if (pin->request_count <= 1) {
				pin->request_count = 0;
1877
				gpiod_put(pin->gpiod);
1878 1879
				list_del(&pin->list);
				kfree(pin);
1880 1881
				rdev->ena_pin = NULL;
				return;
1882 1883 1884 1885 1886 1887 1888
			} else {
				pin->request_count--;
			}
		}
	}
}

1889
/**
1890 1891 1892 1893
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
1907 1908
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
1919 1920
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
1921 1922 1923 1924 1925 1926 1927
			pin->enable_count = 0;
		}
	}

	return 0;
}

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2007
	if (rdev->ena_pin) {
2008 2009 2010 2011 2012 2013
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2014
	} else if (rdev->desc->ops->enable) {
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2027
	_regulator_enable_delay(delay);
2028 2029 2030 2031 2032 2033

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2034 2035 2036
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
2037
	int ret;
2038

2039 2040
	lockdep_assert_held_once(&rdev->mutex);

2041
	/* check voltage and requested load before enabling */
2042 2043 2044
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
2045

2046 2047 2048 2049 2050 2051 2052
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

2053
			ret = _regulator_do_enable(rdev);
2054 2055 2056
			if (ret < 0)
				return ret;

2057
		} else if (ret < 0) {
2058
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2059 2060
			return ret;
		}
2061
		/* Fallthrough on positive return values - already enabled */
2062 2063
	}

2064 2065 2066
	rdev->use_count++;

	return 0;
2067 2068 2069 2070 2071 2072
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2073 2074 2075 2076
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2077
 * NOTE: the output value can be set by other drivers, boot loader or may be
2078
 * hardwired in the regulator.
2079 2080 2081
 */
int regulator_enable(struct regulator *regulator)
{
2082 2083
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2084

2085 2086 2087
	if (regulator->always_on)
		return 0;

2088 2089 2090 2091 2092 2093
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

2094
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
2095
	ret = _regulator_enable(rdev);
2096
	mutex_unlock(&rdev->mutex);
2097

2098
	if (ret != 0 && rdev->supply)
2099 2100
		regulator_disable(rdev->supply);

2101 2102 2103 2104
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2105 2106 2107 2108 2109 2110
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2111
	if (rdev->ena_pin) {
2112 2113 2114 2115 2116 2117
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2118 2119 2120 2121 2122 2123 2124

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2125 2126 2127 2128 2129 2130
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2131 2132 2133 2134 2135
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2136
/* locks held by regulator_disable() */
2137
static int _regulator_disable(struct regulator_dev *rdev)
2138 2139 2140
{
	int ret = 0;

2141 2142
	lockdep_assert_held_once(&rdev->mutex);

D
David Brownell 已提交
2143
	if (WARN(rdev->use_count <= 0,
2144
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2145 2146
		return -EIO;

2147
	/* are we the last user and permitted to disable ? */
2148 2149
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2150 2151

		/* we are last user */
2152
		if (_regulator_can_change_status(rdev)) {
2153 2154 2155 2156 2157 2158
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2159
			ret = _regulator_do_disable(rdev);
2160
			if (ret < 0) {
2161
				rdev_err(rdev, "failed to disable\n");
2162 2163 2164
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2165 2166
				return ret;
			}
2167 2168
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2181

2182 2183 2184 2185 2186 2187 2188
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2189 2190 2191
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2192
 *
2193
 * NOTE: this will only disable the regulator output if no other consumer
2194 2195
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2196 2197 2198
 */
int regulator_disable(struct regulator *regulator)
{
2199 2200
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2201

2202 2203 2204
	if (regulator->always_on)
		return 0;

2205
	mutex_lock(&rdev->mutex);
2206
	ret = _regulator_disable(rdev);
2207
	mutex_unlock(&rdev->mutex);
2208

2209 2210
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2211

2212 2213 2214 2215 2216
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2217
static int _regulator_force_disable(struct regulator_dev *rdev)
2218 2219 2220
{
	int ret = 0;

2221 2222
	lockdep_assert_held_once(&rdev->mutex);

2223 2224 2225 2226 2227
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2228 2229 2230
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2231 2232
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2233
		return ret;
2234 2235
	}

2236 2237 2238 2239
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2253
	struct regulator_dev *rdev = regulator->rdev;
2254 2255
	int ret;

2256
	mutex_lock(&rdev->mutex);
2257
	regulator->uA_load = 0;
2258
	ret = _regulator_force_disable(regulator->rdev);
2259
	mutex_unlock(&rdev->mutex);
2260

2261 2262 2263
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2264

2265 2266 2267 2268
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
2316
	int ret;
2317

2318 2319 2320
	if (regulator->always_on)
		return 0;

2321 2322 2323
	if (!ms)
		return regulator_disable(regulator);

2324 2325 2326 2327
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

2328 2329 2330
	ret = queue_delayed_work(system_power_efficient_wq,
				 &rdev->disable_work,
				 msecs_to_jiffies(ms));
2331 2332 2333 2334
	if (ret < 0)
		return ret;
	else
		return 0;
2335 2336 2337
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2338 2339
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2340
	/* A GPIO control always takes precedence */
2341
	if (rdev->ena_pin)
2342 2343
		return rdev->ena_gpio_state;

2344
	/* If we don't know then assume that the regulator is always on */
2345
	if (!rdev->desc->ops->is_enabled)
2346
		return 1;
2347

2348
	return rdev->desc->ops->is_enabled(rdev);
2349 2350
}

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
static int _regulator_list_voltage(struct regulator *regulator,
				    unsigned selector, int lock)
{
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
			mutex_lock(&rdev->mutex);
		ret = ops->list_voltage(rdev, selector);
		if (lock)
			mutex_unlock(&rdev->mutex);
	} else if (rdev->supply) {
		ret = _regulator_list_voltage(rdev->supply, selector, lock);
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2385 2386 2387 2388
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2389 2390 2391 2392 2393 2394 2395
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2396 2397 2398
 */
int regulator_is_enabled(struct regulator *regulator)
{
2399 2400
	int ret;

2401 2402 2403
	if (regulator->always_on)
		return 1;

2404 2405 2406 2407 2408
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2409 2410 2411
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2412 2413 2414 2415 2416
/**
 * regulator_can_change_voltage - check if regulator can change voltage
 * @regulator: regulator source
 *
 * Returns positive if the regulator driver backing the source/client
2417
 * can change its voltage, false otherwise. Useful for detecting fixed
2418 2419 2420 2421 2422 2423 2424 2425
 * or dummy regulators and disabling voltage change logic in the client
 * driver.
 */
int regulator_can_change_voltage(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	if (rdev->constraints &&
2426 2427 2428 2429 2430 2431 2432 2433 2434
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
			return 1;

		if (rdev->desc->continuous_voltage_range &&
		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
		    rdev->constraints->min_uV != rdev->constraints->max_uV)
			return 1;
	}
2435 2436 2437 2438 2439

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_can_change_voltage);

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2452 2453 2454 2455 2456 2457 2458
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

	if (!rdev->supply)
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2469
 * zero if this selector code can't be used on this system, or a
2470 2471 2472 2473
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2474
	return _regulator_list_voltage(regulator, selector, 1);
2475 2476 2477
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2510 2511
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	 *vsel_reg = rdev->desc->vsel_reg;
	 *vsel_mask = rdev->desc->vsel_mask;

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2537 2538
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2576
	struct regulator_dev *rdev = regulator->rdev;
2577 2578
	int i, voltages, ret;

2579 2580 2581 2582
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2583
			return min_uV <= ret && ret <= max_uV;
2584 2585 2586 2587
		else
			return ret;
	}

2588 2589 2590 2591 2592
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2607
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2608

2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2658 2659 2660 2661
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2662
	int delay = 0;
2663
	int best_val = 0;
2664
	unsigned int selector;
2665
	int old_selector = -1;
2666 2667 2668

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2669 2670 2671
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2672 2673 2674 2675
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2676 2677
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2678 2679 2680 2681 2682 2683
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2684
	if (rdev->desc->ops->set_voltage) {
2685 2686
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2687 2688 2689 2690 2691 2692 2693 2694 2695

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2696
	} else if (rdev->desc->ops->set_voltage_sel) {
2697
		if (rdev->desc->ops->map_voltage) {
2698 2699
			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
							   max_uV);
2700 2701 2702 2703 2704
		} else {
			if (rdev->desc->ops->list_voltage ==
			    regulator_list_voltage_linear)
				ret = regulator_map_voltage_linear(rdev,
								min_uV, max_uV);
2705 2706 2707 2708
			else if (rdev->desc->ops->list_voltage ==
				 regulator_list_voltage_linear_range)
				ret = regulator_map_voltage_linear_range(rdev,
								min_uV, max_uV);
2709 2710 2711 2712
			else
				ret = regulator_map_voltage_iterate(rdev,
								min_uV, max_uV);
		}
2713

2714
		if (ret >= 0) {
2715 2716 2717
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2718 2719 2720
				if (old_selector == selector)
					ret = 0;
				else
2721 2722
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2723 2724 2725
			} else {
				ret = -EINVAL;
			}
2726
		}
2727 2728 2729
	} else {
		ret = -EINVAL;
	}
2730

2731
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2732 2733
	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
		&& old_selector != selector) {
2734

2735 2736 2737 2738 2739 2740
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2741
		}
2742

2743 2744 2745 2746 2747 2748 2749
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2750 2751
	}

2752 2753 2754
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2755
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2756 2757
				     (void *)data);
	}
2758

2759
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2760 2761 2762 2763

	return ret;
}

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2779
 * Regulator system constraints must be set for this regulator before
2780 2781 2782 2783 2784
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2785
	int ret = 0;
2786
	int old_min_uV, old_max_uV;
2787
	int current_uV;
2788 2789 2790

	mutex_lock(&rdev->mutex);

2791 2792 2793 2794 2795 2796 2797
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2798
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
2799
	 * return successfully even though the regulator does not support
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	 * changing the voltage.
	 */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
			regulator->min_uV = min_uV;
			regulator->max_uV = max_uV;
			goto out;
		}
	}

2811
	/* sanity check */
2812 2813
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2814 2815 2816 2817 2818 2819 2820 2821
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2822

2823 2824 2825
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2826 2827
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2828

2829 2830
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2831
		goto out2;
2832

2833
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2834 2835
	if (ret < 0)
		goto out2;
2836

2837 2838 2839
out:
	mutex_unlock(&rdev->mutex);
	return ret;
2840 2841 2842 2843
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
	mutex_unlock(&rdev->mutex);
2844 2845 2846 2847
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
2861 2862
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2893
/**
2894 2895
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
2896 2897 2898 2899 2900 2901
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
2902
 * Drivers providing ramp_delay in regulation_constraints can use this as their
2903
 * set_voltage_time_sel() operation.
2904 2905 2906 2907 2908
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
2909
	unsigned int ramp_delay = 0;
2910
	int old_volt, new_volt;
2911 2912 2913 2914 2915 2916 2917

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
2918
		rdev_warn(rdev, "ramp_delay not set\n");
2919
		return 0;
2920
	}
2921

2922 2923 2924
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
2925

2926 2927 2928 2929
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2930
}
2931
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2932

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2980 2981
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2982
	int sel, ret;
2983 2984 2985 2986 2987

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2988
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2989
	} else if (rdev->desc->ops->get_voltage) {
2990
		ret = rdev->desc->ops->get_voltage(rdev);
2991 2992
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
2993 2994
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
2995 2996
	} else if (rdev->supply) {
		ret = regulator_get_voltage(rdev->supply);
2997
	} else {
2998
		return -EINVAL;
2999
	}
3000

3001 3002
	if (ret < 0)
		return ret;
3003
	return ret - rdev->constraints->uV_offset;
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
3032
 * @min_uA: Minimum supported current in uA
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
3119
	int regulator_curr_mode;
3120 3121 3122 3123 3124 3125 3126 3127 3128

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

3129 3130 3131 3132 3133 3134 3135 3136 3137
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

3138
	/* constraints check */
3139
	ret = regulator_mode_constrain(rdev, &mode);
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
3181
 * regulator_set_load - set regulator load
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
3204
 * On error a negative errno is returned.
3205
 */
3206
int regulator_set_load(struct regulator *regulator, int uA_load)
3207 3208
{
	struct regulator_dev *rdev = regulator->rdev;
3209
	int ret;
3210

3211 3212
	mutex_lock(&rdev->mutex);
	regulator->uA_load = uA_load;
3213
	ret = drms_uA_update(rdev);
3214
	mutex_unlock(&rdev->mutex);
3215

3216 3217
	return ret;
}
3218
EXPORT_SYMBOL_GPL(regulator_set_load);
3219

3220 3221 3222 3223
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3224
 * @enable: enable or disable bypass mode
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

	if (rdev->constraints &&
	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

3273 3274 3275
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
3276
 * @nb: notifier block
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
3291
 * @nb: notifier block
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

3303 3304 3305
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
3306
static int _notifier_call_chain(struct regulator_dev *rdev,
3307 3308 3309
				  unsigned long event, void *data)
{
	/* call rdev chain first */
3310
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3341 3342
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3343 3344 3345 3346 3347 3348 3349 3350
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3351
	while (--i >= 0)
3352 3353 3354 3355 3356 3357
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3358 3359 3360 3361 3362 3363 3364
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3380
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3381
	int i;
3382
	int ret = 0;
3383

3384 3385 3386 3387 3388 3389 3390
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3391 3392 3393 3394

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3395
	for (i = 0; i < num_consumers; i++) {
3396 3397
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3398
			goto err;
3399
		}
3400 3401 3402 3403 3404
	}

	return 0;

err:
3405 3406 3407 3408 3409 3410 3411
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3425 3426
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3427 3428 3429 3430 3431 3432
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3433
	int ret, r;
3434

3435
	for (i = num_consumers - 1; i >= 0; --i) {
3436 3437 3438 3439 3440 3441 3442 3443
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3444
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3445 3446 3447 3448 3449 3450
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
3451 3452 3453 3454 3455

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3516
 * @rdev: regulator source
3517
 * @event: notifier block
3518
 * @data: callback-specific data.
3519 3520 3521
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3522
 * Note lock must be held by caller.
3523 3524 3525 3526
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
3527 3528
	lockdep_assert_held_once(&rdev->mutex);

3529 3530 3531 3532 3533 3534
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3551
	case REGULATOR_MODE_STANDBY:
3552 3553
		return REGULATOR_STATUS_STANDBY;
	default:
3554
		return REGULATOR_STATUS_UNDEFINED;
3555 3556 3557 3558
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

3586 3587 3588 3589
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
3590 3591
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
3592
{
3593 3594
	struct device *dev = kobj_to_dev(kobj);
	struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3595
	const struct regulator_ops *ops = rdev->desc->ops;
3596 3597 3598 3599 3600 3601 3602
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
3603 3604

	/* some attributes need specific methods to be displayed */
3605 3606 3607 3608 3609 3610 3611
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
3612
	}
3613

3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

3629
	/* some attributes are type-specific */
3630 3631
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3632 3633

	/* constraints need specific supporting methods */
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
3669

3670 3671 3672
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
3673 3674 3675

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
3676
	kfree(rdev);
3677 3678
}

3679 3680 3681 3682 3683 3684
static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
};

3685 3686
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3699
	if (!rdev->debugfs) {
3700 3701 3702 3703 3704 3705 3706 3707
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3708 3709
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3710 3711
}

3712 3713
/**
 * regulator_register - register regulator
3714
 * @regulator_desc: regulator to register
3715
 * @cfg: runtime configuration for regulator
3716 3717
 *
 * Called by regulator drivers to register a regulator.
3718 3719
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3720
 */
3721 3722
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3723
		   const struct regulator_config *cfg)
3724
{
3725
	const struct regulation_constraints *constraints = NULL;
3726
	const struct regulator_init_data *init_data;
3727
	struct regulator_config *config = NULL;
3728
	static atomic_t regulator_no = ATOMIC_INIT(-1);
3729
	struct regulator_dev *rdev;
3730
	struct device *dev;
3731
	int ret, i;
3732

3733
	if (regulator_desc == NULL || cfg == NULL)
3734 3735
		return ERR_PTR(-EINVAL);

3736
	dev = cfg->dev;
3737
	WARN_ON(!dev);
3738

3739 3740 3741
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3742 3743
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3744 3745
		return ERR_PTR(-EINVAL);

3746 3747 3748
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3749 3750
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3751 3752 3753 3754 3755 3756

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3757 3758 3759 3760
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3761

3762 3763 3764 3765
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

3776
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3777 3778 3779 3780 3781 3782
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

3783 3784 3785
	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3786
	rdev->reg_data = config->driver_data;
3787 3788
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3789 3790
	if (config->regmap)
		rdev->regmap = config->regmap;
3791
	else if (dev_get_regmap(dev, NULL))
3792
		rdev->regmap = dev_get_regmap(dev, NULL);
3793 3794
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3795 3796 3797
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3798
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3799

3800
	/* preform any regulator specific init */
3801
	if (init_data && init_data->regulator_init) {
3802
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3803 3804
		if (ret < 0)
			goto clean;
3805 3806 3807
	}

	/* register with sysfs */
3808
	rdev->dev.class = &regulator_class;
3809
	rdev->dev.parent = dev;
3810
	dev_set_name(&rdev->dev, "regulator.%lu",
3811
		    (unsigned long) atomic_inc_return(&regulator_no));
3812
	ret = device_register(&rdev->dev);
3813 3814
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3815
		goto clean;
3816
	}
3817 3818 3819

	dev_set_drvdata(&rdev->dev, rdev);

3820 3821
	if ((config->ena_gpio || config->ena_gpio_initialized) &&
	    gpio_is_valid(config->ena_gpio)) {
3822
		ret = regulator_ena_gpio_request(rdev, config);
3823 3824 3825
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
3826
			goto wash;
3827 3828 3829
		}
	}

3830
	/* set regulator constraints */
3831 3832 3833 3834
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3835 3836 3837
	if (ret < 0)
		goto scrub;

3838
	if (init_data && init_data->supply_regulator)
3839
		rdev->supply_name = init_data->supply_regulator;
3840
	else if (regulator_desc->supply_name)
3841
		rdev->supply_name = regulator_desc->supply_name;
3842

3843
	/* add consumers devices */
3844 3845 3846 3847
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3848
				init_data->consumer_supplies[i].supply);
3849 3850 3851 3852 3853
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3854
		}
3855
	}
3856 3857

	list_add(&rdev->list, &regulator_list);
3858 3859

	rdev_init_debugfs(rdev);
3860
out:
3861
	mutex_unlock(&regulator_list_mutex);
3862
	kfree(config);
3863
	return rdev;
D
David Brownell 已提交
3864

3865 3866 3867
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3868
scrub:
3869
	regulator_ena_gpio_free(rdev);
3870
	kfree(rdev->constraints);
3871
wash:
D
David Brownell 已提交
3872
	device_unregister(&rdev->dev);
3873 3874 3875 3876
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3877 3878 3879 3880
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3881 3882 3883 3884 3885
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3886
 * @rdev: regulator to unregister
3887 3888 3889 3890 3891 3892 3893 3894
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3895 3896 3897
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
3898
		regulator_put(rdev->supply);
3899
	}
3900
	mutex_lock(&regulator_list_mutex);
3901
	debugfs_remove_recursive(rdev->debugfs);
3902
	flush_work(&rdev->disable_work.work);
3903
	WARN_ON(rdev->open_count);
3904
	unset_regulator_supplies(rdev);
3905
	list_del(&rdev->list);
3906
	mutex_unlock(&regulator_list_mutex);
3907
	regulator_ena_gpio_free(rdev);
3908
	device_unregister(&rdev->dev);
3909 3910 3911 3912
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3913
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3936
			rdev_err(rdev, "failed to prepare\n");
3937 3938 3939 3940 3941 3942 3943 3944 3945
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
3960
		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3961 3962 3963 3964 3965
			if (!_regulator_is_enabled(rdev)) {
				error = _regulator_do_enable(rdev);
				if (error)
					ret = error;
			}
3966
		} else {
3967
			if (!have_full_constraints())
3968
				goto unlock;
3969
			if (!_regulator_is_enabled(rdev))
3970 3971
				goto unlock;

3972
			error = _regulator_do_disable(rdev);
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

4001 4002
/**
 * rdev_get_drvdata - get rdev regulator driver data
4003
 * @rdev: regulator
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
4040
 * @rdev: regulator
4041 4042 4043 4044 4045 4046 4047
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
4090
#endif
4091 4092

static const struct file_operations supply_map_fops = {
4093
#ifdef CONFIG_DEBUG_FS
4094 4095 4096
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
4097
};
4098

4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
#ifdef CONFIG_DEBUG_FS
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct list_head *list = s->private;
	struct regulator_dev *child;
	struct regulation_constraints *c;
	struct regulator *consumer;

	if (!rdev)
		return;

	seq_printf(s, "%*s%-*s %3d %4d %6d ",
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
		   rdev->use_count, rdev->open_count, rdev->bypass_count);

4117 4118
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
		if (consumer->dev->class == &regulator_class)
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
			   30 - (level + 1) * 3, dev_name(consumer->dev));

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
4146
			seq_printf(s, "%37dmV %5dmV",
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
				   consumer->min_uV / 1000,
				   consumer->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

	list_for_each_entry(child, list, list) {
		/* handle only non-root regulators supplied by current rdev */
		if (!child->supply || child->supply->rdev != rdev)
			continue;

		regulator_summary_show_subtree(s, child, level + 1);
	}
}

static int regulator_summary_show(struct seq_file *s, void *data)
{
	struct list_head *list = s->private;
	struct regulator_dev *rdev;

4171 4172
	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
	seq_puts(s, "-------------------------------------------------------------------------------\n");
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202

	mutex_lock(&regulator_list_mutex);

	list_for_each_entry(rdev, list, list) {
		if (rdev->supply)
			continue;

		regulator_summary_show_subtree(s, rdev, 0);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static int regulator_summary_open(struct inode *inode, struct file *file)
{
	return single_open(file, regulator_summary_show, inode->i_private);
}
#endif

static const struct file_operations regulator_summary_fops = {
#ifdef CONFIG_DEBUG_FS
	.open		= regulator_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
#endif
};

4203 4204
static int __init regulator_init(void)
{
4205 4206 4207 4208
	int ret;

	ret = class_register(&regulator_class);

4209
	debugfs_root = debugfs_create_dir("regulator", NULL);
4210
	if (!debugfs_root)
4211
		pr_warn("regulator: Failed to create debugfs directory\n");
4212

4213 4214
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
4215

4216 4217 4218
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
			    &regulator_list, &regulator_summary_fops);

4219 4220 4221
	regulator_dummy_init();

	return ret;
4222 4223 4224 4225
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
4226

4227
static int __init regulator_late_cleanup(struct device *dev, void *data)
4228
{
4229 4230 4231
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
4232 4233
	int enabled, ret;

4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
	if (c && c->always_on)
		return 0;

	if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
	mutex_unlock(&rdev->mutex);

	return 0;
}

static int __init regulator_init_complete(void)
{
4278 4279 4280 4281 4282 4283 4284 4285 4286
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

4287
	/* If we have a full configuration then disable any regulators
4288 4289 4290
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
4291
	 */
4292 4293
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
4294 4295 4296

	return 0;
}
4297
late_initcall_sync(regulator_init_complete);