core.c 151.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

M
Mark Brown 已提交
36 37
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 39 40 41 42 43 44 45 46
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

47 48
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
49 50
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
51
static LIST_HEAD(regulator_ena_gpio_list);
52
static LIST_HEAD(regulator_supply_alias_list);
53
static LIST_HEAD(regulator_coupler_list);
54
static bool has_full_constraints;
55

56 57
static struct dentry *debugfs_root;

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69
};

70 71 72 73 74 75 76
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
77
	struct gpio_desc *gpiod;
78 79 80 81
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

95
static int _regulator_is_enabled(struct regulator_dev *rdev);
96
static int _regulator_disable(struct regulator *regulator);
97 98
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99
static int _notifier_call_chain(struct regulator_dev *rdev,
100
				  unsigned long event, void *data);
101 102
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
103 104
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
105 106 107
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
108
static void destroy_regulator(struct regulator *regulator);
109
static void _regulator_put(struct regulator *regulator);
110

111
const char *rdev_get_name(struct regulator_dev *rdev)
112 113 114 115 116 117 118 119 120
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

121 122
static bool have_full_constraints(void)
{
123
	return has_full_constraints || of_have_populated_dt();
124 125
}

126 127 128 129 130 131 132 133 134 135 136 137 138
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

139 140 141
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
142
 * @ww_ctx:		w/w mutex acquire context
143 144 145 146 147 148 149
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
150 151
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
152
{
153 154 155 156 157 158 159
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
160
			rdev->ref_cnt++;
161 162 163 164 165 166 167
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
168
		}
169 170
	} else {
		lock = true;
171 172
	}

173 174 175 176 177 178 179 180
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
181 182
}

183 184 185 186 187 188 189 190 191 192
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
193
static void regulator_lock(struct regulator_dev *rdev)
194
{
195
	regulator_lock_nested(rdev, NULL);
196 197 198 199 200 201 202 203 204
}

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
205
static void regulator_unlock(struct regulator_dev *rdev)
206
{
207
	mutex_lock(&regulator_nesting_mutex);
208

209 210 211
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
212
	}
213 214 215 216

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
217 218
}

219
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220
{
221 222 223 224 225
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226

227 228 229 230 231 232 233
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

234 235
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
236
{
237 238
	struct regulator_dev *c_rdev, *supply_rdev;
	int i, supply_n_coupled;
239

240 241
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242 243 244 245

		if (!c_rdev)
			continue;

246 247 248 249 250 251 252
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
			supply_rdev = c_rdev->supply->rdev;
			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;

			regulator_unlock_recursive(supply_rdev,
						   supply_n_coupled);
		}
253

254 255
		regulator_unlock(c_rdev);
	}
256 257
}

258 259 260 261
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
262
{
263
	struct regulator_dev *c_rdev;
264
	int i, err;
265

266 267
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268

269 270
		if (!c_rdev)
			continue;
271

272 273 274 275 276 277 278
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
279

280 281 282 283 284 285 286
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

287
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288 289 290 291 292 293 294 295
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
296 297
		}
	}
298 299 300 301 302 303 304

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
305 306
}

307
/**
308 309 310 311 312
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
313
 * Unlock all regulators related with rdev by coupling or supplying.
314
 */
315 316
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
317
{
318 319
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
320 321 322
}

/**
323 324
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
325
 * @ww_ctx:			w/w mutex acquire context
326 327
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
328
 * all regulators related with rdev by coupling or supplying.
329
 */
330 331
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
332
{
333 334 335
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
336

337
	mutex_lock(&regulator_list_mutex);
338

339
	ww_acquire_init(ww_ctx, &regulator_ww_class);
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
361 362
}

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
385 386
			if (regnode)
				goto err_node_put;
387
		} else {
388
			goto err_node_put;
389 390 391
		}
	}
	return NULL;
392 393 394 395

err_node_put:
	of_node_put(child);
	return regnode;
396 397
}

398 399 400 401 402 403
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
404
 * returns the device node corresponding to the regulator if found, else
405 406 407 408 409
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
410
	char prop_name[64]; /* 64 is max size of property name */
411 412 413

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

414
	snprintf(prop_name, 64, "%s-supply", supply);
415 416 417
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
418 419 420 421
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

422 423
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
424 425 426 427 428
		return NULL;
	}
	return regnode;
}

429
/* Platform voltage constraint check */
430 431
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
432 433 434
{
	BUG_ON(*min_uV > *max_uV);

435
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436
		rdev_err(rdev, "voltage operation not allowed\n");
437 438 439 440 441 442 443 444
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

445 446
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447
			 *min_uV, *max_uV);
448
		return -EINVAL;
449
	}
450 451 452 453

	return 0;
}

454 455 456 457 458 459
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

460 461 462
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
463 464 465
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
466 467
{
	struct regulator *regulator;
468
	struct regulator_voltage *voltage;
469 470

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
471
		voltage = &regulator->voltage[state];
472 473 474 475
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
476
		if (!voltage->min_uV && !voltage->max_uV)
477 478
			continue;

479 480 481 482
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
483 484
	}

485
	if (*min_uV > *max_uV) {
486 487
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
488
		return -EINVAL;
489
	}
490 491 492 493

	return 0;
}

494 495 496 497 498 499
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

500
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501
		rdev_err(rdev, "current operation not allowed\n");
502 503 504 505 506 507 508 509
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

510 511
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512
			 *min_uA, *max_uA);
513
		return -EINVAL;
514
	}
515 516 517 518 519

	return 0;
}

/* operating mode constraint check */
520 521
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
522
{
523
	switch (*mode) {
524 525 526 527 528 529
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
530
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
531 532 533
		return -EINVAL;
	}

534
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535
		rdev_err(rdev, "mode operation not allowed\n");
536 537
		return -EPERM;
	}
538 539 540 541 542 543 544 545

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
546
	}
547 548

	return -EINVAL;
549 550
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return NULL;

	/* If we have no suspend mode configuration don't set anything;
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
	 */
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
			rdev_warn(rdev, "No configuration\n");
		return NULL;
	}

	return rstate;
}

593 594 595
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
596
	struct regulator_dev *rdev = dev_get_drvdata(dev);
597
	int uV;
598

599
	regulator_lock(rdev);
600
	uV = regulator_get_voltage_rdev(rdev);
601
	regulator_unlock(rdev);
602

603 604 605
	if (uV < 0)
		return uV;
	return sprintf(buf, "%d\n", uV);
606
}
607
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
608 609 610 611

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
612
	struct regulator_dev *rdev = dev_get_drvdata(dev);
613 614 615

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
616
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
617

618 619
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
620 621 622
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

623
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
624
}
625
static DEVICE_ATTR_RO(name);
626

627
static const char *regulator_opmode_to_str(int mode)
628 629 630
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
631
		return "fast";
632
	case REGULATOR_MODE_NORMAL:
633
		return "normal";
634
	case REGULATOR_MODE_IDLE:
635
		return "idle";
636
	case REGULATOR_MODE_STANDBY:
637
		return "standby";
638
	}
639 640 641 642 643 644
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
645 646
}

D
David Brownell 已提交
647 648
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
649
{
650
	struct regulator_dev *rdev = dev_get_drvdata(dev);
651

D
David Brownell 已提交
652 653
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
654
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
655 656 657

static ssize_t regulator_print_state(char *buf, int state)
{
658 659 660 661 662 663 664 665
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
666 667 668 669
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
670 671
	ssize_t ret;

672
	regulator_lock(rdev);
673
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
674
	regulator_unlock(rdev);
D
David Brownell 已提交
675

676
	return ret;
D
David Brownell 已提交
677
}
678
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
679

D
David Brownell 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
713 714 715
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
716 717 718
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
719 720 721 722 723 724 725 726
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

727 728 729
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
730
	struct regulator_dev *rdev = dev_get_drvdata(dev);
731 732 733 734 735 736

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
737
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
738 739 740 741

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
742
	struct regulator_dev *rdev = dev_get_drvdata(dev);
743 744 745 746 747 748

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
749
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
750 751 752 753

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
754
	struct regulator_dev *rdev = dev_get_drvdata(dev);
755 756 757 758 759 760

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
761
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
762 763 764 765

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
766
	struct regulator_dev *rdev = dev_get_drvdata(dev);
767 768 769 770 771 772

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
773
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
774 775 776 777

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
778
	struct regulator_dev *rdev = dev_get_drvdata(dev);
779 780 781
	struct regulator *regulator;
	int uA = 0;

782
	regulator_lock(rdev);
783 784 785 786
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
787
	regulator_unlock(rdev);
788 789
	return sprintf(buf, "%d\n", uA);
}
790
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
791

792 793
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
794
{
795
	struct regulator_dev *rdev = dev_get_drvdata(dev);
796 797
	return sprintf(buf, "%d\n", rdev->use_count);
}
798
static DEVICE_ATTR_RO(num_users);
799

800 801
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
802
{
803
	struct regulator_dev *rdev = dev_get_drvdata(dev);
804 805 806 807 808 809 810 811 812

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
813
static DEVICE_ATTR_RO(type);
814 815 816 817

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
818
	struct regulator_dev *rdev = dev_get_drvdata(dev);
819 820 821

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
822 823
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
824 825 826 827

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
828
	struct regulator_dev *rdev = dev_get_drvdata(dev);
829 830 831

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
832 833
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
834 835 836 837

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
838
	struct regulator_dev *rdev = dev_get_drvdata(dev);
839 840 841

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
842 843
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
844 845 846 847

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
848
	struct regulator_dev *rdev = dev_get_drvdata(dev);
849

D
David Brownell 已提交
850 851
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
852
}
853 854
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
855 856 857 858

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
859
	struct regulator_dev *rdev = dev_get_drvdata(dev);
860

D
David Brownell 已提交
861 862
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
863
}
864 865
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
866 867 868 869

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
870
	struct regulator_dev *rdev = dev_get_drvdata(dev);
871

D
David Brownell 已提交
872 873
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
874
}
875 876
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
877 878 879 880

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
881
	struct regulator_dev *rdev = dev_get_drvdata(dev);
882

D
David Brownell 已提交
883 884
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
885
}
886 887
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
888 889 890 891

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
892
	struct regulator_dev *rdev = dev_get_drvdata(dev);
893

D
David Brownell 已提交
894 895
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
896
}
897 898
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
899 900 901 902

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
903
	struct regulator_dev *rdev = dev_get_drvdata(dev);
904

D
David Brownell 已提交
905 906
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
907
}
908 909 910
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
932

933 934
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
935
static int drms_uA_update(struct regulator_dev *rdev)
936 937 938 939 940
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

941 942 943 944
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
945 946
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
947
		return 0;
948
	}
949

950 951
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
952 953
		return 0;

954 955
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
956
		return -EINVAL;
957 958

	/* calc total requested load */
959 960 961 962
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
963

964 965
	current_uA += rdev->constraints->system_load;

966 967 968 969
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
970 971
			rdev_err(rdev, "failed to set load %d: %pe\n",
				 current_uA, ERR_PTR(err));
972
	} else {
973
		/* get output voltage */
974
		output_uV = regulator_get_voltage_rdev(rdev);
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

991 992 993 994 995 996 997
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
998 999
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
				 current_uA, input_uV, output_uV, ERR_PTR(err));
1000 1001
			return err;
		}
1002

1003 1004
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
1005 1006
			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
				 mode, ERR_PTR(err));
1007 1008 1009
	}

	return err;
1010 1011
}

1012 1013
static int __suspend_set_state(struct regulator_dev *rdev,
			       const struct regulator_state *rstate)
1014 1015
{
	int ret = 0;
1016

1017 1018
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1019
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1020 1021
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1022
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1023 1024 1025
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1026
	if (ret < 0) {
1027
		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1028 1029 1030 1031 1032 1033
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1034
			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1035 1036 1037 1038 1039 1040 1041
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1042
			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1043 1044 1045 1046
			return ret;
		}
	}

1047
	return ret;
1048 1049
}

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
static int suspend_set_initial_state(struct regulator_dev *rdev)
{
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev,
			rdev->constraints->initial_state);
	if (!rstate)
		return 0;

	return __suspend_set_state(rdev, rstate);
}

1062 1063
#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
static void print_constraints_debug(struct regulator_dev *rdev)
1064 1065
{
	struct regulation_constraints *constraints = rdev->constraints;
1066
	char buf[160] = "";
1067
	size_t len = sizeof(buf) - 1;
1068 1069
	int count = 0;
	int ret;
1070

1071
	if (constraints->min_uV && constraints->max_uV) {
1072
		if (constraints->min_uV == constraints->max_uV)
1073 1074
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1075
		else
1076 1077 1078 1079
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1080 1081 1082 1083
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1084
		ret = regulator_get_voltage_rdev(rdev);
1085
		if (ret > 0)
1086 1087
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1088 1089
	}

1090
	if (constraints->uV_offset)
1091 1092
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1093

1094
	if (constraints->min_uA && constraints->max_uA) {
1095
		if (constraints->min_uA == constraints->max_uA)
1096 1097
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1098
		else
1099 1100 1101 1102
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1103 1104 1105 1106 1107 1108
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1109 1110
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1111
	}
1112

1113
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1114
		count += scnprintf(buf + count, len - count, "fast ");
1115
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1116
		count += scnprintf(buf + count, len - count, "normal ");
1117
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1118
		count += scnprintf(buf + count, len - count, "idle ");
1119
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1120
		count += scnprintf(buf + count, len - count, "standby ");
1121

1122
	if (!count)
1123 1124 1125 1126 1127 1128
		count = scnprintf(buf, len, "no parameters");
	else
		--count;

	count += scnprintf(buf + count, len - count, ", %s",
		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1129

1130
	rdev_dbg(rdev, "%s\n", buf);
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
}
#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
static inline void print_constraints_debug(struct regulator_dev *rdev) {}
#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;

	print_constraints_debug(rdev);
1141 1142

	if ((constraints->min_uV != constraints->max_uV) &&
1143
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1144 1145
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1146 1147
}

1148
static int machine_constraints_voltage(struct regulator_dev *rdev,
1149
	struct regulation_constraints *constraints)
1150
{
1151
	const struct regulator_ops *ops = rdev->desc->ops;
1152 1153 1154 1155
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1156 1157
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1158
		int current_uV = regulator_get_voltage_rdev(rdev);
1159 1160

		if (current_uV == -ENOTRECOVERABLE) {
1161
			/* This regulator can't be read and must be initialized */
1162 1163 1164 1165 1166 1167
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1168
			current_uV = regulator_get_voltage_rdev(rdev);
1169 1170
		}

1171
		if (current_uV < 0) {
1172
			rdev_err(rdev,
1173 1174
				 "failed to get the current voltage: %pe\n",
				 ERR_PTR(current_uV));
1175 1176
			return current_uV;
		}
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1197 1198
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1199
			ret = _regulator_do_set_voltage(
1200
				rdev, target_min, target_max);
1201 1202
			if (ret < 0) {
				rdev_err(rdev,
1203 1204
					"failed to apply %d-%duV constraint: %pe\n",
					target_min, target_max, ERR_PTR(ret));
1205 1206
				return ret;
			}
1207
		}
1208
	}
1209

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1221 1222
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1223
		if (count == 1 && !cmin) {
1224
			cmin = 1;
1225
			cmax = INT_MAX;
1226 1227
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1228 1229
		}

1230 1231
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1232
			return 0;
1233

1234
		/* else require explicit machine-level constraints */
1235
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1236
			rdev_err(rdev, "invalid voltage constraints\n");
1237
			return -EINVAL;
1238 1239
		}

1240 1241 1242 1243
		/* no need to loop voltages if range is continuous */
		if (rdev->desc->continuous_voltage_range)
			return 0;

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1261 1262 1263
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1264
			return -EINVAL;
1265 1266 1267 1268
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1269 1270
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1271 1272 1273
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1274 1275
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1276 1277 1278 1279
			constraints->max_uV = max_uV;
		}
	}

1280 1281 1282
	return 0;
}

1283 1284 1285
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1286
	const struct regulator_ops *ops = rdev->desc->ops;
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1313 1314
static int _regulator_do_enable(struct regulator_dev *rdev);

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1327
	const struct regulation_constraints *constraints)
1328 1329
{
	int ret = 0;
1330
	const struct regulator_ops *ops = rdev->desc->ops;
1331

1332 1333 1334 1335 1336 1337
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1338 1339
	if (!rdev->constraints)
		return -ENOMEM;
1340

1341
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1342
	if (ret != 0)
1343
		return ret;
1344

1345
	ret = machine_constraints_current(rdev, rdev->constraints);
1346
	if (ret != 0)
1347
		return ret;
1348

1349 1350 1351 1352
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
1353
			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1354
			return ret;
1355 1356 1357
		}
	}

1358
	/* do we need to setup our suspend state */
1359
	if (rdev->constraints->initial_state) {
1360
		ret = suspend_set_initial_state(rdev);
1361
		if (ret < 0) {
1362
			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1363
			return ret;
1364 1365
		}
	}
1366

1367
	if (rdev->constraints->initial_mode) {
1368
		if (!ops->set_mode) {
1369
			rdev_err(rdev, "no set_mode operation\n");
1370
			return -EINVAL;
1371 1372
		}

1373
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1374
		if (ret < 0) {
1375
			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1376
			return ret;
1377
		}
1378 1379 1380 1381 1382 1383
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1384 1385
	}

1386 1387
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1388 1389
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
1390
			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1391
			return ret;
1392 1393 1394
		}
	}

S
Stephen Boyd 已提交
1395 1396 1397
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
1398
			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1399
			return ret;
S
Stephen Boyd 已提交
1400 1401 1402
		}
	}

S
Stephen Boyd 已提交
1403 1404 1405
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
1406
			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1407
			return ret;
S
Stephen Boyd 已提交
1408 1409 1410
		}
	}

1411 1412 1413 1414
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
1415 1416
			rdev_err(rdev, "failed to set over current protection: %pe\n",
				 ERR_PTR(ret));
1417
			return ret;
1418 1419 1420
		}
	}

1421 1422 1423 1424 1425 1426
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
1427
			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1428 1429 1430 1431
			return ret;
		}
	}

1432 1433 1434 1435
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1436 1437 1438 1439 1440 1441 1442 1443 1444
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1445 1446
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1447
			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1448 1449
			return ret;
		}
1450 1451 1452

		if (rdev->constraints->always_on)
			rdev->use_count++;
1453 1454
	}

1455
	print_constraints(rdev);
1456
	return 0;
1457 1458 1459 1460
}

/**
 * set_supply - set regulator supply regulator
1461 1462
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1463 1464 1465 1466 1467 1468
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1469
		      struct regulator_dev *supply_rdev)
1470 1471 1472
{
	int err;

1473 1474
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1475 1476 1477
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1478
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1479 1480
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1481
		return err;
1482
	}
1483
	supply_rdev->open_count++;
1484 1485

	return 0;
1486 1487 1488
}

/**
1489
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1490
 * @rdev:         regulator source
1491
 * @consumer_dev_name: dev_name() string for device supply applies to
1492
 * @supply:       symbolic name for supply
1493 1494 1495 1496 1497 1498 1499
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1500 1501
				      const char *consumer_dev_name,
				      const char *supply)
1502
{
1503
	struct regulator_map *node, *new_node;
1504
	int has_dev;
1505 1506 1507 1508

	if (supply == NULL)
		return -EINVAL;

1509 1510 1511 1512 1513
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
	if (new_node == NULL)
		return -ENOMEM;

	new_node->regulator = rdev;
	new_node->supply = supply;

	if (has_dev) {
		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (new_node->dev_name == NULL) {
			kfree(new_node);
			return -ENOMEM;
		}
	}

	mutex_lock(&regulator_list_mutex);
1530
	list_for_each_entry(node, &regulator_map_list, list) {
1531 1532 1533 1534
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1535
			continue;
1536 1537
		}

1538 1539 1540
		if (strcmp(node->supply, supply) != 0)
			continue;

1541 1542 1543 1544 1545 1546
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1547
		goto fail;
1548 1549
	}

1550 1551
	list_add(&new_node->list, &regulator_map_list);
	mutex_unlock(&regulator_list_mutex);
1552

1553
	return 0;
1554 1555 1556 1557 1558 1559

fail:
	mutex_unlock(&regulator_list_mutex);
	kfree(new_node->dev_name);
	kfree(new_node);
	return -EBUSY;
1560 1561
}

1562 1563 1564 1565 1566 1567 1568
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1569
			kfree(node->dev_name);
1570 1571 1572 1573 1574
			kfree(node);
		}
	}
}

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1624
#define REG_STR_SIZE	64
1625 1626 1627 1628 1629 1630

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	int err;

	if (dev) {
		char buf[REG_STR_SIZE];
		int size;

		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
			return NULL;

		supply_name = kstrdup(buf, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	} else {
		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
		if (supply_name == NULL)
			return NULL;
	}
1650 1651

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1652 1653
	if (regulator == NULL) {
		kfree(supply_name);
1654
		return NULL;
1655
	}
1656 1657

	regulator->rdev = rdev;
1658 1659 1660
	regulator->supply_name = supply_name;

	regulator_lock(rdev);
1661
	list_add(&regulator->list, &rdev->consumer_list);
1662
	regulator_unlock(rdev);
1663 1664

	if (dev) {
1665 1666
		regulator->dev = dev;

1667
		/* Add a link to the device sysfs entry */
1668
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1669
					       supply_name);
1670
		if (err) {
1671 1672
			rdev_dbg(rdev, "could not add device link %s: %pe\n",
				  dev->kobj.name, ERR_PTR(err));
1673
			/* non-fatal */
1674
		}
1675 1676
	}

1677
	regulator->debugfs = debugfs_create_dir(supply_name,
1678
						rdev->debugfs);
1679
	if (!regulator->debugfs) {
1680
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1681 1682 1683 1684
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1685
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1686
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1687
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1688 1689 1690
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1691
	}
1692

1693 1694 1695 1696 1697
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1698
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1699 1700 1701
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1702 1703 1704
	return regulator;
}

1705 1706
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1707 1708
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1709 1710 1711
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1712 1713
}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1762 1763 1764 1765 1766
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1767
 */
1768
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1769
						  const char *supply)
1770
{
1771
	struct regulator_dev *r = NULL;
1772
	struct device_node *node;
1773 1774
	struct regulator_map *map;
	const char *devname = NULL;
1775

1776 1777
	regulator_supply_alias(&dev, &supply);

1778 1779 1780
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1781
		if (node) {
1782 1783 1784
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1785

1786
			/*
1787 1788
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1789
			 */
1790
			return ERR_PTR(-EPROBE_DEFER);
1791
		}
1792 1793 1794
	}

	/* if not found, try doing it non-dt way */
1795 1796 1797
	if (dev)
		devname = dev_name(dev);

1798
	mutex_lock(&regulator_list_mutex);
1799 1800 1801 1802 1803 1804
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1805 1806
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1807 1808
			r = map->regulator;
			break;
1809
		}
1810
	}
1811
	mutex_unlock(&regulator_list_mutex);
1812

1813 1814 1815 1816
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1817 1818 1819 1820
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1821 1822
}

1823 1824 1825 1826 1827 1828
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

1829
	/* No supply to resolve? */
1830 1831 1832 1833 1834 1835 1836
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1837 1838 1839 1840
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1841 1842 1843 1844
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1845 1846
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1847
			get_device(&r->dev);
1848 1849 1850 1851 1852
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1853 1854
	}

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1868 1869
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1870 1871
	if (ret < 0) {
		put_device(&r->dev);
1872
		return ret;
1873
	}
1874 1875

	ret = set_supply(rdev, r);
1876 1877
	if (ret < 0) {
		put_device(&r->dev);
1878
		return ret;
1879
	}
1880

1881 1882 1883 1884 1885 1886
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1887
		ret = regulator_enable(rdev->supply);
1888
		if (ret < 0) {
1889
			_regulator_put(rdev->supply);
1890
			rdev->supply = NULL;
1891
			return ret;
1892
		}
1893 1894 1895 1896 1897
	}

	return 0;
}

1898
/* Internal regulator request function */
1899 1900
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1901 1902
{
	struct regulator_dev *rdev;
1903
	struct regulator *regulator;
1904
	struct device_link *link;
1905
	int ret;
1906

1907 1908 1909 1910 1911
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1912
	if (id == NULL) {
1913
		pr_err("get() with no identifier\n");
1914
		return ERR_PTR(-EINVAL);
1915 1916
	}

1917
	rdev = regulator_dev_lookup(dev, id);
1918 1919
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1920

1921 1922 1923 1924 1925 1926
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1927

1928 1929 1930 1931 1932
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1933

1934 1935 1936 1937 1938 1939 1940
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
1941
			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1942 1943 1944
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1945

1946 1947 1948
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
1949
			fallthrough;
1950

1951 1952 1953
		default:
			return ERR_PTR(-ENODEV);
		}
1954 1955
	}

1956 1957
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1958 1959
		put_device(&rdev->dev);
		return regulator;
1960 1961
	}

1962
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1963
		regulator = ERR_PTR(-EBUSY);
1964 1965
		put_device(&rdev->dev);
		return regulator;
1966 1967
	}

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1978 1979 1980
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1981 1982
		put_device(&rdev->dev);
		return regulator;
1983 1984
	}

1985
	if (!try_module_get(rdev->owner)) {
1986
		regulator = ERR_PTR(-EPROBE_DEFER);
1987 1988 1989
		put_device(&rdev->dev);
		return regulator;
	}
1990

1991 1992 1993 1994
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
W
Wen Yang 已提交
1995
		put_device(&rdev->dev);
1996
		return regulator;
1997 1998
	}

1999
	rdev->open_count++;
2000
	if (get_type == EXCLUSIVE_GET) {
2001 2002 2003 2004 2005 2006 2007 2008 2009
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

2010 2011 2012
	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
	if (!IS_ERR_OR_NULL(link))
		regulator->device_link = true;
2013

2014 2015
	return regulator;
}
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
2032
	return _regulator_get(dev, id, NORMAL_GET);
2033
}
2034 2035
EXPORT_SYMBOL_GPL(regulator_get);

2036 2037 2038 2039 2040 2041 2042
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
2043 2044 2045
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2059
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2060 2061 2062
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2063 2064 2065 2066 2067 2068
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2069
 * or IS_ERR() condition containing errno.
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2085
	return _regulator_get(dev, id, OPTIONAL_GET);
2086 2087 2088
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2089
static void destroy_regulator(struct regulator *regulator)
2090
{
2091
	struct regulator_dev *rdev = regulator->rdev;
2092

2093 2094
	debugfs_remove_recursive(regulator->debugfs);

2095
	if (regulator->dev) {
2096 2097
		if (regulator->device_link)
			device_link_remove(regulator->dev, &rdev->dev);
2098 2099

		/* remove any sysfs entries */
2100
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2101 2102
	}

2103
	regulator_lock(rdev);
2104 2105
	list_del(&regulator->list);

2106 2107
	rdev->open_count--;
	rdev->exclusive = 0;
2108
	regulator_unlock(rdev);
2109

2110
	kfree_const(regulator->supply_name);
2111
	kfree(regulator);
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
}

/* regulator_list_mutex lock held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
{
	struct regulator_dev *rdev;

	if (IS_ERR_OR_NULL(regulator))
		return;

	lockdep_assert_held_once(&regulator_list_mutex);

	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

	rdev = regulator->rdev;

	destroy_regulator(regulator);
2130

2131
	module_put(rdev->owner);
W
Wen Yang 已提交
2132
	put_device(&rdev->dev);
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2147 2148 2149 2150
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2228 2229
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2230
					 struct device *alias_dev,
2231
					 const char *const *alias_id,
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2269
					    const char *const *id,
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2280 2281 2282 2283
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
2284
	struct regulator_enable_gpio *pin, *new_pin;
2285
	struct gpio_desc *gpiod;
2286

2287
	gpiod = config->ena_gpiod;
2288 2289 2290
	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);

	mutex_lock(&regulator_list_mutex);
2291

2292
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2293
		if (pin->gpiod == gpiod) {
2294
			rdev_dbg(rdev, "GPIO is already used\n");
2295 2296 2297 2298
			goto update_ena_gpio_to_rdev;
		}
	}

2299 2300
	if (new_pin == NULL) {
		mutex_unlock(&regulator_list_mutex);
2301
		return -ENOMEM;
2302 2303 2304 2305
	}

	pin = new_pin;
	new_pin = NULL;
2306

2307
	pin->gpiod = gpiod;
2308 2309 2310 2311 2312
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
2313 2314 2315 2316

	mutex_unlock(&regulator_list_mutex);
	kfree(new_pin);

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
		if (pin != rdev->ena_pin)
			continue;

		if (--pin->request_count)
			break;

		gpiod_put(pin->gpiod);
		list_del(&pin->list);
		kfree(pin);
		break;
2339
	}
2340 2341

	rdev->ena_pin = NULL;
2342 2343
}

2344
/**
2345 2346 2347 2348
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2362
			gpiod_set_value_cansleep(pin->gpiod, 1);
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2373
			gpiod_set_value_cansleep(pin->gpiod, 0);
2374 2375 2376 2377 2378 2379 2380
			pin->enable_count = 0;
		}
	}

	return 0;
}

2381 2382 2383 2384 2385 2386
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2387
 *     Documentation/timers/timers-howto.rst
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
/**
 * _regulator_check_status_enabled
 *
 * A helper function to check if the regulator status can be interpreted
 * as 'regulator is enabled'.
 * @rdev: the regulator device to check
 *
 * Return:
 * * 1			- if status shows regulator is in enabled state
 * * 0			- if not enabled state
 * * Error Value	- as received from ops->get_status()
 */
static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
{
	int ret = rdev->desc->ops->get_status(rdev);

	if (ret < 0) {
		rdev_info(rdev, "get_status returned error: %d\n", ret);
		return ret;
	}

	switch (ret) {
	case REGULATOR_STATUS_OFF:
	case REGULATOR_STATUS_ERROR:
	case REGULATOR_STATUS_UNDEFINED:
		return 0;
	default:
		return 1;
	}
}

2451 2452 2453 2454 2455 2456 2457 2458 2459
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
2460
		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2461 2462 2463 2464 2465
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
2481
			 * detected and we get a penalty of
2482 2483 2484 2485 2486 2487 2488 2489 2490
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2491
	if (rdev->ena_pin) {
2492 2493 2494 2495 2496 2497
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2498
	} else if (rdev->desc->ops->enable) {
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
	/* If poll_enabled_time is set, poll upto the delay calculated
	 * above, delaying poll_enabled_time uS to check if the regulator
	 * actually got enabled.
	 * If the regulator isn't enabled after enable_delay has
	 * expired, return -ETIMEDOUT.
	 */
	if (rdev->desc->poll_enabled_time) {
		unsigned int time_remaining = delay;

		while (time_remaining > 0) {
			_regulator_enable_delay(rdev->desc->poll_enabled_time);

			if (rdev->desc->ops->get_status) {
				ret = _regulator_check_status_enabled(rdev);
				if (ret < 0)
					return ret;
				else if (ret)
					break;
			} else if (rdev->desc->ops->is_enabled(rdev))
				break;

			time_remaining -= rdev->desc->poll_enabled_time;
		}

		if (time_remaining <= 0) {
			rdev_err(rdev, "Enabled check timed out\n");
			return -ETIMEDOUT;
		}
	} else {
		_regulator_enable_delay(delay);
	}
2542 2543 2544 2545 2546 2547

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2607
/* locks held by regulator_enable() */
2608
static int _regulator_enable(struct regulator *regulator)
2609
{
2610
	struct regulator_dev *rdev = regulator->rdev;
2611
	int ret;
2612

2613 2614
	lockdep_assert_held_once(&rdev->mutex.base);

2615
	if (rdev->use_count == 0 && rdev->supply) {
2616
		ret = _regulator_enable(rdev->supply);
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2627

2628 2629 2630
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2631

2632 2633 2634 2635
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2636
			if (!regulator_ops_is_valid(rdev,
2637 2638
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2639
				goto err_consumer_disable;
2640
			}
2641

2642
			ret = _regulator_do_enable(rdev);
2643
			if (ret < 0)
2644
				goto err_consumer_disable;
2645

2646 2647
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2648
		} else if (ret < 0) {
2649
			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2650
			goto err_consumer_disable;
2651
		}
2652
		/* Fallthrough on positive return values - already enabled */
2653 2654
	}

2655 2656 2657
	rdev->use_count++;

	return 0;
2658

2659 2660 2661
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2662
err_disable_supply:
2663
	if (rdev->use_count == 0 && rdev->supply)
2664
		_regulator_disable(rdev->supply);
2665 2666

	return ret;
2667 2668 2669 2670 2671 2672
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2673 2674 2675 2676
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2677
 * NOTE: the output value can be set by other drivers, boot loader or may be
2678
 * hardwired in the regulator.
2679 2680 2681
 */
int regulator_enable(struct regulator *regulator)
{
2682
	struct regulator_dev *rdev = regulator->rdev;
2683
	struct ww_acquire_ctx ww_ctx;
2684
	int ret;
2685

2686
	regulator_lock_dependent(rdev, &ww_ctx);
2687
	ret = _regulator_enable(regulator);
2688
	regulator_unlock_dependent(rdev, &ww_ctx);
2689

2690 2691 2692 2693
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2694 2695 2696 2697 2698 2699
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2700
	if (rdev->ena_pin) {
2701 2702 2703 2704 2705 2706
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2707 2708 2709 2710 2711 2712 2713

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2714 2715 2716 2717 2718 2719
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2720 2721 2722 2723 2724
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2725
/* locks held by regulator_disable() */
2726
static int _regulator_disable(struct regulator *regulator)
2727
{
2728
	struct regulator_dev *rdev = regulator->rdev;
2729 2730
	int ret = 0;

2731
	lockdep_assert_held_once(&rdev->mutex.base);
2732

D
David Brownell 已提交
2733
	if (WARN(rdev->use_count <= 0,
2734
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2735 2736
		return -EIO;

2737
	/* are we the last user and permitted to disable ? */
2738 2739
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2740 2741

		/* we are last user */
2742
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2743 2744 2745 2746 2747 2748
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2749
			ret = _regulator_do_disable(rdev);
2750
			if (ret < 0) {
2751
				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2752 2753 2754
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2755 2756
				return ret;
			}
2757 2758
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2759 2760 2761 2762 2763 2764
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2765

2766 2767 2768
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2769 2770 2771
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2772
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2773
		ret = _regulator_disable(rdev->supply);
2774

2775 2776 2777 2778 2779 2780 2781
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2782 2783 2784
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2785
 *
2786
 * NOTE: this will only disable the regulator output if no other consumer
2787 2788
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2789 2790 2791
 */
int regulator_disable(struct regulator *regulator)
{
2792
	struct regulator_dev *rdev = regulator->rdev;
2793
	struct ww_acquire_ctx ww_ctx;
2794
	int ret;
2795

2796
	regulator_lock_dependent(rdev, &ww_ctx);
2797
	ret = _regulator_disable(regulator);
2798
	regulator_unlock_dependent(rdev, &ww_ctx);
2799

2800 2801 2802 2803 2804
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2805
static int _regulator_force_disable(struct regulator_dev *rdev)
2806 2807 2808
{
	int ret = 0;

2809
	lockdep_assert_held_once(&rdev->mutex.base);
2810

2811 2812 2813 2814 2815
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2816 2817
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
2818
		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2819 2820
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2821
		return ret;
2822 2823
	}

2824 2825 2826 2827
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2841
	struct regulator_dev *rdev = regulator->rdev;
2842
	struct ww_acquire_ctx ww_ctx;
2843 2844
	int ret;

2845
	regulator_lock_dependent(rdev, &ww_ctx);
2846

2847
	ret = _regulator_force_disable(regulator->rdev);
2848

2849 2850
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2851 2852 2853 2854 2855 2856

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2857 2858
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2859

2860
	regulator_unlock_dependent(rdev, &ww_ctx);
2861

2862 2863 2864 2865
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2866 2867 2868 2869
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2870
	struct ww_acquire_ctx ww_ctx;
2871
	int count, i, ret;
2872 2873
	struct regulator *regulator;
	int total_count = 0;
2874

2875
	regulator_lock_dependent(rdev, &ww_ctx);
2876

2877 2878 2879 2880 2881 2882 2883 2884
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
2897 2898
				rdev_err(rdev, "Deferred disable failed: %pe\n",
					 ERR_PTR(ret));
2899
		}
2900
	}
2901
	WARN_ON(!total_count);
2902

2903 2904 2905 2906
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2907 2908 2909 2910 2911
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2912
 * @ms: milliseconds until the regulator is disabled
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2925 2926 2927
	if (!ms)
		return regulator_disable(regulator);

2928
	regulator_lock(rdev);
2929
	regulator->deferred_disables++;
2930 2931
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2932
	regulator_unlock(rdev);
2933

2934
	return 0;
2935 2936 2937
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2938 2939
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2940
	/* A GPIO control always takes precedence */
2941
	if (rdev->ena_pin)
2942 2943
		return rdev->ena_gpio_state;

2944
	/* If we don't know then assume that the regulator is always on */
2945
	if (!rdev->desc->ops->is_enabled)
2946
		return 1;
2947

2948
	return rdev->desc->ops->is_enabled(rdev);
2949 2950
}

2951 2952
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2953 2954 2955 2956 2957 2958 2959 2960
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
2961 2962
		if (selector >= rdev->desc->n_voltages ||
		    selector < rdev->desc->linear_min_sel)
2963 2964
			return -EINVAL;
		if (lock)
2965
			regulator_lock(rdev);
2966 2967
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2968
			regulator_unlock(rdev);
2969
	} else if (rdev->is_switch && rdev->supply) {
2970 2971
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2986 2987 2988 2989
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2990 2991 2992 2993 2994 2995 2996
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2997 2998 2999
 */
int regulator_is_enabled(struct regulator *regulator)
{
3000 3001
	int ret;

3002 3003 3004
	if (regulator->always_on)
		return 1;

3005
	regulator_lock(regulator->rdev);
3006
	ret = _regulator_is_enabled(regulator->rdev);
3007
	regulator_unlock(regulator->rdev);
3008 3009

	return ret;
3010 3011 3012
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

3025 3026 3027
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

3028
	if (!rdev->is_switch || !rdev->supply)
3029 3030 3031
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
3042
 * zero if this selector code can't be used on this system, or a
3043 3044 3045 3046
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
3047
	return _regulator_list_voltage(regulator->rdev, selector, 1);
3048 3049 3050
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
3083 3084
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3085 3086 3087 3088

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

3089 3090
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
3091

3092
	return 0;
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3110 3111
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3112

3113 3114
	if (selector >= rdev->desc->n_voltages ||
	    selector < rdev->desc->linear_min_sel)
3115 3116 3117 3118 3119 3120 3121 3122
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3138 3139 3140 3141 3142 3143 3144
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3145
 * Returns a boolean.
3146 3147 3148 3149
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3150
	struct regulator_dev *rdev = regulator->rdev;
3151 3152
	int i, voltages, ret;

3153
	/* If we can't change voltage check the current voltage */
3154
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3155 3156
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3157
			return min_uV <= ret && ret <= max_uV;
3158 3159 3160 3161
		else
			return ret;
	}

3162 3163 3164 3165 3166
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3167 3168
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3169
		return 0;
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3181
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3182

3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3197 3198 3199 3200 3201
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3202 3203 3204
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3205 3206 3207 3208 3209 3210 3211
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3212
	data.old_uV = regulator_get_voltage_rdev(rdev);
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3236
	data.old_uV = regulator_get_voltage_rdev(rdev);
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3314 3315 3316 3317 3318 3319 3320 3321 3322
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3323 3324
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3325 3326 3327 3328 3329 3330
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3331 3332

	if (ramp_delay == 0) {
3333
		rdev_dbg(rdev, "ramp_delay not set\n");
3334 3335 3336 3337 3338 3339
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3340 3341 3342 3343
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3344
	int delay = 0;
3345
	int best_val = 0;
3346
	unsigned int selector;
3347
	int old_selector = -1;
3348
	const struct regulator_ops *ops = rdev->desc->ops;
3349
	int old_uV = regulator_get_voltage_rdev(rdev);
3350 3351 3352

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3353 3354 3355
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3356 3357 3358 3359
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3360
	if (_regulator_is_enabled(rdev) &&
3361 3362
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3363 3364 3365 3366
		if (old_selector < 0)
			return old_selector;
	}

3367
	if (ops->set_voltage) {
3368 3369
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3370 3371

		if (ret >= 0) {
3372 3373 3374
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3375
			else
3376
				best_val = regulator_get_voltage_rdev(rdev);
3377 3378
		}

3379
	} else if (ops->set_voltage_sel) {
3380
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3381
		if (ret >= 0) {
3382
			best_val = ops->list_voltage(rdev, ret);
3383 3384
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3385 3386
				if (old_selector == selector)
					ret = 0;
3387 3388 3389
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3390
				else
3391 3392
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3393 3394 3395
			} else {
				ret = -EINVAL;
			}
3396
		}
3397 3398 3399
	} else {
		ret = -EINVAL;
	}
3400

3401 3402
	if (ret)
		goto out;
3403

3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3421
		}
3422
	}
3423

3424
	if (delay < 0) {
3425
		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3426
		delay = 0;
3427 3428
	}

3429 3430 3431 3432 3433 3434
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3435 3436
	}

3437
	if (best_val >= 0) {
3438 3439
		unsigned long data = best_val;

3440
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3441 3442
				     (void *)data);
	}
3443

3444
out:
3445
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3446 3447 3448 3449

	return ret;
}

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3476
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3477 3478
					  int min_uV, int max_uV,
					  suspend_state_t state)
3479 3480
{
	struct regulator_dev *rdev = regulator->rdev;
3481
	struct regulator_voltage *voltage = &regulator->voltage[state];
3482
	int ret = 0;
3483
	int old_min_uV, old_max_uV;
3484
	int current_uV;
3485

3486 3487 3488 3489
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3490
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3491 3492
		goto out;

3493
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3494
	 * return successfully even though the regulator does not support
3495 3496
	 * changing the voltage.
	 */
3497
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3498
		current_uV = regulator_get_voltage_rdev(rdev);
3499
		if (min_uV <= current_uV && current_uV <= max_uV) {
3500 3501
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3502 3503 3504 3505
			goto out;
		}
	}

3506
	/* sanity check */
3507 3508
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3509 3510 3511 3512 3513 3514 3515 3516
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3517

3518
	/* restore original values in case of error */
3519 3520 3521 3522
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3523

3524 3525
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3526 3527 3528 3529
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3530

3531 3532 3533 3534
out:
	return ret;
}

3535 3536
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3537 3538 3539 3540 3541
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3542 3543 3544
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3545 3546
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3547 3548 3549 3550 3551 3552
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3553
			goto out;
3554 3555
		}

M
Mark Brown 已提交
3556
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3557 3558
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3559
			goto out;
3560 3561 3562 3563
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3564
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3565 3566
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3567
			goto out;
3568 3569 3570 3571 3572 3573 3574
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3575
				best_supply_uV, INT_MAX, state);
3576
		if (ret) {
3577 3578
			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
				ERR_PTR(ret));
3579
			goto out;
3580 3581 3582
		}
	}

3583 3584 3585 3586 3587
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3588
	if (ret < 0)
3589
		goto out;
3590

3591 3592
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3593
				best_supply_uV, INT_MAX, state);
3594
		if (ret)
3595 3596
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
				 ERR_PTR(ret));
3597 3598 3599 3600
		/* No need to fail here */
		ret = 0;
	}

3601
out:
3602
	return ret;
3603
}
3604
EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3605

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3616
		*current_uV = regulator_get_voltage_rdev(rdev);
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3648
	int i, ret, max_spread;
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3682
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3693

3694 3695 3696 3697 3698 3699 3700 3701
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3702 3703
	max_spread = constraints->max_spread[0];

3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3721
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3759 3760 3761 3762
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3763
			ret = regulator_get_voltage_rdev(rdev);
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

3779 3780
int regulator_do_balance_voltage(struct regulator_dev *rdev,
				 suspend_state_t state, bool skip_coupled)
3781 3782 3783 3784 3785 3786
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3787 3788
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3789 3790

	c_rdevs = c_desc->coupled_rdevs;
3791
	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3818
			if (test_bit(i, &c_rdev_done))
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3846

3847 3848
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3849

3850 3851 3852
		if (ret < 0)
			goto out;

3853 3854
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
3855 3856 3857 3858

	} while (n_coupled > 1);

out:
3859 3860 3861
	return ret;
}

3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_coupler *coupler = c_desc->coupler;
	bool skip_coupled = false;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		skip_coupled = true;

	if (c_desc->n_resolved < c_desc->n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);

	return regulator_do_balance_voltage(rdev, state, skip_coupled);
}

3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3908 3909
	struct ww_acquire_ctx ww_ctx;
	int ret;
3910

3911
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3912

3913 3914
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3915

3916
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3917

3918 3919 3920 3921
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3934
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3988 3989
	struct ww_acquire_ctx ww_ctx;
	int ret;
3990 3991 3992 3993 3994

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3995
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3996 3997 3998 3999

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

4000
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4001 4002 4003 4004 4005

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
4019 4020
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
4021 4022 4023 4024 4025
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

4026 4027 4028 4029 4030
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

4031
	/* Currently requires operations to do this */
4032
	if (!ops->list_voltage || !rdev->desc->n_voltages)
4033 4034 4035 4036
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
4037 4038 4039
		if (i < rdev->desc->linear_min_sel)
			continue;

4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

4058
/**
4059 4060
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
4061 4062 4063 4064 4065 4066
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
4067
 * Drivers providing ramp_delay in regulation_constraints can use this as their
4068
 * set_voltage_time_sel() operation.
4069 4070 4071 4072 4073
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
4074
	int old_volt, new_volt;
4075

4076 4077 4078
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
4079

4080 4081 4082
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

4083 4084 4085 4086 4087
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4088
}
4089
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4090

4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
4102
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4103 4104
	int ret, min_uV, max_uV;

4105
	regulator_lock(rdev);
4106 4107 4108 4109 4110 4111 4112 4113

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
4114
	if (!voltage->min_uV && !voltage->max_uV) {
4115 4116 4117 4118
		ret = -EINVAL;
		goto out;
	}

4119 4120
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
4121 4122 4123 4124 4125 4126

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

4127
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4128 4129 4130 4131 4132 4133
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
4134
	regulator_unlock(rdev);
4135 4136 4137 4138
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

4139
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4140
{
4141
	int sel, ret;
4142 4143 4144 4145 4146 4147 4148 4149
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
4150 4151 4152 4153 4154
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
4155

4156
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4157 4158
		}
	}
4159 4160 4161 4162 4163

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4164
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4165
	} else if (rdev->desc->ops->get_voltage) {
4166
		ret = rdev->desc->ops->get_voltage(rdev);
4167 4168
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4169 4170
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4171
	} else if (rdev->supply) {
4172
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4173 4174
	} else if (rdev->supply_name) {
		return -EPROBE_DEFER;
4175
	} else {
4176
		return -EINVAL;
4177
	}
4178

4179 4180
	if (ret < 0)
		return ret;
4181
	return ret - rdev->constraints->uV_offset;
4182
}
4183
EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4196
	struct ww_acquire_ctx ww_ctx;
4197 4198
	int ret;

4199
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4200
	ret = regulator_get_voltage_rdev(regulator->rdev);
4201
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4202 4203 4204 4205 4206 4207 4208 4209

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4210
 * @min_uA: Minimum supported current in uA
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4229
	regulator_lock(rdev);
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4244
	regulator_unlock(rdev);
4245 4246 4247 4248
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4249 4250 4251 4252 4253 4254 4255 4256 4257
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4258 4259 4260 4261
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4262
	regulator_lock(rdev);
4263
	ret = _regulator_get_current_limit_unlocked(rdev);
4264
	regulator_unlock(rdev);
4265

4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4299
	int regulator_curr_mode;
4300

4301
	regulator_lock(rdev);
4302 4303 4304 4305 4306 4307 4308

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4309 4310 4311 4312 4313 4314 4315 4316 4317
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4318
	/* constraints check */
4319
	ret = regulator_mode_constrain(rdev, &mode);
4320 4321 4322 4323 4324
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4325
	regulator_unlock(rdev);
4326 4327 4328 4329
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4330 4331 4332 4333 4334 4335 4336 4337 4338
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4339 4340 4341 4342
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4343
	regulator_lock(rdev);
4344
	ret = _regulator_get_mode_unlocked(rdev);
4345
	regulator_unlock(rdev);
4346

4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4362 4363 4364 4365 4366
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4367
	regulator_lock(rdev);
4368 4369 4370 4371 4372 4373 4374 4375 4376

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4377
	regulator_unlock(rdev);
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4395
/**
4396
 * regulator_set_load - set regulator load
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4419 4420 4421 4422 4423 4424 4425 4426
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4427
 * On error a negative errno is returned.
4428
 */
4429
int regulator_set_load(struct regulator *regulator, int uA_load)
4430 4431
{
	struct regulator_dev *rdev = regulator->rdev;
4432 4433
	int old_uA_load;
	int ret = 0;
4434

4435
	regulator_lock(rdev);
4436
	old_uA_load = regulator->uA_load;
4437
	regulator->uA_load = uA_load;
4438 4439 4440 4441 4442
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4443
	regulator_unlock(rdev);
4444

4445 4446
	return ret;
}
4447
EXPORT_SYMBOL_GPL(regulator_set_load);
4448

4449 4450 4451 4452
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4453
 * @enable: enable or disable bypass mode
4454 4455 4456 4457 4458 4459 4460 4461 4462
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
4463
	const char *name = rdev_get_name(rdev);
4464 4465 4466 4467 4468
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4469
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4470 4471
		return 0;

4472
	regulator_lock(rdev);
4473 4474 4475 4476 4477

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
4478 4479
			trace_regulator_bypass_enable(name);

4480 4481 4482
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
4483 4484
			else
				trace_regulator_bypass_enable_complete(name);
4485 4486 4487 4488 4489 4490
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
4491 4492
			trace_regulator_bypass_disable(name);

4493 4494 4495
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
4496 4497
			else
				trace_regulator_bypass_disable_complete(name);
4498 4499 4500 4501 4502 4503
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4504
	regulator_unlock(rdev);
4505 4506 4507 4508 4509

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4510 4511 4512
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4513
 * @nb: notifier block
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4528
 * @nb: notifier block
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4540 4541 4542
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4543
static int _notifier_call_chain(struct regulator_dev *rdev,
4544 4545 4546
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4547
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4574 4575
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4586
	if (ret != -EPROBE_DEFER)
4587 4588
		dev_err(dev, "Failed to get supply '%s': %pe\n",
			consumers[i].supply, ERR_PTR(ret));
4589 4590 4591 4592
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4593
	while (--i >= 0)
4594 4595 4596 4597 4598 4599
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4600 4601 4602 4603 4604 4605 4606
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4622
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4623
	int i;
4624
	int ret = 0;
4625

4626
	for (i = 0; i < num_consumers; i++) {
4627 4628
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4629
	}
4630 4631 4632 4633

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4634
	for (i = 0; i < num_consumers; i++) {
4635 4636
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4637
			goto err;
4638
		}
4639 4640 4641 4642 4643
	}

	return 0;

err:
4644 4645
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
4646 4647
			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
			       ERR_PTR(consumers[i].ret));
4648 4649 4650
		else
			regulator_disable(consumers[i].consumer);
	}
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4664 4665
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4666 4667 4668 4669 4670 4671
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4672
	int ret, r;
4673

4674
	for (i = num_consumers - 1; i >= 0; --i) {
4675 4676 4677 4678 4679 4680 4681 4682
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4683
	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4684 4685 4686
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4687 4688
			pr_err("Failed to re-enable %s: %pe\n",
			       consumers[i].supply, ERR_PTR(r));
4689
	}
4690 4691 4692 4693 4694

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4713
	int ret = 0;
4714

4715
	for (i = 0; i < num_consumers; i++) {
4716 4717 4718
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4719 4720
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4721 4722 4723 4724 4725 4726 4727
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4751
 * @rdev: regulator source
4752
 * @event: notifier block
4753
 * @data: callback-specific data.
4754 4755
 *
 * Called by regulator drivers to notify clients a regulator event has
4756
 * occurred.
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4783
	case REGULATOR_MODE_STANDBY:
4784 4785
		return REGULATOR_STATUS_STANDBY;
	default:
4786
		return REGULATOR_STATUS_UNDEFINED;
4787 4788 4789 4790
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4818 4819 4820 4821
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4822 4823
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4824
{
4825
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4826
	struct regulator_dev *rdev = dev_to_rdev(dev);
4827
	const struct regulator_ops *ops = rdev->desc->ops;
4828 4829 4830 4831 4832 4833 4834
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4835 4836

	/* some attributes need specific methods to be displayed */
4837 4838 4839 4840 4841 4842 4843
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4844
	}
4845

4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4861
	/* constraints need specific supporting methods */
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4897

4898 4899 4900
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4901 4902 4903

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4904
	kfree(rdev);
4905 4906
}

4907 4908
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4921
	if (!rdev->debugfs) {
4922 4923 4924 4925 4926 4927 4928 4929
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4930 4931
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4932 4933
}

4934 4935
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4936 4937 4938 4939 4940 4941
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4942 4943
}

4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

4995
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4996
{
4997
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

5010 5011
		if (!c_rdev)
			continue;
5012

5013 5014 5015 5016 5017 5018
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

5019 5020
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
5021

5022 5023
		regulator_resolve_coupling(c_rdev);
	}
5024 5025
}

5026
static void regulator_remove_coupling(struct regulator_dev *rdev)
5027
{
5028
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5029 5030 5031 5032
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
5033
	int err;
5034

5035
	n_coupled = c_desc->n_coupled;
5036

5037 5038
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
5039

5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
5063 5064 5065 5066

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
5067 5068
			rdev_err(rdev, "failed to detach from coupler: %pe\n",
				 ERR_PTR(err));
5069 5070 5071 5072
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
5073 5074
}

5075
static int regulator_init_coupling(struct regulator_dev *rdev)
5076
{
5077
	struct regulator_dev **coupled;
5078
	int err, n_phandles;
5079 5080 5081 5082 5083 5084

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

5085 5086
	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
	if (!coupled)
5087
		return -ENOMEM;
5088

5089 5090
	rdev->coupling_desc.coupled_rdevs = coupled;

5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

5103
	if (!of_check_coupling_data(rdev))
5104 5105
		return -EPERM;

5106
	mutex_lock(&regulator_list_mutex);
5107
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5108 5109
	mutex_unlock(&regulator_list_mutex);

5110 5111
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
5112
		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5113
		return err;
5114 5115
	}

5116 5117 5118 5119 5120 5121 5122 5123 5124
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5125
		return -EPERM;
5126
	}
5127

5128 5129 5130 5131 5132 5133
	if (!rdev->constraints->always_on) {
		rdev_err(rdev,
			 "Coupling of a non always-on regulator is unimplemented\n");
		return -ENOTSUPP;
	}

5134 5135 5136
	return 0;
}

5137 5138 5139 5140
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

5141 5142
/**
 * regulator_register - register regulator
5143
 * @regulator_desc: regulator to register
5144
 * @cfg: runtime configuration for regulator
5145 5146
 *
 * Called by regulator drivers to register a regulator.
5147 5148
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
5149
 */
5150 5151
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
5152
		   const struct regulator_config *cfg)
5153
{
5154
	const struct regulation_constraints *constraints = NULL;
5155
	const struct regulator_init_data *init_data;
5156
	struct regulator_config *config = NULL;
5157
	static atomic_t regulator_no = ATOMIC_INIT(-1);
5158
	struct regulator_dev *rdev;
5159 5160
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
5161
	struct device *dev;
5162
	int ret, i;
5163

5164
	if (cfg == NULL)
5165
		return ERR_PTR(-EINVAL);
5166 5167 5168 5169 5170 5171
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5172

5173
	dev = cfg->dev;
5174
	WARN_ON(!dev);
5175

5176 5177 5178 5179
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5180

5181
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5182 5183 5184 5185
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5186

5187 5188 5189
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5190 5191
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5192 5193 5194 5195

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5196 5197
		ret = -EINVAL;
		goto rinse;
5198
	}
5199 5200
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5201 5202
		ret = -EINVAL;
		goto rinse;
5203
	}
5204

5205
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5206 5207 5208 5209
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5210
	device_initialize(&rdev->dev);
5211

5212 5213 5214 5215 5216 5217
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
5218
		ret = -ENOMEM;
5219
		goto clean;
5220 5221
	}

5222
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5223
					       &rdev->dev.of_node);
5224 5225 5226 5227 5228 5229 5230 5231

	/*
	 * Sometimes not all resources are probed already so we need to take
	 * that into account. This happens most the time if the ena_gpiod comes
	 * from a gpio extender or something else.
	 */
	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
		ret = -EPROBE_DEFER;
5232
		goto clean;
5233 5234
	}

5235 5236 5237 5238 5239
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5240
	 * a descriptor, we definitely got one from parsing the device
5241 5242 5243 5244
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5245 5246 5247 5248 5249
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5250
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5251
	rdev->reg_data = config->driver_data;
5252 5253
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5254 5255
	if (config->regmap)
		rdev->regmap = config->regmap;
5256
	else if (dev_get_regmap(dev, NULL))
5257
		rdev->regmap = dev_get_regmap(dev, NULL);
5258 5259
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5260 5261 5262
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5263
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5264

5265
	/* preform any regulator specific init */
5266
	if (init_data && init_data->regulator_init) {
5267
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5268 5269
		if (ret < 0)
			goto clean;
5270 5271
	}

5272
	if (config->ena_gpiod) {
5273 5274
		ret = regulator_ena_gpio_request(rdev, config);
		if (ret != 0) {
5275 5276
			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
				 ERR_PTR(ret));
5277
			goto clean;
5278
		}
5279 5280 5281
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5282 5283
	}

5284
	/* register with sysfs */
5285
	rdev->dev.class = &regulator_class;
5286
	rdev->dev.parent = dev;
5287
	dev_set_name(&rdev->dev, "regulator.%lu",
5288
		    (unsigned long) atomic_inc_return(&regulator_no));
5289
	dev_set_drvdata(&rdev->dev, rdev);
5290

5291
	/* set regulator constraints */
5292 5293 5294 5295
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
5296
		rdev->supply_name = init_data->supply_regulator;
5297
	else if (regulator_desc->supply_name)
5298
		rdev->supply_name = regulator_desc->supply_name;
5299

5300
	ret = set_machine_constraints(rdev, constraints);
5301 5302 5303 5304 5305 5306
	if (ret == -EPROBE_DEFER) {
		/* Regulator might be in bypass mode and so needs its supply
		 * to set the constraints */
		/* FIXME: this currently triggers a chicken-and-egg problem
		 * when creating -SUPPLY symlink in sysfs to a regulator
		 * that is just being created */
5307 5308
		rdev_dbg(rdev, "will resolve supply early: %s\n",
			 rdev->supply_name);
5309 5310 5311 5312 5313 5314 5315
		ret = regulator_resolve_supply(rdev);
		if (!ret)
			ret = set_machine_constraints(rdev, constraints);
		else
			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
				 ERR_PTR(ret));
	}
5316 5317 5318
	if (ret < 0)
		goto wash;

5319 5320
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
5321 5322
		goto wash;

5323
	/* add consumers devices */
5324 5325 5326 5327
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5328
				init_data->consumer_supplies[i].supply);
5329 5330 5331 5332 5333
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5334
		}
5335
	}
5336

5337 5338 5339 5340 5341
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5342 5343
	ret = device_add(&rdev->dev);
	if (ret != 0)
5344 5345
		goto unset_supplies;

5346
	rdev_init_debugfs(rdev);
5347

5348 5349 5350 5351 5352
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5353 5354 5355
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5356
	kfree(config);
5357
	return rdev;
D
David Brownell 已提交
5358

5359
unset_supplies:
5360
	mutex_lock(&regulator_list_mutex);
5361
	unset_regulator_supplies(rdev);
5362
	regulator_remove_coupling(rdev);
5363
	mutex_unlock(&regulator_list_mutex);
5364
wash:
5365
	kfree(rdev->coupling_desc.coupled_rdevs);
5366
	mutex_lock(&regulator_list_mutex);
5367
	regulator_ena_gpio_free(rdev);
5368
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5369
clean:
5370 5371
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
5372
	kfree(config);
5373
	put_device(&rdev->dev);
5374 5375 5376
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5377
	return ERR_PTR(ret);
5378 5379 5380 5381 5382
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5383
 * @rdev: regulator to unregister
5384 5385 5386 5387 5388 5389 5390 5391
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5392 5393 5394
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5395
		regulator_put(rdev->supply);
5396
	}
5397

5398 5399
	flush_work(&rdev->disable_work.work);

5400
	mutex_lock(&regulator_list_mutex);
5401

5402
	debugfs_remove_recursive(rdev->debugfs);
5403
	WARN_ON(rdev->open_count);
5404
	regulator_remove_coupling(rdev);
5405
	unset_regulator_supplies(rdev);
5406
	list_del(&rdev->list);
5407
	regulator_ena_gpio_free(rdev);
5408
	device_unregister(&rdev->dev);
5409 5410

	mutex_unlock(&regulator_list_mutex);
5411 5412 5413
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5414
#ifdef CONFIG_SUSPEND
5415
/**
5416
 * regulator_suspend - prepare regulators for system wide suspend
5417
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5418 5419 5420
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5421
static int regulator_suspend(struct device *dev)
5422
{
5423
	struct regulator_dev *rdev = dev_to_rdev(dev);
5424
	suspend_state_t state = pm_suspend_target_state;
5425
	int ret;
5426 5427 5428 5429 5430
	const struct regulator_state *rstate;

	rstate = regulator_get_suspend_state_check(rdev, state);
	if (!rstate)
		return 0;
5431 5432

	regulator_lock(rdev);
5433
	ret = __suspend_set_state(rdev, rstate);
5434
	regulator_unlock(rdev);
5435

5436
	return ret;
5437
}
5438

5439
static int regulator_resume(struct device *dev)
5440
{
5441
	suspend_state_t state = pm_suspend_target_state;
5442
	struct regulator_dev *rdev = dev_to_rdev(dev);
5443
	struct regulator_state *rstate;
5444
	int ret = 0;
5445

5446
	rstate = regulator_get_suspend_state(rdev, state);
5447
	if (rstate == NULL)
5448
		return 0;
5449

5450 5451 5452 5453
	/* Avoid grabbing the lock if we don't need to */
	if (!rdev->desc->ops->resume)
		return 0;

5454
	regulator_lock(rdev);
5455

5456 5457
	if (rstate->enabled == ENABLE_IN_SUSPEND ||
	    rstate->enabled == DISABLE_IN_SUSPEND)
5458
		ret = rdev->desc->ops->resume(rdev);
5459

5460
	regulator_unlock(rdev);
5461

5462
	return ret;
5463
}
5464 5465
#else /* !CONFIG_SUSPEND */

5466 5467
#define regulator_suspend	NULL
#define regulator_resume	NULL
5468 5469 5470 5471 5472

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5473 5474
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5475 5476 5477
};
#endif

M
Mark Brown 已提交
5478
struct class regulator_class = {
5479 5480 5481 5482 5483 5484 5485
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5503 5504
/**
 * rdev_get_drvdata - get rdev regulator driver data
5505
 * @rdev: regulator
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
5541
 * rdev_get_id - get regulator ID
5542
 * @rdev: regulator
5543 5544 5545 5546 5547 5548 5549
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5550 5551 5552 5553 5554 5555
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5556 5557 5558 5559 5560 5561
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5562 5563 5564 5565 5566 5567
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5568
#ifdef CONFIG_DEBUG_FS
5569
static int supply_map_show(struct seq_file *sf, void *data)
5570 5571 5572 5573
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5574 5575 5576
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5577 5578
	}

5579 5580
	return 0;
}
5581
DEFINE_SHOW_ATTRIBUTE(supply_map);
5582

5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5605 5606 5607 5608 5609 5610
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5611
	struct summary_data summary_data;
5612
	unsigned int opmode;
5613 5614 5615 5616

	if (!rdev)
		return;

5617
	opmode = _regulator_get_mode_unlocked(rdev);
5618
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5619 5620
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5621
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5622
		   regulator_opmode_to_str(opmode));
5623

5624
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5625 5626
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5645
		if (consumer->dev && consumer->dev->class == &regulator_class)
5646 5647 5648 5649
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5650
			   30 - (level + 1) * 3,
5651
			   consumer->supply_name ? consumer->supply_name :
5652
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5653 5654 5655

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5656 5657
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5658
				   consumer->uA_load / 1000,
5659 5660
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5661 5662
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5663 5664 5665 5666 5667 5668 5669 5670
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5671 5672 5673
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5674

5675 5676
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5714 5715

	regulator_unlock(rdev);
5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5746 5747
	mutex_lock(&regulator_list_mutex);

5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5774 5775

	mutex_unlock(&regulator_list_mutex);
5776 5777
}

5778
static int regulator_summary_show_roots(struct device *dev, void *data)
5779
{
5780 5781
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5782

5783 5784
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5785

5786 5787
	return 0;
}
5788

5789 5790
static int regulator_summary_show(struct seq_file *s, void *data)
{
5791 5792
	struct ww_acquire_ctx ww_ctx;

5793 5794
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5795

5796 5797
	regulator_summary_lock(&ww_ctx);

5798 5799
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5800

5801 5802
	regulator_summary_unlock(&ww_ctx);

5803 5804
	return 0;
}
5805 5806
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5807

5808 5809
static int __init regulator_init(void)
{
5810 5811 5812 5813
	int ret;

	ret = class_register(&regulator_class);

5814
	debugfs_root = debugfs_create_dir("regulator", NULL);
5815
	if (!debugfs_root)
5816
		pr_warn("regulator: Failed to create debugfs directory\n");
5817

5818
#ifdef CONFIG_DEBUG_FS
5819 5820
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5821

5822
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5823
			    NULL, &regulator_summary_fops);
5824
#endif
5825 5826
	regulator_dummy_init();

5827 5828
	regulator_coupler_register(&generic_regulator_coupler);

5829
	return ret;
5830 5831 5832 5833
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5834

5835
static int regulator_late_cleanup(struct device *dev, void *data)
5836
{
5837 5838 5839
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5840 5841
	int enabled, ret;

5842 5843 5844
	if (c && c->always_on)
		return 0;

5845
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5846 5847
		return 0;

5848
	regulator_lock(rdev);
5849 5850 5851 5852

	if (rdev->use_count)
		goto unlock;

5853
	/* If we can't read the status assume it's always on. */
5854 5855 5856 5857 5858
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

5859 5860
	/* But if reading the status failed, assume that it's off. */
	if (enabled <= 0)
5861 5862 5863 5864 5865 5866 5867 5868
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
5869
			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5870 5871 5872 5873 5874 5875 5876 5877 5878 5879
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5880
	regulator_unlock(rdev);
5881 5882 5883 5884

	return 0;
}

5885
static void regulator_init_complete_work_function(struct work_struct *work)
5886
{
5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5897
	/* If we have a full configuration then disable any regulators
5898 5899 5900
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5901
	 */
5902 5903
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920
}

static DECLARE_DELAYED_WORK(regulator_init_complete_work,
			    regulator_init_complete_work_function);

static int __init regulator_init_complete(void)
{
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

	/*
5921 5922 5923 5924 5925 5926 5927 5928 5929
	 * We punt completion for an arbitrary amount of time since
	 * systems like distros will load many drivers from userspace
	 * so consumers might not always be ready yet, this is
	 * particularly an issue with laptops where this might bounce
	 * the display off then on.  Ideally we'd get a notification
	 * from userspace when this happens but we don't so just wait
	 * a bit and hope we waited long enough.  It'd be better if
	 * we'd only do this on systems that need it, and a kernel
	 * command line option might be useful.
5930
	 */
5931 5932
	schedule_delayed_work(&regulator_init_complete_work,
			      msecs_to_jiffies(30000));
5933 5934 5935

	return 0;
}
5936
late_initcall_sync(regulator_init_complete);