core.c 147.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

M
Mark Brown 已提交
36 37
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 39 40 41 42 43 44 45 46
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

47 48
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
49 50
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
51
static LIST_HEAD(regulator_ena_gpio_list);
52
static LIST_HEAD(regulator_supply_alias_list);
53
static LIST_HEAD(regulator_coupler_list);
54
static bool has_full_constraints;
55

56 57
static struct dentry *debugfs_root;

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69
};

70 71 72 73 74 75 76
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
77
	struct gpio_desc *gpiod;
78 79 80 81
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

95
static int _regulator_is_enabled(struct regulator_dev *rdev);
96
static int _regulator_disable(struct regulator *regulator);
97 98
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99
static int _notifier_call_chain(struct regulator_dev *rdev,
100
				  unsigned long event, void *data);
101 102
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
103 104
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
105 106 107
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
108
static void _regulator_put(struct regulator *regulator);
109

110
const char *rdev_get_name(struct regulator_dev *rdev)
111 112 113 114 115 116 117 118 119
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

120 121
static bool have_full_constraints(void)
{
122
	return has_full_constraints || of_have_populated_dt();
123 124
}

125 126 127 128 129 130 131 132 133 134 135 136 137
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

138 139 140
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
141
 * @ww_ctx:		w/w mutex acquire context
142 143 144 145 146 147 148
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
149 150
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
151
{
152 153 154 155 156 157 158
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
159
			rdev->ref_cnt++;
160 161 162 163 164 165 166
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
167
		}
168 169
	} else {
		lock = true;
170 171
	}

172 173 174 175 176 177 178 179
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
180 181
}

182 183 184 185 186 187 188 189 190 191 192
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
void regulator_lock(struct regulator_dev *rdev)
193
{
194
	regulator_lock_nested(rdev, NULL);
195
}
196
EXPORT_SYMBOL_GPL(regulator_lock);
197 198 199 200 201 202 203 204

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
205
void regulator_unlock(struct regulator_dev *rdev)
206
{
207
	mutex_lock(&regulator_nesting_mutex);
208

209 210 211
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
212
	}
213 214 215 216

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
217
}
218
EXPORT_SYMBOL_GPL(regulator_unlock);
219

220
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
221
{
222 223 224 225 226
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
227

228 229 230 231 232 233 234
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

235 236
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
237
{
238
	struct regulator_dev *c_rdev;
239
	int i;
240

241 242
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
243 244 245 246

		if (!c_rdev)
			continue;

247
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
248 249 250
			regulator_unlock_recursive(
					c_rdev->supply->rdev,
					c_rdev->coupling_desc.n_coupled);
251

252 253
		regulator_unlock(c_rdev);
	}
254 255
}

256 257 258 259
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
260
{
261
	struct regulator_dev *c_rdev;
262
	int i, err;
263

264 265
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
266

267 268
		if (!c_rdev)
			continue;
269

270 271 272 273 274 275 276
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
277

278 279 280 281 282 283 284
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

285
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
286 287 288 289 290 291 292 293
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
294 295
		}
	}
296 297 298 299 300 301 302

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
303 304
}

305
/**
306 307 308 309 310
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
311
 * Unlock all regulators related with rdev by coupling or supplying.
312
 */
313 314
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
315
{
316 317
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
318 319 320
}

/**
321 322
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
323
 * @ww_ctx:			w/w mutex acquire context
324 325
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
326
 * all regulators related with rdev by coupling or supplying.
327
 */
328 329
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
330
{
331 332 333
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
334

335
	mutex_lock(&regulator_list_mutex);
336

337
	ww_acquire_init(ww_ctx, &regulator_ww_class);
338

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
359 360
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
383 384
			if (regnode)
				goto err_node_put;
385
		} else {
386
			goto err_node_put;
387 388 389
		}
	}
	return NULL;
390 391 392 393

err_node_put:
	of_node_put(child);
	return regnode;
394 395
}

396 397 398 399 400 401
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
402
 * returns the device node corresponding to the regulator if found, else
403 404 405 406 407 408 409 410 411 412 413 414 415
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
416 417 418 419
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

420 421
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
422 423 424 425 426
		return NULL;
	}
	return regnode;
}

427
/* Platform voltage constraint check */
428 429
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
430 431 432
{
	BUG_ON(*min_uV > *max_uV);

433
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
434
		rdev_err(rdev, "voltage operation not allowed\n");
435 436 437 438 439 440 441 442
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

443 444
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
445
			 *min_uV, *max_uV);
446
		return -EINVAL;
447
	}
448 449 450 451

	return 0;
}

452 453 454 455 456 457
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

458 459 460
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
461 462 463
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
464 465
{
	struct regulator *regulator;
466
	struct regulator_voltage *voltage;
467 468

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
469
		voltage = &regulator->voltage[state];
470 471 472 473
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
474
		if (!voltage->min_uV && !voltage->max_uV)
475 476
			continue;

477 478 479 480
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
481 482
	}

483
	if (*min_uV > *max_uV) {
484 485
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
486
		return -EINVAL;
487
	}
488 489 490 491

	return 0;
}

492 493 494 495 496 497
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

498
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
499
		rdev_err(rdev, "current operation not allowed\n");
500 501 502 503 504 505 506 507
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

508 509
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
510
			 *min_uA, *max_uA);
511
		return -EINVAL;
512
	}
513 514 515 516 517

	return 0;
}

/* operating mode constraint check */
518 519
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
520
{
521
	switch (*mode) {
522 523 524 525 526 527
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
528
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
529 530 531
		return -EINVAL;
	}

532
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
533
		rdev_err(rdev, "mode operation not allowed\n");
534 535
		return -EPERM;
	}
536 537 538 539 540 541 542 543

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
544
	}
545 546

	return -EINVAL;
547 548
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

567 568 569
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
570
	struct regulator_dev *rdev = dev_get_drvdata(dev);
571
	int uV;
572

573
	regulator_lock(rdev);
574
	uV = regulator_get_voltage_rdev(rdev);
575
	regulator_unlock(rdev);
576

577 578 579
	if (uV < 0)
		return uV;
	return sprintf(buf, "%d\n", uV);
580
}
581
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
582 583 584 585

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
586
	struct regulator_dev *rdev = dev_get_drvdata(dev);
587 588 589

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
590
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
591

592 593
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
594 595 596
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

597
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
598
}
599
static DEVICE_ATTR_RO(name);
600

601
static const char *regulator_opmode_to_str(int mode)
602 603 604
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
605
		return "fast";
606
	case REGULATOR_MODE_NORMAL:
607
		return "normal";
608
	case REGULATOR_MODE_IDLE:
609
		return "idle";
610
	case REGULATOR_MODE_STANDBY:
611
		return "standby";
612
	}
613 614 615 616 617 618
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
619 620
}

D
David Brownell 已提交
621 622
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
623
{
624
	struct regulator_dev *rdev = dev_get_drvdata(dev);
625

D
David Brownell 已提交
626 627
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
628
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
629 630 631

static ssize_t regulator_print_state(char *buf, int state)
{
632 633 634 635 636 637 638 639
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
640 641 642 643
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
644 645
	ssize_t ret;

646
	regulator_lock(rdev);
647
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
648
	regulator_unlock(rdev);
D
David Brownell 已提交
649

650
	return ret;
D
David Brownell 已提交
651
}
652
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
653

D
David Brownell 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
687 688 689
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
690 691 692
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
693 694 695 696 697 698 699 700
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

701 702 703
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
704
	struct regulator_dev *rdev = dev_get_drvdata(dev);
705 706 707 708 709 710

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
711
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
712 713 714 715

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
716
	struct regulator_dev *rdev = dev_get_drvdata(dev);
717 718 719 720 721 722

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
723
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
724 725 726 727

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
728
	struct regulator_dev *rdev = dev_get_drvdata(dev);
729 730 731 732 733 734

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
735
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
736 737 738 739

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
740
	struct regulator_dev *rdev = dev_get_drvdata(dev);
741 742 743 744 745 746

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
747
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
748 749 750 751

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
752
	struct regulator_dev *rdev = dev_get_drvdata(dev);
753 754 755
	struct regulator *regulator;
	int uA = 0;

756
	regulator_lock(rdev);
757 758 759 760
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
761
	regulator_unlock(rdev);
762 763
	return sprintf(buf, "%d\n", uA);
}
764
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
765

766 767
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
768
{
769
	struct regulator_dev *rdev = dev_get_drvdata(dev);
770 771
	return sprintf(buf, "%d\n", rdev->use_count);
}
772
static DEVICE_ATTR_RO(num_users);
773

774 775
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
776
{
777
	struct regulator_dev *rdev = dev_get_drvdata(dev);
778 779 780 781 782 783 784 785 786

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
787
static DEVICE_ATTR_RO(type);
788 789 790 791

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
792
	struct regulator_dev *rdev = dev_get_drvdata(dev);
793 794 795

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
796 797
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
798 799 800 801

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
802
	struct regulator_dev *rdev = dev_get_drvdata(dev);
803 804 805

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
806 807
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
808 809 810 811

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
812
	struct regulator_dev *rdev = dev_get_drvdata(dev);
813 814 815

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
816 817
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
818 819 820 821

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
822
	struct regulator_dev *rdev = dev_get_drvdata(dev);
823

D
David Brownell 已提交
824 825
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
826
}
827 828
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
829 830 831 832

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
833
	struct regulator_dev *rdev = dev_get_drvdata(dev);
834

D
David Brownell 已提交
835 836
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
837
}
838 839
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
840 841 842 843

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
844
	struct regulator_dev *rdev = dev_get_drvdata(dev);
845

D
David Brownell 已提交
846 847
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
848
}
849 850
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
851 852 853 854

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
855
	struct regulator_dev *rdev = dev_get_drvdata(dev);
856

D
David Brownell 已提交
857 858
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
859
}
860 861
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
862 863 864 865

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
866
	struct regulator_dev *rdev = dev_get_drvdata(dev);
867

D
David Brownell 已提交
868 869
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
870
}
871 872
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
873 874 875 876

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
877
	struct regulator_dev *rdev = dev_get_drvdata(dev);
878

D
David Brownell 已提交
879 880
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
881
}
882 883 884
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
906

907 908
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
909
static int drms_uA_update(struct regulator_dev *rdev)
910 911 912 913 914
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

915 916 917 918
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
919 920
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
921
		return 0;
922
	}
923

924 925
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
926 927
		return 0;

928 929
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
930
		return -EINVAL;
931 932

	/* calc total requested load */
933 934 935 936
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
937

938 939
	current_uA += rdev->constraints->system_load;

940 941 942 943 944 945
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
946
		/* get output voltage */
947
		output_uV = regulator_get_voltage_rdev(rdev);
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

964 965 966 967 968 969 970 971 972 973 974
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
975

976 977 978
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
979 980 981
	}

	return err;
982 983 984
}

static int suspend_set_state(struct regulator_dev *rdev,
985
				    suspend_state_t state)
986 987
{
	int ret = 0;
988 989 990 991
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
992
		return 0;
993

994
	/* If we have no suspend mode configuration don't set anything;
995 996
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
997
	 */
998 999
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
1000 1001
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
1002
			rdev_warn(rdev, "No configuration\n");
1003 1004 1005
		return 0;
	}

1006 1007
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1008
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1009 1010
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1011
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1012 1013 1014
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1015
	if (ret < 0) {
1016
		rdev_err(rdev, "failed to enabled/disable\n");
1017 1018 1019 1020 1021 1022
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1023
			rdev_err(rdev, "failed to set voltage\n");
1024 1025 1026 1027 1028 1029 1030
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1031
			rdev_err(rdev, "failed to set mode\n");
1032 1033 1034 1035
			return ret;
		}
	}

1036
	return ret;
1037 1038 1039 1040 1041
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
1042
	char buf[160] = "";
1043
	size_t len = sizeof(buf) - 1;
1044 1045
	int count = 0;
	int ret;
1046

1047
	if (constraints->min_uV && constraints->max_uV) {
1048
		if (constraints->min_uV == constraints->max_uV)
1049 1050
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1051
		else
1052 1053 1054 1055
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1056 1057 1058 1059
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1060
		ret = regulator_get_voltage_rdev(rdev);
1061
		if (ret > 0)
1062 1063
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1064 1065
	}

1066
	if (constraints->uV_offset)
1067 1068
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1069

1070
	if (constraints->min_uA && constraints->max_uA) {
1071
		if (constraints->min_uA == constraints->max_uA)
1072 1073
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1074
		else
1075 1076 1077 1078
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1079 1080 1081 1082 1083 1084
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1085 1086
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1087
	}
1088

1089
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090
		count += scnprintf(buf + count, len - count, "fast ");
1091
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092
		count += scnprintf(buf + count, len - count, "normal ");
1093
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094
		count += scnprintf(buf + count, len - count, "idle ");
1095
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096
		count += scnprintf(buf + count, len - count, "standby");
1097

1098
	if (!count)
1099
		scnprintf(buf, len, "no parameters");
1100

1101
	rdev_dbg(rdev, "%s\n", buf);
1102 1103

	if ((constraints->min_uV != constraints->max_uV) &&
1104
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1105 1106
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1107 1108
}

1109
static int machine_constraints_voltage(struct regulator_dev *rdev,
1110
	struct regulation_constraints *constraints)
1111
{
1112
	const struct regulator_ops *ops = rdev->desc->ops;
1113 1114 1115 1116
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1117 1118
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1119
		int current_uV = regulator_get_voltage_rdev(rdev);
1120 1121

		if (current_uV == -ENOTRECOVERABLE) {
1122
			/* This regulator can't be read and must be initialized */
1123 1124 1125 1126 1127 1128
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1129
			current_uV = regulator_get_voltage_rdev(rdev);
1130 1131
		}

1132
		if (current_uV < 0) {
1133 1134 1135
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
1136 1137
			return current_uV;
		}
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1158 1159
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1160
			ret = _regulator_do_set_voltage(
1161
				rdev, target_min, target_max);
1162 1163
			if (ret < 0) {
				rdev_err(rdev,
1164 1165
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1166 1167
				return ret;
			}
1168
		}
1169
	}
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1182 1183
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1184
		if (count == 1 && !cmin) {
1185
			cmin = 1;
1186
			cmax = INT_MAX;
1187 1188
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1189 1190
		}

1191 1192
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1193
			return 0;
1194

1195
		/* else require explicit machine-level constraints */
1196
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197
			rdev_err(rdev, "invalid voltage constraints\n");
1198
			return -EINVAL;
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1218 1219 1220
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1221
			return -EINVAL;
1222 1223 1224 1225
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1226 1227
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1228 1229 1230
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1231 1232
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1233 1234 1235 1236
			constraints->max_uV = max_uV;
		}
	}

1237 1238 1239
	return 0;
}

1240 1241 1242
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1243
	const struct regulator_ops *ops = rdev->desc->ops;
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1270 1271
static int _regulator_do_enable(struct regulator_dev *rdev);

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1284
	const struct regulation_constraints *constraints)
1285 1286
{
	int ret = 0;
1287
	const struct regulator_ops *ops = rdev->desc->ops;
1288

1289 1290 1291 1292 1293 1294
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1295 1296
	if (!rdev->constraints)
		return -ENOMEM;
1297

1298
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1299
	if (ret != 0)
1300
		return ret;
1301

1302
	ret = machine_constraints_current(rdev, rdev->constraints);
1303
	if (ret != 0)
1304
		return ret;
1305

1306 1307 1308 1309 1310
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1311
			return ret;
1312 1313 1314
		}
	}

1315
	/* do we need to setup our suspend state */
1316
	if (rdev->constraints->initial_state) {
1317
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1318
		if (ret < 0) {
1319
			rdev_err(rdev, "failed to set suspend state\n");
1320
			return ret;
1321 1322
		}
	}
1323

1324
	if (rdev->constraints->initial_mode) {
1325
		if (!ops->set_mode) {
1326
			rdev_err(rdev, "no set_mode operation\n");
1327
			return -EINVAL;
1328 1329
		}

1330
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1331
		if (ret < 0) {
1332
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1333
			return ret;
1334
		}
1335 1336 1337 1338 1339 1340
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1341 1342
	}

1343 1344
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1345 1346 1347
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1348
			return ret;
1349 1350 1351
		}
	}

S
Stephen Boyd 已提交
1352 1353 1354 1355
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1356
			return ret;
S
Stephen Boyd 已提交
1357 1358 1359
		}
	}

S
Stephen Boyd 已提交
1360 1361 1362 1363
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1364
			return ret;
S
Stephen Boyd 已提交
1365 1366 1367
		}
	}

1368 1369 1370 1371 1372
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1373
			return ret;
1374 1375 1376
		}
	}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1388 1389 1390 1391
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1392 1393 1394 1395 1396 1397 1398 1399 1400
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1401 1402 1403 1404 1405
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
			rdev_err(rdev, "failed to enable\n");
			return ret;
		}
1406
		rdev->use_count++;
1407 1408
	}

1409
	print_constraints(rdev);
1410
	return 0;
1411 1412 1413 1414
}

/**
 * set_supply - set regulator supply regulator
1415 1416
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1417 1418 1419 1420 1421 1422
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1423
		      struct regulator_dev *supply_rdev)
1424 1425 1426
{
	int err;

1427 1428
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1429 1430 1431
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1432
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1433 1434
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1435
		return err;
1436
	}
1437
	supply_rdev->open_count++;
1438 1439

	return 0;
1440 1441 1442
}

/**
1443
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1444
 * @rdev:         regulator source
1445
 * @consumer_dev_name: dev_name() string for device supply applies to
1446
 * @supply:       symbolic name for supply
1447 1448 1449 1450 1451 1452 1453
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1454 1455
				      const char *consumer_dev_name,
				      const char *supply)
1456 1457
{
	struct regulator_map *node;
1458
	int has_dev;
1459 1460 1461 1462

	if (supply == NULL)
		return -EINVAL;

1463 1464 1465 1466 1467
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1468
	list_for_each_entry(node, &regulator_map_list, list) {
1469 1470 1471 1472
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1473
			continue;
1474 1475
		}

1476 1477 1478
		if (strcmp(node->supply, supply) != 0)
			continue;

1479 1480 1481 1482 1483 1484
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1485 1486 1487
		return -EBUSY;
	}

1488
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1489 1490 1491 1492 1493 1494
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1495 1496 1497 1498 1499 1500
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1501 1502
	}

1503 1504 1505 1506
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1507 1508 1509 1510 1511 1512 1513
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1514
			kfree(node->dev_name);
1515 1516 1517 1518 1519
			kfree(node);
		}
	}
}

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1569
#define REG_STR_SIZE	64
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

1583
	regulator_lock(rdev);
1584 1585 1586 1587
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1588 1589
		regulator->dev = dev;

1590
		/* Add a link to the device sysfs entry */
1591 1592
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1593
		if (size >= REG_STR_SIZE)
1594
			goto overflow_err;
1595 1596 1597

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1598
			goto overflow_err;
1599

1600
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1601 1602
					buf);
		if (err) {
1603
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1604
				  dev->kobj.name, err);
1605
			/* non-fatal */
1606
		}
1607
	} else {
1608
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1609
		if (regulator->supply_name == NULL)
1610
			goto overflow_err;
1611 1612 1613 1614
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1615
	if (!regulator->debugfs) {
1616
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1617 1618 1619 1620
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1621
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1622
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1623
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1624 1625 1626
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1627
	}
1628

1629 1630 1631 1632 1633
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1634
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1635 1636 1637
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1638
	regulator_unlock(rdev);
1639 1640 1641 1642
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
1643
	regulator_unlock(rdev);
1644 1645 1646
	return NULL;
}

1647 1648
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1649 1650
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1651 1652 1653
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1654 1655
}

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1704 1705 1706 1707 1708
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1709
 */
1710
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1711
						  const char *supply)
1712
{
1713
	struct regulator_dev *r = NULL;
1714
	struct device_node *node;
1715 1716
	struct regulator_map *map;
	const char *devname = NULL;
1717

1718 1719
	regulator_supply_alias(&dev, &supply);

1720 1721 1722
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1723
		if (node) {
1724 1725 1726
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1727

1728
			/*
1729 1730
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1731
			 */
1732
			return ERR_PTR(-EPROBE_DEFER);
1733
		}
1734 1735 1736
	}

	/* if not found, try doing it non-dt way */
1737 1738 1739
	if (dev)
		devname = dev_name(dev);

1740
	mutex_lock(&regulator_list_mutex);
1741 1742 1743 1744 1745 1746
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1747 1748
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1749 1750
			r = map->regulator;
			break;
1751
		}
1752
	}
1753
	mutex_unlock(&regulator_list_mutex);
1754

1755 1756 1757 1758
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1759 1760 1761 1762
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1763 1764
}

1765 1766 1767 1768 1769 1770
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

1771
	/* No supply to resolve? */
1772 1773 1774 1775 1776 1777 1778
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1779 1780 1781 1782
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1783 1784 1785 1786
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1787 1788
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1789
			get_device(&r->dev);
1790 1791 1792 1793 1794
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1795 1796
	}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1810 1811
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1812 1813
	if (ret < 0) {
		put_device(&r->dev);
1814
		return ret;
1815
	}
1816 1817

	ret = set_supply(rdev, r);
1818 1819
	if (ret < 0) {
		put_device(&r->dev);
1820
		return ret;
1821
	}
1822

1823 1824 1825 1826 1827 1828
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1829
		ret = regulator_enable(rdev->supply);
1830
		if (ret < 0) {
1831
			_regulator_put(rdev->supply);
1832
			rdev->supply = NULL;
1833
			return ret;
1834
		}
1835 1836 1837 1838 1839
	}

	return 0;
}

1840
/* Internal regulator request function */
1841 1842
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1843 1844
{
	struct regulator_dev *rdev;
1845
	struct regulator *regulator;
1846
	const char *devname = dev ? dev_name(dev) : "deviceless";
1847
	int ret;
1848

1849 1850 1851 1852 1853
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1854
	if (id == NULL) {
1855
		pr_err("get() with no identifier\n");
1856
		return ERR_PTR(-EINVAL);
1857 1858
	}

1859
	rdev = regulator_dev_lookup(dev, id);
1860 1861
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1862

1863 1864 1865 1866 1867 1868
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1869

1870 1871 1872 1873 1874
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1875

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1889

1890 1891 1892 1893
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1894

1895 1896 1897
		default:
			return ERR_PTR(-ENODEV);
		}
1898 1899
	}

1900 1901
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1902 1903
		put_device(&rdev->dev);
		return regulator;
1904 1905
	}

1906
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1907
		regulator = ERR_PTR(-EBUSY);
1908 1909
		put_device(&rdev->dev);
		return regulator;
1910 1911
	}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1922 1923 1924
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1925 1926
		put_device(&rdev->dev);
		return regulator;
1927 1928
	}

1929
	if (!try_module_get(rdev->owner)) {
1930
		regulator = ERR_PTR(-EPROBE_DEFER);
1931 1932 1933
		put_device(&rdev->dev);
		return regulator;
	}
1934

1935 1936 1937
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1938
		put_device(&rdev->dev);
1939
		module_put(rdev->owner);
1940
		return regulator;
1941 1942
	}

1943
	rdev->open_count++;
1944
	if (get_type == EXCLUSIVE_GET) {
1945 1946 1947 1948 1949 1950 1951 1952 1953
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1954 1955
	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);

1956 1957
	return regulator;
}
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1974
	return _regulator_get(dev, id, NORMAL_GET);
1975
}
1976 1977
EXPORT_SYMBOL_GPL(regulator_get);

1978 1979 1980 1981 1982 1983 1984
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1985 1986 1987
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2001
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2002 2003 2004
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2005 2006 2007 2008 2009 2010
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2011
 * or IS_ERR() condition containing errno.
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2027
	return _regulator_get(dev, id, OPTIONAL_GET);
2028 2029 2030
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2031
/* regulator_list_mutex lock held by regulator_put() */
2032
static void _regulator_put(struct regulator *regulator)
2033 2034 2035
{
	struct regulator_dev *rdev;

2036
	if (IS_ERR_OR_NULL(regulator))
2037 2038
		return;

2039 2040
	lockdep_assert_held_once(&regulator_list_mutex);

2041 2042 2043
	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

2044 2045
	rdev = regulator->rdev;

2046 2047
	debugfs_remove_recursive(regulator->debugfs);

2048
	if (regulator->dev) {
2049
		device_link_remove(regulator->dev, &rdev->dev);
2050 2051

		/* remove any sysfs entries */
2052
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2053 2054
	}

2055
	regulator_lock(rdev);
2056 2057
	list_del(&regulator->list);

2058 2059
	rdev->open_count--;
	rdev->exclusive = 0;
2060
	put_device(&rdev->dev);
2061
	regulator_unlock(rdev);
2062

2063
	kfree_const(regulator->supply_name);
2064 2065
	kfree(regulator);

2066
	module_put(rdev->owner);
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2081 2082 2083 2084
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2162 2163
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2164
					 struct device *alias_dev,
2165
					 const char *const *alias_id,
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2203
					    const char *const *id,
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2214 2215 2216 2217 2218
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
2219
	struct gpio_desc *gpiod;
2220

2221
	gpiod = config->ena_gpiod;
2222

2223
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2224
		if (pin->gpiod == gpiod) {
2225
			rdev_dbg(rdev, "GPIO is already used\n");
2226 2227 2228 2229 2230
			goto update_ena_gpio_to_rdev;
		}
	}

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2231
	if (pin == NULL)
2232 2233
		return -ENOMEM;

2234
	pin->gpiod = gpiod;
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2252
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2253 2254
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2255
				gpiod_put(pin->gpiod);
2256 2257
				list_del(&pin->list);
				kfree(pin);
2258 2259
				rdev->ena_pin = NULL;
				return;
2260 2261 2262 2263 2264 2265 2266
			} else {
				pin->request_count--;
			}
		}
	}
}

2267
/**
2268 2269 2270 2271
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2285
			gpiod_set_value_cansleep(pin->gpiod, 1);
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2296
			gpiod_set_value_cansleep(pin->gpiod, 0);
2297 2298 2299 2300 2301 2302 2303
			pin->enable_count = 0;
		}
	}

	return 0;
}

2304 2305 2306 2307 2308 2309
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2310
 *     Documentation/timers/timers-howto.rst
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
2373
			 * detected and we get a penalty of
2374 2375 2376 2377 2378 2379 2380 2381 2382
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2383
	if (rdev->ena_pin) {
2384 2385 2386 2387 2388 2389
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2390
	} else if (rdev->desc->ops->enable) {
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2403
	_regulator_enable_delay(delay);
2404 2405 2406 2407 2408 2409

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2469
/* locks held by regulator_enable() */
2470
static int _regulator_enable(struct regulator *regulator)
2471
{
2472
	struct regulator_dev *rdev = regulator->rdev;
2473
	int ret;
2474

2475 2476
	lockdep_assert_held_once(&rdev->mutex.base);

2477
	if (rdev->use_count == 0 && rdev->supply) {
2478
		ret = _regulator_enable(rdev->supply);
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2489

2490 2491 2492
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2493

2494 2495 2496 2497
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2498
			if (!regulator_ops_is_valid(rdev,
2499 2500
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2501
				goto err_consumer_disable;
2502
			}
2503

2504
			ret = _regulator_do_enable(rdev);
2505
			if (ret < 0)
2506
				goto err_consumer_disable;
2507

2508 2509
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2510
		} else if (ret < 0) {
2511
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2512
			goto err_consumer_disable;
2513
		}
2514
		/* Fallthrough on positive return values - already enabled */
2515 2516
	}

2517 2518 2519
	rdev->use_count++;

	return 0;
2520

2521 2522 2523
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2524
err_disable_supply:
2525
	if (rdev->use_count == 0 && rdev->supply)
2526
		_regulator_disable(rdev->supply);
2527 2528

	return ret;
2529 2530 2531 2532 2533 2534
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2535 2536 2537 2538
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2539
 * NOTE: the output value can be set by other drivers, boot loader or may be
2540
 * hardwired in the regulator.
2541 2542 2543
 */
int regulator_enable(struct regulator *regulator)
{
2544
	struct regulator_dev *rdev = regulator->rdev;
2545
	struct ww_acquire_ctx ww_ctx;
2546
	int ret;
2547

2548
	regulator_lock_dependent(rdev, &ww_ctx);
2549
	ret = _regulator_enable(regulator);
2550
	regulator_unlock_dependent(rdev, &ww_ctx);
2551

2552 2553 2554 2555
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2556 2557 2558 2559 2560 2561
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2562
	if (rdev->ena_pin) {
2563 2564 2565 2566 2567 2568
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2569 2570 2571 2572 2573 2574 2575

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2576 2577 2578 2579 2580 2581
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2582 2583 2584 2585 2586
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2587
/* locks held by regulator_disable() */
2588
static int _regulator_disable(struct regulator *regulator)
2589
{
2590
	struct regulator_dev *rdev = regulator->rdev;
2591 2592
	int ret = 0;

2593
	lockdep_assert_held_once(&rdev->mutex.base);
2594

D
David Brownell 已提交
2595
	if (WARN(rdev->use_count <= 0,
2596
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2597 2598
		return -EIO;

2599
	/* are we the last user and permitted to disable ? */
2600 2601
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2602 2603

		/* we are last user */
2604
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2605 2606 2607 2608 2609 2610
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2611
			ret = _regulator_do_disable(rdev);
2612
			if (ret < 0) {
2613
				rdev_err(rdev, "failed to disable\n");
2614 2615 2616
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2617 2618
				return ret;
			}
2619 2620
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2621 2622 2623 2624 2625 2626
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2627

2628 2629 2630
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2631 2632 2633
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2634
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2635
		ret = _regulator_disable(rdev->supply);
2636

2637 2638 2639 2640 2641 2642 2643
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2644 2645 2646
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2647
 *
2648
 * NOTE: this will only disable the regulator output if no other consumer
2649 2650
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2651 2652 2653
 */
int regulator_disable(struct regulator *regulator)
{
2654
	struct regulator_dev *rdev = regulator->rdev;
2655
	struct ww_acquire_ctx ww_ctx;
2656
	int ret;
2657

2658
	regulator_lock_dependent(rdev, &ww_ctx);
2659
	ret = _regulator_disable(regulator);
2660
	regulator_unlock_dependent(rdev, &ww_ctx);
2661

2662 2663 2664 2665 2666
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2667
static int _regulator_force_disable(struct regulator_dev *rdev)
2668 2669 2670
{
	int ret = 0;

2671
	lockdep_assert_held_once(&rdev->mutex.base);
2672

2673 2674 2675 2676 2677
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2678 2679 2680
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2681 2682
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2683
		return ret;
2684 2685
	}

2686 2687 2688 2689
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2703
	struct regulator_dev *rdev = regulator->rdev;
2704
	struct ww_acquire_ctx ww_ctx;
2705 2706
	int ret;

2707
	regulator_lock_dependent(rdev, &ww_ctx);
2708

2709
	ret = _regulator_force_disable(regulator->rdev);
2710

2711 2712
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2713 2714 2715 2716 2717 2718

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2719 2720
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2721

2722
	regulator_unlock_dependent(rdev, &ww_ctx);
2723

2724 2725 2726 2727
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2728 2729 2730 2731
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2732
	struct ww_acquire_ctx ww_ctx;
2733
	int count, i, ret;
2734 2735
	struct regulator *regulator;
	int total_count = 0;
2736

2737
	regulator_lock_dependent(rdev, &ww_ctx);
2738

2739 2740 2741 2742 2743 2744 2745 2746
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
		}
2761
	}
2762
	WARN_ON(!total_count);
2763

2764 2765 2766 2767
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2768 2769 2770 2771 2772
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2773
 * @ms: milliseconds until the regulator is disabled
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2786 2787 2788
	if (!ms)
		return regulator_disable(regulator);

2789
	regulator_lock(rdev);
2790
	regulator->deferred_disables++;
2791 2792
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2793
	regulator_unlock(rdev);
2794

2795
	return 0;
2796 2797 2798
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2799 2800
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2801
	/* A GPIO control always takes precedence */
2802
	if (rdev->ena_pin)
2803 2804
		return rdev->ena_gpio_state;

2805
	/* If we don't know then assume that the regulator is always on */
2806
	if (!rdev->desc->ops->is_enabled)
2807
		return 1;
2808

2809
	return rdev->desc->ops->is_enabled(rdev);
2810 2811
}

2812 2813
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2825
			regulator_lock(rdev);
2826 2827
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2828
			regulator_unlock(rdev);
2829
	} else if (rdev->is_switch && rdev->supply) {
2830 2831
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2846 2847 2848 2849
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2850 2851 2852 2853 2854 2855 2856
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2857 2858 2859
 */
int regulator_is_enabled(struct regulator *regulator)
{
2860 2861
	int ret;

2862 2863 2864
	if (regulator->always_on)
		return 1;

2865
	regulator_lock(regulator->rdev);
2866
	ret = _regulator_is_enabled(regulator->rdev);
2867
	regulator_unlock(regulator->rdev);
2868 2869

	return ret;
2870 2871 2872
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2885 2886 2887
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2888
	if (!rdev->is_switch || !rdev->supply)
2889 2890 2891
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2902
 * zero if this selector code can't be used on this system, or a
2903 2904 2905 2906
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2907
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2908 2909 2910
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2943 2944
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2945 2946 2947 2948

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2949 2950
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2970 2971
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2997 2998 2999 3000 3001 3002 3003
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3004
 * Returns a boolean.
3005 3006 3007 3008
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3009
	struct regulator_dev *rdev = regulator->rdev;
3010 3011
	int i, voltages, ret;

3012
	/* If we can't change voltage check the current voltage */
3013
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3014 3015
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3016
			return min_uV <= ret && ret <= max_uV;
3017 3018 3019 3020
		else
			return ret;
	}

3021 3022 3023 3024 3025
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3026 3027
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3028
		return 0;
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3040
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3041

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3056 3057 3058 3059 3060
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3061 3062 3063
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3064 3065 3066 3067 3068 3069 3070
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3071
	data.old_uV = regulator_get_voltage_rdev(rdev);
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3095
	data.old_uV = regulator_get_voltage_rdev(rdev);
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3173 3174 3175 3176 3177 3178 3179 3180 3181
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3182 3183
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3184 3185 3186 3187 3188 3189
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3190 3191

	if (ramp_delay == 0) {
3192
		rdev_dbg(rdev, "ramp_delay not set\n");
3193 3194 3195 3196 3197 3198
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3199 3200 3201 3202
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3203
	int delay = 0;
3204
	int best_val = 0;
3205
	unsigned int selector;
3206
	int old_selector = -1;
3207
	const struct regulator_ops *ops = rdev->desc->ops;
3208
	int old_uV = regulator_get_voltage_rdev(rdev);
3209 3210 3211

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3212 3213 3214
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3215 3216 3217 3218
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3219
	if (_regulator_is_enabled(rdev) &&
3220 3221
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3222 3223 3224 3225
		if (old_selector < 0)
			return old_selector;
	}

3226
	if (ops->set_voltage) {
3227 3228
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3229 3230

		if (ret >= 0) {
3231 3232 3233
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3234
			else
3235
				best_val = regulator_get_voltage_rdev(rdev);
3236 3237
		}

3238
	} else if (ops->set_voltage_sel) {
3239
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3240
		if (ret >= 0) {
3241
			best_val = ops->list_voltage(rdev, ret);
3242 3243
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3244 3245
				if (old_selector == selector)
					ret = 0;
3246 3247 3248
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3249
				else
3250 3251
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3252 3253 3254
			} else {
				ret = -EINVAL;
			}
3255
		}
3256 3257 3258
	} else {
		ret = -EINVAL;
	}
3259

3260 3261
	if (ret)
		goto out;
3262

3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3280
		}
3281
	}
3282

3283 3284 3285
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3286 3287
	}

3288 3289 3290 3291 3292 3293
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3294 3295
	}

3296
	if (best_val >= 0) {
3297 3298
		unsigned long data = best_val;

3299
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3300 3301
				     (void *)data);
	}
3302

3303
out:
3304
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3305 3306 3307 3308

	return ret;
}

3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3335
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3336 3337
					  int min_uV, int max_uV,
					  suspend_state_t state)
3338 3339
{
	struct regulator_dev *rdev = regulator->rdev;
3340
	struct regulator_voltage *voltage = &regulator->voltage[state];
3341
	int ret = 0;
3342
	int old_min_uV, old_max_uV;
3343
	int current_uV;
3344

3345 3346 3347 3348
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3349
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3350 3351
		goto out;

3352
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3353
	 * return successfully even though the regulator does not support
3354 3355
	 * changing the voltage.
	 */
3356
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3357
		current_uV = regulator_get_voltage_rdev(rdev);
3358
		if (min_uV <= current_uV && current_uV <= max_uV) {
3359 3360
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3361 3362 3363 3364
			goto out;
		}
	}

3365
	/* sanity check */
3366 3367
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3368 3369 3370 3371 3372 3373 3374 3375
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3376

3377
	/* restore original values in case of error */
3378 3379 3380 3381
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3382

3383 3384
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3385 3386 3387 3388
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3389

3390 3391 3392 3393
out:
	return ret;
}

3394 3395
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3396 3397 3398 3399 3400
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3401 3402 3403
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3404 3405
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3406 3407 3408 3409 3410 3411
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3412
			goto out;
3413 3414
		}

M
Mark Brown 已提交
3415
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3416 3417
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3418
			goto out;
3419 3420 3421 3422
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3423
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3424 3425
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3426
			goto out;
3427 3428 3429 3430 3431 3432 3433
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3434
				best_supply_uV, INT_MAX, state);
3435 3436 3437
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3438
			goto out;
3439 3440 3441
		}
	}

3442 3443 3444 3445 3446
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3447
	if (ret < 0)
3448
		goto out;
3449

3450 3451
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3452
				best_supply_uV, INT_MAX, state);
3453 3454 3455 3456 3457 3458 3459
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3460
out:
3461
	return ret;
3462 3463
}

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3474
		*current_uV = regulator_get_voltage_rdev(rdev);
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3506
	int i, ret, max_spread;
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3540
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3551

3552 3553 3554 3555 3556 3557 3558 3559
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3560 3561
	max_spread = constraints->max_spread[0];

3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3579
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3617 3618 3619 3620
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3621
			ret = regulator_get_voltage_rdev(rdev);
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
3643
	struct regulator_coupler *coupler = c_desc->coupler;
3644 3645
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3646 3647
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663

	c_rdevs = c_desc->coupled_rdevs;
	n_coupled = c_desc->n_coupled;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		n_coupled = 1;

	if (c_desc->n_resolved < n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

3664 3665 3666
	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3693
			if (test_bit(i, &c_rdev_done))
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3721

3722 3723
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3724

3725 3726 3727
		if (ret < 0)
			goto out;

3728 3729
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
3730 3731 3732 3733

	} while (n_coupled > 1);

out:
3734 3735 3736
	return ret;
}

3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3757 3758
	struct ww_acquire_ctx ww_ctx;
	int ret;
3759

3760
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3761

3762 3763
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3764

3765
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3766

3767 3768 3769 3770
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3783
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3837 3838
	struct ww_acquire_ctx ww_ctx;
	int ret;
3839 3840 3841 3842 3843

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3844
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3845 3846 3847 3848

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3849
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3850 3851 3852 3853 3854

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3868 3869
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3870 3871 3872 3873 3874
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3875 3876 3877 3878 3879
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3880
	/* Currently requires operations to do this */
3881
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3904
/**
3905 3906
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3907 3908 3909 3910 3911 3912
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3913
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3914
 * set_voltage_time_sel() operation.
3915 3916 3917 3918 3919
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3920
	int old_volt, new_volt;
3921

3922 3923 3924
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3925

3926 3927 3928
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3929 3930 3931 3932 3933
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3934
}
3935
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3936

3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
3948
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3949 3950
	int ret, min_uV, max_uV;

3951
	regulator_lock(rdev);
3952 3953 3954 3955 3956 3957 3958 3959

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
3960
	if (!voltage->min_uV && !voltage->max_uV) {
3961 3962 3963 3964
		ret = -EINVAL;
		goto out;
	}

3965 3966
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
3967 3968 3969 3970 3971 3972

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

3973
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3974 3975 3976 3977 3978 3979
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
3980
	regulator_unlock(rdev);
3981 3982 3983 3984
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3985
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3986
{
3987
	int sel, ret;
3988 3989 3990 3991 3992 3993 3994 3995
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3996 3997 3998 3999 4000
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
4001

4002
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4003 4004
		}
	}
4005 4006 4007 4008 4009

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4010
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4011
	} else if (rdev->desc->ops->get_voltage) {
4012
		ret = rdev->desc->ops->get_voltage(rdev);
4013 4014
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4015 4016
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4017
	} else if (rdev->supply) {
4018
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4019
	} else {
4020
		return -EINVAL;
4021
	}
4022

4023 4024
	if (ret < 0)
		return ret;
4025
	return ret - rdev->constraints->uV_offset;
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4039
	struct ww_acquire_ctx ww_ctx;
4040 4041
	int ret;

4042
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4043
	ret = regulator_get_voltage_rdev(regulator->rdev);
4044
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4045 4046 4047 4048 4049 4050 4051 4052

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4053
 * @min_uA: Minimum supported current in uA
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4072
	regulator_lock(rdev);
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4087
	regulator_unlock(rdev);
4088 4089 4090 4091
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4092 4093 4094 4095 4096 4097 4098 4099 4100
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4101 4102 4103 4104
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4105
	regulator_lock(rdev);
4106
	ret = _regulator_get_current_limit_unlocked(rdev);
4107
	regulator_unlock(rdev);
4108

4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4142
	int regulator_curr_mode;
4143

4144
	regulator_lock(rdev);
4145 4146 4147 4148 4149 4150 4151

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4152 4153 4154 4155 4156 4157 4158 4159 4160
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4161
	/* constraints check */
4162
	ret = regulator_mode_constrain(rdev, &mode);
4163 4164 4165 4166 4167
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4168
	regulator_unlock(rdev);
4169 4170 4171 4172
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4173 4174 4175 4176 4177 4178 4179 4180 4181
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4182 4183 4184 4185
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4186
	regulator_lock(rdev);
4187
	ret = _regulator_get_mode_unlocked(rdev);
4188
	regulator_unlock(rdev);
4189

4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4205 4206 4207 4208 4209
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4210
	regulator_lock(rdev);
4211 4212 4213 4214 4215 4216 4217 4218 4219

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4220
	regulator_unlock(rdev);
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4238
/**
4239
 * regulator_set_load - set regulator load
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4262 4263 4264 4265 4266 4267 4268 4269
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4270
 * On error a negative errno is returned.
4271
 */
4272
int regulator_set_load(struct regulator *regulator, int uA_load)
4273 4274
{
	struct regulator_dev *rdev = regulator->rdev;
4275 4276
	int old_uA_load;
	int ret = 0;
4277

4278
	regulator_lock(rdev);
4279
	old_uA_load = regulator->uA_load;
4280
	regulator->uA_load = uA_load;
4281 4282 4283 4284 4285
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4286
	regulator_unlock(rdev);
4287

4288 4289
	return ret;
}
4290
EXPORT_SYMBOL_GPL(regulator_set_load);
4291

4292 4293 4294 4295
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4296
 * @enable: enable or disable bypass mode
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4311
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4312 4313
		return 0;

4314
	regulator_lock(rdev);
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4338
	regulator_unlock(rdev);
4339 4340 4341 4342 4343

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4344 4345 4346
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4347
 * @nb: notifier block
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4362
 * @nb: notifier block
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4374 4375 4376
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4377
static int _notifier_call_chain(struct regulator_dev *rdev,
4378 4379 4380
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4381
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4408 4409
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4420 4421 4422 4423 4424 4425 4426
	if (ret != -EPROBE_DEFER)
		dev_err(dev, "Failed to get supply '%s': %d\n",
			consumers[i].supply, ret);
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4427
	while (--i >= 0)
4428 4429 4430 4431 4432 4433
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4434 4435 4436 4437 4438 4439 4440
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4456
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4457
	int i;
4458
	int ret = 0;
4459

4460
	for (i = 0; i < num_consumers; i++) {
4461 4462
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4463
	}
4464 4465 4466 4467

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4468
	for (i = 0; i < num_consumers; i++) {
4469 4470
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4471
			goto err;
4472
		}
4473 4474 4475 4476 4477
	}

	return 0;

err:
4478 4479 4480 4481 4482 4483 4484
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4498 4499
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4500 4501 4502 4503 4504 4505
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4506
	int ret, r;
4507

4508
	for (i = num_consumers - 1; i >= 0; --i) {
4509 4510 4511 4512 4513 4514 4515 4516
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4517
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4518 4519 4520
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4521
			pr_err("Failed to re-enable %s: %d\n",
4522 4523
			       consumers[i].supply, r);
	}
4524 4525 4526 4527 4528

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4547
	int ret = 0;
4548

4549
	for (i = 0; i < num_consumers; i++) {
4550 4551 4552
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4553 4554
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4555 4556 4557 4558 4559 4560 4561
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4585
 * @rdev: regulator source
4586
 * @event: notifier block
4587
 * @data: callback-specific data.
4588 4589 4590
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4591
 * Note lock must be held by caller.
4592 4593 4594 4595
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4596
	lockdep_assert_held_once(&rdev->mutex.base);
4597

4598 4599 4600 4601 4602 4603
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4620
	case REGULATOR_MODE_STANDBY:
4621 4622
		return REGULATOR_STATUS_STANDBY;
	default:
4623
		return REGULATOR_STATUS_UNDEFINED;
4624 4625 4626 4627
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4655 4656 4657 4658
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4659 4660
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4661
{
4662
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4663
	struct regulator_dev *rdev = dev_to_rdev(dev);
4664
	const struct regulator_ops *ops = rdev->desc->ops;
4665 4666 4667 4668 4669 4670 4671
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4672 4673

	/* some attributes need specific methods to be displayed */
4674 4675 4676 4677 4678 4679 4680
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4681
	}
4682

4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4698
	/* constraints need specific supporting methods */
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4734

4735 4736 4737
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4738 4739 4740

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4741
	kfree(rdev);
4742 4743
}

4744 4745
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4758
	if (!rdev->debugfs) {
4759 4760 4761 4762 4763 4764 4765 4766
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4767 4768
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4769 4770
}

4771 4772
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4773 4774 4775 4776 4777 4778
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4779 4780
}

4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

4832
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4833
{
4834
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4847 4848
		if (!c_rdev)
			continue;
4849

4850 4851 4852 4853 4854 4855
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

4856
		regulator_lock(c_rdev);
4857

4858 4859
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
4860

4861
		regulator_unlock(c_rdev);
4862

4863 4864
		regulator_resolve_coupling(c_rdev);
	}
4865 4866
}

4867
static void regulator_remove_coupling(struct regulator_dev *rdev)
4868
{
4869
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4870 4871 4872 4873
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
4874
	int err;
4875

4876
	n_coupled = c_desc->n_coupled;
4877

4878 4879
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
4880

4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
			rdev_err(rdev, "failed to detach from coupler: %d\n",
				 err);
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
4914 4915
}

4916
static int regulator_init_coupling(struct regulator_dev *rdev)
4917
{
4918 4919
	int err, n_phandles;
	size_t alloc_size;
4920 4921 4922 4923 4924 4925

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

4926 4927 4928 4929 4930
	alloc_size = sizeof(*rdev) * (n_phandles + 1);

	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
	if (!rdev->coupling_desc.coupled_rdevs)
		return -ENOMEM;
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

4944
	if (!of_check_coupling_data(rdev))
4945 4946
		return -EPERM;

4947 4948 4949 4950 4951
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
		rdev_err(rdev, "failed to get coupler: %d\n", err);
		return err;
4952 4953
	}

4954 4955 4956 4957 4958 4959 4960 4961 4962
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
4963
		return -EPERM;
4964
	}
4965 4966 4967 4968

	return 0;
}

4969 4970 4971 4972
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

4973 4974
/**
 * regulator_register - register regulator
4975
 * @regulator_desc: regulator to register
4976
 * @cfg: runtime configuration for regulator
4977 4978
 *
 * Called by regulator drivers to register a regulator.
4979 4980
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
4981
 */
4982 4983
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
4984
		   const struct regulator_config *cfg)
4985
{
4986
	const struct regulation_constraints *constraints = NULL;
4987
	const struct regulator_init_data *init_data;
4988
	struct regulator_config *config = NULL;
4989
	static atomic_t regulator_no = ATOMIC_INIT(-1);
4990
	struct regulator_dev *rdev;
4991 4992
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
4993
	struct device *dev;
4994
	int ret, i;
4995

4996
	if (cfg == NULL)
4997
		return ERR_PTR(-EINVAL);
4998 4999 5000 5001 5002 5003
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5004

5005
	dev = cfg->dev;
5006
	WARN_ON(!dev);
5007

5008 5009 5010 5011
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5012

5013
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5014 5015 5016 5017
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5018

5019 5020 5021
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5022 5023
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5024 5025 5026 5027

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5028 5029
		ret = -EINVAL;
		goto rinse;
5030
	}
5031 5032
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5033 5034
		ret = -EINVAL;
		goto rinse;
5035
	}
5036

5037
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5038 5039 5040 5041
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5042

5043 5044 5045 5046 5047 5048 5049
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
5050 5051
		ret = -ENOMEM;
		goto rinse;
5052 5053
	}

5054
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5055
					       &rdev->dev.of_node);
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068

	/*
	 * Sometimes not all resources are probed already so we need to take
	 * that into account. This happens most the time if the ena_gpiod comes
	 * from a gpio extender or something else.
	 */
	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
		kfree(config);
		kfree(rdev);
		ret = -EPROBE_DEFER;
		goto rinse;
	}

5069 5070 5071 5072 5073
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5074
	 * a descriptor, we definitely got one from parsing the device
5075 5076 5077 5078
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5079 5080 5081 5082 5083
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5084
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5085
	rdev->reg_data = config->driver_data;
5086 5087
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5088 5089
	if (config->regmap)
		rdev->regmap = config->regmap;
5090
	else if (dev_get_regmap(dev, NULL))
5091
		rdev->regmap = dev_get_regmap(dev, NULL);
5092 5093
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5094 5095 5096
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5097
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5098

5099
	/* preform any regulator specific init */
5100
	if (init_data && init_data->regulator_init) {
5101
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5102 5103
		if (ret < 0)
			goto clean;
5104 5105
	}

5106
	if (config->ena_gpiod) {
5107
		mutex_lock(&regulator_list_mutex);
5108
		ret = regulator_ena_gpio_request(rdev, config);
5109
		mutex_unlock(&regulator_list_mutex);
5110
		if (ret != 0) {
5111 5112
			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
				 ret);
5113
			goto clean;
5114
		}
5115 5116 5117
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5118 5119
	}

5120
	/* register with sysfs */
5121
	rdev->dev.class = &regulator_class;
5122
	rdev->dev.parent = dev;
5123
	dev_set_name(&rdev->dev, "regulator.%lu",
5124
		    (unsigned long) atomic_inc_return(&regulator_no));
5125

5126
	/* set regulator constraints */
5127 5128 5129 5130
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
5131
		rdev->supply_name = init_data->supply_regulator;
5132
	else if (regulator_desc->supply_name)
5133
		rdev->supply_name = regulator_desc->supply_name;
5134

5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

5147
	mutex_lock(&regulator_list_mutex);
5148
	ret = regulator_init_coupling(rdev);
5149
	mutex_unlock(&regulator_list_mutex);
5150
	if (ret < 0)
5151 5152
		goto wash;

5153
	/* add consumers devices */
5154
	if (init_data) {
5155
		mutex_lock(&regulator_list_mutex);
5156 5157 5158
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5159
				init_data->consumer_supplies[i].supply);
5160
			if (ret < 0) {
5161
				mutex_unlock(&regulator_list_mutex);
5162 5163 5164 5165
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5166
		}
5167
		mutex_unlock(&regulator_list_mutex);
5168
	}
5169

5170 5171 5172 5173 5174
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5175
	dev_set_drvdata(&rdev->dev, rdev);
5176 5177 5178 5179 5180 5181
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

5182
	rdev_init_debugfs(rdev);
5183

5184 5185 5186 5187 5188
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5189 5190 5191
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5192
	kfree(config);
5193
	return rdev;
D
David Brownell 已提交
5194

5195
unset_supplies:
5196
	mutex_lock(&regulator_list_mutex);
5197
	unset_regulator_supplies(rdev);
5198
	regulator_remove_coupling(rdev);
5199
	mutex_unlock(&regulator_list_mutex);
5200
wash:
5201
	kfree(rdev->constraints);
5202
	mutex_lock(&regulator_list_mutex);
5203
	regulator_ena_gpio_free(rdev);
5204
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5205
clean:
5206 5207
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
D
David Brownell 已提交
5208
	kfree(rdev);
5209
	kfree(config);
5210 5211 5212
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5213
	return ERR_PTR(ret);
5214 5215 5216 5217 5218
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5219
 * @rdev: regulator to unregister
5220 5221 5222 5223 5224 5225 5226 5227
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5228 5229 5230
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5231
		regulator_put(rdev->supply);
5232
	}
5233

5234 5235
	flush_work(&rdev->disable_work.work);

5236
	mutex_lock(&regulator_list_mutex);
5237

5238
	debugfs_remove_recursive(rdev->debugfs);
5239
	WARN_ON(rdev->open_count);
5240
	regulator_remove_coupling(rdev);
5241
	unset_regulator_supplies(rdev);
5242
	list_del(&rdev->list);
5243
	regulator_ena_gpio_free(rdev);
5244
	device_unregister(&rdev->dev);
5245 5246

	mutex_unlock(&regulator_list_mutex);
5247 5248 5249
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5250
#ifdef CONFIG_SUSPEND
5251
/**
5252
 * regulator_suspend - prepare regulators for system wide suspend
5253
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5254 5255 5256
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5257
static int regulator_suspend(struct device *dev)
5258
{
5259
	struct regulator_dev *rdev = dev_to_rdev(dev);
5260
	suspend_state_t state = pm_suspend_target_state;
5261 5262 5263 5264 5265
	int ret;

	regulator_lock(rdev);
	ret = suspend_set_state(rdev, state);
	regulator_unlock(rdev);
5266

5267
	return ret;
5268
}
5269

5270
static int regulator_resume(struct device *dev)
5271
{
5272
	suspend_state_t state = pm_suspend_target_state;
5273
	struct regulator_dev *rdev = dev_to_rdev(dev);
5274
	struct regulator_state *rstate;
5275
	int ret = 0;
5276

5277
	rstate = regulator_get_suspend_state(rdev, state);
5278
	if (rstate == NULL)
5279
		return 0;
5280

5281
	regulator_lock(rdev);
5282

5283
	if (rdev->desc->ops->resume &&
5284 5285
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
5286
		ret = rdev->desc->ops->resume(rdev);
5287

5288
	regulator_unlock(rdev);
5289

5290
	return ret;
5291
}
5292 5293
#else /* !CONFIG_SUSPEND */

5294 5295
#define regulator_suspend	NULL
#define regulator_resume	NULL
5296 5297 5298 5299 5300

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5301 5302
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5303 5304 5305
};
#endif

M
Mark Brown 已提交
5306
struct class regulator_class = {
5307 5308 5309 5310 5311 5312 5313
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5331 5332
/**
 * rdev_get_drvdata - get rdev regulator driver data
5333
 * @rdev: regulator
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5370
 * @rdev: regulator
5371 5372 5373 5374 5375 5376 5377
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5378 5379 5380 5381 5382 5383
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5384 5385 5386 5387 5388 5389
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5390 5391 5392 5393 5394 5395
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5396
#ifdef CONFIG_DEBUG_FS
5397
static int supply_map_show(struct seq_file *sf, void *data)
5398 5399 5400 5401
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5402 5403 5404
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5405 5406
	}

5407 5408
	return 0;
}
5409
DEFINE_SHOW_ATTRIBUTE(supply_map);
5410

5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5433 5434 5435 5436 5437 5438
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5439
	struct summary_data summary_data;
5440
	unsigned int opmode;
5441 5442 5443 5444

	if (!rdev)
		return;

5445
	opmode = _regulator_get_mode_unlocked(rdev);
5446
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5447 5448
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5449
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5450
		   regulator_opmode_to_str(opmode));
5451

5452
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5453 5454
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5473
		if (consumer->dev && consumer->dev->class == &regulator_class)
5474 5475 5476 5477
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5478 5479
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5480 5481 5482

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5483 5484
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5485
				   consumer->uA_load / 1000,
5486 5487
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5488 5489
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5490 5491 5492 5493 5494 5495 5496 5497
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5498 5499 5500
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5501

5502 5503
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5541 5542

	regulator_unlock(rdev);
5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5573 5574
	mutex_lock(&regulator_list_mutex);

5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5601 5602

	mutex_unlock(&regulator_list_mutex);
5603 5604
}

5605
static int regulator_summary_show_roots(struct device *dev, void *data)
5606
{
5607 5608
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5609

5610 5611
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5612

5613 5614
	return 0;
}
5615

5616 5617
static int regulator_summary_show(struct seq_file *s, void *data)
{
5618 5619
	struct ww_acquire_ctx ww_ctx;

5620 5621
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5622

5623 5624
	regulator_summary_lock(&ww_ctx);

5625 5626
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5627

5628 5629
	regulator_summary_unlock(&ww_ctx);

5630 5631
	return 0;
}
5632 5633
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5634

5635 5636
static int __init regulator_init(void)
{
5637 5638 5639 5640
	int ret;

	ret = class_register(&regulator_class);

5641
	debugfs_root = debugfs_create_dir("regulator", NULL);
5642
	if (!debugfs_root)
5643
		pr_warn("regulator: Failed to create debugfs directory\n");
5644

5645
#ifdef CONFIG_DEBUG_FS
5646 5647
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5648

5649
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5650
			    NULL, &regulator_summary_fops);
5651
#endif
5652 5653
	regulator_dummy_init();

5654 5655
	regulator_coupler_register(&generic_regulator_coupler);

5656
	return ret;
5657 5658 5659 5660
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5661

5662
static int regulator_late_cleanup(struct device *dev, void *data)
5663
{
5664 5665 5666
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5667 5668
	int enabled, ret;

5669 5670 5671
	if (c && c->always_on)
		return 0;

5672
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5673 5674
		return 0;

5675
	regulator_lock(rdev);
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5706
	regulator_unlock(rdev);
5707 5708 5709 5710

	return 0;
}

5711
static void regulator_init_complete_work_function(struct work_struct *work)
5712
{
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5723
	/* If we have a full configuration then disable any regulators
5724 5725 5726
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5727
	 */
5728 5729
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758
}

static DECLARE_DELAYED_WORK(regulator_init_complete_work,
			    regulator_init_complete_work_function);

static int __init regulator_init_complete(void)
{
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

	/*
	 * We punt completion for an arbitrary amount of time since
	 * systems like distros will load many drivers from userspace
	 * so consumers might not always be ready yet, this is
	 * particularly an issue with laptops where this might bounce
	 * the display off then on.  Ideally we'd get a notification
	 * from userspace when this happens but we don't so just wait
	 * a bit and hope we waited long enough.  It'd be better if
	 * we'd only do this on systems that need it, and a kernel
	 * command line option might be useful.
	 */
	schedule_delayed_work(&regulator_init_complete_work,
			      msecs_to_jiffies(30000));
5759 5760 5761

	return 0;
}
5762
late_initcall_sync(regulator_init_complete);