core.c 117.8 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
55
static LIST_HEAD(regulator_ena_gpio_list);
56
static LIST_HEAD(regulator_supply_alias_list);
57
static bool has_full_constraints;
58

59 60
static struct dentry *debugfs_root;

61 62
static struct class regulator_class;

63
/*
64 65 66 67 68 69
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
70
	const char *dev_name;   /* The dev_name() for the consumer */
71
	const char *supply;
72
	struct regulator_dev *regulator;
73 74
};

75 76 77 78 79 80 81
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
82
	struct gpio_desc *gpiod;
83 84 85 86 87
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

101
static int _regulator_is_enabled(struct regulator_dev *rdev);
102
static int _regulator_disable(struct regulator_dev *rdev);
103 104 105
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106
static int _notifier_call_chain(struct regulator_dev *rdev,
107
				  unsigned long event, void *data);
108 109
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
110 111 112
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
113
static void _regulator_put(struct regulator *regulator);
114

115 116 117 118
static struct regulator_dev *dev_to_rdev(struct device *dev)
{
	return container_of(dev, struct regulator_dev, dev);
}
119

120 121 122 123 124 125 126 127 128 129
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

130 131
static bool have_full_constraints(void)
{
132
	return has_full_constraints || of_have_populated_dt();
133 134
}

135 136 137 138 139 140 141 142 143 144 145 146 147
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

148 149 150 151 152 153 154 155
static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
{
	if (rdev && rdev->supply)
		return rdev->supply->rdev;

	return NULL;
}

156 157 158 159 160 161
/**
 * regulator_lock_supply - lock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_lock_supply(struct regulator_dev *rdev)
{
162
	int i;
163

164
	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165
		mutex_lock_nested(&rdev->mutex, i);
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
}

/**
 * regulator_unlock_supply - unlock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_unlock_supply(struct regulator_dev *rdev)
{
	struct regulator *supply;

	while (1) {
		mutex_unlock(&rdev->mutex);
		supply = rdev->supply;

		if (!rdev->supply)
			return;

		rdev = supply->rdev;
	}
}

187 188 189 190 191 192
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
193
 * returns the device node corresponding to the regulator if found, else
194 195 196 197 198 199 200 201 202 203 204 205 206
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
207
		dev_dbg(dev, "Looking up %s property in node %s failed\n",
208 209 210 211 212 213
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

214 215 216 217 218 219
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

220
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221
		rdev_err(rdev, "voltage operation not allowed\n");
222 223 224 225 226 227 228 229
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

230 231
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232
			 *min_uV, *max_uV);
233
		return -EINVAL;
234
	}
235 236 237 238

	return 0;
}

239 240 241 242 243 244 245 246 247
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
248 249 250 251 252 253 254
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

255 256 257 258 259 260
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

261
	if (*min_uV > *max_uV) {
262 263
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
264
		return -EINVAL;
265
	}
266 267 268 269

	return 0;
}

270 271 272 273 274 275
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

276
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277
		rdev_err(rdev, "current operation not allowed\n");
278 279 280 281 282 283 284 285
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

286 287
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288
			 *min_uA, *max_uA);
289
		return -EINVAL;
290
	}
291 292 293 294 295

	return 0;
}

/* operating mode constraint check */
296 297
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
298
{
299
	switch (*mode) {
300 301 302 303 304 305
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
306
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
307 308 309
		return -EINVAL;
	}

310
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
311
		rdev_err(rdev, "mode operation not allowed\n");
312 313
		return -EPERM;
	}
314 315 316 317 318 319 320 321

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
322
	}
323 324

	return -EINVAL;
325 326 327 328 329
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
330
	struct regulator_dev *rdev = dev_get_drvdata(dev);
331 332 333 334 335 336 337 338
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
339
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
340 341 342 343

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
344
	struct regulator_dev *rdev = dev_get_drvdata(dev);
345 346 347

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
348
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
349

350 351
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
352 353 354
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

355
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
356
}
357
static DEVICE_ATTR_RO(name);
358

D
David Brownell 已提交
359
static ssize_t regulator_print_opmode(char *buf, int mode)
360 361 362 363 364 365 366 367 368 369 370 371 372 373
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
374 375
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
376
{
377
	struct regulator_dev *rdev = dev_get_drvdata(dev);
378

D
David Brownell 已提交
379 380
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
381
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
382 383 384

static ssize_t regulator_print_state(char *buf, int state)
{
385 386 387 388 389 390 391 392
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
393 394 395 396
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
397 398 399 400 401
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
402

403
	return ret;
D
David Brownell 已提交
404
}
405
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
406

D
David Brownell 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
440 441 442
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
443 444 445
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
446 447 448 449 450 451 452 453
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

454 455 456
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
457
	struct regulator_dev *rdev = dev_get_drvdata(dev);
458 459 460 461 462 463

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
464
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
465 466 467 468

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
469
	struct regulator_dev *rdev = dev_get_drvdata(dev);
470 471 472 473 474 475

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
476
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
477 478 479 480

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
481
	struct regulator_dev *rdev = dev_get_drvdata(dev);
482 483 484 485 486 487

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
488
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
489 490 491 492

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
493
	struct regulator_dev *rdev = dev_get_drvdata(dev);
494 495 496 497 498 499

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
500
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
501 502 503 504

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
505
	struct regulator_dev *rdev = dev_get_drvdata(dev);
506 507 508 509 510
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
511
		uA += regulator->uA_load;
512 513 514
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
515
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
516

517 518
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
519
{
520
	struct regulator_dev *rdev = dev_get_drvdata(dev);
521 522
	return sprintf(buf, "%d\n", rdev->use_count);
}
523
static DEVICE_ATTR_RO(num_users);
524

525 526
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
527
{
528
	struct regulator_dev *rdev = dev_get_drvdata(dev);
529 530 531 532 533 534 535 536 537

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
538
static DEVICE_ATTR_RO(type);
539 540 541 542

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
543
	struct regulator_dev *rdev = dev_get_drvdata(dev);
544 545 546

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
547 548
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
549 550 551 552

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
553
	struct regulator_dev *rdev = dev_get_drvdata(dev);
554 555 556

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
557 558
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
559 560 561 562

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
563
	struct regulator_dev *rdev = dev_get_drvdata(dev);
564 565 566

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
567 568
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
569 570 571 572

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
573
	struct regulator_dev *rdev = dev_get_drvdata(dev);
574

D
David Brownell 已提交
575 576
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
577
}
578 579
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
580 581 582 583

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
584
	struct regulator_dev *rdev = dev_get_drvdata(dev);
585

D
David Brownell 已提交
586 587
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
588
}
589 590
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
591 592 593 594

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
595
	struct regulator_dev *rdev = dev_get_drvdata(dev);
596

D
David Brownell 已提交
597 598
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
599
}
600 601
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
602 603 604 605

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
606
	struct regulator_dev *rdev = dev_get_drvdata(dev);
607

D
David Brownell 已提交
608 609
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
610
}
611 612
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
613 614 615 616

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
617
	struct regulator_dev *rdev = dev_get_drvdata(dev);
618

D
David Brownell 已提交
619 620
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
621
}
622 623
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
624 625 626 627

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
628
	struct regulator_dev *rdev = dev_get_drvdata(dev);
629

D
David Brownell 已提交
630 631
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
632
}
633 634 635
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
657

658 659
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
660
static int drms_uA_update(struct regulator_dev *rdev)
661 662 663 664 665
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

666 667
	lockdep_assert_held_once(&rdev->mutex);

668 669 670 671
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
672
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
673 674
		return 0;

675 676
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
677 678
		return 0;

679 680
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
681
		return -EINVAL;
682 683 684

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
685
		current_uA += sibling->uA_load;
686

687 688
	current_uA += rdev->constraints->system_load;

689 690 691 692 693 694
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
		/* get output voltage */
		output_uV = _regulator_get_voltage(rdev);
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

713 714 715 716 717 718 719 720 721 722 723
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
724

725 726 727
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
728 729 730
	}

	return err;
731 732 733 734 735 736
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
737 738

	/* If we have no suspend mode configration don't set anything;
739 740
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
741 742
	 */
	if (!rstate->enabled && !rstate->disabled) {
743 744
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
745
			rdev_warn(rdev, "No configuration\n");
746 747 748 749
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
750
		rdev_err(rdev, "invalid configuration\n");
751 752
		return -EINVAL;
	}
753

754
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
755
		ret = rdev->desc->ops->set_suspend_enable(rdev);
756
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
757
		ret = rdev->desc->ops->set_suspend_disable(rdev);
758 759 760
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

761
	if (ret < 0) {
762
		rdev_err(rdev, "failed to enabled/disable\n");
763 764 765 766 767 768
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
769
			rdev_err(rdev, "failed to set voltage\n");
770 771 772 773 774 775 776
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
777
			rdev_err(rdev, "failed to set mode\n");
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
808
	char buf[160] = "";
809
	size_t len = sizeof(buf) - 1;
810 811
	int count = 0;
	int ret;
812

813
	if (constraints->min_uV && constraints->max_uV) {
814
		if (constraints->min_uV == constraints->max_uV)
815 816
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
817
		else
818 819 820 821
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
822 823 824 825 826 827
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
828 829
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
830 831
	}

832
	if (constraints->uV_offset)
833 834
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
835

836
	if (constraints->min_uA && constraints->max_uA) {
837
		if (constraints->min_uA == constraints->max_uA)
838 839
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
840
		else
841 842 843 844
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
845 846 847 848 849 850
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
851 852
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
853
	}
854

855
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
856
		count += scnprintf(buf + count, len - count, "fast ");
857
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
858
		count += scnprintf(buf + count, len - count, "normal ");
859
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
860
		count += scnprintf(buf + count, len - count, "idle ");
861
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
862
		count += scnprintf(buf + count, len - count, "standby");
863

864
	if (!count)
865
		scnprintf(buf, len, "no parameters");
866

867
	rdev_dbg(rdev, "%s\n", buf);
868 869

	if ((constraints->min_uV != constraints->max_uV) &&
870
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
871 872
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
873 874
}

875
static int machine_constraints_voltage(struct regulator_dev *rdev,
876
	struct regulation_constraints *constraints)
877
{
878
	const struct regulator_ops *ops = rdev->desc->ops;
879 880 881 882
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
883 884
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
885 886
		int current_uV = _regulator_get_voltage(rdev);
		if (current_uV < 0) {
887 888 889
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
890 891
			return current_uV;
		}
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
912 913
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
914
			ret = _regulator_do_set_voltage(
915
				rdev, target_min, target_max);
916 917
			if (ret < 0) {
				rdev_err(rdev,
918 919
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
920 921
				return ret;
			}
922
		}
923
	}
924

925 926 927 928 929 930 931 932 933 934 935
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

936 937
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
938
		if (count == 1 && !cmin) {
939
			cmin = 1;
940
			cmax = INT_MAX;
941 942
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
943 944
		}

945 946
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
947
			return 0;
948

949
		/* else require explicit machine-level constraints */
950
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
951
			rdev_err(rdev, "invalid voltage constraints\n");
952
			return -EINVAL;
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
972 973 974
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
975
			return -EINVAL;
976 977 978 979
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
980 981
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
982 983 984
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
985 986
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
987 988 989 990
			constraints->max_uV = max_uV;
		}
	}

991 992 993
	return 0;
}

994 995 996
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
997
	const struct regulator_ops *ops = rdev->desc->ops;
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1024 1025
static int _regulator_do_enable(struct regulator_dev *rdev);

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1038
	const struct regulation_constraints *constraints)
1039 1040
{
	int ret = 0;
1041
	const struct regulator_ops *ops = rdev->desc->ops;
1042

1043 1044 1045 1046 1047 1048
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1049 1050
	if (!rdev->constraints)
		return -ENOMEM;
1051

1052
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1053
	if (ret != 0)
1054
		return ret;
1055

1056
	ret = machine_constraints_current(rdev, rdev->constraints);
1057
	if (ret != 0)
1058
		return ret;
1059

1060 1061 1062 1063 1064
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1065
			return ret;
1066 1067 1068
		}
	}

1069
	/* do we need to setup our suspend state */
1070
	if (rdev->constraints->initial_state) {
1071
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1072
		if (ret < 0) {
1073
			rdev_err(rdev, "failed to set suspend state\n");
1074
			return ret;
1075 1076
		}
	}
1077

1078
	if (rdev->constraints->initial_mode) {
1079
		if (!ops->set_mode) {
1080
			rdev_err(rdev, "no set_mode operation\n");
1081
			return -EINVAL;
1082 1083
		}

1084
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1085
		if (ret < 0) {
1086
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1087
			return ret;
1088 1089 1090
		}
	}

1091 1092 1093
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1094 1095 1096
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1097
			rdev_err(rdev, "failed to enable\n");
1098
			return ret;
1099 1100 1101
		}
	}

1102 1103
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1104 1105 1106
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1107
			return ret;
1108 1109 1110
		}
	}

S
Stephen Boyd 已提交
1111 1112 1113 1114
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1115
			return ret;
S
Stephen Boyd 已提交
1116 1117 1118
		}
	}

S
Stephen Boyd 已提交
1119 1120 1121 1122
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1123
			return ret;
S
Stephen Boyd 已提交
1124 1125 1126
		}
	}

1127 1128 1129 1130 1131
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1132
			return ret;
1133 1134 1135
		}
	}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1147
	print_constraints(rdev);
1148
	return 0;
1149 1150 1151 1152
}

/**
 * set_supply - set regulator supply regulator
1153 1154
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1155 1156 1157 1158 1159 1160
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1161
		      struct regulator_dev *supply_rdev)
1162 1163 1164
{
	int err;

1165 1166
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1167 1168 1169
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1170
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171 1172
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1173
		return err;
1174
	}
1175
	supply_rdev->open_count++;
1176 1177

	return 0;
1178 1179 1180
}

/**
1181
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182
 * @rdev:         regulator source
1183
 * @consumer_dev_name: dev_name() string for device supply applies to
1184
 * @supply:       symbolic name for supply
1185 1186 1187 1188 1189 1190 1191
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1192 1193
				      const char *consumer_dev_name,
				      const char *supply)
1194 1195
{
	struct regulator_map *node;
1196
	int has_dev;
1197 1198 1199 1200

	if (supply == NULL)
		return -EINVAL;

1201 1202 1203 1204 1205
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1206
	list_for_each_entry(node, &regulator_map_list, list) {
1207 1208 1209 1210
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1211
			continue;
1212 1213
		}

1214 1215 1216
		if (strcmp(node->supply, supply) != 0)
			continue;

1217 1218 1219 1220 1221 1222
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1223 1224 1225
		return -EBUSY;
	}

1226
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227 1228 1229 1230 1231 1232
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1233 1234 1235 1236 1237 1238
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1239 1240
	}

1241 1242 1243 1244
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1245 1246 1247 1248 1249 1250 1251
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1252
			kfree(node->dev_name);
1253 1254 1255 1256 1257
			kfree(node);
		}
	}
}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1307
#define REG_STR_SIZE	64
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1326 1327
		regulator->dev = dev;

1328
		/* Add a link to the device sysfs entry */
1329 1330
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1331
		if (size >= REG_STR_SIZE)
1332
			goto overflow_err;
1333 1334 1335

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1336
			goto overflow_err;
1337

1338
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1339 1340
					buf);
		if (err) {
1341
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1342
				  dev->kobj.name, err);
1343
			/* non-fatal */
1344
		}
1345
	} else {
1346
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1347
		if (regulator->supply_name == NULL)
1348
			goto overflow_err;
1349 1350 1351 1352
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1353
	if (!regulator->debugfs) {
1354
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1355 1356 1357 1358 1359 1360 1361
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1362 1363 1364
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1365
	}
1366

1367 1368 1369 1370 1371
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1372
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373 1374 1375
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1376 1377 1378 1379 1380 1381 1382 1383 1384
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1385 1386
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1387 1388
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1389
	if (!rdev->desc->ops->enable_time)
1390
		return rdev->desc->enable_time;
1391 1392 1393
	return rdev->desc->ops->enable_time(rdev);
}

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
static int of_node_match(struct device *dev, const void *data)
{
	return dev->of_node == data;
}

static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, np, of_node_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1456 1457 1458 1459 1460
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1461
 */
1462
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1463
						  const char *supply)
1464
{
1465
	struct regulator_dev *r = NULL;
1466
	struct device_node *node;
1467 1468
	struct regulator_map *map;
	const char *devname = NULL;
1469

1470 1471
	regulator_supply_alias(&dev, &supply);

1472 1473 1474
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1475
		if (node) {
1476 1477 1478
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1479

1480
			/*
1481 1482
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1483
			 */
1484
			return ERR_PTR(-EPROBE_DEFER);
1485
		}
1486 1487 1488
	}

	/* if not found, try doing it non-dt way */
1489 1490 1491
	if (dev)
		devname = dev_name(dev);

1492
	mutex_lock(&regulator_list_mutex);
1493 1494 1495 1496 1497 1498
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1499 1500
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1501 1502
			r = map->regulator;
			break;
1503
		}
1504
	}
1505
	mutex_unlock(&regulator_list_mutex);
1506

1507 1508 1509 1510
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1511 1512 1513 1514
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1515 1516
}

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1531 1532 1533 1534
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1535 1536 1537 1538
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1539 1540
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1541
			get_device(&r->dev);
1542 1543 1544 1545 1546
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1547 1548
	}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1562 1563
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1564 1565
	if (ret < 0) {
		put_device(&r->dev);
1566
		return ret;
1567
	}
1568 1569

	ret = set_supply(rdev, r);
1570 1571
	if (ret < 0) {
		put_device(&r->dev);
1572
		return ret;
1573
	}
1574 1575

	/* Cascade always-on state to supply */
1576
	if (_regulator_is_enabled(rdev)) {
1577
		ret = regulator_enable(rdev->supply);
1578
		if (ret < 0) {
1579
			_regulator_put(rdev->supply);
1580
			rdev->supply = NULL;
1581
			return ret;
1582
		}
1583 1584 1585 1586 1587
	}

	return 0;
}

1588
/* Internal regulator request function */
1589 1590
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1591 1592
{
	struct regulator_dev *rdev;
1593
	struct regulator *regulator;
1594
	const char *devname = dev ? dev_name(dev) : "deviceless";
1595
	int ret;
1596

1597 1598 1599 1600 1601
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1602
	if (id == NULL) {
1603
		pr_err("get() with no identifier\n");
1604
		return ERR_PTR(-EINVAL);
1605 1606
	}

1607
	rdev = regulator_dev_lookup(dev, id);
1608 1609
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1610

1611 1612 1613 1614 1615 1616
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1617

1618 1619 1620 1621 1622
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1623

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1637

1638 1639 1640 1641
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1642

1643 1644 1645
		default:
			return ERR_PTR(-ENODEV);
		}
1646 1647
	}

1648 1649
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1650 1651
		put_device(&rdev->dev);
		return regulator;
1652 1653
	}

1654
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1655
		regulator = ERR_PTR(-EBUSY);
1656 1657
		put_device(&rdev->dev);
		return regulator;
1658 1659
	}

1660 1661 1662
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1663 1664
		put_device(&rdev->dev);
		return regulator;
1665 1666
	}

1667
	if (!try_module_get(rdev->owner)) {
1668
		regulator = ERR_PTR(-EPROBE_DEFER);
1669 1670 1671
		put_device(&rdev->dev);
		return regulator;
	}
1672

1673 1674 1675
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1676
		put_device(&rdev->dev);
1677
		module_put(rdev->owner);
1678
		return regulator;
1679 1680
	}

1681
	rdev->open_count++;
1682
	if (get_type == EXCLUSIVE_GET) {
1683 1684 1685 1686 1687 1688 1689 1690 1691
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1692 1693
	return regulator;
}
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1710
	return _regulator_get(dev, id, NORMAL_GET);
1711
}
1712 1713
EXPORT_SYMBOL_GPL(regulator_get);

1714 1715 1716 1717 1718 1719 1720
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1721 1722 1723
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1737
	return _regulator_get(dev, id, EXCLUSIVE_GET);
1738 1739 1740
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1741 1742 1743 1744 1745 1746
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1747
 * or IS_ERR() condition containing errno.
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1763
	return _regulator_get(dev, id, OPTIONAL_GET);
1764 1765 1766
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1767
/* regulator_list_mutex lock held by regulator_put() */
1768
static void _regulator_put(struct regulator *regulator)
1769 1770 1771
{
	struct regulator_dev *rdev;

1772
	if (IS_ERR_OR_NULL(regulator))
1773 1774
		return;

1775 1776
	lockdep_assert_held_once(&regulator_list_mutex);

1777 1778
	rdev = regulator->rdev;

1779 1780
	debugfs_remove_recursive(regulator->debugfs);

1781
	/* remove any sysfs entries */
1782
	if (regulator->dev)
1783
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1784
	mutex_lock(&rdev->mutex);
1785 1786
	list_del(&regulator->list);

1787 1788
	rdev->open_count--;
	rdev->exclusive = 0;
1789
	put_device(&rdev->dev);
1790
	mutex_unlock(&rdev->mutex);
1791

1792
	kfree_const(regulator->supply_name);
1793 1794
	kfree(regulator);

1795
	module_put(rdev->owner);
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1810 1811 1812 1813
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1891 1892
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1893
					 struct device *alias_dev,
1894
					 const char *const *alias_id,
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
1932
					    const char *const *id,
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


1943 1944 1945 1946 1947
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
1948
	struct gpio_desc *gpiod;
1949 1950
	int ret;

1951 1952
	gpiod = gpio_to_desc(config->ena_gpio);

1953
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1954
		if (pin->gpiod == gpiod) {
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

1973
	pin->gpiod = gpiod;
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1992
		if (pin->gpiod == rdev->ena_pin->gpiod) {
1993 1994
			if (pin->request_count <= 1) {
				pin->request_count = 0;
1995
				gpiod_put(pin->gpiod);
1996 1997
				list_del(&pin->list);
				kfree(pin);
1998 1999
				rdev->ena_pin = NULL;
				return;
2000 2001 2002 2003 2004 2005 2006
			} else {
				pin->request_count--;
			}
		}
	}
}

2007
/**
2008 2009 2010 2011
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2025 2026
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2037 2038
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
2039 2040 2041 2042 2043 2044 2045
			pin->enable_count = 0;
		}
	}

	return 0;
}

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2125
	if (rdev->ena_pin) {
2126 2127 2128 2129 2130 2131
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2132
	} else if (rdev->desc->ops->enable) {
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2145
	_regulator_enable_delay(delay);
2146 2147 2148 2149 2150 2151

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2152 2153 2154
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
2155
	int ret;
2156

2157 2158
	lockdep_assert_held_once(&rdev->mutex);

2159
	/* check voltage and requested load before enabling */
2160
	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2161
		drms_uA_update(rdev);
2162

2163 2164 2165 2166
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2167 2168
			if (!regulator_ops_is_valid(rdev,
					REGULATOR_CHANGE_STATUS))
2169 2170
				return -EPERM;

2171
			ret = _regulator_do_enable(rdev);
2172 2173 2174
			if (ret < 0)
				return ret;

2175 2176
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2177
		} else if (ret < 0) {
2178
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2179 2180
			return ret;
		}
2181
		/* Fallthrough on positive return values - already enabled */
2182 2183
	}

2184 2185 2186
	rdev->use_count++;

	return 0;
2187 2188 2189 2190 2191 2192
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2193 2194 2195 2196
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2197
 * NOTE: the output value can be set by other drivers, boot loader or may be
2198
 * hardwired in the regulator.
2199 2200 2201
 */
int regulator_enable(struct regulator *regulator)
{
2202 2203
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2204

2205 2206 2207
	if (regulator->always_on)
		return 0;

2208 2209 2210 2211 2212 2213
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

2214
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
2215
	ret = _regulator_enable(rdev);
2216
	mutex_unlock(&rdev->mutex);
2217

2218
	if (ret != 0 && rdev->supply)
2219 2220
		regulator_disable(rdev->supply);

2221 2222 2223 2224
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2225 2226 2227 2228 2229 2230
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2231
	if (rdev->ena_pin) {
2232 2233 2234 2235 2236 2237
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2238 2239 2240 2241 2242 2243 2244

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2245 2246 2247 2248 2249 2250
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2251 2252 2253 2254 2255
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2256
/* locks held by regulator_disable() */
2257
static int _regulator_disable(struct regulator_dev *rdev)
2258 2259 2260
{
	int ret = 0;

2261 2262
	lockdep_assert_held_once(&rdev->mutex);

D
David Brownell 已提交
2263
	if (WARN(rdev->use_count <= 0,
2264
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2265 2266
		return -EIO;

2267
	/* are we the last user and permitted to disable ? */
2268 2269
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2270 2271

		/* we are last user */
2272
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2273 2274 2275 2276 2277 2278
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2279
			ret = _regulator_do_disable(rdev);
2280
			if (ret < 0) {
2281
				rdev_err(rdev, "failed to disable\n");
2282 2283 2284
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2285 2286
				return ret;
			}
2287 2288
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2289 2290 2291 2292
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
2293
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2294 2295 2296 2297
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2298

2299 2300 2301 2302 2303 2304 2305
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2306 2307 2308
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2309
 *
2310
 * NOTE: this will only disable the regulator output if no other consumer
2311 2312
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2313 2314 2315
 */
int regulator_disable(struct regulator *regulator)
{
2316 2317
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2318

2319 2320 2321
	if (regulator->always_on)
		return 0;

2322
	mutex_lock(&rdev->mutex);
2323
	ret = _regulator_disable(rdev);
2324
	mutex_unlock(&rdev->mutex);
2325

2326 2327
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2328

2329 2330 2331 2332 2333
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2334
static int _regulator_force_disable(struct regulator_dev *rdev)
2335 2336 2337
{
	int ret = 0;

2338 2339
	lockdep_assert_held_once(&rdev->mutex);

2340 2341 2342 2343 2344
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2345 2346 2347
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2348 2349
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2350
		return ret;
2351 2352
	}

2353 2354 2355 2356
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2370
	struct regulator_dev *rdev = regulator->rdev;
2371 2372
	int ret;

2373
	mutex_lock(&rdev->mutex);
2374
	regulator->uA_load = 0;
2375
	ret = _regulator_force_disable(regulator->rdev);
2376
	mutex_unlock(&rdev->mutex);
2377

2378 2379 2380
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2381

2382 2383 2384 2385
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2434 2435 2436
	if (regulator->always_on)
		return 0;

2437 2438 2439
	if (!ms)
		return regulator_disable(regulator);

2440 2441 2442 2443
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

2444 2445 2446
	queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			   msecs_to_jiffies(ms));
	return 0;
2447 2448 2449
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2450 2451
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2452
	/* A GPIO control always takes precedence */
2453
	if (rdev->ena_pin)
2454 2455
		return rdev->ena_gpio_state;

2456
	/* If we don't know then assume that the regulator is always on */
2457
	if (!rdev->desc->ops->is_enabled)
2458
		return 1;
2459

2460
	return rdev->desc->ops->is_enabled(rdev);
2461 2462
}

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
static int _regulator_list_voltage(struct regulator *regulator,
				    unsigned selector, int lock)
{
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
			mutex_lock(&rdev->mutex);
		ret = ops->list_voltage(rdev, selector);
		if (lock)
			mutex_unlock(&rdev->mutex);
2481
	} else if (rdev->is_switch && rdev->supply) {
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
		ret = _regulator_list_voltage(rdev->supply, selector, lock);
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2497 2498 2499 2500
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2501 2502 2503 2504 2505 2506 2507
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2508 2509 2510
 */
int regulator_is_enabled(struct regulator *regulator)
{
2511 2512
	int ret;

2513 2514 2515
	if (regulator->always_on)
		return 1;

2516 2517 2518 2519 2520
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2521 2522 2523
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2536 2537 2538
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2539
	if (!rdev->is_switch || !rdev->supply)
2540 2541 2542
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2553
 * zero if this selector code can't be used on this system, or a
2554 2555 2556 2557
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2558
	return _regulator_list_voltage(regulator, selector, 1);
2559 2560 2561
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2594 2595
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	 *vsel_reg = rdev->desc->vsel_reg;
	 *vsel_mask = rdev->desc->vsel_mask;

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2621 2622
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2660
	struct regulator_dev *rdev = regulator->rdev;
2661 2662
	int i, voltages, ret;

2663
	/* If we can't change voltage check the current voltage */
2664
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2665 2666
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2667
			return min_uV <= ret && ret <= max_uV;
2668 2669 2670 2671
		else
			return ret;
	}

2672 2673 2674 2675 2676
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2691
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2692

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2759 2760 2761 2762 2763 2764 2765 2766 2767
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
2768 2769
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
2770 2771

	if (ramp_delay == 0) {
2772
		rdev_dbg(rdev, "ramp_delay not set\n");
2773 2774 2775 2776 2777 2778
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

2779 2780 2781 2782
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2783
	int delay = 0;
2784
	int best_val = 0;
2785
	unsigned int selector;
2786
	int old_selector = -1;
2787
	const struct regulator_ops *ops = rdev->desc->ops;
2788
	int old_uV = _regulator_get_voltage(rdev);
2789 2790 2791

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2792 2793 2794
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2795 2796 2797 2798
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2799
	if (_regulator_is_enabled(rdev) &&
2800 2801
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
2802 2803 2804 2805
		if (old_selector < 0)
			return old_selector;
	}

2806
	if (ops->set_voltage) {
2807 2808
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2809 2810

		if (ret >= 0) {
2811 2812 2813
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
2814 2815 2816 2817
			else
				best_val = _regulator_get_voltage(rdev);
		}

2818
	} else if (ops->set_voltage_sel) {
2819
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2820
		if (ret >= 0) {
2821
			best_val = ops->list_voltage(rdev, ret);
2822 2823
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2824 2825 2826
				if (old_selector == selector)
					ret = 0;
				else
2827 2828
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2829 2830 2831
			} else {
				ret = -EINVAL;
			}
2832
		}
2833 2834 2835
	} else {
		ret = -EINVAL;
	}
2836

2837 2838
	if (ret)
		goto out;
2839

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
2857
		}
2858
	}
2859

2860 2861 2862
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
2863 2864
	}

2865 2866 2867 2868 2869 2870
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
2871 2872
	}

2873
	if (best_val >= 0) {
2874 2875
		unsigned long data = best_val;

2876
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2877 2878
				     (void *)data);
	}
2879

2880
out:
2881
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2882 2883 2884 2885

	return ret;
}

2886 2887
static int regulator_set_voltage_unlocked(struct regulator *regulator,
					  int min_uV, int max_uV)
2888 2889
{
	struct regulator_dev *rdev = regulator->rdev;
2890
	int ret = 0;
2891
	int old_min_uV, old_max_uV;
2892
	int current_uV;
2893 2894
	int best_supply_uV = 0;
	int supply_change_uV = 0;
2895

2896 2897 2898 2899 2900 2901 2902
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2903
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
2904
	 * return successfully even though the regulator does not support
2905 2906
	 * changing the voltage.
	 */
2907
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2908 2909 2910 2911 2912 2913 2914 2915
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
			regulator->min_uV = min_uV;
			regulator->max_uV = max_uV;
			goto out;
		}
	}

2916
	/* sanity check */
2917 2918
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2919 2920 2921 2922 2923 2924 2925 2926
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2927

2928 2929 2930
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2931 2932
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2933

2934 2935
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2936
		goto out2;
2937

2938 2939 2940 2941
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
	    (rdev->desc->min_dropout_uV || !rdev->desc->ops->get_voltage)) {
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
			goto out2;
		}

		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
			goto out2;
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
			goto out2;
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
				best_supply_uV, INT_MAX);
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
			goto out2;
		}
	}

2978
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2979 2980
	if (ret < 0)
		goto out2;
2981

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
				best_supply_uV, INT_MAX);
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

2992 2993
out:
	return ret;
2994 2995 2996
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022

	return ret;
}

/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	int ret = 0;

3023
	regulator_lock_supply(regulator->rdev);
3024 3025 3026

	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);

3027
	regulator_unlock_supply(regulator->rdev);
3028

3029 3030 3031 3032
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3046 3047
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3048 3049 3050 3051 3052
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3053 3054 3055 3056 3057
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3058
	/* Currently requires operations to do this */
3059
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3082
/**
3083 3084
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3085 3086 3087 3088 3089 3090
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3091
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3092
 * set_voltage_time_sel() operation.
3093 3094 3095 3096 3097
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3098
	int old_volt, new_volt;
3099

3100 3101 3102
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3103

3104 3105 3106
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3107 3108 3109 3110 3111
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3112
}
3113
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3114

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3162 3163
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3164
	int sel, ret;
3165 3166 3167 3168 3169 3170 3171 3172
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3173 3174 3175 3176 3177
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
3178 3179 3180 3181

			return _regulator_get_voltage(rdev->supply->rdev);
		}
	}
3182 3183 3184 3185 3186

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3187
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3188
	} else if (rdev->desc->ops->get_voltage) {
3189
		ret = rdev->desc->ops->get_voltage(rdev);
3190 3191
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3192 3193
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3194
	} else if (rdev->supply) {
3195
		ret = _regulator_get_voltage(rdev->supply->rdev);
3196
	} else {
3197
		return -EINVAL;
3198
	}
3199

3200 3201
	if (ret < 0)
		return ret;
3202
	return ret - rdev->constraints->uV_offset;
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

3218
	regulator_lock_supply(regulator->rdev);
3219 3220 3221

	ret = _regulator_get_voltage(regulator->rdev);

3222
	regulator_unlock_supply(regulator->rdev);
3223 3224 3225 3226 3227 3228 3229 3230

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
3231
 * @min_uA: Minimum supported current in uA
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
3318
	int regulator_curr_mode;
3319 3320 3321 3322 3323 3324 3325 3326 3327

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

3328 3329 3330 3331 3332 3333 3334 3335 3336
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

3337
	/* constraints check */
3338
	ret = regulator_mode_constrain(rdev, &mode);
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

3412
/**
3413
 * regulator_set_load - set regulator load
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
3436
 * On error a negative errno is returned.
3437
 */
3438
int regulator_set_load(struct regulator *regulator, int uA_load)
3439 3440
{
	struct regulator_dev *rdev = regulator->rdev;
3441
	int ret;
3442

3443 3444
	mutex_lock(&rdev->mutex);
	regulator->uA_load = uA_load;
3445
	ret = drms_uA_update(rdev);
3446
	mutex_unlock(&rdev->mutex);
3447

3448 3449
	return ret;
}
3450
EXPORT_SYMBOL_GPL(regulator_set_load);
3451

3452 3453 3454 3455
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3456
 * @enable: enable or disable bypass mode
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

3471
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

3504 3505 3506
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
3507
 * @nb: notifier block
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
3522
 * @nb: notifier block
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

3534 3535 3536
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
3537
static int _notifier_call_chain(struct regulator_dev *rdev,
3538 3539 3540
				  unsigned long event, void *data)
{
	/* call rdev chain first */
3541
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
3568 3569
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
3570 3571
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3572 3573
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3574 3575 3576 3577 3578 3579 3580 3581
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3582
	while (--i >= 0)
3583 3584 3585 3586 3587 3588
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3589 3590 3591 3592 3593 3594 3595
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3611
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3612
	int i;
3613
	int ret = 0;
3614

3615 3616 3617 3618 3619 3620 3621
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3622 3623 3624 3625

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3626
	for (i = 0; i < num_consumers; i++) {
3627 3628
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3629
			goto err;
3630
		}
3631 3632 3633 3634 3635
	}

	return 0;

err:
3636 3637 3638 3639 3640 3641 3642
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3656 3657
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3658 3659 3660 3661 3662 3663
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3664
	int ret, r;
3665

3666
	for (i = num_consumers - 1; i >= 0; --i) {
3667 3668 3669 3670 3671 3672 3673 3674
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3675
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3676 3677 3678
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
3679
			pr_err("Failed to re-enable %s: %d\n",
3680 3681
			       consumers[i].supply, r);
	}
3682 3683 3684 3685 3686

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3705
	int ret = 0;
3706

3707
	for (i = 0; i < num_consumers; i++) {
3708 3709 3710
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

3711 3712
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
3713 3714 3715 3716 3717 3718 3719
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3743
 * @rdev: regulator source
3744
 * @event: notifier block
3745
 * @data: callback-specific data.
3746 3747 3748
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3749
 * Note lock must be held by caller.
3750 3751 3752 3753
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
3754 3755
	lockdep_assert_held_once(&rdev->mutex);

3756 3757 3758 3759 3760 3761
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3778
	case REGULATOR_MODE_STANDBY:
3779 3780
		return REGULATOR_STATUS_STANDBY;
	default:
3781
		return REGULATOR_STATUS_UNDEFINED;
3782 3783 3784 3785
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

3813 3814 3815 3816
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
3817 3818
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
3819
{
3820
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
3821
	struct regulator_dev *rdev = dev_to_rdev(dev);
3822
	const struct regulator_ops *ops = rdev->desc->ops;
3823 3824 3825 3826 3827 3828 3829
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
3830 3831

	/* some attributes need specific methods to be displayed */
3832 3833 3834 3835 3836 3837 3838
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
3839
	}
3840

3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

3856
	/* some attributes are type-specific */
3857 3858
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3859 3860

	/* constraints need specific supporting methods */
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
3896

3897 3898 3899
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
3900 3901 3902

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
3903
	kfree(rdev);
3904 3905
}

3906 3907 3908 3909 3910 3911
static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
};

3912 3913
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3926
	if (!rdev->debugfs) {
3927 3928 3929 3930 3931 3932 3933 3934
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3935 3936
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3937 3938
}

3939 3940
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
3941 3942 3943 3944 3945 3946
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
3947 3948
}

3949 3950
/**
 * regulator_register - register regulator
3951
 * @regulator_desc: regulator to register
3952
 * @cfg: runtime configuration for regulator
3953 3954
 *
 * Called by regulator drivers to register a regulator.
3955 3956
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3957
 */
3958 3959
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3960
		   const struct regulator_config *cfg)
3961
{
3962
	const struct regulation_constraints *constraints = NULL;
3963
	const struct regulator_init_data *init_data;
3964
	struct regulator_config *config = NULL;
3965
	static atomic_t regulator_no = ATOMIC_INIT(-1);
3966
	struct regulator_dev *rdev;
3967
	struct device *dev;
3968
	int ret, i;
3969

3970
	if (regulator_desc == NULL || cfg == NULL)
3971 3972
		return ERR_PTR(-EINVAL);

3973
	dev = cfg->dev;
3974
	WARN_ON(!dev);
3975

3976 3977 3978
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3979 3980
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3981 3982
		return ERR_PTR(-EINVAL);

3983 3984 3985
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3986 3987
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3988 3989 3990 3991 3992 3993

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3994 3995 3996 3997
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3998

3999 4000 4001 4002
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

4013
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4014 4015 4016 4017 4018 4019
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

4020
	mutex_init(&rdev->mutex);
4021
	rdev->reg_data = config->driver_data;
4022 4023
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
4024 4025
	if (config->regmap)
		rdev->regmap = config->regmap;
4026
	else if (dev_get_regmap(dev, NULL))
4027
		rdev->regmap = dev_get_regmap(dev, NULL);
4028 4029
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4030 4031 4032
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4033
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4034

4035
	/* preform any regulator specific init */
4036
	if (init_data && init_data->regulator_init) {
4037
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
4038 4039
		if (ret < 0)
			goto clean;
4040 4041
	}

4042 4043
	if ((config->ena_gpio || config->ena_gpio_initialized) &&
	    gpio_is_valid(config->ena_gpio)) {
4044
		mutex_lock(&regulator_list_mutex);
4045
		ret = regulator_ena_gpio_request(rdev, config);
4046
		mutex_unlock(&regulator_list_mutex);
4047 4048 4049
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
4050
			goto clean;
4051 4052 4053
		}
	}

4054
	/* register with sysfs */
4055
	rdev->dev.class = &regulator_class;
4056
	rdev->dev.parent = dev;
4057
	dev_set_name(&rdev->dev, "regulator.%lu",
4058
		    (unsigned long) atomic_inc_return(&regulator_no));
4059

4060
	/* set regulator constraints */
4061 4062 4063 4064
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
4065
		rdev->supply_name = init_data->supply_regulator;
4066
	else if (regulator_desc->supply_name)
4067
		rdev->supply_name = regulator_desc->supply_name;
4068

4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

4081
	/* add consumers devices */
4082
	if (init_data) {
4083
		mutex_lock(&regulator_list_mutex);
4084 4085 4086
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
4087
				init_data->consumer_supplies[i].supply);
4088
			if (ret < 0) {
4089
				mutex_unlock(&regulator_list_mutex);
4090 4091 4092 4093
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
4094
		}
4095
		mutex_unlock(&regulator_list_mutex);
4096
	}
4097

4098 4099 4100 4101 4102
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

4103 4104 4105 4106 4107 4108 4109
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

	dev_set_drvdata(&rdev->dev, rdev);
4110
	rdev_init_debugfs(rdev);
4111 4112 4113 4114

	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
4115
	kfree(config);
4116
	return rdev;
D
David Brownell 已提交
4117

4118
unset_supplies:
4119
	mutex_lock(&regulator_list_mutex);
4120
	unset_regulator_supplies(rdev);
4121
	mutex_unlock(&regulator_list_mutex);
4122
wash:
4123
	kfree(rdev->constraints);
4124
	mutex_lock(&regulator_list_mutex);
4125
	regulator_ena_gpio_free(rdev);
4126
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
4127 4128
clean:
	kfree(rdev);
4129 4130
	kfree(config);
	return ERR_PTR(ret);
4131 4132 4133 4134 4135
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
4136
 * @rdev: regulator to unregister
4137 4138 4139 4140 4141 4142 4143 4144
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

4145 4146 4147
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
4148
		regulator_put(rdev->supply);
4149
	}
4150
	mutex_lock(&regulator_list_mutex);
4151
	debugfs_remove_recursive(rdev->debugfs);
4152
	flush_work(&rdev->disable_work.work);
4153
	WARN_ON(rdev->open_count);
4154
	unset_regulator_supplies(rdev);
4155
	list_del(&rdev->list);
4156
	regulator_ena_gpio_free(rdev);
4157
	mutex_unlock(&regulator_list_mutex);
4158
	device_unregister(&rdev->dev);
4159 4160 4161
}
EXPORT_SYMBOL_GPL(regulator_unregister);

4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
static int _regulator_suspend_prepare(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const suspend_state_t *state = data;
	int ret;

	mutex_lock(&rdev->mutex);
	ret = suspend_prepare(rdev, *state);
	mutex_unlock(&rdev->mutex);

	return ret;
}

4175
/**
4176
 * regulator_suspend_prepare - prepare regulators for system wide suspend
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

4188 4189 4190 4191
	return class_for_each_device(&regulator_class, NULL, &state,
				     _regulator_suspend_prepare);
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4192

4193 4194 4195 4196
static int _regulator_suspend_finish(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	int ret;
4197

4198 4199 4200 4201 4202 4203 4204 4205
	mutex_lock(&rdev->mutex);
	if (rdev->use_count > 0  || rdev->constraints->always_on) {
		if (!_regulator_is_enabled(rdev)) {
			ret = _regulator_do_enable(rdev);
			if (ret)
				dev_err(dev,
					"Failed to resume regulator %d\n",
					ret);
4206
		}
4207 4208 4209 4210 4211 4212 4213 4214 4215
	} else {
		if (!have_full_constraints())
			goto unlock;
		if (!_regulator_is_enabled(rdev))
			goto unlock;

		ret = _regulator_do_disable(rdev);
		if (ret)
			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4216
	}
4217 4218 4219 4220 4221
unlock:
	mutex_unlock(&rdev->mutex);

	/* Keep processing regulators in spite of any errors */
	return 0;
4222 4223
}

4224 4225 4226 4227 4228 4229 4230 4231
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
4232 4233
	return class_for_each_device(&regulator_class, NULL, NULL,
				     _regulator_suspend_finish);
4234 4235 4236
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

4254 4255
/**
 * rdev_get_drvdata - get rdev regulator driver data
4256
 * @rdev: regulator
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
4293
 * @rdev: regulator
4294 4295 4296 4297 4298 4299 4300
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
4343
#endif
4344 4345

static const struct file_operations supply_map_fops = {
4346
#ifdef CONFIG_DEBUG_FS
4347 4348 4349
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
4350
};
4351

4352
#ifdef CONFIG_DEBUG_FS
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

4375 4376 4377 4378 4379 4380
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
4381
	struct summary_data summary_data;
4382 4383 4384 4385 4386 4387 4388 4389 4390

	if (!rdev)
		return;

	seq_printf(s, "%*s%-*s %3d %4d %6d ",
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
		   rdev->use_count, rdev->open_count, rdev->bypass_count);

4391 4392
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4411
		if (consumer->dev && consumer->dev->class == &regulator_class)
4412 4413 4414 4415
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
4416 4417
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4418 4419 4420

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
4421
			seq_printf(s, "%37dmV %5dmV",
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
				   consumer->min_uV / 1000,
				   consumer->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

4432 4433 4434
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
4435

4436 4437
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
4438 4439
}

4440
static int regulator_summary_show_roots(struct device *dev, void *data)
4441
{
4442 4443
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
4444

4445 4446
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
4447

4448 4449
	return 0;
}
4450

4451 4452 4453 4454
static int regulator_summary_show(struct seq_file *s, void *data)
{
	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
	seq_puts(s, "-------------------------------------------------------------------------------\n");
4455

4456 4457
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476

	return 0;
}

static int regulator_summary_open(struct inode *inode, struct file *file)
{
	return single_open(file, regulator_summary_show, inode->i_private);
}
#endif

static const struct file_operations regulator_summary_fops = {
#ifdef CONFIG_DEBUG_FS
	.open		= regulator_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
#endif
};

4477 4478
static int __init regulator_init(void)
{
4479 4480 4481 4482
	int ret;

	ret = class_register(&regulator_class);

4483
	debugfs_root = debugfs_create_dir("regulator", NULL);
4484
	if (!debugfs_root)
4485
		pr_warn("regulator: Failed to create debugfs directory\n");
4486

4487 4488
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
4489

4490
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4491
			    NULL, &regulator_summary_fops);
4492

4493 4494 4495
	regulator_dummy_init();

	return ret;
4496 4497 4498 4499
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
4500

4501
static int __init regulator_late_cleanup(struct device *dev, void *data)
4502
{
4503 4504 4505
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
4506 4507
	int enabled, ret;

4508 4509 4510
	if (c && c->always_on)
		return 0;

4511
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
		return 0;

	mutex_lock(&rdev->mutex);

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
	mutex_unlock(&rdev->mutex);

	return 0;
}

static int __init regulator_init_complete(void)
{
4552 4553 4554 4555 4556 4557 4558 4559 4560
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

4571
	/* If we have a full configuration then disable any regulators
4572 4573 4574
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
4575
	 */
4576 4577
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
4578 4579 4580

	return 0;
}
4581
late_initcall_sync(regulator_init_complete);